Improved Statistical Methods for Analyzing Circadian Rhythms in High-Throughput Data Alan L. Hutchison Dinner Group

2016-08-26

Photo courtesy of City of Chicago

Circadian Rhythms are physiological rhythms regulated by an internal clock

Many hormonal and physiological processes display circadian rhythms

http://albany.bivfsites.com/wp-content/ uploads/sites/25/2014/01/dna.png

http://cdn2.hubspot.net/hub/127518/file-30478736-jpg/images/dna-rna-purification.jpg

http://phys.org/news/2014-05-atomicessential-circadian-clock-protein.html 9

http://phys.org/news/2014-05-atomicessential-circadian-clock-protein.html

10

http://phys.org/news/2014-05-atomicessential-circadian-clock-protein.html

11

Adverse metabolic and cardiovascular consequences of circadian misalignment

Frank A. J. L. Scheer^{a,b,1}, Michael F. Hilton^{a,2}, Christos S. Mantzoros^{b,c} and Steven A. Shea^{a,b}

Adverse metabolic and cardiovascular consequences of circadian misalignment

Frank A. J. L. Scheer^{a,b,1}, Michael F. Hilton^{a,2}, Christos S. Mantzoros^{b,c} and Steven A. Shea^{a,b} Morning vaccination enhances antibody response over afternoon vaccination: A cluster-randomised trial

Joanna E. Long^a, Mark T. Drayson^b, Angela E. Taylor^d, Kai M. Toellner^b, Janet M. Lord^{c, 1}, Anna C. Phillips^{a, 1}, ^a, ^w

Adverse metabolic and cardiovascular consequences of circadian misalignment

Frank A. J. L. Scheer^{a,b,1}, Michael F. Hilton^{a,2}, Christos S. Mantzoros^{b,c} and Steven A. Shea^{a,b}

Morning vaccination enhances antibody response over afternoon vaccination: A cluster-randomised trial

Joanna E. Long^a, Mark T. Drayson^b, Angela E. Taylor^d, Kai M. Toellner^b, Janet M. Lord^{c, 1}, Anna C. Phillips^{a, 1}, Anna C. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes

Biliana Marcheva Kathryn Moynihan Ramsey Ethan D. Buhr Yumiko Kobayashi Hong Su Caroline H. Ko Ganka Ivanova Chiaki Omura Shelley Mo Martha H. Vitaterna James P. Lopez Louis H. Philipson Christopher A. Bradfield Seth D. Crosby Lellean JeBailey Xiaozhong Wang Joseph S. Takahashi Joseph Bass

Adverse metabolic and cardiovascular consequences of circadian misalignment

Frank A. J. L. Scheer^{a,b,1}, Michael F. Hilton^{a,2}, Christos S. Mantzoros^{b,c} and Steven A. Shea^{a,b}

Morning vaccination enhances antibody response over afternoon vaccination: A cluster-randomised trial

Joanna E. Long^a, Mark T. Drayson^b, Angela E. Taylor^d, Kai M. Toellner^b, Janet M. Lord^{c, 1}, Anna C. Phillips^{a, 1}, Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes

Biliana Marcheva Kathryn Moynihan Ramsey Ethan D. Buhr Yumiko Kobayashi Hong Su Caroline H. Ko Ganka Ivanova Chiaki Omura Shelley Mo Martha H. Vitaterna James P. Lopez Louis H. Philipson Christopher A. Bradfield Seth D. Crosby Lellean JeBailey Xiaozhong Wang Joseph S. Takahashi Joseph Bass

Dis-regulation of gene expression can cause physiological changes and disease

Outline

- Biological and Statistical Background
- Improvements to a Rhythm Detection method
- Comparing rhythmicity across conditions
- Future Directions

Outline

- Biological and Statistical Background
 - Circadian experiments
 - Challenges in rhythm detection
 - Current rhythm detection methods

Circadian experiment

12 h light 12 h dark

0 12 0 12 0 12 0

Molecular circadian experiment

https://online-shop.eppendorf.com.my/MY-en/Laboratory-Consumables-44512/Tubes-44515/ Eppendorf-Safe-Lock-Tubes-PF-8863.html

http://assets.illumina.com/content/dam/illumina-marketing/images/home/systems/web-graphics-hiseq2500-real.png

Molecular circadian experiment

https://online-shop.eppendorf.com.my/MY-en/Laboratory-Consumables-44512/Tubes-44515/ Eppendorf-Safe-Lock-Tubes-PF-8863.html http://assets.illumina.com/content/dam/illumina-marketing/images/home/systems/web-graphics-hiseq 2500-real.png

Three challenges of rhythm detection

- Sparse sampling of data
- High noise of measurements
- High rate of arrhythmic genes

Time series data from Hughes *et al. PLoS Gen.* 2009

- Cosine-fitting methods
 - COSOPT (Straume *et al.* 2004)
 - ARSER (Yang et al. 2010)
- Fourier-based methods
 - F24 (Wijnen *et al.* 2009)
- Reference-free methods
 - ANOVA (Keegan *et al.* 2007)
 - Cyclohedron test (Morton *et al.* 2007)
 - Address reduction (Fink *et al.* 2007)
 - Stable Persistence (Edelsbrunner *et al.* 2000)

- Cosine-fitting methods
 - COSORT (Straume *et al.* 2004)
 - ARSER (Yang'*et al.* 2010)
- Fourier-based methods
 - F24 (Wijnen *et al.* 2009)
- Reference-free methods
 - ANOVA (Keegan *et al.* 2007)
 - Cyclohedron test
 (Morton *et al.* 2007)
 - Address reduction (Fink *et al.* 2007)
 - Stable Persistence (Edelsbrunner *et al.* 2000)

- Non-parametric reference waveform methods
 - JTK_CYCLE (Hughes et al. 2010)
 - RAIN (Thaben *et al.* 2014)

- Cosine-fitting methods
 - COSORT (Straume *et al.* 2004)
 - ARSER (Yang'*et al.* 2010)
- Fourier based methods
 - P24 (Wijnen *et al.* 2009)
- Reference free methods
 - ANOVA (Keegan *et al.* 2007)
 - Cyclohedron test
 (Morton *et al.* 2007)
 - Address reduction (Fink *et al.* 2007)
 - Stable Persistence (Edelsbrunner *et al.* 2000)

