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ABSTRACT Genetic influences on anxiety disorders are well documented; however, the specific genes underlying these disorders
remain largely unknown. To identify quantitative trait loci (QTL) for conditioned fear and open field behavior, we used an F2 intercross
(n = 490) and a 34th-generation advanced intercross line (AIL) (n = 687) from the LG/J and SM/J inbred mouse strains. The F2 provided
strong support for several QTL, but within wide chromosomal regions. The AIL yielded much narrower QTL, but the results were less
statistically significant, despite the larger number of mice. Simultaneous analysis of the F2 and AIL provided strong support for QTL and
within much narrower regions. We used a linear mixed-model approach, implemented in the program QTLRel, to correct for possible
confounding due to familial relatedness. Because we recorded the full pedigree, we were able to empirically compare two ways of
accounting for relatedness: using the pedigree to estimate kinship coefficients and using genetic marker estimates of “realized
relatedness.” QTL mapping using the marker-based estimates yielded more support for QTL, but only when we excluded the chro-
mosome being scanned from the marker-based relatedness estimates. We used a forward model selection procedure to assess
evidence for multiple QTL on the same chromosome. Overall, we identified 12 significant loci for behaviors in the open field and
12 significant loci for conditioned fear behaviors. Our approach implements multiple advances to integrated analysis of F2 and AILs that
provide both power and precision, while maintaining the advantages of using only two inbred strains to map QTL.

ANXIETY disorders are among the most prevalent psy-
chiatric disorders in the world; in the United States,

they affect the lives of �18% of the adult population
(Demyttenaere et al. 2004; Kessler et al. 2005a,b). Many of
these debilitating illnesses can be characterized by exagger-
ations of normal and adaptive emotional response to fearful
or stressful events (Mahan and Ressler 2012). Twin and
family studies support a genetic basis for anxiety disorders,
but attempts to identify the underlying genetic substrates
have been disappointing—to date, genome-wide associa-
tion studies (GWAS) have not reliably replicated candi-
date genes associated with anxiety disorders (Hettema et al.

2011). As a result, we have little knowledge of the specific
genes that underlie these disorders. Genetic loci relevant
to these disorders may be difficult to map via GWAS be-
cause anxiety disorders are only modestly heritable and,
like many psychiatric conditions, are expected to be highly
polygenic—that is, modulated by a large number of genetic
factors with individually small effects (Sullivan et al. 2012).
Therefore, genetic contributions to anxiety are likely to be
difficult to distinguish from correlations that occur by chance
alone (Flint 2011; Parker and Palmer 2011; Flint and Eskin
2012).

While the full spectrum of any human psychiatric dis-
order can never be fully recapitulated in a single mouse
model, there is substantial behavioral, genetic, and neuro-
anatomical conservation between humans and mice. When
broken down into individual components, many of the symp-
toms of anxiety disorders can be modeled in mice. Thus,
translational mouse models can provide a powerful strategy
for understanding the genetic and biological underpinnings of
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the acquisition of fear, as well as the etiologic processes related
to anxiety (Kalueff et al. 2007; Flint and Shifman 2008; Hovatta
and Barlow 2008). Animal models provide similarly strong
models for comorbidity of traits, like evidence for a shared
genetic substrate in anxiety and fear. For example, selective
breeding paradigms in mice and rats have shown that selection
of anxiety-like behavior also selects for differences in fear and
vice versa (Ponder et al. 2007a; López-Aumatell et al. 2009).

Reverse genetic approaches using genetically modified mice
have been important for testing hypotheses about specific
genes relevant to fear and anxiety, but they have tended to
focus on the “usual suspects” underlying anxiety disorders.
Alternatively, forward genetic approaches in mice have been
developed to measure phenotypes and identify the underly-
ing sources of standing genetic variability in these pheno-
types without prior hypotheses. However, forward genetic
approaches have been less successful at identifying relevant
genes. This may be because forward genetic studies in mice
have traditionally used recombinant inbred (RI) lines, back-
crosses (BC), or F2 intercrosses to identify quantitative trait
loci (QTL)—in these experimental crosses, we can have high
statistical power to detect genetic loci, but poor mapping
resolution due to limited recombination (Cheng et al. 2010;
Flint 2011; Parker and Palmer 2011).

