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Circadian	Rhythms	are	physiological	
rhythms	regulated	by	an	internal	clock	
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Many	hormonal	and	physiological	
processes	display	circadian	rhythms	
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Hastings	M,	et	al.	J.	Endocrinol.	Nov	1,	
2007.	195	187-198	



A	molecular	transcriptional	set	of	
feedback	loops	controls	circadian	

rhythms	in	eukaryotes	

8	

Sukumaran	S.	et	al.	Journal	of	Applied	Physiology.	2011	Vol.	110	no.	6,	1732-1747	
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Dis-regulation	of	gene	expression	can	cause	
physiological	changes	and	disease	



Dis-regulation	can	be	due	to						
changes	in	expression	level	

17	



Dis-regulation	can	be	more	than	
changes	in	expression	level	
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Dis-regulation	can	be	more	than	
changes	in	expression	level	
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Outline	

•  Biological	and	Statistical	Background	
•  Improvements	to	a	Rhythm	Detection	method	
•  Comparing	rhythmicity	across	conditions	
•  Future	Directions	
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Outline	

•  Biological	and	Statistical	Background		
– Circadian	experiments	
– Challenges	in	rhythm	detection	
– Current	rhythm	detection	methods	
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Circadian	experiment	
12	h	light	
12	h	dark	

0	0	0	0	 12	 12	12	
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Molecular	circadian	experiment	
12	h	light	
12	h	dark	
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Molecular	circadian	experiment	
12	h	light	
12	h	dark	
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Three	challenges	of	rhythm	detection	
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•  Sparse	sampling	of	data	
•  High	noise	of	measurements	
•  High	rate	of	arrhythmic	genes	

Time	series	data	from	
Hughes	et	al.	PLoS	Gen.	2009	

Sampled	every	4	h	Sampled	every	2	h	Sampled	every	1	h	



Rhythm	detection	approaches	
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•  Cosine-fitting	methods	
•  COSOPT	(Straume	et	al.	

2004)	
•  ARSER	(Yang	et	al.	2010)	

•  Fourier-based	methods	
•  F24	(Wijnen	et	al.	2009)		

•  Reference-free	methods	
•  ANOVA	(Keegan	et	al.	

2007)	
•  Cyclohedron	test	

(Morton	et	al.	2007)		
•  Address	reduction	(Fink	

et	al.	2007)	
•  Stable	Persistence	

(Edelsbrunner	et	al.	
2000)		
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•  Non-parametric	reference	waveform	methods	
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JTK_CYCLE	picks	the	best	reference	
waveform	match	as	its	measure	of	

rhythmicity	
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Outline	

•  Biological	and	Statistical	Background		
– Circadian	experiments	
– Challenges	in	rhythm	detection	
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Outline	

•  Biological	and	Statistical	Background	
•  Improvements	to	JTK_CYCLE	
– Empirical	JTK_CYCLE	(eJTK)	
– Bootstrap	eJTK	(BooteJTK)	
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Outline	

•  Biological	and	Statistical	Background	
•  Improvements	to	JTK_CYCLE	
– Empirical	JTK_CYCLE	(eJTK)	

•  Searching	for	asymmetric	waveforms	
•  Calculating	accurate	p-values	
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Traditionally,	JTK_CYCLE	did	not	
search	for	asymmetric	waveforms	
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Asymmetric	waveforms	improve	
rhythm	detection	sensitivity	
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Asymmetric	waveforms	improve	
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American	Statistical	Association	
definition	of	p-values	
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P-values	for	JTK_CYCLE	
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“Informally,	a	p-value	is	the	probability	under	
a	specified	statistical	model	that	a	statistical	
summary	of	the	data	would	be	equal	to	or	
more	extreme	than	its	observed	value.”	
-	The	ASA’s	Statement	on	p-values:	Context,	
Process,	and	Purpose,	2016	



P-values	for	JTK_CYCLE	

64	

“Informally,	a	p-value	is	the	probability	under	
a	specified	statistical	model	that	a	statistical	
summary	of	the	data	would	be	equal	to	or	
more	extreme	than	its	observed	value.”	
-	The	ASA’s	Statement	on	p-values:	Context,	
Process,	and	Purpose,	2016	
	