- Non-parametric reference waveform methods
 - JTK_CYCLE (Hughes et al. 2010)
 - RAIN (Thaben *et al.* 2014)

- Cosine-fitting methods
 - COSORT (Straume *et al.* 2004)
 - ARSEF (Yang'*et al.* 2010)
- Fourier based methods
 - P24 (Wijnen *et al.* 2009)
- Reference free methods
 - ANOVA (Keegan *et al.* 2007)
 - Cyclohedron test (Morton *èt al.* 2007)
 - Address reduction (Fink et al. 2007)
 - Stable Persistence (Edelsbrunner *et al.* 2000)

JTK_CYCLE uses Kendall's nonparametric pairwise correlation

JTK_CYCLE uses Kendall's nonparametric pairwise correlation

4

JTK_CYCLE picks the best reference waveform match as its measure of rhythmicity

Period	Phase	τ
24	4	0.4
24	8	1.1
24	12	0.8

JTK_CYCLE picks the best reference waveform match as its measure of rhythmicity

Period	Phase	τ
24	4	0.4
24	8	1.1

JTK_CYCLE picks the best reference waveform match as its measure of rhythmicity

Period	Phase	τ
24	4	0.4
24	8	1.1
24	12	0.8

Data sampled every 2 h over 24 h: **12** possible phases

Outline

- Biological and Statistical Background
 - Circadian experiments
 - Challenges in rhythm detection
 - Current rhythm detection methods

Outline

- Biological and Statistical Background
- Improvements to JTK_CYCLE
 - Empirical JTK_CYCLE (eJTK)
 - Bootstrap eJTK (BooteJTK)

Outline

- Biological and Statistical Background
- Improvements to JTK_CYCLE
 - Empirical JTK_CYCLE (eJTK)
 - Searching for asymmetric waveforms
 - Calculating accurate p-values

Traditionally, JTK_CYCLE did not search for asymmetric waveforms

Traditionally, JTK_CYCLE did not search for asymmetric waveforms

Asymmetric waveforms improve rhythm detection sensitivity

Period	Phase	τ
24	8	0.4
24	10	1.1
24	12	0.8

Asymmetric waveforms improve rhythm detection sensitivity

Period	Phase	Asym.	τ
24	10	4	0.6
24	10	8	1.3
24	10	12	1.0
24	10	16	0.9

Asymmetric waveforms improve rhythm detection sensitivity

Period	Phase	Asym.	τ
24	10	4	0.6
24	10	8	1.3
24	10	12	1.0
24	10	16	0.9

Data sampled every 2 h over 24 h: 12 possible phases 11 possible asymmetries 132 reference waveforms

• We do not know if what we observe is signal or just noise.

- We do not know if what we observe is signal or just noise.
- What is the probability that we see what we do if it were just noise?

- We do not know if what we observe is signal or just noise.
- What is the probability that we see what we do if it were just noise?
- If the probability is very low, then we intuit it is unlikely that it comes just from noise and is worth pursuing further.

- We do not know if what we observe is signal or just noise.
- What is the probability that we see what we do if it were just noise?
- If the probability is very low, then we intuit it is unlikely that it comes just from noise and is worth pursuing further.

Two ways of generating a p-value for a statistical summary of data

- 1. Analytical calculation
- 2. Via simulation

- We do not know if what we observe is signal or just noise.
- What is the probability that we see what we do if it were just noise?
- If the probability is very low, then we intuit it is unlikely that it comes just from noise and is worth pursuing further.

Two ways of generating a p-value for a statistical summary of data

- 1. Analytical calculation
- 2. Via simulation

American Statistical Association definition of p-values

"Informally, a p-value is the probability under a specified statistical model that a statistical summary of the data would be equal to or more extreme than its observed value."

- The ASA's Statement on p-values: Context, Process, and Purpose, 2016

The time series is generated from noise with no underlying signal

"Informally, a p-value is the **probability under a specified statistical model** that a statistical summary of the data would be equal to or more extreme than its observed value." - The ASA's Statement on p-values: Context,

Process, and Purpose, 2016

The time series is generated from noise with no underlying signal

"Informally, a p-value is the probability under a specified statistical model that a statistical summary of the data would be equal to or more extreme than its observed value."
The ASA's Statement on p-values: Context, Process, and Purpose, 2016

The Kendall's Tau correlation for several reference waveforms where we then pick the best correlation

The time series is generated from noise with no underlying signal

"Informally, a p-value is the probability under a specified statistical model that a statistical summary of the data would be equal to or more extreme than its observed value." - The ASA's Statement on p-values: Context, Process, and Purpose, 2016

The Kendall's Tau correlation for several reference waveforms where we then pick the best correlation

a statistical summary of the data

a specified statistical model

be equal to or more extreme than its observed value

a statistical summary of the data

be equal to or more extreme than its observed value

Calculating p-values from simulated data

Generating p-values

Generating p-values

Order of p-values	p-value	2	
1	0.18		
2	0.27		
3	(3+1)/(10+1) = 0.36		
4			
5			
6		0.0 0.5 1.0 1.5 2.0 Tau	2.5
7			
8		(# ≥ observed value	e)+1
9		p-value = $(Total #) +1$,
10			75

Generating p-values

Order of p-values	p-value	2
1	0.18	
2	0.27	
3	0.36	
4	0.45	
5	0.55	
6	0.64	0.0 0.5 1.0 1.5 2.0 2.5 Tau
7	0.73	
8	0.82	(# ≥ observed value)+1
9	0.91	
10	1.00	76

Compare experimental results to null distribution to generate p-value

Order of p-values	p-value	2
1	0.18	Tou - 2.5
2	0.27	
3	0.36	
4	0.45	
5	0.55	
6	0.64	0.0 0.5 1.0 1.5 2.0 2.5 Tau
7	0.73	
8	0.82] (# ≥ observed value)+1
9	0.91	$p-value = \frac{(n-1)(n-1)(n-1)(n-1)}{(Total #) + 1}$
10	1.00	77

