# Genome-wide association study of lung function phenotypes in a founder population

Tsung-Chieh Yao, MD, PhD,<sup>a,b</sup> Gaixin Du, MS,<sup>a</sup> Lide Han, PhD,<sup>a</sup> Ying Sun, MS,<sup>a</sup> Donglei Hu, PhD,<sup>c</sup> James J. Yang, PhD,<sup>d</sup> Rasika Mathias, ScD,<sup>e</sup> Lindsey A. Roth, MA,<sup>c</sup> Nicholas Rafaels, MS,<sup>e</sup> Emma E. Thompson, PhD,<sup>a</sup> Dagan A. Loisel, PhD,<sup>a</sup> Rebecca Anderson, MS,<sup>a</sup> Celeste Eng, BS,<sup>c</sup> Maitane Arruabarrena Orbegozo, RN,<sup>a</sup> Melody Young, RN,<sup>f</sup> James M. Klocksieben, BA,<sup>g</sup> Elizabeth Anderson, RN,<sup>h</sup> Kathleen Shanovich, MS, RN,<sup>h</sup> Lucille A. Lester, MD,<sup>f</sup> L. Keoki Williams, MD, MPH,<sup>i</sup> Kathleen C. Barnes, PhD,<sup>e</sup> Esteban G. Burchard, MD, MPH,<sup>c,j</sup> Dan L. Nicolae, PhD,<sup>a,f,k</sup> Mark Abney, PhD,<sup>a</sup>\* and Carole Ober, PhD<sup>a</sup>\* Chicago, Ill, San Francisco, Calif, Detroit, Mich, Baltimore, Md, Madison, Wis, and Taoyuan, Taiwan

Background: Lung function is a long-term predictor of mortality and morbidity.

Objective: We sought to identify single nucleotide polymorphisms (SNPs) associated with lung function. Methods: We performed a genome-wide association study (GWAS) of FEV<sub>1</sub>, forced vital capacity (FVC), and FEV<sub>1</sub>/FVC in 1144 Hutterites aged 6 to 89 years, who are members of a founder population of European descent. We performed least absolute shrinkage and selection operation regression to select the minimum set of SNPs that best predict FEV<sub>1</sub>/FVC in the Hutterites and used the GRAIL algorithm to mine the Gene Ontology database for evidence of functional connections between genes near the predictive SNPs.

Results: Our GWAS identified significant associations between FEV<sub>1</sub>/FVC and SNPs at the *THSD4-UACA-TLE3* locus on

\*These authors contributed equally to this work.

- Supported by the National Institutes of Health grant R01 HL085197 (C.O.) and grant R01 HG002899 (M.A.).
- Disclosure of potential conflict of interest: L. Han, J. J. Yang, R. Mathais, E. E. Thompson, D. A. Loisel, R. Anderson, M. A. Orbegozo, M. Young, J. M. Klocksieben, L. A. Lester, K. C. Barnes, M. Abney, and C. Ober have received grants from the National Institutes of Health (NIH). C. Eng has received grants from the NIH and the National Heart Lung and Blood Institute. L. K. Williams has received grants from the NIH, the National Institute of Allergy and Infectious Disease, and the National Institute of Diabetes and Digestive and Kidney Diseases, and has received grants from the NIH and the National Heart Lung and Blood Institute. The rest of the authors declare that they have no relevant conflicts of interest.
- Received for publication February 4, 2013; revised April 18, 2013; accepted for publication June 12, 2013.

Corresponding author: Tsung-Chieh Yao, MD, PhD, Department of Pediatrics, Chang Gung Memorial Hospital, No. 5 Fu-Hsin Street, Kweishan, Taoyuan 333, Taiwan. E-mail: yao@adm.cgmh.org.tw. Or: Carole Ober, PhD, Department of Human Genetics, University of Chicago, 920 E 58th St, Rm 425, Chicago, IL 60637. E-mail: c-ober@genetics.uchicago.edu.

0091-6749/\$36.00

© 2013 American Academy of Allergy, Asthma & Immunology http://dx.doi.org/10.1016/j.jaci.2013.06.018 chromosome 15q23 ( $P = 5.7 \times 10^{-8}$  to  $3.4 \times 10^{-9}$ ). Nine SNPs at or near 4 additional loci had  $P < 10^{-5}$  with FEV<sub>1</sub>/FVC. Only 2 SNPs were found with  $P < 10^{-5}$  for FEV<sub>1</sub> or FVC. We found nominal levels of significance with SNPs at 9 of the 27 previously reported loci associated with lung function measures. Among a predictive set of 80 SNPs, 6 loci were identified that had a significant degree of functional connectivity (GRAIL P < .05), including 3 clusters of  $\beta$ -defensin genes, 2 chemokine genes (*CCL18* and *CXCL12*), and *TNFRSF13B*. Conclusion: This study identifies genome-wide significant associations and replicates results of previous GWASs. Multimarker modeling implicated for the first time common variation in genes involved in antimicrobial immunity in airway mucosa that influences lung function. (J Allergy Clin Immunol 2014;133:248-55.)

Key words: FEV<sub>1</sub>/FVC, FEV<sub>1</sub>, FVC, GWAS, LASSO regression, GRAIL

Chronic lower respiratory diseases are the third leading cause of death in the United States, resulting in 137,082 deaths in 2009.<sup>1</sup> Lung function, as assessed by the spirometric measures of FEV<sub>1</sub>, forced vital capacity (FVC) and the FEV<sub>1</sub>-to-FVC ratio (FEV<sub>1</sub>/FVC), is an objective indicator of general respiratory health, as well as an important long-term predictor of morbidity and mortality.<sup>2-6</sup> Family- and twin-based studies provide consistent evidence of genetic contributions to lung function, with estimates of heritability ranging as high as 85% for FEV<sub>1</sub>, 91% for FVC, and 45% for FEV<sub>1</sub>/FVC.<sup>7-20</sup>

Recently, genome-wide association studies (GWASs) have begun to shed light on the complex genetic architecture of lung function measures. Two large meta-analyses of lung function GWAS in subjects of European ancestry who participated in the SpiroMeta<sup>21</sup> or CHARGE<sup>22</sup> consortium reported 11 loci associated with FEV<sub>1</sub>/FVC or FEV<sub>1</sub>. A subsequent combined meta-analysis of 48,201 persons from both consortia reported 16 additional loci that influence lung function.<sup>23</sup> However, variants at these highly significant loci in the SpiroMeta-CHARGE metaanalysis explained only 3.2% of the variance for FEV<sub>1</sub>/FVC and 1.5% of the variance for FEV<sub>1</sub>.<sup>23</sup> Thus, similar to studies of other complex phenotypes, a significant proportion of the heritability remains unexplained by individual variants identified in GWASs.<sup>24-26</sup>

This "missing heritability" after GWAS has been attributed to numerous potential causes,<sup>24-27</sup> many or all of which likely contribute. In particular, the assumptions about the genetic model underlying complex phenotypes that are inherent in standard

From <sup>a</sup>the Department of Human Genetics, University of Chicago; <sup>b</sup>the Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan; <sup>c</sup>the Department of Medicine, University of California, San Francisco; <sup>d</sup>the Department of Public Health Sciences, Henry Ford Health System, Detroit; <sup>e</sup>the Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University, Baltimore; <sup>f</sup>the Department of Pediatrics, University of Chicago; <sup>g</sup>the Department of Medicine, University of Chicago; <sup>h</sup>the Department of Pediatrics, University of Wisconsin, Madison; <sup>i</sup>the Center for Health Services Research and Department of Internal Medicine, Henry Ford Health System, Detroit; <sup>j</sup>the Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; and <sup>k</sup>the Department of Statistics, University of Chicago.

Available online August 6, 2013.

| Abbrevia | tions used                                       |
|----------|--------------------------------------------------|
| COPD:    | Chronic obstructive pulmonary disease            |
| FVC:     | Forced vital capacity                            |
| GWAS:    | Genome-wide association study                    |
| LASSO:   | Least absolute shrinkage and selection operation |
| SNP:     | Single nucleotide polymorphism                   |

GWAS approaches may not reflect the true genetic architecture for many phenotypes. GWASs typically assess the effect of each (common) single nucleotide polymorphism (SNP) individually with the use of stringent thresholds of significance. Although this strategy has been effective in minimizing false-positive associations and capturing the "low hanging fruit," the inability to identify genetic variation that accounts for significant proportions of human phenotypic variation suggests that alternative analytic strategies are required to differentiate the true from false-positive associations among the variants with more modest P values. For example, considering 294,831 SNPs simultaneously in a linear model, Yang et al<sup>28</sup> found that common SNPs accounted for as much as 45% of the phenotypic variance and 50% of the heritability of height in 3925 subjects compared with only 5% of the variance of height explained by approximately 50 SNPs that reached genome-wide thresholds of significance in earlier studies.29-32

Here, we conducted a GWAS of lung function phenotypes in members of a founder population, the Hutterites.<sup>20,33,34</sup> In addition to loci reported in previous GWASs, multimarker modeling identified a novel set of airway epithelial cell–derived host defense genes.

#### METHODS The Hutterites

The Hutterites are a young founder population that originated in the South Tyrol in the 16th century and migrated from Europe to the United States in the 1870s.<sup>35,36</sup> Today, >40,000 Hutterites live on communal farms (called colonies) in the north central United States and western Canada. We have been conducting genetic studies of complex phenotypes in the Hutterites of South Dakota for >15 years.<sup>20,34,37-40</sup> Overall, their communal farming lifestyle minimizes environmental heterogeneity. In particular, smoking is prohibited and rare in this population, and air quality is excellent in rural South Dakota (see Table E1 in this article's Online Repository at www.jacionline. org), eliminating environmental exposures that have profound effects on lung function.

Subjects were recruited for this study if they were (1) at least 6 years of age, (2) at home on the days of our visit to their colony, and (3) able to perform spirometry. Participation rates within each colony are typically around 95%, thus minimizing ascertainment biases that could affect our results. The final sample included 1180 S-leut Hutterites who live on or were visiting 1 of 10 South Dakota colonies on the days of our visits; 187 persons (15.8%) were diagnosed with asthma, as previously defined.<sup>39,40</sup> These subjects are related to each other through multiple lines of descent in a 3673-person, 13-generation pedigree with 64 founders. Adult participants provided written informed consent for themselves and their children younger than 18 years; participants who were younger than 18 years provided written assent. These studies were approved by The University of Chicago Institutional Review Board.

#### **Measures of lung function**

Spirometry was performed in the Hutterites during 2 phases of field trips, the first in 1996-1997 and the second in 2006-2009, using identical protocols.

Briefly, subjects underwent lung function tests with the use of spirometry in the sitting position while breathing through a mouthpiece and wearing a nose clip in accordance with the American Thoracic Society/European Respiratory Society recommendations.<sup>41,42</sup> The best FEV<sub>1</sub> and FVC were recorded. Of the 1180 persons, 335 were studied in phase 1 only, 524 in phase 2 only, and 321 in both phases. For the persons studied in both phases, we included measurements from the more recent time only and excluded 36 persons (24 used asthma rescue medications before spirometry, 4 had cystic fibrosis, and 8 had poor quality spirometry).

#### Genotyping and quality control

Hutterite persons were genotyped with the Affymetrix GeneChip 500k, Genome-Wide SNP 5.0, or Genome-Wide SNP 6.0 arrays (Affymetrix, Santa Clara, Calif). An overlapping set of 369,487 autosomal SNPs were present on the 500k, 5.0, and 6.0 arrays; 94,552 of those SNPs were not studied because they were monomorphic (n = 31,246) or had minor allele frequency of <5% (n = 63,306) in the Hutterites. Of the remaining 274,935 SNPs, 28,925 were excluded because they had call rates of <95% (n = 6,456), generated  $\geq$ 5 Mendelian errors (n = 15,912), or deviated from Hardy-Weinberg expectations at  $P < 10^{-3}$  (correcting for inbreeding and relatedness)<sup>43</sup> (n = 6,557), yielding a final set of 246,010 autosomal markers with a median intermarker spacing of 5.1 kb. The positions of SNPs shown in all figures and tables are based on NCBI release 36 (dbSNP build 129).