The	time	series	is	generated	from	noise	
with	no	underlying	signal	



P-values	for	JTK_CYCLE	

65	

“Informally,	a	p-value	is	the	probability	under	
a	specified	statistical	model	that	a	statistical	
summary	of	the	data	would	be	equal	to	or	
more	extreme	than	its	observed	value.”	
-	The	ASA’s	Statement	on	p-values:	Context,	
Process,	and	Purpose,	2016	
	

The	time	series	is	generated	from	noise	
with	no	underlying	signal	

The	Kendall’s	Tau	correlation	for	several	
reference	waveforms	where	we	then	
pick	the	best	correlation	



P-values	for	JTK_CYCLE	

66	

“Informally,	a	p-value	is	the	probability	under	
a	specified	statistical	model	that	a	statistical	
summary	of	the	data	would	be	equal	to	or	
more	extreme	than	its	observed	value.”	
-	The	ASA’s	Statement	on	p-values:	Context,	
Process,	and	Purpose,	2016	
	

The	time	series	is	generated	from	noise	
with	no	underlying	signal	

The	Kendall’s	Tau	correlation	for	several	
reference	waveforms	where	we	then	
pick	the	best	correlation	



Calculating	p-values	from	simulated	data	

67	

a	specified	statistical	model		

a	statistical	summary	of	the	data		

be	equal	to	or	more	extreme	than	its	
observed	value	



Calculating	p-values	from	simulated	data	

68	

a	specified	statistical	model		

a	statistical	summary	of	the	data		

be	equal	to	or	more	extreme	than	its	
observed	value	



Calculating	p-values	from	simulated	data	

69	

a	specified	statistical	model		

a	statistical	summary	of	the	data		

be	equal	to	or	more	extreme	than	its	
observed	value	



Calculating	p-values	from	simulated	data	

70	

a	specified	statistical	model		

a	statistical	summary	of	the	data		

be	equal	to	or	more	extreme	than	its	
observed	value	

p-value	=		
(#	≥	observed	value)	

(Total	#)		



Calculating	p-values	from	simulated	data	

71	

a	specified	statistical	model		

a	statistical	summary	of	the	data		

be	equal	to	or	more	extreme	than	its	
observed	value	

p-value	=		
(#	≥	observed	value)+1	

(Total	#)	+1		



Calculating	p-values	from	simulated	data	

72	

Order	of	p-values	 p-value	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

p-value	=		
(#	≥	observed	value)+1	

(Total	#)	+1		



Calculating	p-values	from	simulated	data	

73	

Order	of	p-values	 p-value	

1	 (1+1)/(10+1)	=	0.18	

2	

3	

4	

5	

6	

7	

8	

9	

10	

p-value	=		
(#	≥	observed	value)+1	

(Total	#)	+1		



Generating	p-values	

74	

Order	of	p-values	 p-value	

1	 0.18	

2	 (2+1)/(10+1)	=	0.27	

3	

4	

5	

6	

7	

8	

9	

10	

p-value	=		
(#	≥	observed	value)+1	

(Total	#)	+1		



Generating	p-values	

75	

Order	of	p-values	 p-value	

1	 0.18	

2	 0.27	

3	 (3+1)/(10+1)	=	0.36	

4	

5	

6	

7	

8	

9	

10	

p-value	=		
(#	≥	observed	value)+1	

(Total	#)	+1		



Generating	p-values	

76	

Order	of	p-values	 p-value	

1	 0.18	

2	 0.27	

3	 0.36	

4	 0.45	

5	 0.55	

6	 0.64	

7	 0.73	

8	 0.82	

9	 0.91	

10	 1.00	

p-value	=		
(#	≥	observed	value)+1	

(Total	#)	+1		



77	

Order	of	p-values	 p-value	

1	 0.18	

2	 0.27	

3	 0.36	

4	 0.45	

5	 0.55	

6	 0.64	

7	 0.73	

8	 0.82	

9	 0.91	

10	 1.00	

p-value	=		
(#	≥	observed	value)+1	

(Total	#)	+1		

Compare	experimental	results	to	null	
distribution	to	generate	p-value	

Tau		=	2.5	



78	

Order	of	p-values	 p-value	

1	 0.18	

2	 0.27	

3	 0.36	

4	 0.45	

5	 0.55	

6	 0.64	

7	 0.73	

8	 0.82	

9	 0.91	

10	 1.00	

p-value	=		
(#	≥	observed	value)+1	

(Total	#)	+1		

Tau		=	2.5	
p-value	=	0.09	

Compare	experimental	results	to	null	
distribution	to	generate	p-value	



P-values	are	uniform	under	the	null	
distribution	
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p-value	=		
(#	≥	observed	value)+1	