Compare experimental results to null distribution to generate p-value

Order of p-values	p-value	2	
1	0.18	Tau - 2 5	
2	0.27	p-value = 0).09
3	0.36		
4	0.45		
5	0.55		
6	0.64	0.0 0.5 1.0 1.5 2.0 2.5 Tau	
7	0.73		
8	0.82	(# ≥ observed value)+1	
9	0.91	p-value = (Total #) +1	
10	1.00	78	

P-values are uniform under the null distribution

Order of p-values	p-value	
1	0.18	
2	0.27	
3	0.36	
4	0.45	
5	0.55	
6	0.64	0 L N
7	0.73	Rank order of p-value
8	0.82	(# > observed value)+1
9	0.91	p-value = $\frac{(n - 0)(2 - 1)(2 - 1)(2 - 1)}{(Total #) + 1}$
10	1.00	79

P-values are uniform under the null distribution

Order of p-values	p-value	1 _{Ov}	ver-estimates
1	0.18	Tru	ue signals rejected
2	0.27		
3	0.36	P	
4	0.45		Under-estimates False signals accepted
5	0.55	/	
6	0.64		N
7	0.73	Ran	k order of p-value
8	0.82		(# \geq observed value)+1
9	0.91	p-value =	(Total #) +1
10	1.00		80

Kendall Tau p-values underestimate the true p-values

Period	Phase	τ	p-value
24	4	0.4	0.3
24	8	1.1	0.001
24	12	0.8	0.02

Kendall Tau p-values underestimate the true p-values

D

/

D

/

1

Simulated data comparison **Rhythmic? Rhythmic?** Noise: 0.2 Positive Negative Noise: 0.6 Positive Negative Noise: 1.0 Positive Negative 87

ID	Score	Classification	Rhythmic?		
А	0.1		Positive	1	
В	0.2		Negative		
С	0.22		Positive	T	
D	0.3		Negative	Irue	
E	0.31		Positive	Positive	
F	0.5		Negative	Kate	
G	0.6		Negative	(IPR)	
Н	0.78		Negative		
				0	
TPR = True Pos. / Positives = TP / 3					False
			- , -		Positive

FPR = False Pos. / Negatives = FP / 5

88

Rate

(FPR)

ID	Score	Classification	Rhythmic?		
Α	0.1		Positive	1	
В	0.2		Negative		
С	0.22		Positive	-	
D	0.3		Negative	Irue	
E	0.31		Positive	Positive	
F	0.5		Negative	Kale (TDD)	
G	0.6		Negative	(19K)	
Н	0.78		Negative		1
				0	لا ۱ 1
TPR = True Pos. / Positives = TP / 3					False
					Positive

FPR = False Pos. / Negatives = FP / 5

Rate

(FPR)

ID	Score	Classification	Rhythmic?		
А	0.1		Positive	1	
В	0.2		Negative		
С	0.22		Positive	.	
D	0.3		Negative	True	
E	0.31		Positive	Positive	11
F	0.5		Negative	Kate	
G	0.6		Negative	(IPR)	
Н	0.78		Negative		
TPR =	True Po	s. / Positives = T	P/3	0	0 1 False Positive

FPR = False Pos. / Negatives = FP / 5

90

Rate

(FPR)

	ID	Score	Classification	Rhythmic?		
	А	0.1	Positive	Positive	1	
	В	0.2	Positive	Negative		
	С	0.22	Positive	Positive	–	
	D	0.3	Positive	Negative	Irue	
Pos.	E	0.31	Positive	Positive	POSITIVE	
	F	0.5	Positive	Negative	Kate (TDD)	
	G	0.6	Positive	Negative	(IPR)	
	Н	0.78	Positive	Negative		
Bon Fi	PR = PR =	True Pos False Po	Threshold: 0.78 s. / Positives = 3 s. / Negatives =	/ 3 5 / 5	0	0 1 False Positive Rate (FPR)

	ID	Score	Classification	Rhythmic?				
	А	0.1	Positive	Positive	1			
	В	0.2	Positive	Negative				
	С	0.22	Positive	Positive	-			
	D	0.3	Positive	Negative	Positive Rate (TPR)			
Pos.	Е	0.31	Positive	Positive		Rate (TPR)		
	F	0.5	Positive	Negative				
	G	0.6	Positive	Negative				
	Н	0.78	Positive	Negative				
Ban Th	PR = PR =	True Pos False Po	Threshold: 0.78 s. / Positives = 3 os. / Negatives =	/ 3 5 / 5	0	0 1 False Positive Rate	L	
						(IFI) 10	0	

	ID	Score	Classification	Rhythmic?		
	А	0.1	Positive	Positive	1	
Pos.	В	0.2	Positive	Negative		
	С	0.22	Positive	Positive	. .	
	D	0.3	Positive	Negative	Irue	
	Е	0.31	Positive	Positive	Positive	
	F	0.5	Positive	Negative		
	G	0.6	Positive	Negative	(IPR)	AUROC
	Н	0.78	Positive	Negative	_	
Solution FF	PR = PR =	True Pos False Po	0 1 False Positive Rate (FPR) 101			

eJTK outperforms other methods on simulated data

eJTK outperforms other methods on simulated data

eJTK outperforms other methods on simulated data

eJTK identifies ontologies missed by other methods

			Method	thod			eJ	rhythm
ANOVA	F24	JTK	JTK_ВН	eJTK	TK_aby4	BH_aby4	TK_aby4	Hutchis metho
0	0	0	0	0	1	0	0	endoplasmic reticulur
0	0	0	0	0	0	1	0	membrane
0	0	0	0	0	1	1	0	microsome
1	0	1	1	1	0	1	0	transferase
0	0	0	0	0	1	0	1	lipid particle
0	0	0	0	0	2	2	2	pigmentation
0	0	0	0	1	4	3	2	metabolic process
0	0	0	0	0	3	3	1	fraction
0	0	0	0	1	0	3	3	biosynthetic process
1	0	0	0	0	0	0	0	behavior
1	1	1	1	1	1	1	1	response to radiation
0	0	1	1	1	1	0	0	NAD(P)-binding dom
0	0	0	0	0	1	0	1	alternative splicing
0	0	2	2	2	2	2	1	drug metabolism
0	0	6	6	6	6	5	6	gluathione
0	0	0	0	0	1	1	1	iron/heme
0	0	2	2	2	3	3	3	oxidation reduction
9	7	8	8	10	7	7	3	rhythm/light/circadian

n reduction ne ne tabolism Term groupings ve splicina -binding domain se to radiation etic process ic process ation ticle ase me

smic reticulum

utchison et al. "Improved statistical ethods enable greater sensitivity for ythm detection in genome-wide data". PLoS Computational Biology. 2015 (11) 3