#### Heritability estimates and GWAS in the Hutterites

FEV1, FVC, and FEV1/FVC were transformed to normally distributed z-scores within each phase, and then adjusted for age, sex, age  $\times$  sex, height, and inbreeding. The residuals of each trait from the 2 phases were then combined for further analyses. The distributions of these traits by age and sex and the correlations between them are shown in Fig E1 (in the Online Repository available at www.jacionline.org). The heritabilities of lung function measures were estimated with variance-component methods, as previously described.44 Association testing was performed with a regression-based test for large, complex pedigrees.37 Briefly, at each SNP, we used the general 2-allele model test of association in the entire pedigree, keeping all inbreeding loops intact; at each SNP we tested an additive model of association. SNP-specific P values were determined according to Gaussian theory. Genomic inflation was weak or absent (genomic inflation factor  $\lambda = 1.10$  for FEV<sub>1</sub>, 1.09 for FVC, and 1.00 for FEV<sub>1</sub>/FVC). The GWAS P values for FEV<sub>1</sub> and FVC were adjusted by using their genomic control.45 The Bonferroni-corrected genome-wide significance threshold was  $P < 2.0 \times 10^{-7}$  (ie, 0.05/246,010). The proportion of the residual variance explained by each SNP or a group of SNPs was determined by comparing the residual sum of squares in the regression model with that obtained without a SNP (or a group of SNPs), as implemented in the general 2-allele model.

#### In silico replication

We investigated in the Hutterites the associations between lung function measures and SNPs at the 27 previously identified loci associated with lung function.<sup>21-23</sup> If the previously reported SNP was not genotyped in the Hutterites, a surrogate SNP with the strongest linkage equilibrium to the reported SNP was investigated.

#### Multimarker modeling

To select the minimum set of SNPs that best predict FEV<sub>1</sub>/FVC in the Hutterites from among SNPs with  $P < 10^{-3}$  in the GWAS, we performed least absolute shrinkage and selection operation (LASSO) regression,<sup>46-48</sup> as implemented in the R package glmnet.<sup>49</sup> These studies were conducted in 604 Hutterites without missing genotypes at all 312 SNPs with  $P < 10^{-3}$  (87 SNPs had missing data in at least 1 person and were not included in the LASSO regression). Of the 540 subjects that had missing genotypes in these

SNPs and not included in the LASSO regression, 261 had no missing genotypes in the 80 SNPs selected by LASSO and were used in subsequent analyses. The minimum set of best-predicting SNPs was selected by running a 10-fold cross-validation procedure after choosing the glmnet parameter  $\alpha = 1.0$ . The cross-validation procedure selected a LASSO penalty parameter of  $\lambda = 3.3 \times 10^{-3}$ . *K*-fold cross-validation was used to minimize the effects of overfitting the model to our data by randomly dividing the full data set into *K*-subsamples where *K*-1 subsamples are used to develop the model and the remaining subsample is used for testing the model. LASSO regression uses SNPs as predictors of the phenotype (FEV<sub>1</sub>/FVC), while minimizing the number of SNPs in the model. Genotypes were coded as 0, 1, or 2 doses of the minor allele. After the 10-fold cross-validation procedure the LASSO regression selected 108 SNPs in the model. However, 28 of these SNPs had negligible effect sizes (absolute value of fixed effect size < .005) and were removed from the model, resulting in a final set of 80 SNPs.

#### Identifying related sets of genes

To identify related sets of genes and common pathways for genes near the SNPs that best predicted FEV<sub>1</sub>/FVC, we used the GRAIL algorithm<sup>50</sup> to mine the Gene Ontology database. Briefly, GRAIL assesses the degree of relatedness among genes within regions that harbor predictive SNPs, selecting the most connected gene that corresponds to 1 or more SNPs as the likely implicated gene. GRAIL assigns a *P* value for each region that reflects the relatedness of the gene(s) in each region to all other regions, correcting for the number of genes in the region.

#### RESULTS

A total of 1144 Hutterites (613 females; 53.6%) aged 6 to 89 years (mean  $\pm$  SD, 30.6  $\pm$  18.4 years) with both genome-wide genotyping and spirometry phenotypes were included in the GWAS (Table I). These same data are shown for the nonasthmatic and asthmatic sample subsets in Table E2 (in the Online Repository available at www.jacionline.org).

#### Heritability of lung function in the Hutterites

The broad (H<sup>2</sup>) and narrow (h<sup>2</sup>) heritabilities of lung function measures in the Hutterites were h<sup>2</sup> = H<sup>2</sup> = 40.2% (SE 5.4%) for FEV<sub>1</sub>, h<sup>2</sup> = 17.8% (SE 3.7%) and H<sup>2</sup> = 70.4% (SE 11.2%) for FVC, and h<sup>2</sup> = 22.1% (SE, 8.0%) and H<sup>2</sup> = 91.5% (SE, 12.9%) for FEV<sub>1</sub>/FVC. These estimates indicate that 40.2%, 70.4%, and 91.5% of the phenotypic variances in FEV<sub>1</sub>, FVC, and the FEV<sub>1</sub>/FVC, respectively, are attributable to genetic variation in the Hutterites. The heritabilities of FVC and FEV<sub>1</sub>/FVC included both additive and nonadditive (ie, dominance) genetic variance components, whereas the heritability of FEV<sub>1</sub> was attributed entirely to additive genetic variance.

#### **GWAS of lung function traits**

We identified genome-wide significant associations between FEV<sub>1</sub>/FVC and 5 SNPs at the *THSD4-UACA-TLE3* locus on chromosome 15q23 (see Fig E2, *A*, in this article's Online Repository at www.jacionline.org), replicating results from previous GWASs.<sup>21,23</sup> Overall, there were 21 SNPs at this locus with  $P < 10^{-5}$  (see Table E3 in this article's Online Repository at www.jacionline.org). The most significant SNP at this locus, rs12441227, explained 2.9% of the residual variance in FEV<sub>1</sub>/FVC in the Hutterites. The evidence for association with SNPs at this locus remained when the persons with asthma were excluded (Fig E2, *D*), and when the sample was stratified

by age (see Table E4 in this article's Online Repository at www.jacionline.org).

Nine additional SNPs at 4 loci had P values  $< 10^{-5}$  with FEV<sub>1</sub>/ FVC, including SNPs downstream of the *C10orf11* gene on chromosome 10q22.3, which was associated with FEV1 in a meta-analysis of lung function GWAS.<sup>23</sup> When a subanalysis was performed that excluded the Hutterites with asthma, the evidence for association at this locus increased to genome-wide levels of significance (Table E4 and Fig E2, F). The evidence for associations with SNPs at 3 of these loci with P values  $< 10^{-5}$ , CCL23-CCL18 on chromosome 17q12 (Fig E2, B and E), PITPNC1 locus on chromosome 17q24.2, and CHAF1B on chromosome 21q22.13, remained in subanalyses that excluded persons with asthma. The evidence for association at all locus with *P* values  $< 10^{-5}$  remained in subset analyses stratified by age (Table E4). Only 2 SNPs had P values  $< 10^{-5}$  in the GWAS for the other 2 phenotypes: 1 SNP 7 k downstream of the IL37 gene on chromosome 2q13 was associated with FEV1 and 1 SNP in an intron of ASXL3 on chromosome 18q12.1 was associated with FVC.

The Manhattan and Q–Q plots of *P* values for the GWAS of the 3 phenotypes are shown in Fig 1; results for all SNPs with  $P < 10^{-5}$  are shown in Table E3. The GWAS *P* values in the Hutterites for the 27 loci associated with lung function in previous meta-analyses<sup>21-23</sup> are shown in Table E5 (in the Online Repository available at www.jacionline.org). Overall, we found nominal evidence (P < .05) of association with at least 1 of the 3 phenotypes for 15 SNPs at 9 of the 27 previously reported loci.

#### Multimarker modeling

We assumed that there were additional true associations among the GWAS SNPs that did not reach genome-wide levels of significance because their effects are too small to detect in single SNP analyses, especially in a sample size of approximately 1000 subjects. Therefore, to assess a multimarker model of risk that included all SNPs with  $P < 10^{-3}$ , we performed LASSO regression to identify minimum sets of SNPs that provided the smallest mean square error of FEV<sub>1</sub>/FVC in the Hutterites. A set of 80 SNPs yielded the best predictive value and were used for further study (see Table E6 in this article's Online Repository at www.jacionline.org).

First, we assessed the phenotypic effects of these 80 SNPs by binning persons by the total number of alleles associated with reduced FEV<sub>1</sub>/FVC that they carried (total possible = 160) and calculated the mean  $\pm$  SE residual FEV<sub>1</sub>/FVC for Hutterites in each bin. The mean residual FEV<sub>1</sub>/FVC decreased with increasing number of low FEV<sub>1</sub>/FVC alleles, consistent with an additive genetic architecture (Fig 2).

Next, we used the GRAIL algorithm<sup>50</sup> to mine the Gene Ontology database for evidence of functional connections between genes near the 80 predictive SNPs. We identified a subset of 6 SNPs with significantly related genes (GRAIL P < .05), including 3 clusters of  $\beta$ -defensin genes, 2 chemokine genes (*CCL18* and *CXCL12*), and *TNFRSF13B* (Table II and Fig 3). Notably, the associated GWAS SNPs at 2 replicated loci, *THSD4-UACA-TLE3* and *C10orf11*, were not functionally connected to any other genes defined by the 80 SNPs. However, a SNP at the *CCL23-CCL18* locus, the second most significant locus in the Hutterite GWAS (see Fig E2, *B*, in this article's Online Repository at www.jacionline.org), was significantly

#### TABLE I. Characteristics of the Hutterite sample

|                                         | Ma              | ales            | Females         |                 |  |
|-----------------------------------------|-----------------|-----------------|-----------------|-----------------|--|
|                                         | 6-17 y          | >17 y           | 6-17 у          | >17 y           |  |
| Sample size                             | 180             | 351             | 195             | 418             |  |
| No. with asthma (%)                     | 25 (13.9)       | 48 (13.6)       | 38 (19.5)       | 51 (12.2)       |  |
| No. with atopy (%)                      | 76 (42.2)       | 191 (54.4)      | 93 (47.7)       | 194 (46.4)      |  |
| Mean age $\pm$ SD (y)                   | $11.3 \pm 3.2$  | $40.1 \pm 15.3$ | $12.2 \pm 2.9$  | 39.6 ± 15.7     |  |
| Mean $FEV_1 \pm SD(L)$                  | $2.60 \pm 1.05$ | $3.90 \pm 0.77$ | $2.56 \pm 0.78$ | $2.94 \pm 0.59$ |  |
| Mean FVC $\pm$ SD (L)                   | $3.04 \pm 1.29$ | $4.91 \pm 0.91$ | $2.86 \pm 0.90$ | $3.61 \pm 0.70$ |  |
| Mean FEV <sub>1</sub> /FVC $\pm$ SD (%) | 86.8 ± 7.5      | 79.6 ± 7.8      | $90.0 \pm 6.5$  | $81.5 \pm 7.1$  |  |

Asthma and atopy are defined as described in Ober et al.40



**FIG 1.** Manhattan and Q–Q plots of *P* values from the GWAS of FEV<sub>1</sub>/FVC (**A** and **B**), FEV<sub>1</sub> (**C** and **D**), and FVC (**E** and **F**). SNPs with  $P < 10^{-5}$  are shown in *red*. The *horizontal red line* shows the genome-wide significance threshold ( $P < 2.0 \times 10^{-7}$ ).

connected to the  $\beta$ -defensin genes, as well as to *CXCL12* and *TNFRSF13B* in the GRAIL analysis. These 6 SNPs by themselves explained 5.8% of the residual variance in FEV<sub>1</sub>/FVC in the Hutterites.