(Total	#)	+1		

Order	of	p-values	 p-value	

1	 0.18	

2	 0.27	

3	 0.36	

4	 0.45	

5	 0.55	

6	 0.64	

7	 0.73	

8	 0.82	

9	 0.91	

10	 1.00	

N	1	
0	

1	

P	

Rank	order	of	p-value	

Over-estimates	
True	signals	rejected	

Under-estimates	
False	signals	accepted	

P-values	are	uniform	under	the	null	
distribution	



Kendall	Tau	p-values	underestimate	
the	true	p-values	
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Period	 Phase	 τ	 p-value	

24	 4	 0.4	 0.3	

24	 8	 1.1	 0.001	

24	 12	 0.8	 0.02	



Kendall	Tau	p-values	underestimate	
the	true	p-values	

82	

Period	 Phase	 τ	 p-value	

24	 4	 0.4	 0.3	

24	 8	 1.1	 0.001	

24	 12	 0.8	 0.02	



The	Bonferroni	correction	results	in	
overestimates	of	p-values	

83	

τ	 p-value	 #	ref.	 Bonf.	

0.4	 0.3	 12	 1	

1.1	 0.001	 12	 0.012	

0.8	 0.02	 12	 0.24	



The	Bonferroni	correction	results	in	
overestimates	of	p-values	

84	

τ	 p-value	 #	ref.	 Bonf.	

0.4	 0.3	 132	 1	

1.1	 0.001	 132	 0.132	

0.8	 0.02	 132	 1	



Empirically	calculating	the	p-values	via	
simulation	generates	accurate	p-values	

Simulate	1	million	time	series	from	
noise	to	get	empirical	distribution	of	
null	p-values	

85	



Simulated	data	comparison	
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Simulated	data	comparison	
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Rhythmic?	
	
	
Positive	
	
	
	
	
	
Positive	
	
	
	
	
	
	
Positive	

Rhythmic?	
	
	
Negative	
	
	
	
	
	
Negative	
	
	
	
	
	
	
Negative	



Simulated	data	comparison	

1	0	
0	

1	

False	
Positive	
Rate	
(FPR)	

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	

B	 0.2	 Negative	

C	 0.22	 Positive	

D	 0.3	 Negative	

E	 0.31	 Positive	

F	 0.5	 Negative	

G	 0.6	 Negative	

H	 0.78	 Negative	

88	

TPR	=	True	Pos.	/	Positives	=	TP	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	FP	/	5			

True		
Positive	
Rate	
(TPR)	



Simulated	data	comparison	

1	0	
0	

1	

False	
Positive	
Rate	
(FPR)	 89	

TPR	=	True	Pos.	/	Positives	=	TP	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	FP	/	5			

True		
Positive	
Rate	
(TPR)	

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	

B	 0.2	 Negative	

C	 0.22	 Positive	

D	 0.3	 Negative	

E	 0.31	 Positive	

F	 0.5	 Negative	

G	 0.6	 Negative	

H	 0.78	 Negative	



Simulated	data	comparison	

1	0	
0	

1	

True		
Positive	
Rate	
(TPR)	

False	
Positive	
Rate	
(FPR)	 90	

TPR	=	True	Pos.	/	Positives	=	TP	/	3	
	
FPR	=	False	Pos.	/	Negatives	=	FP	/	5			

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	

B	 0.2	 Negative	

C	 0.22	 Positive	

D	 0.3	 Negative	

E	 0.31	 Positive	

F	 0.5	 Negative	

G	 0.6	 Negative	

H	 0.78	 Negative	



Simulated	data	comparison	

1	0	
0	

1	

False	
Positive	
Rate	
(FPR)	

Po
s.
	

N
eg
.	
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TPR	=	True	Pos.	/	Positives	=	0	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	0	/	5			

True		
Positive	
Rate	
(TPR)	

Threshold:	0.05	

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Negative	 Positive	

B	 0.2	 Negative	 Negative	

C	 0.22	 Negative	 Positive	

D	 0.3	 Negative	 Negative	

E	 0.31	 Negative	 Positive	

F	 0.5	 Negative	 Negative	

G	 0.6	 Negative	 Negative	

H	 0.78	 Negative	 Negative	



Simulated	data	comparison	

1	0	
0	

1	

True		
Positive	
Rate	
(TPR)	

False	
Positive	
Rate	
(FPR)	

Threshold:	0.1	

Po
s.
	