Outline

- Biological and Statistical Background
- Improvements to JTK_CYCLE
 - Empirical JTK_CYCLE (eJTK)
 - Searching for asymmetric waveforms
 - Calculating accurate p-values
 - Hutchison *et al.* (2015) "Improved statistical methods enable greater sensitivity for rhythm detection in genome-wide data". *PLoS Computational Biology*. (11) 3

Outline

- Biological and Statistical Background
- Improvements to JTK_CYCLE
 - Empirical JTK_CYCLE (eJTK)
 - Bootstrap eJTK (BooteJTK)
 - Bootstrap resampling time series
 - Empirical Bayes variance estimation

Three challenges of rhythm detection

- Sparse sampling of data
- High noise of measurements
- High rate of arrhythmic genes
Bootstrap resampling to propagate uncertainty from expression to rhythmicity

Initial time series data

Uncertainty in expression measurement

Uncertainty in rhythmicity

Can we measure uncertainty in ordering?

Can we measure uncertainty in ordering?

Resample time series to 'replicate' experiment

Resample time series to 'replicate' experiment

Resample time series to 'replicate' experiment

Resample from each point to obtain simulated time series

Resample from each point to obtain simulated time series

Run eJTK on each resampled time series to get distribution of Tau values

Average Tau values to get summary statistic mean value

Bootstrap resampling to propagate uncertainty from expression to rhythmicity

Low replicate numbers reduce confidence in variance estimates

Empirical Bayes: Baseball batting

<u>average a</u>nalogy

Player	Hits	At-Bats	Avg.
А	4	10	0.400
В	30	100	0.300
С	250	1000	0.250

Modeled after "Understanding empirical Bayes estimation (using baseball statistics)" David Robinson Sept 30, 2015

Empirical Bayes: Baseball batting

<u>average a</u>nalogy

Player	Hits	At-Bats	Avg.
А	4	10	0.400
В	30	100	0.300
С	250	1000	0.250

Average

Modeled after "Understanding empirical Bayes estimation (using baseball statistics)" David Robinson Sept 30, 2015

Empirical Bayes: Baseball batting

average analogy

Player	Hits	At-Bats	Avg.	Adj. Avg.
A	4	10	0.400	0.263
В	30	100	0.300	0.269
С	250	1000	0.250	0.252

Average

Modeled after "Understanding empirical Bayes estimation (using baseball statistics)" David Robinson Sept 30, 2015

0.6

Standard Deviation

0.8

1.0

200000

150000

100000

50000

0

0.0

0.2

0.4

Counts

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43(7), e47.

135

Outline

- Biological and Statistical Background
- Improvements to JTK_CYCLE
 - Empirical JTK_CYCLE (eJTK)
 - Bootstrap eJTK (BooteJTK)
 - Bootstrap resampling time series
 - New to rhythm detection
 - Empirical Bayes variance estimation
 - Common in differential expression analysis
 - New to rhythm detection

BooteJTK outperforms eJTK on simulated data

BooteJTK outperforms alternative methods, including a combination of eJTK and ANOVA

Hughes et al. 1h liver dataset

Hughes *et al.* (2009) "Harmonics of Circadian Gene Transcription in Mammals." *PLoS Genetics*, 2009. 5(4): e1000442

Hughes et al. 1h liver dataset

Hughes *et al.* (2009) "Harmonics of Circadian Gene Transcription in Mammals." *PLoS Genetics*, 2009. 5(4): e1000442

BooteJTK are more consistent as results are downsampled

153

Zhang *et al.* (2014) "A circadian gene expression atlas in mammals: Implications for biology and medicine." PNAS (111) 45

BooteJTK is more stringent than eJTK for most of the tissues

Is BooteJTK too stringent and missing rhythmic genes?

ChIP-Seq corroboration shows no decrease in core clock target enrichment in BooteJTK

Overlap statistics show clusters of tissue types

BooteJTK results

Adr	1	0.18	0.2	0.16	0.28	0.35	0.22	0.23	0.24	0.31	0.26	0.22
Lung	0.43	1	0.34	0.31	0.43	0.56	0.38	0.45	0.48	0.39	0.45	0.43
Kidney	0.52	0.38	1	0.4	0.48	0.51	0.41	0.43	0.43	0.5	0.45	0.41
Liver	0.5	0.39	0.45	1	0.5	0.49	0.45	0.45	0.43	0.5	0.39	0.42
WFAT	0.21	0.14	0.14	0.12	1	0.33	0.21	0.2	0.22	0.16	0.16	0.16
Aorta	0.19	0.13	0.11	0.09	0.25	1	0.22	0.18	0.21	0.15	0.16	0.15
BFAT	0.38	0.27	0.27	0.25	0.47	0.66	1	0.38	0.43	0.29	0.34	0.29
Heart	0.2	0.17	0.14	0.13	0.23	0.29	0.19	1	0.32	0.22	0.26	0.19
Mus	0.12	0.1	0.08	0.07	0.15	0.18	0.12	0.18	1	0.11	0.17	0.12
Нуро	0.04	0.02	0.03	0.02	0.03	0.04	0.02	0.03	0.03	1	0.12	0.07
BS	0.08	0.06	0.05	0.04	0.07	0.09	0.06	0.09	0.1	0.26	1	0.14
Cere	0.14	0.12	0.1	0.09	0.13	0.17	0.11	0.14	0.16	0.3	0.29	1
	Adr	Lung	Kidney	Liver	WFAT	Aorta	BFAT	Heart	Mus	Hypo	BS	Cere

Brain tissue overlaps are a major difference between BooteJTK and eJTK BooteJTK results eJTK results