#### DISCUSSION

The success of GWAS for unraveling the genetic architecture of complex phenotypes has been widely debated.<sup>24-27,51-53</sup> Although many robust associations have been discovered for a wide spectrum of diseases and phenotypes,<sup>54</sup> the associated variants typically explain relatively little of the phenotypic variation. Several recent studies have highlighted the importance of approaches that consider multiple variants simultaneously,<sup>28,48,55-58</sup> a more suitable approach if the genetic architecture of common

phenotypes is polygenic with many contributing loci with small effects. However, the best way to identify multiple contributing loci is at present unclear.

The GWAS of the FEV<sub>1</sub>/FVC in the Hutterites revealed 2 previously reported associations with measures of lung function. Associations with multiple SNPs at the highly replicated locus on  $15q23^{21,23}$  reached genome-wide significance in the combined sample, and SNPs at the *C10orf11* on chromosome  $10q22.3^{23}$  reached genome-wide significance in the nonasthmatic subset of the Hutterite sample. These results were robust to age, with evidence for association present in both the child and adult subsets of the population. Moreover, we detected nominal levels of significance with SNPs at 9 previously reported loci associated with lung function measures. Together, these results indicate that genes influencing lung function in Europeans and European



**FIG 2.** The combined effects of genotypes for 80 SNPs on the residual FEV<sub>1</sub>/FVC in the Hutterites. Hutterites were binned by their total number of alleles associated with reduced FEV<sub>1</sub>/FVC (x-axis); the mean  $\pm$  SE residual FEV<sub>1</sub>/FVC for each bin is plotted on the right y-axis (*blue dots* and *bars*), and the number of subjects in each bin is on the left y-axis. The linear regression line through these points is shown in *red*.

Americans from the general population also contribute to lung function phenotypes in the Hutterites.

To assess the combined effects of these and other SNPs with less significant evidence of association, we used LASSO regression to select the minimum set of SNPs from among the 312 with  $P < 10^{-3}$ . The LASSO regression selected 80 independent SNPs as the best predictor of the FEV<sub>1</sub>/FVC. Consistent with an additive genetic model, the mean phenotypic value decreases with increasing number of "risk" alleles (Fig 2). Moreover, this approach led to the discovery of additional genes, including 3 independent clusters of  $\beta$ -defensin genes, 2 chemokine genes, and a TNF family receptor, suggesting an important link between host defense mechanisms and lung function. Defensins are antimicrobial peptides that recruit inflammatory cells and modulate innate and adaptive immune responses, participating in both the promotion and resolution of inflammatory responses.<sup>5</sup> There are 3 classes of defensins, but only the  $\beta$ -defensins are specifically expressed in epithelial cells, including those lining the respiratory tract. Genetic studies have implicated the β-defensin genes on chromosome 8p23 in lung function in patients with asthma,<sup>60</sup> chronic obstructive pulmonary disease (COPD)<sup>61</sup> and with cystic fibrosis.<sup>62</sup> In particular, DEFB1 mRNA in bronchial epithelial cell biopsies was significantly elevated in patients with COPD compared with controls and significantly associated with both reduced FEV<sub>1</sub> and FEV<sub>1</sub>/FVC in patients with COPD and in controls.<sup>61</sup> The results of our studies would further suggest that all 3 clusters of  $\beta$ -defensin genes on chromosomes 8p23, 20p13, and 20p11 contribute to lung function in healthy, unselected subjects. Chemokines are small proteins that bind to G-protein-coupled receptors and orchestrate the migration of circulating leukocytes to sites of inflammation. CCL18 (also named pulmonary and activated-regulated cytokine) is constitutively and highly expressed in the human lung<sup>63</sup> and can generate regulatory T cells from  $CD4^+CD25^-$  T cells in healthy persons via direct induction of TGF- $\beta$ 1.<sup>64</sup> Functional polymorphisms in the promoter of the TGFB1 gene have been associated with airway responsiveness and asthma exacerbations,

and haplotypes that comprise polymorphisms and specific coding variants in this gene have been associated with lung function in patients with cystic fibrosis,<sup>65,66</sup> although the exact variants and direction of effect are inconsistent across studies. Moreover, both B-defensin-2 and CCL18 were significantly elevated in peripheral blood from patients with COPD compared to in smoking and nonsmoking controls.<sup>67</sup> CXCL12 (also name stromal derived growth factor 1) is critical to bone marrow-derived stem cell production and shows increased expression in bronchial alveolar lavage fluid after bleomycin-induced lung fibrosis in a murine model and in airway tissues in patients with idiopathic pulmonary fibrosis compared with controls.<sup>68</sup> The TNFRSF13B gene encodes the transmembrane activator and calcium modulator and cyclophilin ligand interactor, which binds 2 ligands, B-cell activating factor and a proliferating-inducing ligand. It is thought that the transmembrane activator and calcium modulator and cyclophilin ligand interactor plays a key role in B-cell activation and differentiation into plasma cells. In a recent study, rare mutations in *TNFRSF13B* were associated with asthma symptoms in Swedish children.<sup>69</sup> Moreover, expression of B-cell activating factor in alveolar macrophages was inversely correlated with lung function in patients with COPD.<sup>70</sup> Our study extends the roles of these 2 chemokines and TNF-family receptor to interindividual variability in normal lung function.

Despite conducting this study in a relatively small sample (~1000 Hutterites) and the absence of a major locus that influenced variation in lung function compared with other traits (eg, see Ober et al<sup>39</sup> and Ober et al<sup>71</sup>), we were successful in identifying both genome-wide significant associations with replicated loci on chromosome 15 in the combined sample and on chromosome 10 in the nonasthmatic subset, in addition to a set of novel variants that are highly predictive for lung function in the Hutterites. The power of our study was likely enhanced by the homogeneity of the Hutterite population compared with the larger population samples that have been included in previous studies of lung function.<sup>21-23</sup> The advantages of this population for genetic studies of complex phenotypes are primarily 2-fold. On the one hand, it is possible that there are fewer lung functionassociated alleles segregating in the Hutterites because of the population bottleneck that occurred before their emigration to the United States.<sup>35,36</sup> This would result in a simpler genetic architecture due to both overall reduced genetic variation and increased frequencies of some variants with potentially larger phenotypic effects that are rare in other European populations. On the other hand, their communal lifestyle and shared environmental exposures,<sup>33</sup> which include the absence of exposure to cigarette smoke and air pollution, may have enhanced the effects of genetic variation in general, and on specific pathways in particular, on lung development and subsequent lung function. In this population, exposures are remarkably similar during critical periods of lung development both in utero and in early life. Hutterite women and young children are not directly involved in farming activities, and their homes are generally distant from the agricultural fields and animal barns. Meals are prepared in a communal kitchen, using traditional recipes that are shared among the colonies. There are no pets, televisions, radios, or computers in the homes, and, as a result, Hutterite children spend significant proportions of each day playing outside. Thus, the absence of important environmental exposures that affect lung development and lung function, combined with a shared environment throughout life, not only reduces nongenetic heterogeneity but also allows for the detection

|           | J J .J . J |                 |                   |                |                |                                       |
|-----------|------------|-----------------|-------------------|----------------|----------------|---------------------------------------|
| SNP       | Chromosome | NCBI36 position | P <sub>GWAS</sub> | Beta (SE)      | <b>P</b> GRAIL | Implicated gene                       |
| rs365548  | 20         | 185,618         | $5.61E^{-04}$     | 0.003 (0.046)  | $6.4E^{-04}$   | DEFB129, C20orf96                     |
| rs2921026 | 8          | 8,384,658       | $6.14E^{-04}$     | -0.133(0.046)  | $6.6E^{-04}$   | DEFB107A                              |
| rs4815436 | 20         | 25,521,423      | $9.45E^{-04}$     | 0.181 (0.069)  | $9.7E^{-04}$   | DEFB115, DEFB116,<br>DEFB123, DEFB124 |
| rs854679  | 17         | 31,382,952      | $3.40E^{-07}$     | -0.049(0.059)  | .020           | CCL18                                 |
| rs1570846 | 10         | 43,776,486      | $7.06E^{-04}$     | -0.139 (0.055) | .037           | CXCL12                                |
| rs7216399 | 17         | 16,797,303      | $5.96E^{-04}$     | -0.065 (0.054) | .043           | TNFRSF13B                             |

TABLE II. High-scoring regions from the GRAIL analysis, sorted by the GRAIL P value

 $P_{\text{GWAS}}$  is the *P* value from the FEV<sub>1</sub>/FVC GWAS in the Hutterites; Beta (SE) is that of the predictive SNP in the regression model for the 865 Hutterites; and  $P_{\text{GRAIL}}$  is the region's *P* value given by GRAIL. The last column shows the candidate gene identified by GRAIL.



**FIG 3.** GRAIL functional connections between the 80 predictive SNPs. Six SNPs with no nearby genes defined by GRAIL are not shown. GRAIL identified 6 pairs of SNPs that implicated the same genes; only 1 SNP from each these 6 pairs is shown in the figure. The regions (SNPs; *outer ring*) and genes (*inner ring*) are optimally ordered to display connections with a minimal number of intersections. Only the genes with  $P_{\text{GRAIL}} < .05$  have connections displayed. The *thickness* and *redness* of the connectors reflects the significance of the connections. Three clusters of  $\beta$ -defensin genes are the most connected sets.

of lung function alleles that are not confounded with those related to socioeconomic factors or behavior, such as cigarette smoking, or to ecogenetic pathways that are important in metabolizing inhaled particles. These population characteristics possibly enabled the novel finding in this study of an enrichment of genes involved in antimicrobial immunity in the airways among those associated with lung function.

In summary, this study identifies genome-wide significant associations between lung function and SNPs at the *THSD4-UACA-TLE3* locus on chromosome 15q23 and the *C10orf11* on chromosome 10q22.3, and replicates many other previous GWAS results. Moreover, with the use of LASSO regression, we identified

80 independent SNPs as the best predictor of FEV<sub>1</sub>/FVC, with the mean phenotypic value decreasing with increasing number of risk alleles, consistent with an additive genetic architecture. Of note is that multimarker modeling implicated for the first time common variation in 3 independent clusters of  $\beta$ -defensin genes, 2 chemokine genes, and a TNF family receptor that involved in antimicrobial immunity in airway mucosa and influences lung function.

We thank Peter Carbonetto and Xiang Zhou for insightful comments and helpful discussions, Jessica Chong for technical advice, Minsoo Shon for assistance on field trips, and the Hutterites for their continued enthusiasm and participation in our studies. Clinical implications: Three independent clusters of  $\beta$ -defensin genes, 2 chemokine genes (*CCL18* and *CXCL12*), and *TNFRSF13B* that are involved in antimicrobial immunity in airway mucosa contribute to lung function phenotypes in healthy, unselected subjects.