To better pinpoint candidate genes and genetic loci that
might influence anxiety, we mapped QTL in a combined F2
intercross and an F34 advanced intercross line (AIL). An AIL
is created by successive generations of pseudorandom mat-
ing after the F2 generation. Each additional generation leads
to the accumulation of new recombinations, which allows
for more precise mapping due to a breakdown in linkage
disequilibrium. We show that our analysis not only yields
strong support for several QTL in anxiety-related pheno-
types, but also highlights a narrower set of candidate genes
than previous studies of these phenotypes.

AILs have been employed in several previous studies to
successfully map QTL for complex traits in mice, including
locomotor activity (Cheng et al. 2010), muscle weight (Lionikas
et al. 2010), red blood cell characteristics (Bartnikas et al.
2012), body weight (Parker et al. 2011), methamphetamine
sensitivity (Parker et al. 2012a), prepulse inhibition (Samocha
et al. 2010), and the conditioned fear phenotypes studied in
this article (Parker et al. 2012b). This study makes several key
contributions over previous work in this area. First, we dem-
onstrate that the combination of an F2 intercross and a 34th-
generation AIL allows us to map more QTL for conditioned
fear and anxiety-related phenotypes and at a greater precision
than our earlier study of an 8th-generation AIL (Parker et al.
2012b). Second, unlike previous studies, we use SNP data to
account for the varying levels of genetic sharing that may
confound detection of QTL. This is particularly relevant be-
cause assessing evidence for QTL in an AIL population is more
challenging than in traditional designs such as F2 intercrosses
because varying levels of genetic sharing among individuals in
the AIL can confound tests for association (Cheng et al. 2010).
Third, we demonstrate the benefits of using marker data in

place of a pedigree to infer familial relationships in an AIL. We
find that the linear mixed model with marker-based related-
ness estimates yields greater support for QTL compared to
using the pedigree to estimate genetic sharing, a finding that
is consistent with a recent comparison of these approaches in
simulated populations (Cheng and Palmer 2013). Finally, we
show that a simple permutation test that assumes indepen-
dence of the samples—that is, the permutation test ignores
the varying levels of genetic sharing—provides an adequate
way to assess significance of QTL in our AIL population.

Materials and Methods

Animals and housing

Subjects consisted of 487 F2 mice (249 males and 241
females) derived from a cross between LG/J and SM/J in-
bred strains obtained from The Jackson Laboratories (Bar
Harbor, ME) and 687 F34 LG/J 3 SM/J AIL mice (353 males
and 334 females) derived from F33 breeders obtained from
the laboratory of James Cheverud (Washington University,
St. Louis). Three mice were later removed from the F2 co-
hort because a high proportion of their markers were not
reliably genotyped. The colony was maintained on a 12:12-hr
light:dark cycle with lights on at 0630 hr. Mice were housed
in clear acrylic cages with corn-cob bedding in same-sex
groups of 2–5 mice with food and water available ad libitum.
The full pedigree of all AILs was recorded so that the ancestry
of each mouse could be traced back to the inbred founders.

To produce F34 mice from the F33 breeders, we mated the
F33 mice such that no mating pairs shared a common grand-
parent. (In subsequent generations, which are not described
in this article, we selected pairs of mice for breeding that
produced the smallest possible inbreeding coefficients in the
offspring. This was achieved using R code written by Andrew
Skol, which we have made available at http://github.com/
pcarbo/breedail.)

Behavioral testing

Behavioral testing in all mice was always conducted during
the light phase, between 0800 and 1700 hr. We waited for
the mice to acclimatize to the testing room for at least
30 min before beginning the tests. Mice were �2–3 months
of age on the first day of behavioral testing (F2 range was
53–71 days; AIL range was 50–76 days). All mice went
through an identical testing sequence: first, we measured
open field (OF) behavior as part of a locomotor testing par-
adigm (Bryant et al. 2012); 1 week later, we began the
conditioned fear (CF) paradigm. All experiments were per-
formed in accordance with the National Institutes of Health
guidelines for care and use of laboratory animals. Experimental
procedures were approved by the University of Chicago’s In-
stitutional Animal Care and Use Committee.