Adr	1	0.18	0.2	0.16	0.28	0.35	0.22	0.23	0.24	0.31	0.26	0.22	Adr	1	0.16	0.16	0.14	0.27	0.3	0.18	0.19	0.18	0.2	0.25	0.2
Lung	0.43	1	0.34	0.31	0.43	0.56	0.38	0.45	0.48	0.39	0.45	0.43	Lung	0.42	1	0.32	0.29	0.46	0.56	0.35	0.44	0.43	0.37	0.45	0.49
Kidney	0.52	0.38	1	0.4	0.48	0.51	0.41	0.43	0.43	0.5	0.45	0.41	Kidney	0.53	0.39	1	0.4	0.55	0.53	0.43	0.44	0.41	0.48	0.48	0.45
Liver	0.5	0.39	0.45	1	0.5	0.49	0.45	0.45	0.43	0.5	0.39	0.42	Liver	0.52	0.41	0.46	1	0.53	0.53	0.45	0.46	0.45	0.47	0.42	0.46
WFAT	0.21	0.14	0.14	0.12	1	0.33	0.21	0.2	0.22	0.16	0.16	0.16	WFAT	0.18	0.11	0.11	0.09	1	0.27	0.15	0.17	0.15	0.11	0.14	0.14
Aorta	0.19	0.13	0.11	0.09	0.25	1	0.22	0.18	0.21	0.15	0.16	0.15	Aorta	0.21	0.15	0.11	0.1	0.29	1	0.2	0.18	0.18	0.13	0.17	0.19
BFAT	0.38	0.27	0.27	0.25	0.47	0.66	1	0.38	0.43	0.29	0.34	0.29	BFAT	0.42	0.3	0.3	0.27	0.54	0.66	1	0.41	0.39	0.31	0.39	0.33
Heart	0.2	0.17	0.14	0.13	0.23	0.29	0.19	1	0.32	0.22	0.26	0.19	Heart	0.21	0.18	0.15	0.14	0.28	0.28	0.2	1	0.28	0.17	0.25	0.22
Mus	0.12	0.1	0.08	0.07	0.15	0.18	0.12	0.18	1	0.11	0.17	0.12	Mus	0.13	0.12	0.09	0.09	0.17	0.19	0.13	0.19	1	0.1	0.19	0.15
Нуро	0.04	0.02	0.03	0.02	0.03	0.04	0.02	0.03	0.03	1	0.12	0.07	Нуро	0.11	0.07	0.08	0.06	0.09	0.1	0.07	0.08	0.07	1	0.27	0.18
BS	0.08	0.06	0.05	0.04	0.07	0.09	0.06	0.09	0.1	0.26	1	0.14	BS	0.09	0.06	0.05	0.04	0.08	0.09	0.06	0.08	0.09	0.19	1	0.19
Cere	0.14	0.12	0.1	0.09	0.13	0.17	0.11	0.14	0.16	0.3	0.29	1	Cere	0.09	0.09	0.06	0.06	0.1	0.13	0.07	0.09	0.09	0.16	0.24	1
	Adr	Lung	Kidney	Liver	WFAT	Aorta	BFAT	Heart	Mus	Hypo	BS	Cere		Adr	Lung	Kidney	Liver	WFAT	Aorta	BFAT	Heart	Mus	Hypo	BS	Cere

Brain tissue overlaps are a major difference between BooteJTK and eJTK BooteJTK results^{results}BooteJTK - eJTK results

Adr	1	0.18	0.2	0.16	0.28	0.35	0.22	0.23	0.24	0.31	0.26	0.22	Adr	
Lung	0.43	1	0.34	0.31	0.43	0.56	0.38	0.45	0.48	0.39	0.45	0.43	Lung	
Kidney	0.52	0.38	1	0.4	0.48	0.51	0.41	0.43	0.43	0.5	0.45	0.41	Kidney	-
Liver	0.5	0.39	0.45	1	0.5	0.49	0.45	0.45	0.43	0.5	0.39	0.42	Liver	-
WFAT	0.21	0.14	0.14	0.12	1	0.33	0.21	0.2	0.22	0.16	0.16	0.16	WFAT	
Aorta	0.19	0.13	0.11	0.09	0.25	1	0.22	0.18	0.21	0.15	0.16	0.15	Aorta	-
BFAT	0.38	0.27	0.27	0.25	0.47	0.66	1	0.38	0.43	0.29	0.34	0.29	BFAT	-
Heart	0.2	0.17	0.14	0.13	0.23	0.29	0.19	1	0.32	0.22	0.26	0.19	Heart	-
Mus	0.12	0.1	0.08	0.07	0.15	0.18	0.12	0.18	1	0.11	0.17	0.12	Mus	-
Нуро	0.04	0.02	0.03	0.02	0.03	0.04	0.02	0.03	0.03	1	0.12	0.07	Нуро	-
BS	0.08	0.06	0.05	0.04	0.07	0.09	0.06	0.09	0.1	0.26	1	0.14	BS	-
Cere	0.14	0.12	0.1	0.09	0.13	0.17	0.11	0.14	0.16	0.3	0.29	1	Cere	
	Adr	Lung	Kidney	Liver	WFAT	Aorta	BFAT	Heart	Mus	Hypo	BS	Cere		

Adr	0	0.03	0.03	0.03	0.01	0.04	0.04	0.04	0.06	0.11	0.01	0.02
Lung	0.01	0	0.02	0.02	-0.03	-0	0.03	0.01	0.05	0.03	0	-0.06
dney	-0.01	-0.01	0	-0	-0.06	-0.02	-0.02	-0.01	0.02	0.02	-0.02	-0.03
Liver	-0.03	-0.02	-0.01	0	-0.03	-0.04	-0.01	-0.02	-0.03	0.03	-0.03	-0.04
/FAT	0.03	0.02	0.03	0.03	0	0.05	0.05	0.03	0.07	0.05	0.02	0.02
Aorta	-0.02	-0.01	-0	-0.01	-0.04	0	0.02	0.01	0.03	0.02	-0.01	-0.04
BFAT	-0.04	-0.03	-0.04	-0.02	-0.07	-0	0	-0.03	0.04	-0.02	-0.04	-0.05
leart	-0.01	-0.02	-0.01	-0.01	-0.05	0	-0	0	0.04	0.04	0.01	-0.03
Mus	-0.02	-0.02	-0.01	-0.02	-0.02	-0.01	-0	-0.01	0	0.01	-0.02	-0.03
Нуро	-0.06	-0.05	-0.05	-0.04	-0.06	-0.06	-0.04	-0.04	-0.04	0	-0.15	-0.11
BS	-0.01	-0	-0	-0	-0.01	-0	-0	0.01	0.01	0.07	0	-0.05
Cere	0.05	0.03	0.04	0.03	0.04	0.04	0.04	0.04	0.07	0.14	0.05	0
	Adr	Lung	Kidney	Liver	WFAT	Aorta	BFAT	Heart	Mus	Hypo	BS	Cere
eJ	TK	0\	/er	lap) >	Bc	ot	eJl	K	OV	erla	ар
eJ	TK	0\	/er	lap) <	Bc	ot	eЛ	ΓK	OV	erla	ар
				-								160