N
eg
.	
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TPR	=	True	Pos.	/	Positives	=	1	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	0	/	5		

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	 Positive	

B	 0.2	 Negative	 Negative	

C	 0.22	 Negative	 Positive	

D	 0.3	 Negative	 Negative	

E	 0.31	 Negative	 Positive	

F	 0.5	 Negative	 Negative	

G	 0.6	 Negative	 Negative	

H	 0.78	 Negative	 Negative	



Simulated	data	comparison	

1	0	
0	

1	

True		
Positive	
Rate	
(TPR)	

False	
Positive	
Rate	
(FPR)	

Threshold:	0.2	

Po
s.
	

N
eg
.	
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TPR	=	True	Pos.	/	Positives	=	1	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	1	/	5			

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	 Positive	

B	 0.2	 Positive	 Negative	

C	 0.22	 Negative	 Positive	

D	 0.3	 Negative	 Negative	

E	 0.31	 Negative	 Positive	

F	 0.5	 Negative	 Negative	

G	 0.6	 Negative	 Negative	

H	 0.78	 Negative	 Negative	



Simulated	data	comparison	

1	0	
0	

1	

True		
Positive	
Rate	
(TPR)	

False	
Positive	
Rate	
(FPR)	

Threshold:	0.22	

Po
s.
	

N
eg
.	
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TPR	=	True	Pos.	/	Positives	=	2	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	1	/	5			

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	 Positive	

B	 0.2	 Positive	 Negative	

C	 0.22	 Positive	 Positive	

D	 0.3	 Negative	 Negative	

E	 0.31	 Negative	 Positive	

F	 0.5	 Negative	 Negative	

G	 0.6	 Negative	 Negative	

H	 0.78	 Negative	 Negative	



Simulated	data	comparison	

1	0	
0	

1	

True		
Positive	
Rate	
(TPR)	

False	
Positive	
Rate	
(FPR)	

Threshold:	0.3	

Po
s.
	

N
eg
.	
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TPR	=	True	Pos.	/	Positives	=	2	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	2	/	5			

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	 Positive	

B	 0.2	 Positive	 Negative	

C	 0.22	 Positive	 Positive	

D	 0.3	 Positive	 Negative	

E	 0.31	 Negative	 Positive	

F	 0.5	 Negative	 Negative	

G	 0.6	 Negative	 Negative	

H	 0.78	 Negative	 Negative	



Simulated	data	comparison	

1	0	
0	

1	

True		
Positive	
Rate	
(TPR)	

False	
Positive	
Rate	
(FPR)	

Threshold:	0.31	

Po
s.
	

N
eg
.	
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TPR	=	True	Pos.	/	Positives	=	3	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	2	/	5			

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	 Positive	

B	 0.2	 Positive	 Negative	

C	 0.22	 Positive	 Positive	

D	 0.3	 Positive	 Negative	

E	 0.31	 Positive	 Positive	

F	 0.5	 Negative	 Negative	

G	 0.6	 Negative	 Negative	

H	 0.78	 Negative	 Negative	



Simulated	data	comparison	

1	0	
0	

1	

True		
Positive	
Rate	
(TPR)	

False	
Positive	
Rate	
(FPR)	

Threshold:	0.5	

Po
s.
	

N
eg
.	
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TPR	=	True	Pos.	/	Positives	=	3	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	3	/	5			

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	 Positive	

B	 0.2	 Positive	 Negative	

C	 0.22	 Positive	 Positive	

D	 0.3	 Positive	 Negative	

E	 0.31	 Positive	 Positive	

F	 0.5	 Positive	 Negative	

G	 0.6	 Negative	 Negative	

H	 0.78	 Negative	 Negative	



Simulated	data	comparison	

1	0	
0	

1	

True		
Positive	
Rate	
(TPR)	

False	
Positive	
Rate	
(FPR)	

Threshold:	0.6	

Po
s.
	

N
eg
.	
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TPR	=	True	Pos.	/	Positives	=	3	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	4	/	5			

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	 Positive	

B	 0.2	 Positive	 Negative	

C	 0.22	 Positive	 Positive	

D	 0.3	 Positive	 Negative	

E	 0.31	 Positive	 Positive	

F	 0.5	 Positive	 Negative	

G	 0.6	 Positive	 Negative	

H	 0.78	 Negative	 Negative	



Simulated	data	comparison	

1	0	
0	

1	

True		
Positive	
Rate	
(TPR)	

False	
Positive	
Rate	
(FPR)	

Threshold:	0.78	

Po
s.
	