#### REFERENCES

- Kochanek KD, Xu J, Murphy SL, Minino AM, Kung HC. Deaths: preliminary data for 2009. Natl Vital Stat Rep 2011;59:1-51.
- Burney PG, Hooper R. Forced vital capacity, airway obstruction and survival in a general population sample from the USA. Thorax 2011;66:49-54.
- Weiss ST, Segal MR, Sparrow D, Wager C. Relation of FEV1 and peripheral blood leukocyte count to total mortality. The Normative Aging Study. Am J Epidemiol 1995;142:493-8; discussion 499-503.
- Schunemann HJ, Dorn J, Grant BJ, Winkelstein W Jr, Trevisan M. Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. Chest 2000;118:656-64.
- Young RP, Hopkins R, Eaton TE. Forced expiratory volume in one second: not just a lung function test but a marker of premature death from all causes. Eur Respir J 2007;30:616-22.
- Myint PK, Luben RN, Surtees PG, Wainwright NW, Welch AA, Bingham SA, et al. Respiratory function and self-reported functional health: EPIC-Norfolk population study. Eur Respir J 2005;26:494-502.
- Hubert HB, Fabsitz RR, Feinleib M, Gwinn C. Genetic and environmental influences on pulmonary function in adult twins. Am Rev Respir Dis 1982; 125:409-15.
- Gibson JB, Martin NG, Oakeshott JG, Rowell DM, Clark P. Lung function in an Australian population: contributions of polygenic factors and the Pi locus to individual differences in lung function in a sample of twins. Ann Hum Biol 1983;10:547-56.
- Lewitter FI, Tager IB, McGue M, Tishler PV, Speizer FE. Genetic and environmental determinants of level of pulmonary function. Am J Epidemiol 1984;120: 518-30.
- Astemborski JA, Beaty TH, Cohen BH. Variance components analysis of forced expiration in families. Am J Med Genet 1985;21:741-53.
- Beaty TH, Liang KY, Seerey S, Cohen BH. Robust inference for variance components models in families ascertained through probands, II: analysis of spirometric measures. Genet Epidemiol 1987;4:211-21.
- Ghio AJ, Crapo RO, Elliott CG, Adams TD, Hunt SC, Jensen RL, et al. Heritability estimates of pulmonary function. Chest 1989;96:743-6.
- Cotch MF, Beaty TH, Cohen BH. Path analysis of familial resemblance of pulmonary function and cigarette smoking. Am Rev Respir Dis 1990;142:1337-43.
- Coultas DB, Hanis CL, Howard CA, Skipper BJ, Samet JM. Heritability of ventilatory function in smoking and nonsmoking New Mexico Hispanics. Am Rev Respir Dis 1991;144:770-5.
- McClearn GE, Svartengren M, Pedersen NL, Heller DA, Plomin R. Genetic and environmental influences on pulmonary function in aging Swedish twins. J Gerontol 1994;49:264-8.
- Chen Y, Horne SL, Rennie DC, Dosman JA. Segregation analysis of two lung function indices in a random sample of young families: the Humboldt Family Study. Genet Epidemiol 1996;13:35-47.
- Wilk JB, Djousse L, Arnett DK, Rich SS, Province MA, Hunt SC, et al. Evidence for major genes influencing pulmonary function in the NHLBI family heart study. Genet Epidemiol 2000;19:81-94.
- Palmer LJ, Burton PR, James AL, Musk AW, Cookson WO. Familial aggregation and heritability of asthma-associated quantitative traits in a population-based sample of nuclear families. Eur J Hum Genet 2000;8:853-60.
- Palmer LJ, Knuiman MW, Divitini ML, Burton PR, James AL, Bartholomew HC, et al. Familial aggregation and heritability of adult lung function: results from the Busselton Health Study. Eur Respir J 2001;17:696-702.
- Ober C, Abney M, McPeek MS. The genetic dissection of complex traits in a founder population. Am J Hum Genet 2001;69:1068-79.
- Repapi E, Sayers I, Wain LV, Burton PR, Johnson T, Obeidat M, et al. Genomewide association study identifies five loci associated with lung function. Nat Genet 2010;42:36-44.
- Hancock DB, Eijgelsheim M, Wilk JB, Gharib SA, Loehr LR, Marciante KD, et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet 2010;42:45-52.
- 23. Soler Artigas M, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet 2011;43:1082-90.

- Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature 2009;461:747-53.
- Maher B. Personal genomes: the case of the missing heritability. Nature 2008; 456:18-21.
- McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008;9:356-69.
- Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010;11:446-50.
- Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 2010;42:565-9.
- Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, Zusmanovich P, et al. Many sequence variants affecting diversity of adult human height. Nat Genet 2008;40:609-15.
- Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI, Sanna S, et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet 2008;40:584-91.
- Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet 2008;40:575-83.
- 32. Visscher PM. Sizing up human height variation. Nat Genet 2008;40:489-90.
- Ober C, Cox NJ. The genetics of asthma. Mapping genes for complex traits in founder populations. Clin Exp Allergy 1998;28(Suppl 1):101-5; discussion 108-10.
- Weiss LA, Pan L, Abney M, Ober C. The sex-specific genetic architecture of quantitative traits in humans. Nat Genet 2006;38:218-22.
- Hostetler JA. Hutterite society. Baltimore, Md: Johns Hopkins University Press; 1974.
- 36. Steinberg AG, Bleibtreu HK, Kurczynski TW, Martin AO, Kurczynski EM. Genetics studies in an inbred human isolate. In: Crow JF, Neel JV, editors. Proceedings of the Third International Congress of Human Genetics. Baltimore, Md: Johns Hopkins University Press; 1967. p. 267-90.
- Abney M, Ober C, McPeek MS. Quantitative trait homozygosity and association mapping and empirical genome-wide significance in large complex pedigrees: fasting serum insulin level in the Hutterites. Am J Hum Genet 2002; 70:920-34.
- 38. Cusanovich DA, Billstrand C, Zhou X, Chavarria C, De Leon S, Michelini K, et al. The combination of a genome-wide association study of lymphocyte count and analysis of gene expression data reveals novel asthma candidate genes. Hum Mol Genet 2012;21:2111-23.
- Ober C, Tan Z, Sun Y, Possick JD, Pan L, Nicolae R, et al. Effect of variation in *CHI3L1* on serum YKL-40 level, asthma risk, and lung function. N Engl J Med 2008;358:1682-91.
- Ober C, Tsalenko A, Parry R, Cox NJ. A second-generation genomewide screen for asthma-susceptibility alleles in a founder population. Am J Hum Genet 2000; 67:1154-62.
- Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, et al. General considerations for lung function testing. Eur Respir J 2005;26:153-61.
- Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J 2005;26:319-38.
- Bourgain C, Abney M, Schneider D, Ober C, McPeek MS. Testing for Hardy-Weinberg equilibrium in samples with related individuals. Genetics 2004;168:2349-61.
- Abney M, McPeek MS, Ober C. Broad and narrow heritabilities of quantitative traits in a founder population. Am J Hum Genet 2001;68:1302-7.
- Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999; 55:997-1004.
- Tibshirani R. Regression shrinkage and selectionv ia the lasso. J R Stat Soc Ser B 1996;58:267-88.
- Guo W, Elston R, Zhu X. Evaluation of a LASSO regression approach on the unrelated samples of Genetic Analysis Workshop 17. BMC Proc 2011;5:S12.
- Wu TT, Chen YF, Hastie T, Sobel E, Lange K. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 2009;25:714-21.
- Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010;33:1-22.
- Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC, Purcell SM, Sklar P, et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet 2009;5:e1000534.
- Goldstein DB. Common genetic variation and human traits. N Engl J Med 2009; 360:1696-8.
- Hirschhorn JN. Genomewide association studies–illuminating biologic pathways. N Engl J Med 2009;360:1699-701.

- Kraft P, Hunter DJ. Genetic risk prediction-are we there yet? N Engl J Med 2009; 360:1701-3.
- A catalog of published genome-wide association studies. Available from http:// www.genome.gov/gwastudies/. Assessed January 11, 2012.
- 55. Kutalik Z, Whittaker J, Waterworth D, Beckmann JS, Bergmann S. Novel method to estimate the phenotypic variation explained by genome-wide association studies reveals large fraction of the missing heritability. Genet Epidemiol 2011; 35:341-9.
- Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet 2011;88: 294-305.
- de los Campos G, Gianola D, Allison DB. Predicting genetic predisposition in humans: the promise of whole-genome markers. Nat Rev Genet 2010;11: 880-6.
- Makowsky R, Pajewski NM, Klimentidis YC, Vazquez AI, Duarte CW, Allison DB, et al. Beyond missing heritability: prediction of complex traits. PLoS Genet 2011;7:e1002051.
- Tecle T, Tripathi S, Hartshorn KL. Review: defensins and cathelicidins in lung immunity. Innate Immun 2010;16:151-9.
- Levy H, Raby BA, Lake S, Tantisira KG, Kwiatkowski D, Lazarus R, et al. Association of defensin beta-1 gene polymorphisms with asthma. J Allergy Clin Immunol 2005;115:252-8.
- Andresen E, Gunther G, Bullwinkel J, Lange C, Heine H. Increased expression of beta-defensin 1 (DEFB1) in chronic obstructive pulmonary disease. PLoS One 2011;6:e21898.
- 62. Crovella S, Segat L, Amato A, Athanasakis E, Bezzerri V, Braggion C, et al. A polymorphism in the 5' UTR of the DEFB1 gene is associated with the lung phenotype in F508del homozygous Italian cystic fibrosis patients. Clin Chem Lab Med 2011;49:49-54.

- 63. Hieshima K, Imai T, Baba M, Shoudai K, Ishizuka K, Nakagawa T, et al. A novel human CC chemokine PARC that is most homologous to macrophageinflammatory protein-1 alpha/LD78 alpha and chemotactic for T lymphocytes, but not for monocytes. J Immunol 1997;159:1140-9.
- 64. Chang Y, de Nadai P, Azzaoui I, Morales O, Delhem N, Vorng H, et al. The chemokine CCL18 generates adaptive regulatory T cells from memory CD4+ T cells of healthy but not allergic subjects. FASEB J 2010;24:5063-72.
- 65. Bremer LA, Blackman SM, Vanscoy LL, McDougal KE, Bowers A, Naughton KM, et al. Interaction between a novel TGFB1 haplotype and CFTR genotype is associated with improved lung function in cystic fibrosis. Hum Mol Genet 2008;17:2228-37.
- Drumm ML, Konstan MW, Schluchter MD, Handler A, Pace R, Zou F, et al. Genetic modifiers of lung disease in cystic fibrosis. N Engl J Med 2005;353:1443-53.
- Dickens JA, Miller BE, Edwards LD, Silverman EK, Lomas DA, Tal-Singer R. COPD association and repeatability of blood biomarkers in the ECLIPSE cohort. Respir Res 2011;12:146.
- Xu J, Mora A, Shim H, Stecenko A, Brigham KL, Rojas M. Role of the SDF-1/ CXCR4 axis in the pathogenesis of lung injury and fibrosis. Am J Respir Cell Mol Biol 2007;37:291-9.
- Janzi M, Melen E, Kull I, Wickman M, Hammarstrom L. Rare mutations in TNFRSF13B increase the risk of asthma symptoms in Swedish children. Genes Immun 2012;13:59-65.
- 70. Polverino F, Baraldo S, Bazzan E, Agostini S, Turato G, Lunardi F, et al. A novel insight into adaptive immunity in chronic obstructive pulmonary disease: B cell activating factor belonging to the tumor necrosis factor family. Am J Respir Crit Care Med 2010;182:1011-9.
- Ober C, Nord AS, Thompson EE, Pan L, Tan Z, Cusanovich D, et al. Genomewide association study of plasma lipoprotein(a) levels identifies multiple genes on chromosome 6q. J Lipid Res 2009;50:798-806.



**FIG E1.** Measures of lung function in the Hutterites. Distributions of standardized values of FEV<sub>1</sub> (**A**), FVC (**B**), and FEV<sub>1</sub>/FVC (**C**) by age and sex (*blue*, male; *orange*, female). Correlations between measures of lung function: FEV<sub>1</sub> and FVC (**D**), FEV<sub>1</sub> and FEV<sub>1</sub>/FVC (**E**), and FVC and FEV<sub>1</sub>/FVC (**F**). The linear regression line is shown in *red*.