Brain tissue overlaps are a major difference between BooteJTK and eJTK BooteJTK results^{results}BooteJTK - eJTK results

Adr	1	0.18	0.2	0.16	0.28	0.35	0.22	0.23	0.24	0.31	0.26	0.22	
Lung	0.43	1	0.34	0.31	0.43	0.56	0.38	0.45	0.48	0.39	0.45	0.43	
Kidney	0.52	0.38	1	0.4	0.48	0.51	0.41	0.43	0.43	0.5	0.45	0.41	K
Liver	0.5	0.39	0.45	1	0.5	0.49	0.45	0.45	0.43	0.5	0.39	0.42	
WFAT	0.21	0.14	0.14	0.12	1	0.33	0.21	0.2	0.22	0.16	0.16	0.16	٧
Aorta	0.19	0.13	0.11	0.09	0.25	1	0.22	0.18	0.21	0.15	0.16	0.15	
BFAT	0.38	0.27	0.27	0.25	0.47	0.66	1	0.38	0.43	0.29	0.34	0.29	
Heart	0.2	0.17	0.14	0.13	0.23	0.29	0.19	1	0.32	0.22	0.26	0.19	
Mus	0.12	0.1	0.08	0.07	0.15	0.18	0.12	0.18	1	0.11	0.17	0.12	
Нуро	0.04	0.02	0.03	0.02	0.03	0.04	0.02	0.03	0.03	1	0.12	0.07	
BS	0.08	0.06	0.05	0.04	0.07	0.09	0.06	0.09	0.1	0.26	1	0.14	
Cere	0.14	0.12	0.1	0.09	0.13	0.17	0.11	0.14	0.16	0.3	0.29	1	
	Adr	Lung	Gidney	Liver	WFAT	Aorta	BFAT	Heart	Mus	Hypo	BS	Cere	

Adr	0	0.03	0.03	0.03	0.01	0.04	0.04	0.04	0.06	0.11	0.01	0.02
Lung	0.01	0	0.02	0.02	-0.03	-0	0.03	0.01	0.05	0.03	0	-0.06
üdney	-0.01	-0.01	0	-0	-0.06	-0.02	-0.02	-0.01	0.02	0.02	-0.02	-0.03
Liver	-0.03	-0.02	-0.01	0	-0.03	-0.04	-0.01	-0.02	-0.03	0.03	-0.03	-0.04
NFAT	0.03	0.02	0.03	0.03	0	0.05	0.05	0.03	0.07	0.05	0.02	0.02
Aorta	-0.02	-0.01	-0	-0.01	-0.04	0	0.02	0.01	0.03	0.02	-0.01	-0.04
BFAT	-0.04	-0.03	-0.04	-0.02	-0.07	-0	0	-0.03	0.04	-0.02	-0.04	-0.05
Heart	-0.01	-0.02	-0.01	-0.01	-0.05	0	-0	0	0.04	0.04	0.01	-0.03
Mus	-0.02	-0.02	-0.01	-0.02	-0.02	-0.01	-0	-0.01	0	0.01	-0.02	-0.03
Нуро	-0.06	-0.05	-0.05	-0.04	-0.06	-0.06	-0.04	-0.04	-0.04	0	-0.15	-0.11
BS	-0.01	-0	-0	-0	-0.01	-0	-0	0.01	0.01	0.07	0	-0.05
Cere	0.05	0.03	0.04	0.03	0.04	0.04	0.04	0.04	0.07	0.14	0.05	0
	Adr	Lung	Kidney	Liver	WFAT	Aorta	BFAT	Heart	Mus	Hypo	BS	Cere
eJ	TK	0\	/er	lap) >	Bc	ot	eJl	ΓK (ov	erla	ар
eJ	ТК	0	/er	lap) <	Bc	ot	eЛ	ΓK (ov	erla	ар
												161

Brain tissue overlaps are a major difference between BooteJTK and eJTK results_{BooteJTK - eJTK results}

Adr	0	0.03	0.03	0.03	0.01	0.04	0.04	0.04	0.06	0.11	0.01	0.02
Lung	0.01	0	0.02	0.02	-0.03	-0	0.03	0.01	0.05	0.03	0	-0.06
Kidney	-0.01	-0.01	0	-0	-0.06	-0.02	-0.02	-0.01	0.02	0.02	-0.02	-0.03
Liver	-0.03	-0.02	-0.01	0	-0.03	-0.04	-0.01	-0.02	-0.03	0.03	-0.03	-0.04
WFAT	0.03	0.02	0.03	0.03	0	0.05	0.05	0.03	0.07	0.05	0.02	0.02
Aorta	-0.02	-0.01	-0	-0.01	-0.04	0	0.02	0.01	0.03	0.02	-0.01	-0.04
BFAT	-0.04	-0.03	-0.04	-0.02	-0.07	-0	0	-0.03	0.04	-0.02	-0.04	-0.05
Heart	-0.01	-0.02	-0.01	-0.01	-0.05	0	-0	0	0.04	0.04	0.01	-0.03
Mus	-0.02	-0.02	-0.01	-0.02	-0.02	-0.01	-0	-0.01	0	0.01	-0.02	-0.03
Нуро	-0.06	-0.05	-0.05	-0.04	-0.06	0.00	0.04	0.04	0.04	~	0.45	-0.11
						-0.06	-0.04	-0.04	-0.04	0	-0.15	
BS	-0.01	-0	-0	-0	-0.01	-0.06	-0.04	0.01	-0.04 0.01	0.07	-0.15 0	-0.05
BS Cere	-0.01 0.05	-0 0.03	-0 0.04	-0 0.03	-0.01 0.04	-0.06 -0 0.04	-0.04 -0 0.04	0.04 0.01 0.04	-0.04 0.01 0.07	0.07 0.14	-0.15 0 0.05	-0.05 0
BS Cere	-0.01 0.05 Jpy	۰ 0.03 Gund	Q 0.04 Kaupiy	۰ 0.03 P	-0.01 0.04	م. م. 40.04 Porta	^{20.04} ^{20.04} 0.04 LV38	0.01 0.04 Heart	0.01 0.07 SnW	0.07 0.14 0d/H	-0.15 0 0.05	0 Cere
BS Cere eJ	-0.01 0.05 ₽₽	-0 0.03 Dung	-0 0.04 KiqueA	o 0.03 Inver	-0.01 0.04	-0 0.04 Porta	-0 0.04 DEVI	0.01 0.04 Leart EJT	0.01 0.07 SnW	0.07 0.14 0d/H	0 0.05 8 erla	-0.05 0 Gere