N
eg
.	
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TPR	=	True	Pos.	/	Positives	=	3	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	5	/	5			

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	 Positive	

B	 0.2	 Positive	 Negative	

C	 0.22	 Positive	 Positive	

D	 0.3	 Positive	 Negative	

E	 0.31	 Positive	 Positive	

F	 0.5	 Positive	 Negative	

G	 0.6	 Positive	 Negative	

H	 0.78	 Positive	 Negative	



Simulated	data	comparison	

1	0	
0	

1	

True		
Positive	
Rate	
(TPR)	

False	
Positive	
Rate	
(FPR)	

Threshold:	0.78	

Po
s.
	

N
eg
.	
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TPR	=	True	Pos.	/	Positives	=	3	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	5	/	5			

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	 Positive	

B	 0.2	 Positive	 Negative	

C	 0.22	 Positive	 Positive	

D	 0.3	 Positive	 Negative	

E	 0.31	 Positive	 Positive	

F	 0.5	 Positive	 Negative	

G	 0.6	 Positive	 Negative	

H	 0.78	 Positive	 Negative	



Simulated	data	comparison	

1	0	
0	

1	

True		
Positive	
Rate	
(TPR)	

False	
Positive	
Rate	
(FPR)	

Threshold:	0.78	

Po
s.
	

N
eg
.	
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AUROC	

TPR	=	True	Pos.	/	Positives	=	3	/	3		
	
FPR	=	False	Pos.	/	Negatives	=	5	/	5			

ID	 Score	 Classification	 Rhythmic?	

A	 0.1	 Positive	 Positive	

B	 0.2	 Positive	 Negative	

C	 0.22	 Positive	 Positive	

D	 0.3	 Positive	 Negative	

E	 0.31	 Positive	 Positive	

F	 0.5	 Positive	 Negative	

G	 0.6	 Positive	 Negative	

H	 0.78	 Positive	 Negative	

AUROC	



eJTK	outperforms	other	methods	on	
simulated	data		
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eJTK	outperforms	other	methods	on	
simulated	data		
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eJTK	outperforms	other	methods	on	
simulated	data		
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eJTK	identifies	ontologies	missed	by	
other	methods	

105	

Hutchison	et	al.	“Improved	statistical	
methods	enable	greater	sensitivity	for	
rhythm	detection	in	genome-wide	data”.	
PLoS	Computational	Biology.	2015	(11)	3	



Outline	

•  Biological	and	Statistical	Background	
•  Improvements	to	JTK_CYCLE	
– Empirical	JTK_CYCLE	(eJTK)	
•  Searching	for	asymmetric	waveforms	
•  Calculating	accurate	p-values	
•  Hutchison	et	al.	(2015)	“Improved	statistical	methods	
enable	greater	sensitivity	for	rhythm	detection	in	
genome-wide	data”.	PLoS	Computational	Biology.	(11)	3	
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Outline	

•  Biological	and	Statistical	Background	
•  Improvements	to	JTK_CYCLE	
– Empirical	JTK_CYCLE	(eJTK)	
– Bootstrap	eJTK	(BooteJTK)	

•  Bootstrap	resampling	time	series	
•  Empirical	Bayes	variance	estimation	

107	



Three	challenges	of	rhythm	detection	

108	

•  Sparse	sampling	of	data	
•  High	noise	of	measurements	
•  High	rate	of	arrhythmic	genes	



Bootstrap	resampling	to	propagate	
uncertainty	from	expression	to	rhythmicity	

109	

Initial	time	series	data	

Uncertainty	in	expression	measurement	

Uncertainty	in	rhythmicity	



Averaging	data	to	get	error	bars	
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Averaging	data	to	get	error	bars	

111	



Averaging	data	to	get	error	bars	
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Averaging	data	to	get	error	bars	
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Averaging	data	to	get	error	bars	
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Averaging	data	to	get	error	bars	
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Averaging	data	to	get	error	bars	
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Averaging	data	to	get	error	bars	
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Can	we	measure	uncertainty	in	ordering?	
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Can	we	measure	uncertainty	in	ordering?	
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Resample	time	series	to	‘replicate’	experiment	
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Resample	time	series	to	‘replicate’	experiment	
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Resample	time	series	to	‘replicate’	experiment	