**FIG E2.** Regional association plots for the 3 most significant associations in the GWAS of FEV<sub>1</sub>/FVC in the Hutterites: *THSD4-UACA-TLE3* locus on chromosome 15q23, *CCL23-CCL18* locus on chromosome 17q12, and *C10orf11* locus on chromosome 10q22.3 in the full sample (**A-C**, respectively) and in subanalyses that excluded persons with asthma (**D-F**, respectively). In each plot the most significantly associated SNP is shown as a *large blue diamond*. The colors of the other SNPs reflect the linkage disequilibrium with that SNP based on  $r^2$  values in the Hutterites (*red*,  $r^2 \ge 0.8$ ; *orange*,  $0.5 \le r^2 < 0.8$ ; *yellow*,  $0.2 \le r^2 < 0.5$ ; *white*,  $r^2 < 0.2$ ).

| TABLE E1. Air quality data for the | 10 Hutterite colonies in South I | Dakota participating in these studies |
|------------------------------------|----------------------------------|---------------------------------------|
|------------------------------------|----------------------------------|---------------------------------------|

| ZIP code | No. of colonies at this ZIP code | Range of air quality values | Overall air quality | Overall rating |
|----------|----------------------------------|-----------------------------|---------------------|----------------|
| 57042    | 1                                | 5.0-9.9                     | 9.2                 | Outstanding    |
| 57076    | 1                                | 5.7-9.9                     | 9.2                 | Outstanding    |
| 57301    | 2                                | 6.8-9.9                     | 9.6                 | Outstanding    |
| 57311    | 2                                | 6.8-9.9                     | 9.6                 | Outstanding    |
| 57314    | 1                                | 5.0-9.9                     | 9.2                 | Outstanding    |
| 57334    | 1                                | 6.8-9.9                     | 9.2                 | Outstanding    |
| 57334    | 1                                | 6.8-9.9                     | 9.6                 | Outstanding    |
| 57366    | 1                                | 6.8-9.9                     | 9.6                 | Outstanding    |

These data are gathered from measuring stations across the country. A higher number (on a scale of 1-10) reflects fewer amounts of pollutants (ie, a 9.0 means that 90% of the stations around the country are measuring higher amounts than the local station). The 6 air pollutants reported are ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, particulate matter (PM) 10, and PM 2.5. The range of values for the 6 pollutants and overall ratings are shown. Values for the individual pollutants can be found at http://www.homefacts.com/airquality/South-Dakota.html.

## TABLE E2. Characteristics of the nonasthmatic and asthmatic sample subsets

|                                         | Ма              | les             | Fem             | ales            |
|-----------------------------------------|-----------------|-----------------|-----------------|-----------------|
|                                         | 6-17 y          | >17 y           | 6-17 y          | >17 y           |
| Persons with asthma                     |                 |                 |                 |                 |
| Sample size                             | 25              | 48              | 38              | 51              |
| No. with atopy (%)                      | 13 (52.0)       | 34 (70.8)       | 20 (52.6)       | 24 (47.1)       |
| Mean age $\pm$ SD (y)                   | $10.8 \pm 3.2$  | $39.4 \pm 14.6$ | $12.0 \pm 2.9$  | 38.2 ± 15.6     |
| Mean $FEV_1 \pm SD(L)$                  | $2.28 \pm 0.92$ | $3.76 \pm 0.78$ | $2.56 \pm 0.81$ | $2.80 \pm 0.53$ |
| Mean FVC $\pm$ SD (L)                   | $2.75 \pm 1.13$ | $5.03 \pm 0.90$ | $2.93 \pm 0.95$ | $3.64 \pm 0.70$ |
| Mean FEV <sub>1</sub> /FVC $\pm$ SD (%) | $83.5 \pm 7.1$  | $74.9 \pm 7.5$  | $87.8 \pm 6.7$  | $77.2 \pm 8.0$  |
| Persons without asthma                  |                 |                 |                 |                 |
| Sample size                             | 155             | 303             | 157             | 367             |
| No. with atopy (%)                      | 63 (40.6)       | 157 (51.8)      | 73 (46.5)       | 170 (46.3)      |
| Mean age $\pm$ SD (y)                   | $11.5 \pm 3.2$  | $40.2 \pm 15.4$ | $12.2 \pm 2.9$  | 39.8 ± 15.6     |
| Mean $FEV_1 \pm SD(L)$                  | $2.65 \pm 1.06$ | $3.92 \pm 0.77$ | $2.56 \pm 0.77$ | $2.96 \pm 0.60$ |
| Mean FVC $\pm$ SD (L)                   | $3.08 \pm 1.31$ | $4.89 \pm 0.91$ | $2.85 \pm 0.90$ | $3.61 \pm 0.70$ |
| Mean FEV <sub>1</sub> /FVC $\pm$ SD (%) | 87.3 ± 7.5      | $80.4 \pm 7.6$  | $90.0 \pm 6.3$  | $82.1~\pm~6.8$  |

# **TABLE E3.** SNPs associated with lung function at $P < 10^{-5}$ in the Hutterites

|            |     |                 |          |                       |                    |      | FEV <sub>1</sub> /FVC | FEV <sub>1</sub> | FVC     |
|------------|-----|-----------------|----------|-----------------------|--------------------|------|-----------------------|------------------|---------|
| SNP        | Chr | NCBI36 position | Gene     | SNP-gene relationship | Major/minor allele | MAF  | P value               | P value          | P value |
| rs10864907 | 2   | 113,400,346     | IL37     | 7.4 k downstream      | G/A                | 0.44 | 1.5E-01               | 6.7E-06          | 3.9E-04 |
| rs2637260  | 10  | 77,990,352      | C10orf11 | 3.2 k downstream      | T/C                | 0.44 | 7.5E-06               | 1.4E-01          | 3.9E-01 |
| rs2637261  | 10  | 77,990,599      | C10orf11 | 3.5 k downstream      | G/A                | 0.44 | 7.5E-06               | 1.4E-01          | 3.9E-01 |
| rs2637266  | 10  | 78,001,324      | C10orf11 | 14.2 k downstream     | T/C                | 0.44 | 2.0E-06               | 1.1E-01          | 4.2E-01 |
| rs10824425 | 10  | 78,010,316      | C10orf11 | 23.2 k downstream     | C/G                | 0.44 | 8.2E-06               | 1.1E-01          | 4.7E-01 |
| rs11856830 | 15  | 68,211,555      | TLE3     | 34.2 k upstream       | A/G                | 0.40 | 3.2E-06               | 1.6E-01          | 8.7E-01 |
| rs2114719  | 15  | 68,720,392      | UACA     | 13.6 k downstream     | G/A                | 0.12 | 4.2E-07               | 6.9E-04          | 2.5E-01 |
| rs2162555  | 15  | 68,720,626      | UACA     | 13.3 k downstream     | G/A                | 0.12 | 5.7E-07               | 2.2E-04          | 1.6E-01 |
| rs6494886  | 15  | 68,720,785      | UACA     | 13.2 k downstream     | C/A                | 0.12 | 3.9E-07               | 1.2E-03          | 2.5E-01 |
| rs2162556  | 15  | 68,723,492      | UACA     | 10.5 k downstream     | C/T                | 0.12 | 4.2E-07               | 6.9E-04          | 2.5E-01 |
| rs1991088  | 15  | 68,791,504      | UACA     | Intron                | C/T                | 0.18 | 1.2E-06               | 3.8E-02          | 8.6E-01 |
| rs1477439  | 15  | 68,821,634      | UACA     | Intron                | G/C                | 0.28 | 5.3E-06               | 1.3E-01          | 5.4E-01 |
| rs4777305  | 15  | 68,832,522      | UACA     | Intron                | T/C                | 0.18 | 1.5E-06               | 2.5E-02          | 8.1E-01 |
| rs11633212 | 15  | 69,387,305      | THSD4    | Intron                | A/G                | 0.33 | 3.8E-06               | 1.6E-01          | 6.4E-01 |
| rs17786786 | 15  | 69,395,673      | THSD4    | Intron                | A/C                | 0.27 | 4.2E-08*              | 1.6E-01          | 4.2E-01 |
| rs6494904  | 15  | 69,396,576      | THSD4    | Intron                | T/C                | 0.25 | 1.4E-08*              | 5.8E-02          | 5.9E-01 |
| rs11855326 | 15  | 69,397,889      | THSD4    | Intron                | G/A                | 0.25 | 2.5E-08*              | 5.4E-02          | 6.6E-01 |
| rs1837762  | 15  | 69,399,357      | THSD4    | Intron                | C/T                | 0.11 | 5.7E-08*              | 1.7E-03          | 4.5E-01 |
| rs11858540 | 15  | 69,409,840      | THSD4    | Intron                | T/G                | 0.12 | 3.0E-07               | 1.5E-02          | 7.4E-01 |
| rs1441361  | 15  | 69,412,176      | THSD4    | Intron                | A/G                | 0.12 | 2.8E-07               | 1.5E-02          | 7.3E-01 |
| rs1568010  | 15  | 69,455,566      | THSD4    | Intron                | T/G                | 0.44 | 7.6E-06               | 3.8E-01          | 5.8E-02 |
| rs11858454 | 15  | 69,456,169      | THSD4    | Intron                | C/T                | 0.44 | 5.3E-06               | 3.8E-01          | 6.1E-02 |
| rs8033889  | 15  | 69,467,134      | THSD4    | Intron                | G/T                | 0.25 | 2.3E-07               | 4.4E-03          | 3.3E-01 |
| rs4531689  | 15  | 69,476,033      | THSD4    | Intron                | C/T                | 0.46 | 4.8E-06               | 5.0E-01          | 5.4E-02 |
| rs4288952  | 15  | 69,477,937      | THSD4    | Intron                | G/A                | 0.45 | 4.6E-06               | 4.6E-01          | 4.8E-02 |
| rs12441227 | 15  | 69,483,940      | THSD4    | Intron                | T/C                | 0.22 | 3.4E-09*              | 2.2E-03          | 3.7E-01 |
| rs712046   | 17  | 31,382,410      | CCL23    | 13.3 k upstream       | G/A                | 0.32 | 3.2E-07               | 8.2E-02          | 5.0E-01 |
| rs854679   | 17  | 31,382,952      | CCL23    | 13.8 k upstream       | G/T                | 0.32 | 3.4E-07               | 8.9E-02          | 5.2E-01 |
| rs854674   | 17  | 31,384,085      | CCL23    | 15.0 k upstream       | T/C                | 0.32 | 6.8E-07               | 1.3E-01          | 4.6E-01 |
| rs2017854  | 17  | 62,918,483      | PITPNC1  | Intron                | G/C                | 0.41 | 2.6E-06               | 5.2E-01          | 8.5E-04 |
| rs4799710  | 18  | 29,520,739      | ASXL3    | Intron                | A/G                | 0.32 | 2.8E-01               | 6.4E-04          | 6.7E-06 |
| rs2835345  | 21  | 36,723,304      | CHAF1B   | 12.3 k downstream     | G/T                | 0.25 | 8.3E-06               | 1.1E-01          | 4.9E-01 |

*Chr*, Chromosome; *MAF*, minor allele frequency. \**P* values exceeded the threshold for Bonferroni-corrected genome-wide significance ( $P < 2.0 \times 10^{-7}$ ).

