Final Exam

Empirical Analysis 1

Date: Thursday, December 9, 2021

- 1. The exam is closed book and closed notes with the exception of **one (two-sided) sheet of paper**.
- 2. No calculators are allowed.
- 3. There are a total of 100 possible points.
- 4. Answer as many questions as you can. You do not need to answer the questions in order. Try to answer the later parts of a question even if you have difficulty with earlier parts.
- 5. Please **clearly** write your answers in a blue book with your name written on it.
- 6. Please clearly label your final answers where appropriate.
- 7. Any students caught cheating will fail the course. The Dean of Students will be notified as well.
- 8. Good luck!

- 1. (8 points) For $0 \le a < b < \infty$, let $X_n, n \ge 1$ be a sequence of random variables on \mathbf{R} such that $P\{a \le X_n \le b\} = 1$ for $n \ge 1$ and let X be another random variable such that $P\{a \le X \le b\} = 1$. Show that $X_n \xrightarrow{d} X$ if and only if for all $k \ge 1$, $E[X_n^k] \to E[X^k]$. (Hint: Let $f: [a,b] \to \mathbf{R}$ be continuous and bounded. The Weierstrass approximation theorem states that for any $\delta > 0$ there is a (finite-order) polynomial $p: [a,b] \to \mathbf{R}$ such that $\sup_{a \le x \le b} |f(x) p(x)| < \delta$.)
- 2. (14 points) Let $(Y_i(1), Y_i(0), D_i(1), D_i(0), X_i, Z_i), i = 1, ..., n$ be an i.i.d. sequence of random variables such that $D_i(1), D_i(0), X_i$, and Z_i are binary (i.e., take on only values 0 or 1). Suppose
 - (i) $(Y_i(1), Y_i(0), D_i(1), D_i(0), X_i) \perp Z_i$
 - (ii) $P\{D_i(1) \neq D_i(0) | X_i = 1\} > 0$ and $P\{D_i(1) \neq D_i(0) | X_i = 0\} > 0$
 - (iii) $P\{D_i(1) \ge D_i(0)|X_i = 1\} = 1$ and $P\{D_i(1) \ge D_i(0)|X_i = 0\} = 1$
 - (a) (5 points) For $x \in \{0, 1\}$, provide a consistent estimator $\hat{\beta}_{n,x}$ of $\beta_x = E[Y_i(1) Y_i(0)|D_i(1) > D_i(0), X_i = x]$. Justify your answer.
 - (b) (9 points) Provide a consistent estimator \hat{p}_n of $p = P\{X_i = 1 | D_i(1) > D_i(0)\}$. Justify your answer.
- 3. (48 points) Let $(Y_i(1), Y_i(0), X_i, D_i), i = 1, ..., n$ be i.i.d. where $Y_i(1) \in \mathbf{R}$ and $Y_i(0) \in \mathbf{R}$ are potential outcomes under treatment and control, respectively, $X_i \in \mathbf{R}^k$ is a vector of observed, baseline covariates, and D_i is an indicator for receipt of treatment. As usual, define the observed outcome to be

$$Y_i = Y_i(1)D_i + Y_i(0)(1 - D_i)$$
.

Assume that

$$(Y_i(1), Y_i(0), X_i) \perp D_i$$
.

The parameter of interest is the average treatment effect,

$$\tau = E[Y_i(1) - Y_i(0)]$$
.

(a) (8 points) A natural estimator of τ in this setting is

$$\hat{\tau}_n^{\text{diff}} = \frac{1}{n_1} \sum_{1 \le i \le n: D_i = 1} Y_i - \frac{1}{n_0} \sum_{1 \le i \le n: D_i = 0} Y_i ,$$

where, for $d = 0, 1, n_d = |\{1 \le i \le n : D_i = d\}|$. Show that

$$\sqrt{n}(\hat{\tau}_n^{\text{diff}} - \tau) = \begin{pmatrix} \frac{n}{n_1} & -\frac{n}{n_0} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{n}} \sum_{1 \le i \le n} (Y_i(1) - E[Y_i(1)]) D_i \\ \frac{1}{\sqrt{n}} \sum_{1 \le i \le n} (Y_i(0) - E[Y_i(0)]) (1 - D_i) \end{pmatrix}$$

(b) (8 points) Use the result in the preceding question to show that

$$\sqrt{n}(\hat{\tau}_n^{\text{diff}} - \tau) \stackrel{d}{\to} N(0, \sigma_{\text{diff}}^2)$$

with

$$\sigma_{\rm diff}^2 = \frac{{\rm Var}[Y_i(1)]}{P\{D_i=1\}} + \frac{{\rm Var}[Y_i(0)]}{P\{D_i=0\}} \ .$$

Clearly state any additional assumptions needed to justify your answer.