Resample	from	each	point	to	obtain	
simulated	time	series	
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Resample	from	each	point	to	obtain	
simulated	time	series	
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Run	eJTK	on	each	resampled	time	
series	to	get	distribution	of	Tau	values	
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Average	Tau	values	to	get	summary	
statistic	mean	value	
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Bootstrap	resampling	to	propagate	
uncertainty	from	expression	to	rhythmicity	

127	

Initial	time	series	data	

Uncertainty	in	expression	measurement	

Average	data	

Bootstrap	replicates	

Uncertainty	in	expression	ordering	
Run	eJTK	on	replicates	

Uncertainty	in	rhythmicity	 Summary	statistic	
Average		
distribution	



Low	replicate	numbers	reduce	
confidence	in	variance	estimates	

128	

Replicate	1	 Replicate	2	



Empirical	Bayes	approach:	Improving	
variance	estimates	by	pooling	them	

129	

Replicate	1	 Replicate	2	



Empirical	Bayes:	Baseball	batting	
average	analogy	

130	

Player	 Hits	 At-Bats	 Avg.	

A	 4	 10	 0.400	

B	 30	 100	 0.300	

C	 250	 1000	 0.250	

Modeled	after	“Understanding	empirical	Bayes	estimation	(using	baseball	statistics)”	
David	Robinson		Sept	30,	2015	



Empirical	Bayes:	Baseball	batting	
average	analogy	

131	

Player	 Hits	 At-Bats	 Avg.	

A	 4	 10	 0.400	

B	 30	 100	 0.300	

C	 250	 1000	 0.250	

Modeled	after	“Understanding	empirical	Bayes	estimation	(using	baseball	statistics)”	
David	Robinson		Sept	30,	2015	



Empirical	Bayes:	Baseball	batting	
average	analogy	

132	

Player	 Hits	 At-Bats	 Avg.	 Adj.	Avg.	

A	 4	 10	 0.400	 0.263	

B	 30	 100	 0.300	 0.269	

C	 250	 1000	 0.250	 0.252	

Modeled	after	“Understanding	empirical	Bayes	estimation	(using	baseball	statistics)”	
David	Robinson		Sept	30,	2015	



Empirical	Bayes	approach:	Improving	
variance	estimates	by	pooling	them	
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Empirical	Bayes	approach:	Improving	
variance	estimates	by	pooling	them	
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Empirical	Bayes	approach:	Improving	
variance	estimates	by	pooling	them	

135	

Ritchie,	M.E.,	Phipson,	B.,	Wu,	D.,	Hu,	Y.,	Law,	C.W.,	Shi,	W.,	and	Smyth,	
G.K.	(2015).	limma	powers	differential	expression	analyses	for	RNA-
sequencing	and	microarray	studies.	Nucleic	Acids	Research	43(7),	e47.	



Outline	

•  Biological	and	Statistical	Background	
•  Improvements	to	JTK_CYCLE	
– Empirical	JTK_CYCLE	(eJTK)	
– Bootstrap	eJTK	(BooteJTK)	

•  Bootstrap	resampling	time	series	
–  New	to	rhythm	detection	

•  Empirical	Bayes	variance	estimation	
–  Common	in	differential	expression	analysis	
–  New	to	rhythm	detection	
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BooteJTK	outperforms	eJTK	on	
simulated	data	
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BooteJTK	is	sensitive	to	the	intra-point	
variance	relative	to	the	variance	of	the	

entire	time	series	

138	

eJTK	Tau:	0.57	
BooteJTK	Tau:	1.08	

eJTK	Tau:	0.57	
BooteJTK	Tau:	0.67	



BooteJTK	is	sensitive	to	the	intra-point	
variance	relative	to	the	variance	of	the	

entire	time	series	

139	

eJTK	Tau:	0.57	
BooteJTK	Tau:	1.08	

eJTK	Tau:	0.57	
BooteJTK	Tau:	0.67	



BooteJTK	is	sensitive	to	the	intra-point	
variance	relative	to	the	variance	of	the	

entire	time	series	
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eJTK	Tau:	0.57	
BooteJTK	Tau:	1.08	

eJTK	Tau:	0.57	
BooteJTK	Tau:	0.67	



BooteJTK	is	sensitive	to	the	intra-point	
variance	relative	to	the	variance	of	the	