**TABLE E4**. Results of analyses of FEV<sub>1</sub>/FVC in combined sample, in sample excluding asthmatics (nonasthmatics), and in analyses stratified by age

|            |     |                 | Combi | Combined sample |     | Nonasthmatics |     | thmatics | Adults (>17 y) |          | Children (≤17 y) |          |
|------------|-----|-----------------|-------|-----------------|-----|---------------|-----|----------|----------------|----------|------------------|----------|
| SNP        | Chr | NCBI36 position | No.   | P value         | No. | P value       | No. | P value  | No.            | P value  | No.              | P value  |
| rs2637260  | 10  | 77,990,352      | 1106  | 7.50E-06        | 949 | 6.34E-07      | 157 | 9.82E-01 | 760            | 2.70E-04 | 346              | 2.69E-02 |
| rs2637261  | 10  | 77,990,599      | 1106  | 7.50E-06        | 949 | 6.34E-07      | 157 | 9.82E-01 | 760            | 2.70E-04 | 346              | 2.69E-02 |
| rs2637266  | 10  | 78,001,324      | 1065  | 2.00E-06        | 916 | 2.43E-07      | 149 | 8.31E-01 | 722            | 4.22E-05 | 343              | 3.38E-02 |
| rs10824425 | 10  | 78,010,316      | 1099  | 8.23E-06        | 943 | 8.98E-07      | 156 | 9.99E-01 | 753            | 3.34E-04 | 346              | 2.58E-02 |
| rs11856830 | 15  | 68,211,555      | 1055  | 3.17E-06        | 905 | 2.41E-04      | 150 | 1.42E-01 | 713            | 1.87E-03 | 342              | 1.40E-03 |
| rs2114719  | 15  | 68,720,392      | 1106  | 4.15E-07        | 949 | 2.97E-05      | 157 | 1.93E-02 | 760            | 5.56E-05 | 346              | 1.98E-02 |
| rs2162555  | 15  | 68,720,626      | 1095  | 5.68E-07        | 940 | 3.74E-05      | 155 | 2.38E-02 | 750            | 4.62E-05 | 345              | 2.38E-02 |
| rs6494886  | 15  | 68,720,785      | 1092  | 3.87E-07        | 938 | 1.50E-05      | 154 | 4.28E-02 | 750            | 6.07E-05 | 342              | 2.58E-02 |
| rs2162556  | 15  | 68,723,492      | 1106  | 4.15E-07        | 949 | 2.97E-05      | 157 | 1.93E-02 | 760            | 5.56E-05 | 346              | 1.98E-02 |
| rs1991088  | 15  | 68,791,504      | 1097  | 1.18E-06        | 941 | 1.72E-04      | 156 | 1.64E-03 | 753            | 3.87E-04 | 344              | 5.35E-03 |
| rs1477439  | 15  | 68,821,634      | 1101  | 5.34E-06        | 945 | 1.18E-03      | 156 | 9.70E-03 | 757            | 4.63E-03 | 344              | 5.08E-04 |
| rs4777305  | 15  | 68,832,522      | 1100  | 1.47E-06        | 944 | 1.60E-04      | 156 | 3.22E-03 | 754            | 6.59E-04 | 346              | 4.03E-03 |
| rs11633212 | 15  | 69,387,305      | 1103  | 3.80E-06        | 946 | 5.33E-04      | 157 | 7.29E-05 | 757            | 1.22E-04 | 346              | 2.31E-02 |
| rs17786786 | 15  | 69,395,673      | 1100  | 4.23E-08        | 944 | 1.28E-05      | 156 | 7.28E-05 | 757            | 1.08E-05 | 343              | 1.09E-02 |
| rs6494904  | 15  | 69,396,576      | 1105  | 1.43E-08        | 948 | 3.64E-06      | 157 | 1.57E-04 | 759            | 3.23E-06 | 346              | 9.91E-03 |
| rs11855326 | 15  | 69,397,889      | 1104  | 2.47E-08        | 947 | 6.12E-06      | 157 | 1.57E-04 | 758            | 6.08E-06 | 346              | 9.91E-03 |
| rs1837762  | 15  | 69,399,357      | 1104  | 5.65E-08        | 947 | 5.42E-06      | 157 | 2.36E-02 | 758            | 4.17E-05 | 346              | 1.59E-02 |
| rs11858540 | 15  | 69,409,840      | 1106  | 2.98E-07        | 949 | 3.44E-05      | 157 | 1.26E-02 | 760            | 2.05E-04 | 346              | 2.12E-02 |
| rs1441361  | 15  | 69,412,176      | 1105  | 2.76E-07        | 948 | 3.06E-05      | 157 | 1.26E-02 | 759            | 1.95E-04 | 346              | 2.12E-02 |
| rs1568010  | 15  | 69,455,566      | 1102  | 7.56E-06        | 946 | 3.10E-04      | 156 | 1.45E-01 | 757            | 3.08E-05 | 345              | 1.15E-01 |
| rs11858454 | 15  | 69,456,169      | 1106  | 5.26E-06        | 949 | 2.26E-04      | 157 | 1.38E-01 | 760            | 2.87E-05 | 346              | 1.04E-01 |
| rs8033889  | 15  | 69,467,134      | 1103  | 2.31E-07        | 946 | 3.56E-05      | 157 | 1.08E-03 | 757            | 1.89E-05 | 346              | 2.07E-03 |
| rs4531689  | 15  | 69,476,033      | 1104  | 4.77E-06        | 947 | 3.87E-04      | 157 | 1.05E-01 | 759            | 5.60E-05 | 345              | 4.50E-02 |
| rs4288952  | 15  | 69,477,937      | 1099  | 4.58E-06        | 942 | 2.60E-04      | 157 | 1.03E-01 | 755            | 3.51E-05 | 344              | 8.37E-02 |
| rs12441227 | 15  | 69,483,940      | 1091  | 3.38E-09        | 36  | 2.79E-06      | 155 | 2.05E-03 | 746            | 4.70E-06 | 345              | 5.86E-04 |
| rs712046   | 17  | 31,382,410      | 1104  | 3.20E-07        | 947 | 7.23E-05      | 157 | 4.37E-02 | 759            | 6.73E-05 | 345              | 6.27E-03 |
| rs854679   | 17  | 31,382,952      | 1097  | 3.40E-07        | 941 | 5.66E-05      | 156 | 6.64E-02 | 751            | 6.21E-05 | 346              | 7.38E-03 |
| rs854674   | 17  | 31,384,085      | 1098  | 6.77E-07        | 941 | 9.55E-05      | 157 | 5.44E-02 | 752            | 1.39E-04 | 346              | 6.92E-03 |
| rs2017854  | 17  | 62,918,483      | 1105  | 2.58E-06        | 948 | 3.87E-05      | 157 | 1.48E-03 | 759            | 1.63E-05 | 346              | 1.19E-02 |
| rs2835345  | 21  | 36,723,304      | 1103  | 8.29E-06        | 947 | 1.92E-04      | 156 | 3.39E-03 | 758            | 2.45E-03 | 345              | 5.70E-03 |

All SNPs with  $P < 10^{-5}$  in the combined sample are shown.

Chr, Chromosome.

| TAE | ABLE E5. Evidence for associations with lung function in the Hutterites for the 27 previously reported lung function associated loci |              |                       |                       |            |                 |                   |          |                  |          |                             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|-----------------------|------------|-----------------|-------------------|----------|------------------|----------|-----------------------------|
|     |                                                                                                                                      |              |                       |                       |            |                 |                   | FEV₁/FVC | FEV <sub>1</sub> | FVC      | Other SNPs<br>at locus with |
| Chr | NCBI36 position                                                                                                                      | Reported SNP | <b>Reported locus</b> | Reported phenotype    | Tested SNP | NCBI36 position | HapMap <i>r</i> ² | P value  | P value          | P value  | <i>P</i> < .01              |
| 1   | 17,051,981                                                                                                                           | rs2284746    | MFAP2                 | FEV <sub>1</sub> /FVC | rs7545518  | 17,374,742      | 0.574             | 8.25E-01 | 9.74E-01         | 6.60E-01 |                             |
| 1   | 215,248,463                                                                                                                          | rs993925     | TGFB2                 | FEV <sub>1</sub> /FVC | rs642836   | 219,023,654     | 0.203             | 5.54E-01 | 4.65E-01         | 1.78E-01 | rs1018040<br>(9.29E-03_EVC) |

| TABLE E5. Evidence for associations with lun | g function in the Hutterites for the 27 | previously reported lung function associated loci |
|----------------------------------------------|-----------------------------------------|---------------------------------------------------|
|----------------------------------------------|-----------------------------------------|---------------------------------------------------|