162

Adrenal-Hypothalamus rhythmic overlap is a large difference between BooteJTK and eJTK results

Adr	0	0.03	0.03	0.03	0.01	0.04	0.04	0.04	0.0	0.11	0.01	0.02
Lung	0.01	0	0.02	0.02	-0.03	-0	0.03	0.01	0.05	0.03	0	-0.06
Kidney	-0.01	-0.01	0	-0	-0.06	-0.02	-0.02	-0.01	0.02	0.02	-0.02	-0.03
Liver	-0.03	-0.02	-0.01	0	-0.03	-0.04	-0.01	-0.02	-0.03	0.03	-0.03	-0.04
WFAT	0.03	0.02	0.03	0.03	0	0.05	0.05	0.03	0.07	0.05	0.02	0.02
Aorta	-0.02	-0.01	-0	-0.01	-0.04	0	0.02	0.01	0.03	0.02	-0.01	-0.04
BFAT	-0.04	-0.03	-0.04	-0.02	-0.07	-0	0	-0.03	0.04	-0.02	-0.04	-0.05
Heart	-0.01	-0.02	-0.01	-0.01	-0.05	0	-0	0	0.04	0.04	0.01	-0.03
Mus	-0.02	-0.02	-0.01	-0.02	-0.02	-0.01	-0	-0.01	0	0.01	-0.02	-0.03
Нуро	-0.06	-0.05	-0.05	-0.04	-0.06	-0.06	-0.04	-0.04	-0.04	0	-0.15	-0.11
BS	-0.01	-0	-0	-0	-0.01	-0	-0	0.01	0.01	0.07	0	-0.05
Cere	0.05	0.03	0.04	0.03	0.04	0.04	0.04	0.04	0.07	0.14	0.05	0
	Adr	Lung	Kidney	Liver	WFAT	Aorta	BFAT	Heart	Mus	Hypo	BS	Cere
eJ	TK	0\	/er	lap) >	Bc	ot	eJl	K	OV	erla	ар
eJ	ТК	0\	/er	lap) <	Bc	ot	eJJ	ΓK (ov	erla	ap 163

Adrenal-Hypothalamus rhythmic overlap is a large difference between BooteJTK and eJTK results

Adr	0	0.03	0.03	0.03	0.01	0.04	0.04	0.04	0.0	0.11	0.01	0.02
Lung	0.01	0	0.02	0.02	-0.03	-0	0.03	0.01	0.05	0.03	0	-0.06
Kidney	-0.01	-0.01	0	-0	-0.06	-0.02	-0.02	-0.01	0.02	0.02	-0.02	-0.03
Liver	-0.03	-0.02	-0.01	0	-0.03	-0.04	-0.01	-0.02	-0.03	0.03	-0.03	-0.04
WFAT	0.03	0.02	0.03	0.03	0	0.05	0.05	0.03	0.07	0.05	0.02	0.02
Aorta	-0.02	-0.01	-0	-0.01	-0.04	0	0.02	0.01	0.03	0.02	-0.01	-0.04
BFAT	-0.04	-0.03	-0.04	-0.02	-0.07	-0	0	-0.03	0.04	-0.02	-0.04	-0.05
Heart	-0.01	-0.02	-0.01	-0.01	-0.05	0	-0	0	0.04	0.04	0.01	-0.03
Mus	-0.02	-0.02	-0.01	-0.02	-0.02	-0.01	-0	-0.01	0	0.01	-0.02	-0.03
Нуро	-0.06	-0.05	-0.05	-0.04	-0.06	-0.06	-0.04	-0.04	-0.04	0	-0.15	-0.11
BS	-0.01	-0	-0	-0	-0.01	-0	-0	0.01	0.01	0.07	0	-0.05
Cere	0.05	0.03	0.04	0.03	0.04	0.04	0.04	0.04	0.07	0.14	0.05	0
	Adr	Lung	Kidney	Liver	WFAT	Aorta	BFAT	Heart	Mus	Hypo	BS	Cere
eJ	TK	0\	/er	lap) >	Bc	ot	eJl	FK	OV	erla	ар
eJ	ТК	0\	/er	lap) <	Bc	ot	eJ٦	ΓK	ov	erla	ap 164