entire	time	series	

141	

eJTK	Tau:	0.57	
BooteJTK	Tau:	1.08	

eJTK	Tau:	0.57	
BooteJTK	Tau:	0.67	



BooteJTK	outperforms	alternative	
methods,	including	a	combination	of	

eJTK	and	ANOVA	

142	



Hughes	et	al.	1h	liver	dataset	
12	h	light	
12	h	dark	

0	0	0	0	 12	 12	12	

143	Hughes	et	al.	(2009)	“Harmonics	of	Circadian	Gene	Transcription	in	Mammals.”	
	PLoS	Genetics,	2009.	5(4):	e1000442	
	



Hughes	et	al.	1h	liver	dataset	
12	h	light	
12	h	dark	

0	0	0	0	 12	 12	12	

144	Hughes	et	al.	(2009)	“Harmonics	of	Circadian	Gene	Transcription	in	Mammals.”	
	PLoS	Genetics,	2009.	5(4):	e1000442	
	

1:	0,	1,	2,	3,	4	…	
2a:	0,	2,	4,	6	...	
2b:	1,	3,	5,	7	...	



Comparison	of	downsampled	dataset	
results	
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2a:	0,	2,	4,	6	...	
2b:	1,	3,	5,	7	...	



Comparison	of	downsampled	dataset	
results	
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2a:	0,	2,	4,	6	...	
2b:	1,	3,	5,	7	...	



Comparison	of	downsampled	dataset	
results	
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5826	

2472	

1877	

5523	

2a:	0,	2,	4,	6	...	
2b:	1,	3,	5,	7	...	



Comparison	of	downsampled	dataset	
results	
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5826	

2472	

1877	

5523	

2a:	0,	2,	4,	6	...	
2b:	1,	3,	5,	7	...	



Comparison	of	downsampled	dataset	
results	

149	

5826	

2472	

1877	

5523	
P(2b|2a)	=	0.70		

2a:	0,	2,	4,	6	...	
2b:	1,	3,	5,	7	...	



Comparison	of	downsampled	dataset	
results	
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5826	

2472	

1877	

5523	

2a:	0,	2,	4,	6	...	
2b:	1,	3,	5,	7	...	

P(2b|2a)	=	0.70		



Comparison	of	downsampled	dataset	
results	
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5826	

2472	

1877	

5523	 P(2a|2b)	=	0.76		

2a:	0,	2,	4,	6	...	
2b:	1,	3,	5,	7	...	

P(2b|2a)	=	0.70		



Comparison	of	downsampled	dataset	
results	

152	

5826	

2472	

1877	

5523	

2a:	0,	2,	4,	6	...	
2b:	1,	3,	5,	7	...	

P(row		|	column)	

P(2a|2b)	=	0.76		
P(2b|2a)	=	0.70		



BooteJTK	are	more	consistent	as	
results	are	downsampled	

153	

P(row		|	column)	

BooteJTK	results	 eJTK	results	



Zhang	et	al.	2h	12	tissue	dataset	
12	h	light	
12	h	dark	

0	0	0	0	 12	 12	12	

154	Zhang	et	al.	(2014)	“A	circadian	gene	expression	atlas	in	mammals:	Implications	for	biology	and	
medicine.”	PNAS	(111)	45	



BooteJTK	is	more	stringent	than	eJTK	
for	most	of	the	tissues		
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Is	BooteJTK	too	stringent	and	missing	
rhythmic	genes?	
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ChIP-Seq	corroboration	shows	no	
decrease	in	core	clock	target	
enrichment	in	BooteJTK	

157	

Circadian	protein	

RNA	DNA	

Koike	et	al.	(2012)	“Transcriptional	Architecture	and	
Chromatin	Landscape	of	the	Core	Circadian	Clock	in	
Mammals”	Vol.	338	p349-354	



Overlap	statistics	show	clusters	of	
tissue	types	

158	

BooteJTK	results	



Brain	tissue	overlaps	are	a	major	
difference	between	BooteJTK	and	eJTK	

results	

159	

BooteJTK	results	 eJTK	results	



Brain	tissue	overlaps	are	a	major	
difference	between	BooteJTK	and	eJTK	

results	

160	

BooteJTK	results	 BooteJTK	-	eJTK	results	

eJTK	overlap	>	BooteJTK	overlap	
eJTK	overlap	<	BooteJTK	overlap	



Brain	tissue	overlaps	are	a	major	
difference	between	BooteJTK	and	eJTK	

results	

161	

BooteJTK	results	 BooteJTK	-	eJTK	results	

eJTK	overlap	>	BooteJTK	overlap	
eJTK	overlap	<	BooteJTK	overlap	



Brain	tissue	overlaps	are	a	major	
difference	between	BooteJTK	and	eJTK	

results	
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BooteJTK	-	eJTK	results	

eJTK	overlap	>	BooteJTK	overlap	
eJTK	overlap	<	BooteJTK	overlap	
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eJTK	overlap	>	BooteJTK	overlap	
eJTK	overlap	<	BooteJTK	overlap	
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BooteJTK	and	eJTK	results	