|     |                 |              |                                |                                         |            |                 |                              | FEV <sub>1</sub> /FVC | FEV <sub>1</sub> | FVC      | at locus with                                   |
|-----|-----------------|--------------|--------------------------------|-----------------------------------------|------------|-----------------|------------------------------|-----------------------|------------------|----------|-------------------------------------------------|
| Chr | NCBI36 position | Reported SNP | <b>Reported locus</b>          | Reported phenotype                      | Tested SNP | NCBI36 position | HapMap <i>r</i> <sup>2</sup> | P value               | P value          | P value  | P < .01                                         |
| 1   | 17,051,981      | rs2284746    | MFAP2                          | FEV <sub>1</sub> /FVC                   | rs7545518  | 17,374,742      | 0.574                        | 8.25E-01              | 9.74E-01         | 6.60E-01 |                                                 |
| 1   | 215,248,463     | rs993925     | TGFB2                          | FEV <sub>1</sub> /FVC                   | rs642836   | 219,023,654     | 0.203                        | 5.54E-01              | 4.65E-01         | 1.78E-01 | rs1018040                                       |
|     |                 |              |                                |                                         |            |                 |                              |                       |                  |          | (9.29E-03, FVC)                                 |
| 2   | 218,508,660     | rs2571445    | TNS1                           | FEV <sub>1</sub>                        | rs3796028  | 218,695,102     | 0.530                        | 7.22E-01              | 1.13E-01         | 9.09E-02 |                                                 |
| 2   | 229,336,434     | rs1435867    | PID1                           | FEV <sub>1</sub> /FVC                   | rs3732192  | 229,592,304     | 1                            | 5.18E-02              | 1.33E-01         | 5.11E-01 |                                                 |
|     | 229,328,008     | rs10498230   | PID1                           | FEV <sub>1</sub> /FVC                   | rs10498230 | 229,328,008     | 1                            | 5.51E-01              | 5.01E-01         | 6.96E-01 |                                                 |
| 2   | 239,613,402     | rs12477314*  | HDAC4                          | FEV <sub>1</sub> /FVC                   | rs12712295 | 239,914,718     | 0.281                        | 3.04E-02              | 4.59E-01         | 7.20E-01 | rs10186131<br>(5.27E-03, FEV <sub>1</sub> /FVC) |
| 3   | 25,495,586      | rs1529672*   | RARB                           | FEV <sub>1</sub> /FVC                   | rs1153582  | 25,543,275      | 0.928                        | 1.37E-02              | 7.66E-01         | 3.31E-01 | rs2116703<br>(2.23E-03, FEV <sub>1</sub> )      |
| 3   | 170,782,921     | rs1344555*   | МЕСОМ                          | FEV <sub>1</sub>                        | rs10513678 | 169,312,833     | 0.504                        | 5.77E-03              | 5.57E-01         | 3.76E-02 | rs6444855<br>(3.68E-04, FVC)                    |
| 4   | 90,226,510      | rs2869967    | FAM13A                         | FEV <sub>1</sub> /FVC                   | rs6849143  | 89,928,489      | 0.743                        | 4.91E-01              | 6.75E-01         | 7.72E-01 |                                                 |
|     | 90,134,259      | rs6830970    | FAM13A                         | FEV <sub>1</sub> /FVC                   | rs6852928  | 89,926,193      | 0.468                        | 5.87E-01              | 8.17E-01         | 6.36E-01 |                                                 |
| 4   | 107,046,508     | rs10516526*  | FLJ20184-INTS12-<br>GSTCD-NPNT | FEV <sub>1</sub>                        | rs11726124 | 106,766,496     | 1                            | 6.52E-01              | 1.23E-02         | 7.62E-02 |                                                 |
|     | 107,165,711     | rs17331332*  | FLJ20184-INTS12-<br>GSTCD-NPNT | FEV <sub>1</sub>                        | rs7693333  | 107,047,594     | 0.004                        | 7.30E-01              | 3.85E-02         | 2.85E-01 |                                                 |
|     | 107,154,433     | rs17036341   | FLJ20184-INTS12-<br>GSTCD-NPNT | FEV <sub>1</sub>                        | rs10021819 | 106,895,614     | 0.118                        | 1.05E-01              | 9.86E-02         | 5.15E-01 |                                                 |
|     | 106,976,744     | rs11727189*  | FLJ20184-INTS12-<br>GSTCD-NPNT | $FEV_1$                                 | rs11097903 | 106,866,077     | 0.004                        | 5.79E-01              | 1.56E-01         | 1.53E-02 |                                                 |
|     | 106,951,178     | rs17036090   | FLJ20184-INTS12-<br>GSTCD-NPNT | $FEV_1$                                 | rs10470990 | 106,821,578     | 0.159                        | 7.16E-01              | 3.81E-01         | 7.08E-02 |                                                 |
|     | 106,920,983     | rs17036052   | FLJ20184-INTS12-<br>GSTCD-NPNT | FEV <sub>1</sub>                        | rs17036076 | 106,575,269     | 0.702                        | 2.43E-01              | 1.67E-02         | 1.96E-01 |                                                 |
|     | 106,889,450     | rs17035960*  | FLJ20184-INTS12-<br>GSTCD-NPNT | $FEV_1$                                 | rs17036090 | 106,593,574     | 1                            | 2.43E-01              | 1.60E-02         | 1.89E-01 |                                                 |
|     | 107,087,537     | rs11097901   | FLJ20184-INTS12-<br>GSTCD-NPNT | $FEV_1$                                 | rs11728716 | 106,755,996     | 1                            | 6.12E-01              | 6.00E-02         | 2.49E-01 |                                                 |
|     | 107,113,600     | rs11728716*  | FLJ20184-INTS12-<br>GSTCD-NPNT | FEV <sub>1</sub>                        | rs11726124 | 106,766,496     | 1                            | 6.52E-01              | 1.23E-02         | 7.62E-02 |                                                 |
| 4   | 145,793,929     | rs12504628*  | HHIP                           | FEV <sub>1</sub> /FVC, FEV <sub>1</sub> | rs13147758 | 145,460,230     | 0.965                        | 2.46E-02              | 7.28E-01         | 5.27E-01 |                                                 |
|     | 145,843,343     | rs1980057*   | HHIP                           | FEV <sub>1</sub> /FVC                   | rs1980057  | 145,843,343     | 1                            | 2.46E-02              | 7.28E-01         | 5.27E-01 |                                                 |
|     | 145,792,189     | rs1032295*   | HHIP                           | FEV <sub>1</sub> /FVC                   | rs13147758 | 145,460,230     | 0.743                        | 2.46E-02              | 7.28E-01         | 5.27E-01 |                                                 |
| 5   | 95,062,456      | rs153916     | SPATA9                         | FEV <sub>1</sub> /FVC                   | rs153916   | 95,062,456      | 1                            | 2.50E-01              | 6.47E-01         | 3.19E-01 |                                                 |
| 5   | 147,822,546     | rs11168048   | HTR4                           | FEV <sub>1</sub> /FVC                   | rs7735184  | 147,822,546     | 0.930                        | 5.20E-01              | 2.55E-01         | 3.36E-01 | rs6861078<br>(2.94E-03, FEV <sub>1</sub> )      |
|     | 147,824,585     | rs7735184    | HTR4                           | FEV <sub>1</sub> /FVC                   | rs7735184  | 147,824,585     | 1                            | 5.20E-01              | 2.55E-01         | 3.36E-01 |                                                 |
|     | 147,826,008     | rs3995090    | HTR4                           | FEV <sub>1</sub>                        | rs3995090  | 147,826,008     | 1                            | 9.3E-01               | 1.38E-01         | 2.50E-01 |                                                 |
|     | 147,826,900     | rs6889822    | HTR4                           | FEV <sub>1</sub>                        | rs6889822  | 147,826,900     | 1                            | 4.36E-01              | 3.3E-01          | 4.33E-01 |                                                 |
| 5   | 156,864,954     | rs2277027    | ADAM19                         | FEV <sub>1</sub> /FVC                   | rs1422795  | 156,936,364     | 1                            | 7.83E-01              | 4.06E-01         | 2.02E-01 | rs9313633<br>(3.07E-03, FVC)                    |
|     | 156,868,942     | rs1422795    | ADAM19                         | FEV <sub>1</sub> /FVC                   | rs1422795  | 156,868,942     | 1                            | 7.83E-01              | 4.06E-01         | 2.02E-01 | (                                               |
|     |                 |              |                                |                                         |            |                 |                              |                       |                  |          | (Continued)                                     |

| Chr | NCBI36 position | Reported SNP | Reported locus       | Reported phenotype                      | Tested SNP | NCBI36 position | HapMap <i>r</i> ² | FEV <sub>1</sub> /FVC<br><i>P</i> value | FEV <sub>1</sub><br>P value | FVC<br><i>P</i> value | Other SNPs<br>at locus with<br><i>P</i> < .01                                  |
|-----|-----------------|--------------|----------------------|-----------------------------------------|------------|-----------------|-------------------|-----------------------------------------|-----------------------------|-----------------------|--------------------------------------------------------------------------------|
| 6   | 28,430,275      | rs6903823    | ZKSCAN3/ZNF323       | FEV <sub>1</sub>                        | rs6922111  | 28,325,308      | 0.945             | 7.46E-01                                | 4.97E-01                    | 2.98E-01              |                                                                                |
| 6   | 31,676,448      | rs2857595    | NCR3                 | FEV <sub>1</sub> /FVC                   | rs2857595  | 31,676,448      | 1                 | 6.17E-01                                | 9.31E-01                    | 7.84E-01              |                                                                                |
| 6   | 32,259,421      | rs2070600    | PPT2-AGER-<br>NOTCH4 | FEV <sub>1</sub> /FVC                   | rs206015   | 32,182,759      | 0.649             | 8.48E-01                                | 2.31E-01                    | 1.87E-01              |                                                                                |
|     | 32,232,402      | rs10947233*  | PPT2-AGER-<br>NOTCH4 | FEV <sub>1</sub> /FVC                   | rs10947233 | 32,232,402      | 1                 | 2.42E-01                                | 1.45E-01                    | 8.64E-03              |                                                                                |
| 6   | 109,374,743     | rs2798641*   | ARMC2                | FEV <sub>1</sub> /FVC                   | rs2798641  | 109,374,743     |                   | 2.22E-03                                | 8.37E-01                    | 2.15E-01              | rs6904998<br>(3.25E-03, FVC)                                                   |
| 6   | 142,792,209     | rs3817928    | GPR126               | FEV <sub>1</sub> /FVC                   | rs6906468  | 142,769,386     | 1                 | 1.59E-01                                | 6.80E-01                    | 8.07E-01              |                                                                                |
|     | 142,818,757     | rs7776375    | GPR126               | FEV <sub>1</sub> /FVC                   | rs595184   | 143,012,314     | 0.147             | 4.47E-01                                | 7.77E-01                    | 8.55E-01              |                                                                                |
|     | 142,748,826     | rs6937121    | GPR126               | FEV <sub>1</sub> /FVC                   | rs6937121  | 142,748,826     | 1                 | 1.60E-01                                | 6.47E-01                    | 2.88E-01              |                                                                                |
|     | 142,733,242     | rs11155242   | GPR126               | FEV <sub>1</sub> /FVC                   | rs6906468  | 142,769,386     | 1                 | 1.59E-01                                | 6.80E-01                    | 8.07E-01              |                                                                                |
| 9   | 95,310,563      | rs16909898   | PTCH1                | FEV <sub>1</sub> /FVC                   | rs10512249 | 98,256,309      | 1                 | 3.00E-01                                | 4.54E-01                    | 3.29E-01              |                                                                                |
|     | 95,335,864      | rs10512249   | PTCH1                | FEV <sub>1</sub> /FVC                   | rs10512249 | 95,335,864      | 1                 | 3.00E-01                                | 4.54E-01                    | 3.29E-01              |                                                                                |
| 10  | 12,317,998      | rs7068966    | CDC123               | FEV <sub>1</sub> /FVC, FEV <sub>1</sub> | rs7068966  | 12,317,998      | 1                 | 5.98E-01                                | 8.57E-01                    | 7.36E-01              |                                                                                |
| 10  | 77,985,230      | rs11001819*  | C10orf11             | FEV <sub>1</sub>                        | rs2256413  | 78,315,334      | 0.755             | 4.67E-04                                | 3.62E-01                    | 5.40E-01              | rs2637266<br>(2.00E-06, FEV <sub>1</sub> /FVC                                  |
| 12  | 55,813,550      | rs11172113   | LRP1                 | FEV <sub>1</sub> /FVC                   | rs1466535  | 57,534,470      | 0.721             | 5.31E-01                                | 5.70E-02                    | 5.26E-02              |                                                                                |
| 12  | 94,773,896      | rs1036429    | CCDC38               | FEV <sub>1</sub> /FVC                   | rs4762637  | 96,282,655      | 0.691             | 4.79E-01                                | 9.81E-01                    | 3.41E-01              |                                                                                |
| 15  | 69,432,174      | rs12899618*  | THSD4                | FEV <sub>1</sub> /FVC                   | rs12102112 | 71,655,735      | 1                 | 3.54E-04                                | 8.39E-01                    | 1.37E-01              | rs12441227<br>(3.38E-09, FEV <sub>1</sub> /FVC<br>2.99E-04, FEV <sub>1</sub> ) |
| 16  | 56,632,783      | rs12447804†  | MMP15                | FEV <sub>1</sub> /FVC                   | -†         |                 |                   | -†                                      | -†                          | -†                    |                                                                                |
| 16  | 73,947,817      | rs2865531    | CFDP1                | FEV <sub>1</sub> /FVC                   | rs12444589 | 75,454,404      | 1                 | 1.96E-01                                | 7.80E-02                    | 3.13E-01              | rs10871308<br>(5.07E-03, FEV <sub>1</sub> )                                    |
| 21  | 34,574,109      | rs9978142    | KCNE2                | FEV <sub>1</sub> /FVC                   | rs10470171 | 35,652,644      | 0.857             | 5.26E-01                                | 8.64E-01                    | 9.41E-01              | rs2834455<br>(8.53E-03, FEV <sub>1</sub> /FVC                                  |

If the reported SNP was not genotyped in the Hutterites, a surrogate SNP with the strongest LD to the reported SNP and the amount of LD in HapMap  $(r^2)$  are shown. One SNP, rs12447804, did not have any surrogate SNPs in the Hutterites. Other SNPs at the same locus with P < .01 in the Hutterites are shown in the last column.

Chr, Chromosome.

\*SNPs replicated at P < .05.