(c) (4 points) Empirical researchers often try to exploit X_i by defining an estimator $\hat{\tau}_n^{\text{reg}}$ as the ordinary least squares estimate of the coefficient on D_i in a regression of Y_i on a constant, D_i and X_i . While $\hat{\tau}_n^{\text{reg}}$ and $\hat{\tau}_n^{\text{diff}}$ are both consistent for τ , the former estimator need not be more precise than $\hat{\tau}_n^{\text{diff}}$. Explain briefly why $\hat{\tau}_n^{\text{reg}}$ is consistent for τ .

(d) For this reason, it is useful to consider the following estimator:

$$\hat{\tau}_n^{\text{adj}} = \frac{1}{n_1} \sum_{1 \le i \le n: D_i = 1} \left(Y_i - (X_i - \bar{X}_n)' \hat{\gamma}_{1,n} \right) - \frac{1}{n_0} \sum_{1 \le i \le n: D_i = 0} \left(Y_i - (X_i - \bar{X}_n)' \hat{\gamma}_{0,n} \right) ,$$

where $\bar{X}_n = \frac{1}{n} \sum_{1 \leq i \leq n} X_i$ and, for d = 0, 1, $\hat{\gamma}_{n,d}$ is obtained as the ordinary least squares estimate of the coefficient on X_i in a regression of Y_i on a constant and X_i using *only* observations with $D_i = d$. This estimator is provably more precise that $\hat{\tau}_n^{\text{diff}}$. To see this, complete the following exercises:

i. (10 points) Show that

$$\hat{\tau}_n - \tau = \left(\frac{1}{n_1} \sum_{1 \le i \le n: D_i = 1} (Y_i(1) - E[Y_i(1)]) - (X_i - E[X_i])' \gamma_1\right)$$

$$+ \left(\frac{1}{n_0} \sum_{1 \le i \le n: D_i = 0} (Y_i(0) - E[Y_i(0)]) - (X_i - E[X_i])' \gamma_0\right)$$

$$+ (\bar{X}_n - E[X_i])' (\gamma_1 - \gamma_0) + o_P(n^{-1/2}).$$

ii. (10 points) Use the result in the preceding question to show that

$$\sqrt{n}(\hat{\tau}_n^{\mathrm{adj}} - \tau) \stackrel{d}{\to} N(0, \sigma_{\mathrm{adj}}^2)$$

with

$$\sigma_{\text{adj}}^2 = \frac{\text{Var}[Y_i(1) - X_i'\gamma_1]}{P\{D_i = 1\}} + \frac{\text{Var}[Y_i(0) - X_i'\gamma_0]}{P\{D_i = 0\}} + (\gamma_1 - \gamma_0)' \text{Var}[X_i](\gamma_1 - \gamma_0) ,$$

where, for d = 0, 1, $\gamma_d = \text{Var}[X_i]^{-1}\text{Cov}[Y_i(d), X_i]$. Clearly state any additional assumptions needed to justify your answer.

iii. (8 points) Show that

$$\sigma_{\text{diff}}^2 - \sigma_{\text{adj}}^2 = \Delta' \text{Var}[X_i] \Delta \ge 0$$
,

where

$$\Delta = \sqrt{\frac{P\{D_i = 0\}}{P\{D_i = 1\}}} \gamma_1 + \sqrt{\frac{P\{D_i = 1\}}{P\{D_i = 0\}}} \gamma_0$$

(Hint: You may wish to start by expanding $Var[Y_i(d) - X_i'\gamma_d]$.)

- 4. (30 points) Let (X_i, U_i) , i = 1, ..., n be i.i.d. such that $U_i | X_i \sim N(0, 1)$. Suppose $Y_i = X_i' \beta + V_i$, where for a known γ , $V_i = \exp(X_i' \gamma) U_i$ and $E[X_i V_i] = 0$. Let $\hat{\beta}_n$ be the MLE of β .
 - (a) (5 points) Is the OLS estimator of β necessarily the best linear unbiased estimator of β ? Explain briefly.
 - (b) (5 points) Write the (conditional) log-likelihood function of Y_1, \ldots, Y_n given X_1, \ldots, X_n .
 - (c) (7 points) Derive an expression for $\hat{\beta}_n$.
 - (d) (7 points) Use the Fisher Information to derive the limit in distribution of $\hat{\beta}_n$ after appropriate centering and normalization.
 - (e) (6 points) Describe the Wald test for the null hypothesis $\beta = 0$ versus the alternative hypothesis that $\beta \neq 0$.