
1 A Result of Bahadur and Savage (1956)

I thought I would end the class with the following simple, but somewhat

striking result. Consider the following problem. Let Xi, i = 1, . . . , n be a se-

quence of i.i.d. random variables with distribution P ∈ P = {P on R : 0 <

σ2(P ) < ∞}. Suppose one wishes to test the null hypothesis H0 : µ(P ) = 0

versus > 0. Earlier, we showed that the t-test, i.e. φn = I{
√

nX̄n > σ̂nz1−α}
where z1−α is the 1 − α quantile of the standard normal distribution, had

size one if P were sufficiently large. In particular, we showed that

sup
P∈P:µ(P )=0

EP [φn] = 1 .

This result was perhaps a bit shocking, but it is possible that it is unique

to the t-test – perhaps there are other tests of the same null hypothesis

that would behave more reasonably. Unfortunately, we can show that this

is not the case, provided that P is “‘sufficiently rich”. Formally, we have

the following result:

Theorem 1.1 Let P be a class of distributions on R such that

(i) For every P ∈ P, µ(P ) exists and is finite;

(ii) For every m ∈ R, there is P ∈ P such that µ(P ) = m;

(iii) P is convex in the sense that if P1 and P2 are in P, then γP1+(1−γ)P2

is in P for γ ∈ [0, 1].

Let Xi, i = 1, . . . , n be i.i.d. with distribution P ∈ P. Let φn be any test of

the null hypothesis H0 : µ(P ) = 0. Then,

(a) Any test of H0 which has size α for P has power ≤ α for any alternative

P ∈ P.

(b) Any test of H0 which has power β against some alternative P ∈ P has

size ≥ β.

The proof of this result will follow from the following lemma:
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Lemma 1.1 Let Xi, i = 1, . . . , n be i.i.d. with distribution P ∈ P, where a

P is the class of distributions on R satisfying (i) - (iii) in Theorem 1.1. Let

φn be any test function. Define

Pm = {P ∈ P : µ(P ) = m} .

Then,

inf
P∈Pm

EP [φn] and sup
P∈Pm

EP [φn]

are independent of m.

Proof: We show first that supP∈Pm
EP [φn] does not depend on m. Let m

be given and choose m′ 6= m. We wish to show that

sup
P∈Pm′

EP [φn] = sup
P∈Pm

EP [φn] .

To this end, choose Pj , j ≥ 1 so that

lim
j→∞

EPj [φn] = sup
P∈Pm

EP [φn] .

Let hj be defined so that

m′ = (1− 1
j
)m +

1
j
hj .

Choose Hj so that µ(Hj) = hj . Define

Gj = (1− 1
j
)Pj +

1
j
Hj .

Thus, Gj ∈ Pm′ . Note that with probability (1 − 1
j )n, a sample of size n

from Gj is simply a sample of size n from Pj . Therefore,

sup
P∈Pm′

EP [φn] ≥ EGj [φn] ≥ (1− 1
j
)nEPj [φn] .

But (1− 1
j )n → 1 and EPj [φn] → supP∈Pm

EP [φn] as j →∞. Therefore,

sup
P∈Pm′

EP [φn] ≥ sup
P∈Pm

EP [φn] .
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Interchanging the roles of m and m′, we can establish the reverse inequality

sup
P∈Pm′

EP [φn] ≤ sup
P∈Pm

EP [φn] .

We could replace φn with 1− φn to establish that infP∈Pm EP [φn] does not

depend on m.

Proof of Theorem 1.1: (a) Let φn be a test of size α for P. Let P ′ be

any alternative. Define m = µ(P ′). Then,

EP ′ [φn] ≤ sup
P∈Pm

EP [φn] = sup
P∈P0

EP [φn] = α .

The proof of (b) is similar.

The class of distributions with finite second moment satisfies the require-

ments of the theorem, as does the class of distributions with infinitely many

moments. Thus, the failure of the t-test is not special to the t-test; in this

setting, there simply exist no “reasonable” tests.
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