OF

Our procedures for OF testing have been explained in detail
in previous publications (Palmer et al. 2005; Sokoloff et al.
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2011). Briefly, after 30 min of acclimation to the testing
room, mice were removed from the home cage and placed
into individual holding cages for 5 min, and then they were
weighed individually, injected i.p. with physiological saline
(0.01 ml/g body weight), and immediately placed in the
center of the OF (AccuScan Instruments, Columbus, OH).
Each OF was housed inside a sound-attenuating environ-
mental chamber (AccuScan Instruments) with overhead light-
ing providing illumination (�80 lux) and a fan in the rear
wall providing ventilation. Mice were tested in the OF arena
(403 403 30 cm) for 30 min during the locomotor test. The
first 10 min were used to measure OF behavior. We measured
three phenotypes (Versamax, AccuScan Instruments): (1) dis-
tance traveled (centimeters) in the periphery (width: 10 cm),
(2) distance traveled (centimeters) in the center (20 3 20
cm), and (3) proportion of time spent in the center of the
arena. We mapped QTL for these three phenotypes. After
testing, mice were returned to their home cage, and the field
was cleaned with 10% isopropanol before the next mouse
was tested. At the end of testing, mice were returned to the
vivarium. Distance traveled from this same session was also
analyzed in a previous article (Cheng et al. 2010).

CF

CF procedures were identical to those described previously
(Ponder et al. 2007a). Briefly, mice were tested in standard
CF chambers (29 3 19 3 25 cm) housed within sound-
attenuating chambers (Med Associates, St. Albans, VT). Lights
in each chamber provided dim illumination (�3 lux), and fans
provided a low level of masking background noise. Chambers
were cleaned with 10% isopropanol between animals. Behavior
was digitally recorded by a computer and subsequently ana-
lyzed with FreezeFrame software (Actimetrics, Evanston, IL).

Testing for CF consisted of a 5-min test that occurred
three times over three consecutive days. After habituating to
the procedure room for 30 min in their home cages, mice
were transferred to the CF chambers in individual holding
cages. On day 1, baseline freezing (“pretraining freezing”)
was measured beginning 30 sec after mice were placed in
the test chambers and ending 150 sec later. After the pre-
training period, mice were exposed twice to the conditioned
stimulus (CS), a 30-sec tone (85 dB, 3 kHz) that cotermi-
nated with the unconditioned stimulus (US), a 2-sec, 0.5-mA
foot shock delivered through the stainless steel floor grid.
After each CS–US pairing, there was a 30-sec period in which
no stimuli were delivered to the subject.

Test day 2 began exactly 24 hr after the start of test day
1. The testing environment was identical to that of day 1,
except that neither tones nor shocks were presented. Pro-
portion of time freezing in response to the test chamber (“%
freezing to context”) was measured over the same time period
as pretraining freezing (30–180 sec). We chose this time pe-
riod to permit immediate comparison to the pretraining freez-
ing scores on day 1 and to avoid measuring freezing behavior
during the latter part of the trial in which the mice might have
anticipated shocks based on tests from previous days.

Test day 3 began exactly 24 hr after the start of test day 2.
On day 3, the context was altered in several ways: (1) a dif-
ferent experimenter conducted the testing and wore a different
style of gloves; (2) the transfer cages had no bedding; (3) the
metal shock grid, chamber door, and one wall were covered
with hard white plastic; (4) yellow film was placed over the
chamber lights; (5) chambers and plastic surfaces were cleaned
with 0.1% acetic acid solution; and (6) the vent fan was
partially obstructed to alter background noise. On day 3, the
tone was presented at the same times as on day 1, but there
was no shock. We measured “freezing to cue,” which was
defined as the average percentage of time spent freezing dur-
ing the two 30-sec tone presentations (180–210 sec and 240–
270 sec).

