1 A Result of Bahadur and Savage (1956)

I thought I would end the class with the following simple, but somewhat striking result. Consider the following problem. Let $X_i, i = 1, ..., n$ be a sequence of i.i.d. random variables with distribution $P \in \mathbf{P} = \{P \text{ on } \mathbf{R} : 0 < \sigma^2(P) < \infty\}$. Suppose one wishes to test the null hypothesis $H_0: \mu(P) = 0$ versus > 0. Earlier, we showed that the *t*-test, i.e. $\phi_n = I\{\sqrt{n}\bar{X}_n > \hat{\sigma}_n z_{1-\alpha}\}$ where $z_{1-\alpha}$ is the $1 - \alpha$ quantile of the standard normal distribution, had size one if \mathbf{P} were sufficiently large. In particular, we showed that

$$\sup_{P \in \mathbf{P}: \mu(P) = 0} E_P[\phi_n] = 1 .$$

This result was perhaps a bit shocking, but it is possible that it is unique to the *t*-test – perhaps there are other tests of the same null hypothesis that would behave more reasonably. Unfortunately, we can show that this is not the case, provided that \mathbf{P} is "sufficiently rich". Formally, we have the following result:

Theorem 1.1 Let **P** be a class of distributions on **R** such that

- (i) For every $P \in \mathbf{P}$, $\mu(P)$ exists and is finite;
- (ii) For every $m \in \mathbf{R}$, there is $P \in \mathbf{P}$ such that $\mu(P) = m$;
- (iii) **P** is convex in the sense that if P_1 and P_2 are in **P**, then $\gamma P_1 + (1-\gamma)P_2$ is in **P** for $\gamma \in [0, 1]$.

Let $X_i, i = 1, ..., n$ be i.i.d. with distribution $P \in \mathbf{P}$. Let ϕ_n be any test of the null hypothesis $H_0: \mu(P) = 0$. Then,

- (a) Any test of H_0 which has size α for **P** has power $\leq \alpha$ for any alternative $P \in \mathbf{P}$.
- (b) Any test of H_0 which has power β against some alternative $P \in \mathbf{P}$ has size $\geq \beta$.

The proof of this result will follow from the following lemma:

Lemma 1.1 Let $X_i, i = 1, ..., n$ be i.i.d. with distribution $P \in \mathbf{P}$, where a **P** is the class of distributions on **R** satisfying (i) - (iii) in Theorem 1.1. Let ϕ_n be any test function. Define

$$\mathbf{P}_m = \{ P \in \mathbf{P} : \mu(P) = m \} .$$

Then,

$$\inf_{P \in \mathbf{P}_m} E_P[\phi_n] \text{ and } \sup_{P \in \mathbf{P}_m} E_P[\phi_n]$$

are independent of m.

PROOF: We show first that $\sup_{P \in \mathbf{P}_m} E_P[\phi_n]$ does not depend on m. Let m be given and choose $m' \neq m$. We wish to show that

$$\sup_{P \in \mathbf{P}_{m'}} E_P[\phi_n] = \sup_{P \in \mathbf{P}_m} E_P[\phi_n] \; .$$

To this end, choose $P_j, j \ge 1$ so that

$$\lim_{j \to \infty} E_{P_j}[\phi_n] = \sup_{P \in \mathbf{P}_m} E_P[\phi_n]$$

Let h_j be defined so that

$$m' = (1 - \frac{1}{j})m + \frac{1}{j}h_j$$
.

Choose H_j so that $\mu(H_j) = h_j$. Define

$$G_j = (1 - \frac{1}{j})P_j + \frac{1}{j}H_j$$
.

Thus, $G_j \in \mathbf{P}_{m'}$. Note that with probability $(1 - \frac{1}{j})^n$, a sample of size n from G_j is simply a sample of size n from P_j . Therefore,

$$\sup_{P \in \mathbf{P}_{m'}} E_P[\phi_n] \ge E_{G_j}[\phi_n] \ge (1 - \frac{1}{j})^n E_{P_j}[\phi_n] \; .$$

But $(1-\frac{1}{j})^n \to 1$ and $E_{P_j}[\phi_n] \to \sup_{P \in \mathbf{P}_m} E_P[\phi_n]$ as $j \to \infty$. Therefore,

$$\sup_{P \in \mathbf{P}_{m'}} E_P[\phi_n] \ge \sup_{P \in \mathbf{P}_m} E_P[\phi_n] \; .$$

Interchanging the roles of m and m', we can establish the reverse inequality

$$\sup_{P \in \mathbf{P}_{m'}} E_P[\phi_n] \le \sup_{P \in \mathbf{P}_m} E_P[\phi_n] \; .$$

We could replace ϕ_n with $1 - \phi_n$ to establish that $\inf_{P \in \mathbf{P}_m} E_P[\phi_n]$ does not depend on m.

PROOF OF THEOREM 1.1: (a) Let ϕ_n be a test of size α for **P**. Let P' be any alternative. Define $m = \mu(P')$. Then,

$$E_{P'}[\phi_n] \le \sup_{P \in \mathbf{P}_m} E_P[\phi_n] = \sup_{P \in \mathbf{P}_0} E_P[\phi_n] = \alpha .$$

The proof of (b) is similar. \blacksquare

The class of distributions with finite second moment satisfies the requirements of the theorem, as does the class of distributions with infinitely many moments. Thus, the failure of the *t*-test is not special to the *t*-test; in this setting, there simply exist no "reasonable" tests.