TABLE E5. (Continued)

†HapMap linkage disequilibrium data are not available for rs12447804; therefore, no surrogate marker has been selected for rs12447804.

| TABLE E6. | Eighty | SNPs   | that best | predicted F | FEV₁/FVC in | the Hutterites. | sorted by | / the | chromosome    | location |
|-----------|--------|--------|-----------|-------------|-------------|-----------------|-----------|-------|---------------|----------|
| TADLE LV. | Lighty | 0141.0 | that best | productouri |             | the nationites, | Jontou by | ,     | Chilomosoniic | location |

| SNP        | Chr               | NCBI36 position | P <sub>GWAS</sub>  | Beta (SE)                      | P <sub>GRAIL</sub> | Implicated gene |
|------------|-------------------|-----------------|--------------------|--------------------------------|--------------------|-----------------|
| rs6694986  | 1p13.3            | 107.631.201     | 4.0E-04            | 0.090 (0.049)                  | 0.340              | NTNG1           |
| rs17509160 | 1p13.3            | 107,656,536     | 6.7E-05            | 0.074 (0.077)                  | 0.340              | NTNG1           |
| rs1277216  | 1p13.3            | 109,160,754     | 4.7E-04            | 0.105 (0.048)                  | 0.961              | STXBP3          |
| rs6689641  | 1p13.3            | 110,521,9233    | 7.1E-04            | 0.090 (0.051)                  | 0.756              | SLC6A17         |
| rs6662186  | 1q23.3            | 163,531,357     | 1.2E-04            | 0.092 (0.077)                  | 0.250              | LMX1A           |
| rs11887626 | 2p16.3            | 47,709,832      | 1.4E-04            | 0.137 (0.062)                  | 0.737              | MSH2            |
| rs702891   | 2p14              | 65,611,954      | 4.6E-04            | -0.015 (0.049)                 | 0.242              | SPRED2          |
| rs6733029  | 2p14              | 68,287,661      | 3.7E-04            | 0.057 (0.046)                  | 0.516              | PNO1            |
| rs2707549  | 2q14.3            | 124,120,027     | 2.3E-04            | 0.040 (0.047)                  | NA                 |                 |
| rs6720935  | 2q21.2            | 132,882,030     | 6.9E-04            | 0.067 (0.050)                  | 0.758              | LOC339742       |
| rs16823807 | 2q23.3            | 153,146,906     | 9.2E-05            | 0.044 (0.088)                  | 0.489              | FMNL2           |
| rs4342060  | 3q22.3            | 138,698,510     | 7.6E-04            | 0.050 (0.059)                  | 0.363              | SOX14           |
| rs3851374  | 3q26.2            | 170,184,342     | 7.0E-04            | -0.102 (0.048)                 | 0.089              | EVI1            |
| rs11922608 | 3q27.3            | 188,719,180     | 5.4E-04            | 0.090 (0.069)                  | 0.482              | SST             |
| rs10517456 | 4p14              | 37,631,127      | 9.0E-04            | 0.046 (0.051)                  | 0.971              | PTTG2           |
| rs1984960  | 4p14              | 37,644,419      | 3.0E-04            | 0.175 (0.080)                  | 0.971              | PTTG2           |
| rs12512633 | 4q28.1            | 124,506,365     | 5.2E-04            | -0.115 (0.052)                 | 0.149              | SPRY1           |
| rs6858195  | 4q31.21           | 144,909,047     | 3.1E-04            | 0.076 (0.046)                  | 0.978              | GYPE            |
| rs10045757 | 5p14.2            | 23,306,226      | 1.0E-03            | 0.094 (0.059)                  | 0.423              | LOC391771       |
| rs12659895 | 5p14.1            | 27,801,997      | 6.4E-04            | -0.022 (0.057)                 | NA                 |                 |
| rs245610   | 5q34              | 162,032,345     | 8.9E-04            | -0.134 (0.083)                 | NA                 |                 |
| rs9460984  | 6p22.2            | 24,355,227      | 5.6E-05            | 0.144 (0.059)                  | 0.412              | DCDC2           |
| rs9368881  | 6p21.31           | 35,742,266      | 3.5E-04            | -0.061 (0.047)                 | 0.641              | C6orf81         |
| rs4839801  | 6q16.3            | 102,353,321     | 9.6E-04            | 0.004 (0.052)                  | 0.777              | GRIK2           |
| rs1149309  | 6q21              | 105,856,616     | 4.9E-05            | 0.031 (0.067)                  | 0.574              | PREP            |
| rs10872028 | 6q21              | 109,420,421     | 2.7E-04            | -0.055 (0.060)                 | 0.256              | ARMC2           |
| rs108/2428 | 6q23.3            | 135,533,565     | 4.4E-04            | 0.207 (0.057)                  | 0.324              | MYB             |
| rs9389370  | 6q23.3            | 136,472,958     | 5.4E-04            | -0.072 (0.044)                 | 0.620              | PDE7B           |
| rs4092400  | 8p23.2            | 2,371,110       | 9.9E-04            | 0.065 (0.048)                  | 0.616              | MYOM2           |
| rs974120   | 8p23.2            | 2,634,025       | 3.2E-04            | 0.038 (0.079)                  | 0.937              | CSMD1           |
| rs2921026  | 8p23.1            | 8,384,658       | 6.1E-04            | -0.133 (0.046)                 | 0.001              | DEFBI0/A        |
| rs1010/668 | 8p12              | 33,043,721      | 8.0E-04            | 0.038 (0.048)                  | 0.208              | DUSP20          |
| rs11//9911 | 8p11.21           | 40,301,135      | 7.0E-04            | -0.175 (0.049)                 | 0.905              | ZMA14           |
| rs/001907  | 8q21.15<br>8a21.2 | 83,903,913      | 8.1E-04            | 0.189(0.079)                   | NA<br>0.680        | CNCD2           |
| rs1282720  | 8q21.3            | 108 541 504     | 9.0E-04            | -0.043(0.043)<br>-0.000(0.048) | 0.080              | ANCPT1          |
| rs0886410  | 8q23.1            | 100,341,304     | 7.1E.04            | -0.099(0.048)<br>-0.119(0.050) | 0.392<br>NA        | ANGFII          |
| rs10810557 | 0p22 3            | 16 326 250      | 7.1E-04<br>3.4E-04 | 0.017(0.030)                   | 0.648              | RNC2            |
| rs3843935  | 9p22.3            | 33 777 871      | 9.0F-04            | 0.077 (0.044)                  | 0.573              | PRSS3           |
| rs2306183  | 9a22 31           | 95,092,000      | 9.7E-04            | -0.118(0.045)                  | 0.816              | PHF?            |
| rs10759765 | 9q22.31           | 99 347 314      | 4 2E-05            | -0.065(0.048)                  | 0.261              | TMODI           |
| rs1570846  | 10a11.21          | 43,776,486      | 7.1E-04            | -0.139(0.055)                  | 0.037              | CXCL12          |
| rs2637261  | 10q22.3           | 77,990,599      | 7.5E-06            | 0.044 (0.044)                  | 0.766              | KCNMA1          |
| rs1010006  | 10q24.2           | 99,562,286      | 4.5E-04            | 0.051 (0.046)                  | 0.662              | ANKRD2          |
| rs7963902  | 12p13.32          | 4,988,938       | 1.9E-04            | 0.090 (0.043)                  | 0.932              | KCNA6           |
| rs3925064  | 12p12.1           | 23,985,031      | 4.2E-04            | -0.099(0.048)                  | 0.271              | SOX5            |
| rs7968811  | 12p12.1           | 24,428,104      | 2.8E-04            | -0.021 (0.045)                 | 0.271              | SOX5            |
| rs11050428 | 12p12.1           | 29,823,051      | 2.2E-04            | -0.112 (0.065)                 | 0.818              | TMTC1           |
| rs1829717  | 12q21.31          | 80,433,224      | 7.8E-05            | 0.009 (0.048)                  | 0.899              | PPFIA2          |
| rs2056218  | 12q21.31          | 82,056,671      | 4.5E-04            | 0.147 (0.048)                  | 0.903              | TMTC2           |
| rs879703   | 12q22             | 92,946,123      | 2.4E-04            | 0.049 (0.047)                  | 0.467              | CRADD           |
| rs7134063  | 12q23.3           | 106,723,461     | 4.4E-05            | 0.083 (0.047)                  | 0.167              | PWP1            |
| rs2329247  | 13q31.1           | 82,160,171      | 8.0E-04            | 0.055 (0.077)                  | NA                 |                 |
| rs9322855  | 14q11.2           | 20,223,139      | 7.6E-04            | -0.048 (0.046)                 | 0.171              | RNASE4          |
| rs8016448  | 14q24.3           | 72,961,640      | 5.9E-04            | -0.071 (0.055)                 | 0.316              | C14orf169       |
| rs2180080  | 14q32.13          | 93,560,454      | 7.2E-04            | -0.132 (0.067)                 | 0.213              | OTUB2           |
| rs2033785  | 15q22.33          | 65,228,920      | 2.9E-04            | 0.044 (0.057)                  | 0.262              | SMAD3           |
| rs11636597 | 15q23             | 68,208,095      | 1.5E-05            | 0.117 (0.059)                  | 0.642              | TLE3            |
| rs12907875 | 15q23             | 68,217,654      | 4.6E-04            | -0.024 (0.054)                 | 0.642              | TLE3            |
| rs6494886  | 15q23             | 68,720,785      | 3.9E-07            | -0.018 (0.098)                 | 0.557              | UACA            |
| rs1477439  | 15q23             | 68,821,634      | 5.3E-06            | 0.110 (0.071)                  | 0.557              | UACA            |
| rs6494904  | 15q23             | 69,396,576      | 1.4E-08            | -0.016 (0.069)                 | 0.739              | THSD4           |

(Continued)

## TABLE E6. (Continued)

| SNP        | Chr      | NCBI36 position | P <sub>GWAS</sub> | Beta (SE)      | P <sub>GRAIL</sub> | Implicated gene                       |
|------------|----------|-----------------|-------------------|----------------|--------------------|---------------------------------------|
| rs12592370 | 15q24.1  | 72,098,742      | 4.5E-04           | -0.027 (0.065) | 0.738              | PML                                   |
| rs1550434  | 15q24.1  | 72,118,264      | 2.0E-05           | -0.067 (0.057) | 0.738              | PML                                   |
| rs6495126  | 15q24.1  | 72,962,079      | 8.0E-04           | -0.060(0.056)  | 0.976              | RPP25                                 |
| rs7171364  | 15q25.3  | 83,803,031      | 3.4E-04           | 0.180 (0.064)  | 0.367              | PDE8A                                 |
| rs12919417 | 16q22.3  | 70,137,212      | 3.2E-04           | 0.043 (0.068)  | 0.345              | KIAA0174                              |
| rs707236   | 16q23.3  | 82,360,661      | 6.3E-04           | 0.143 (0.045)  | 0.910              | CDH13                                 |
| rs4783102  | 16q24.1  | 83,535,549      | 1.4E-04           | -0.106 (0.054) | 0.687              | USP10                                 |
| rs7216399  | 17p11.2  | 16,797,303      | 6.0E-04           | -0.065 (0.054) | 0.043              | TNFRSF13B                             |
| rs8080953  | 17p11.2  | 19,381,812      | 1.0E-03           | -0.233 (0.100) | 0.748              | ZNF179                                |
| rs225207   | 17q11.2  | 27,918,837      | 4.9E-05           | -0.096(0.065)  | 0.980              | MYO1D                                 |
| rs8064367  | 17q12    | 29,496,973      | 9.1E-04           | -0.018 (0.062) | 0.521              | ACCN1                                 |
| rs854679   | 17q12    | 31,382,952      | 3.4E-07           | -0.049(0.059)  | 0.020              | CCL18                                 |
| rs2074158  | 17q21.2  | 37,510,689      | 8.8E-05           | -0.132 (0.083) | 0.486              | HSPB9                                 |
| rs16950093 | 17q21.33 | 46,995,183      | 5.6E-04           | -0.085(0.054)  | 0.205              | UTP18                                 |
| rs2017854  | 17q24.2  | 62,918,483      | 2.6E-06           | -0.097(0.048)  | 0.828              | PITPNC1                               |
| rs365548   | 20p13    | 185,618         | 5.6E-04           | 0.003 (0.046)  | 0.001              | DEFB129, C20orf96                     |
| rs4815436  | 20p11.21 | 25,521,423      | 9.4E-04           | 0.181 (0.069)  | 0.001              | DEFB115, DEFB116, DEFB123,<br>DEFB124 |
| rs2835345  | 21q22.13 | 36,723,304      | 8.3E-06           | -0.108 (0.055) | 0.900              | CHAF1B                                |

 $P_{\text{GWAS}}$  is the *P* value from the FEV<sub>1</sub>/FVC GWAS in the Hutterites; Beta (SE) is that of the predictive SNP in the regression model for the 865 Hutterites; and  $P_{\text{GRAIL}}$  is the region's *P* value given by GRAIL.

Chr, Chromosome; NA, not available.