Adrenal-Hypothalamus	rhythmic	
overlap	is	a	large	difference	between	

BooteJTK	and	eJTK	results	
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The	hypothalamus	and	adrenals	are	
involved	in	an	endrocrine	feedback	loop	
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Outline	

•  Biological	and	Statistical	Background	
•  Improvements	to	JTK_CYCLE	
– Empirical	JTK_CYCLE	(eJTK)	
– Bootstrap	eJTK	(BooteJTK)	

•  Greater	consistency	than	eJTK	
• More	stringent	than	eJTK	
•  Differences	in	results	are	biologically	supported	
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•  Comparing	rhythmicity	across	conditions	
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Outline	

•  Biological	and	Statistical	Background	
•  Improvements	to	JTK_CYCLE	
•  Comparing	rhythmicity	across	conditions	
– A	method	that	produces	accurate	p-values	for	
differential	rhythmicity	
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Dis-regulation	can	be	more	than	
changes	in	expression	level	
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Dis-regulation	can	be	more	than	
changes	in	expression	level	

170	



Dis-regulation	can	be	more	than	
changes	in	expression	level	
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Previous	approach	only	looks	at	p-
values	relative	to	threshold	
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Condition		
A	

Condition		
B	

P-
va
lu
e	

p=0.05	



We	can	estimate	the	variance	in	our	
Tau	score	based	on	the	noisiness	of	

the	time	series	
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Our	method	outperforms	the	p-value	
threshold	method	at	identifying	

differential	rhythmicity	
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Many	studies	compare	protein	level	
and	RNA	level	rhythmicity	
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Mauvoisin	et	al.	PNAS	111.1	
(2014):	167-172.	



We	find	fewer	differences	between	
mRNA	and	protein	time	series	than	
the	p-value	threshold	method	does	
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We	find	fewer	differences	between	
mRNA	and	protein	time	series	than	
the	p-value	threshold	method	does	
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Guerreiro	et	al.	Molecular	&	
Cellular	Proteomics	13.8	(2014):	
2042-2055.	

Mauvoisin	et	al.	PNAS	111.1	
(2014):	167-172.	

Robles,	Maria	S.,	Jürgen	Cox,	and	
Matthias	Mann.	PLoS	Genet	10.1	
(2014):	e1004047.	



Outline	

•  Biological	and	Statistical	Background	
•  Improvements	to	a	Rhythm	Detection	method	
•  Comparing	rhythmicity	across	conditions	
•  Future	Directions	
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Future	direction:	Combining	information	
across	tissues	and	conditions		
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Future	direction:	Combining	information	
across	tissues	and	conditions		
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Rhythmicity	in	the	spleen?	

http://img.tfd.com/MosbyMD/thumb/
spleen.jpg	



Questions?	
•  Biological	and	Statistical	Background	
•  Improvements	to	JTK_CYCLE	

–  Empirical	JTK_CYCLE	(eJTK)	
•  Searching	for	asymmetric	waveforms	
•  Calculating	accurate	p-values	
•  Hutchison	et	al.	(2015)	“Improved	statistical	methods	enable	greater	

sensitivity	for	rhythm	detection	in	genome-wide	data”.	PLoS	Computational	
Biology.	(11)	3	

–  Bootstrap	eJTK	(BooteJTK)	
•  Bootstrap	resampling	time	series	

–  New	to	rhythm	detection	
•  Empirical	Bayes	variance	estimation	

–  Common	in	differential	expression	analysis	
–  New	to	rhythm	detection	

•  Greater	consistency	than	eJTK	
•  More	stringent	than	eJTK	
•  Differences	in	results	are	biologically	supported	

•  Comparing	rhythmicity	across	conditions	
–  A	method	that	produces	accurate	p-values	for	differential	

rhythmicity	
•  Future	Directions	

–  Combining	information	across	conditions	and	tissues	for	rhythm	
detection	

181	
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