Genotyping

DNA from the F2 mice was extracted by LGC Genomics
(Hoddesdon, Hertfordshire, UK; formerly KBiosciences). F2
genotypes were called using KASPar, a fluorescence-based
PCR assay (LGC Genomics), at 162 evenly spaced markers
on autosomal and X chromosomes. These markers are a sub-
set of the 1638 SNPs suggested by Petkov et al. (2004) for
QTL mapping in mouse strains. AIL genotypes at 4601 SNPs
on autosomal and X chromosomes were ascertained using
an Illumina Infinium Platform (iSelect) custom genotyping
array (http://www.illumina.com), as described previously
(Cheng et al. 2010). To avoid having to impute unascer-
tained genotypes in the AIL mice, we discarded 7 of the
162 SNPs genotyped in the F2 cohort that were not genotyped
in the F34 samples. Of the final set of 4601 candidate SNPs,
4535 (98.6%) correspond to SNPs in the dbSNP reference
database (Sherry et al. 2001). A list of SNPs used in the pres-
ent study is available at the Mouse Phenome Database (http://
phenome.jax.org) under project name “Chicago1” (http://
phenome.jax.org/db/q?rtn=projects/projdet&reqprojid=316).
The Chicago1 data set includes�8200 SNPs; of these, 4601 are
polymorphic between LG/J and SM/J mice. All SNP identifiers
and locations of the SNPs reported in this article are based on
release 37 (July 2007) of the NCBI Mouse Genome Assembly.

Average SNP allele frequencies in the F2 and F34 cohorts
were 0.50 and 0.51, respectively, indicating little unin-
tended selection or genetic drift. As expected, we observed
greater variation in allele frequencies in the F34 cross; SNP
allele frequencies in F2 mice ranged from 0.45 to 0.54,
whereas allele frequencies in F34 mice ranged from 0.12 to
0.90. (See Cheng et al. 2010 for further discussion of genetic
drift in the F34 AIL.)

Genotypes called with lower confidence were removed
and treated as missing. In the F2 mice, ,1% of the geno-
types were treated as missing. At most 9% of genotypes
were missing for any single SNP and at most 26% in any
F2 mouse (after removing the three mice with a large frac-
tion of poor-quality genotype calls). In the F34 mice, 1% of
the genotypes were treated as missing overall; at most 1.2%
of genotypes were missing for any single SNP and at most
5% in any F34 mouse.
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Genotype imputation

To analyze the combined data, we estimated the probabil-
ities of missing genotypes and the genotypes of SNPs that
were called in the F34 mice and not called in the F2 mice.
Probabilities of missing or unavailable genotypes in the F2
and F34 crosses were estimated based on correlation pat-
terns with available genotypes, using recombination models
for autosomal chromosomes in advanced intercrosses (Darvasi
and Soller 1995). Genotype probabilities were calculated
separately in F2 and F34 crosses as they exhibited different
patterns of recombination. Even though only a small fraction
of the full set of SNPs were genotyped in the F2 mice (155 of
4601), this small panel of SNPs was mostly sufficient to
accurately estimate genotypes at other SNPs, since F2 chro-
mosomes experience little recombination, and most alleles
occur at high frequencies. In the F2 mice, 85% of genotypes
were imputed with high confidence (maximum genotype
probability .0.9). Only a small fraction of SNPs were im-
puted less accurately, presumably because they were not in
sufficient linkage disequilibrium with a SNP genotyped in
the F2 mice; for 109 SNPs (2.4%), ,20% of the genotypes
in the F2 mice were estimated with high confidence (maxi-
mum genotype probability .0.9). Since we accounted for
genotype uncertainty in the QTL mapping, the contribution
of each sample to the association signal was appropriately
adjusted to reflect the confidence of the genotype estimates.
We used the Haley–Knott approximation (Broman and Sen
2009) to account for uncertainty in missing genotypes. Note
that we did not perform interval mapping to assess support
for QTL between markers.

Estimation of missing genotypes requires genetic distance
estimates at all markers. We used the genetic distance estimates
from the reference panel described in Cox et al. (2009). These
estimates were retrieved from the Mouse Map Converter hosted
at Jackson Laboratories (http://cgd.jax.org/mousemapconverter).
We checked these genetic distances against intermarker distan-
ces estimated from our F2 genotypes. Estimates were obtained
using the Lander–Green method (Lander and Green 1987), as
implemented in R/qtl (Broman and Sen 2009). Intermarker
distances on the X chromosome were estimated using females
only. Comparison of the two intermarker genetic distance
estimates on X and autosomal chromosomes (Supporting
Information, Figure S1) shows that they are well correlated
(r = 0.85), and they do not exhibit any bias—that is, neither
estimate is consistently larger or smaller than the other.