The hypothalamus and adrenals are involved in an endrocrine feedback loop

en.wikipedia.org/wiki/Hypothalamic-pituitary-adrenal_axis

Adr	0	0.03	0.03	0.03	0.01	0.04	0.04	0.04	0.00	0.11	0.01	0.02
Lung	0.01	0	0.02	0.02	-0.03	-0	0.03	0.01	0.05	0.03	0	-0.06
Kidney	-0.01	-0.01	0	-0	-0.06	-0.02	-0.02	-0.01	0.02	0.02	-0.02	-0.03
Liver	-0.03	-0.02	-0.01	0	-0.03	-0.04	-0.01	-0.02	-0.03	0.03	-0.03	-0.04
WFAT	0.03	0.02	0.03	0.03	0	0.05	0.05	0.03	0.07	0.05	0.02	0.02
Aorta	-0.02	-0.01	-0	-0.01	-0.04	0	0.02	0.01	0.03	0.02	-0.01	-0.04
BFAT	-0.04	-0.03	-0.04	-0.02	-0.07	-0	0	-0.03	0.04	-0.02	-0.04	-0.05
Heart	-0.01	-0.02	-0.01	-0.01	-0.05	0	-0	0	0.04	0.04	0.01	-0.03
Mus	-0.02	-0.02	-0.01	-0.02	-0.02	-0.01	-0	-0.01	0	0.01	-0.02	-0.03
Нуро	-0.06	-0.05	-0.05	-0.04	-0.06	-0.06	-0.04	-0.04	-0.04	0	-0.15	-0.11
BS	-0.01	-0	-0	-0	-0.01	-0	-0	0.01	0.01	0.07	0	-0.05
Cere	0.05	0.03	0.04	0.03	0.04	0.04	0.04	0.04	0.07	0.14	0.05	0
	Adr	Lung	Kidney	Liver	WFAT	Aorta	BFAT	Heart	Mus	Hypo	BS	Cere
eJ	ТΚ	0\	/er	lap) >	Bc	ot	eJl	K	OV	erla	ар
eJ	ТК	0\	/er	lap) <	Bc	ot	eJJ	ΓK	OV	erla	ap 165

- Biological and Statistical Background
- Improvements to JTK_CYCLE
 - Empirical JTK_CYCLE (eJTK)
 - Bootstrap eJTK (BooteJTK)
 - Greater consistency than eJTK
 - More stringent than eJTK
 - Differences in results are biologically supported

- Biological and Statistical Background
- Improvements to JTK_CYCLE
- Comparing rhythmicity across conditions

- Biological and Statistical Background
- Improvements to JTK_CYCLE
- Comparing rhythmicity across conditions
 - A method that produces accurate p-values for differential rhythmicity

Dis-regulation can be more than changes in expression level

Dis-regulation can be more than changes in expression level

Dis-regulation can be more than changes in expression level

Previous approach only looks at pvalues relative to threshold

We can estimate the variance in our Tau score based on the noisiness of the time series

Our method outperforms the p-value threshold method at identifying differential rhythmicity

Many studies compare protein level and RNA level rhythmicity

We find fewer differences between mRNA and protein time series than the p-value threshold method does

We find fewer differences between mRNA and protein time series than the p-value threshold method does

- Biological and Statistical Background
- Improvements to a Rhythm Detection method
- Comparing rhythmicity across conditions
- Future Directions

Future direction: Combining information across tissues and conditions

0.18	0.2	0.16	0.28	0.22	0.23	0.24	0.31	0.26	0.22		0	0.03	0.03	0.03	0.01	0.04	0.04	0.04	0.06		0.01	0.02 179
		0.31								(0.01	0	0.02	0.02	-0.03	-0	0.03	0.01	0.05	0.03	0	-0.06

Future direction: Combining information across tissues and conditions

Rhythmicity in the spleen?

0.18	0.2	0.16	0.28	0.22	0.23	0.24	0.31	0.26	0.22	0	0.03	0.03	0.03	0.01	0.04	0.04	0.04	0.06		0.01	0.02 180
		0.31								0.01	0	0.02	0.02	-0.03	-0	0.03	0.01	0.05	0.03	0	-0.06
Questions?

- Biological and Statistical Background
- Improvements to JTK_CYCLE
 - Empirical JTK_CYCLE (eJTK)
 - Searching for asymmetric waveforms
 - Calculating accurate p-values
 - Hutchison *et al.* (2015) "Improved statistical methods enable greater sensitivity for rhythm detection in genome-wide data". *PLoS Computational Biology*. (11) 3
 - Bootstrap eJTK (BooteJTK)
 - Bootstrap resampling time series
 - New to rhythm detection
 - Empirical Bayes variance estimation
 - Common in differential expression analysis
 - New to rhythm detection
 - Greater consistency than eJTK
 - More stringent than eJTK
 - Differences in results are biologically supported
- Comparing rhythmicity across conditions
 - A method that produces accurate p-values for differential rhythmicity
- Future Directions
 - Combining information across conditions and tissues for rhythm detection

Acknowledgements

Dinner Group

Monika Scholz Jeremy Tempkin Seyit Kale Eugene Leypunskiy Herman Gudjonson Frik Thiede Simon Freedman Catherine Triandafillou Charlie Matthews Glen Hocky Brian Van Koten Bodhi Vani Vicky To Zhiyue Lu

Biophysics 2012

Monika Scholz Eugene Leypunskiy Herman Gudjonson Ryan Mork Kevin Song

MSTP 2011

Sammy Thomas Jen Jacobsen Anya Bershad

Biophysics Admin. Dr. Michele Wittels

Dr. Julie Feder

<u>PhD Committee</u>
els Dr. Aaron R. Dinner
Dr. Mike Rust

Dr. Adam Hammond Dr. Matthew Stephens Dr. Tobin Sosnick

MSTP Admin.

Shay McAllister Dr. Elise Covic Dr. Alison Anastasio Dr. Marcus Clark

Collaborators

Dr. Ravi Allada

- Dr. Eugene Chang
- Dr. Vanessa Leone

Dr. Joseph Bass

Kate Carter

My parents, Barb and Rick

Monika Scholz

Aaron Dinner

Acknowledgements

Dinner Group

Monika Scholz Jeremy Tempkin Seyit Kale Eugene Leypunskiy Herman Gudjonson Frik Thiede Simon Freedman Catherine Triandafillou Charlie Matthews Glen Hocky Brian Van Koten Bodhi Vani Vicky To Zhiyue Lu

Biophysics 2012

Monika Scholz Eugene Leypunskiy Herman Gudjonson Ryan Mork Kevin Song

MSTP 2011

Sammy Thomas Jen Jacobsen Anya Bershad

Biophysics Admin. Dr. Michele Wittels

Dr. Julie Feder

<u>PhD Committee</u>
els Dr. Aaron R. Dinner
Dr. Mike Rust

Dr. Adam Hammond Dr. Matthew Stephens Dr. Tobin Sosnick

MSTP Admin.

Shay McAllister Dr. Elise Covic Dr. Alison Anastasio Dr. Marcus Clark

Collaborators

Dr. Ravi Allada

- Dr. Eugene Chang
- Dr. Vanessa Leone

Dr. Joseph Bass