QTL mapping

Linear mixed model for QTL mapping: Individuals in an F2
cross are full sibs that share roughly the same amount of the
genome, so it is common to map QTL using a simple linear
regression approach that ignores familial relatedness. By
contrast, genetic sharing can vary considerably in an AIL,
so it is important to correct for possible confounding due
to varied levels of relatedness (Abney et al. 2000; Cheng
et al. 2010). We used the QTLRel mixed-model framework,

which was developed for QTL mapping in AILs (Cheng et al.
2010, 2011). What makes QTLRel different from a standard
linear regression is the inclusion of a “polygenic effect” that
captures how correlations in the phenotype are explained by
genome-wide genetic sharing. QTLRel models the pheno-
type as a linear combination of these variables: additive
genotype (allele count), dominance genotype (0 = hetero-
zygous, 1 = homozygous), additional covariates such as sex
and coat color, the polygenic effect, and the residual. (Note
that the X chromosome requires a separate treatment, as we
explain below.) Fitting this model to the data involves esti-
mating the n  3  n covariance matrix of the polygenic ef-
fect, where n is the number of samples. While the general
expression for this covariance matrix is derived in Abney
et al. (2000) for analyzing quantitative traits in an inbred
population, that article suggests using a simpler expression
in which only the additive and dominance terms are retained.
Following this suggestion, the covariance matrix entry corre-
sponding to pairs of individuals ði; jÞ is sij ¼ 2Fijs

2
a þ Dij;7s

2
d;

where Dij;k is the conditional probability of identity state k for
pair ði; jÞ; otherwise known as the “condensed coefficient
of identity”; Fij ¼ Dij;1 þ ð1=2ÞðDij;3 þ Dij;5 þ Dij;7Þ þ ð1=4Þ
Dij;8 is the kinship coefficient for pair ði; jÞ—i.e., the probability
that a pair of randomly chosen alleles from individuals i and j
at the same autosomal locus are identical by descent (IBD); and
s2
a and s2

d are parameters to be fitted to the data.
QTLRel uses a two-step procedure to fit the mixed model

to the data: first, the model parameters are estimated as-
suming that no markers have an effect on the phenotype
(the null hypothesis); second, for a given marker, the additive
and dominance effects are estimated while the other model
components are fixed to their values obtained from the first
step, up to a scaling factor that is also estimated in this step.
This is similar to the strategy used in EMMAX (Kang et al.
2010). [More recently, efficient methods have been developed
to integrate model fitting into a single step, which can some-
times lead to improved power to detect QTL (see Lippert et al.
2011; Zhou and Stephens 2012)]. Once the model-fitting steps
are completed, QTLRel uses the parameter estimates to com-
pute the log-likelihood-ratio test statistic. For each SNP, we
reported support for a genotype–phenotype association using
the (base 10) logarithm of the likelihood ratio, commonly
called the LOD score.

Since F2 crosses are approximately equally related to
each other, QTL mapping that does not account for familial
relationships should yield similar results to those of QTLRel.
To verify this, we compared our results in the F2 sample
using QTLRel against results from a linear regression model
that did not include the polygenic component, implemented
in R/qtl (Broman and Sen 2009). Conversely, ignoring re-
latedness in the F34 and combined cohorts is expected to
yield very different QTL mapping results (Cheng et al. 2010).

Pedigree- and marker-based estimates of genetic sharing:
To estimate the n  3  n covariance matrix of the polygenic
effect, we must supply matrices of identity coefficients

106 C. C. Parker et al.

http://cgd.jax.org/mousemapconverter
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167056/-/DC1/167056SI.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167056/-/DC1/167056SI.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167056/-/DC1/FigureS1.pdf


(Abney et al. 2000; Cheng et al. 2010). Specifically, the
additive and dominance variance components of this covari-
ance matrix require estimates of the kinship coefficient Fij

and identity coefficient Dij;7 for each pair of individuals ði; jÞ:
We derived estimates of identity coefficients in two different
ways, using the pedigree, and using the marker data. Algo-
rithms to compute identity coefficients from the pedigree are
far too complex for large pedigrees such as the one used
here, so we applied the scalable approximation developed
by Cheng et al. (2010), building on Karigl (1981). Even this
approximate algorithm was not sufficiently scalable for com-
putation of coefficients for F2–F34 pairs, so for each of these
pairs we assigned the identity coefficients to their expected
values in an inbred cross, Fij ¼ 1=2 and Dij;7 ¼ 1=4:

One advantage of using the markers to estimate re-
latedness was that it was much easier to compute identity
coefficient estimates for all pairs of individuals. In keeping
with other methods that use marker-based estimates of
relatedness to correct for confounding due to population
stratification or familial relationships (Yu et al. 2006; Kang
et al. 2008; Lippert et al. 2011; Listgarten et al. 2012; Zhou
et al. 2013), we included only the additive portion of the
polygenic effect. The rationale is that dominance effects typ-
ically make a much smaller contribution to the variance of
a complex trait. Therefore, we needed to calculate only kin-
ship coefficients. At a single locus, the estimate of 2Fij is
simply equal to the number of alleles that share the same
state between individuals (2 if both genotypes are homozy-
gous and the same, 0 if both genotypes are homozygous and
different, and 1 in all other cases). This is equivalent to the
number of alleles IBD, since the mice are crosses of inbred
founders. Note that other marker-based estimates of the
kinship coefficients have been used, and these are based
on different derivations of the polygenic covariance matrix.
To account for uncertainty in missing genotypes at a given
marker, we calculated the expected number of shared alleles.

The final marker-based kinship coefficient estimate was
obtained by averaging over markers across the genome,
excluding the X chromosome. To avoid “proximal contami-
nation” when assessing evidence for a QTL at a given SNP,
this SNP, and all nearby SNPs, should be excluded from
estimation of the kinship coefficient (Listgarten et al. 2012;
Cheng et al. 2013; Yang et al. 2014). We accomplished this by
omitting markers on the same chromosome to estimate re-
latedness. Therefore, we fitted the mixed model to the data
separately for each chromosome and used this mixed model
only to quantify support for QTL on that chromosome.

Covariates: In all analyses, we included four covariates in
the regression model of the phenotype: age (in days) and
three binary traits, sex (1 = male, 0 = female), albino (1 =
white coat color, 0 = non-white), and agouti (1 = agouti
coat color, 0 = nonagouti). We found that coat color
confounded some of the phenotype measurements obtained
from video tracking; if we did not account for the effect of
coat color, for some phenotypes we obtained strong evidence

for a QTL that mapped to a region overlapping the Tyr gene
on chromosome 7, which is the gene variant for the albino
trait (Jackson 1994, 1997). Some phenotype and coat color
observations were not recorded for some mice; at most 75
samples in any one phenotype were excluded from QTL map-
ping due to missing phenotype or covariate values.

A larger proportion of F34 mice showed less freezing to
context and freezing to cue than F2 mice. However, this
difference disappeared if we excluded albino mice, reinforc-
ing the importance of including coat color traits as covariates
in the QTL mapping. We observed no systematic differences
in distributions of other phenotypes from the F2 and F34
crosses.

Transformation of quantitative traits:We mapped QTL for
six phenotypes: the three measurements recorded in open
field testing (distance traveled in the periphery, distance
traveled in the center, and percentage of time in the center
of the arena) and the three measurements from our con-
ditioned fear tests (pretraining freezing, freezing to context,
and freezing to cue). Four of these phenotypes (percentage
of time in center, pretraining freezing, freezing to context,
and freezing to cue) are proportions between 0 and 1. To
obtain numbers on the real line, and to admit a normal
model for these phenotypes, we transformed the pro-
portions to the log-odds scale using the logit function,
logitðxÞ ¼ logðx=ð12 xÞÞ: To avoid extreme values after
the transformation, any proportions ,0.01 or .0.99 were
fixed to 0.01 and 0.99, respectively. Observed quantiles of
the transformed phenotypes, separately in the F2 and F34
crosses, after removing linear effects of the covariates,
closely matched expected quantiles under the normal distri-
bution (results not shown), suggesting that the normal dis-
tribution was a good fit for these phenotypes.

Determining significance of genotype–phenotype associa-
tions: To calculate significance thresholds for the LOD
scores, we must first obtain the distribution of this test
statistic under the null distribution. This distribution is
commonly estimated by permuting the phenotype values
relative to the genotypes (Broman and Sen 2009). However,
this approach will not preserve the covariance structure
in the samples that is due to unequal relatedness of the
individuals and therefore may lead to inadequately strin-
gent significance thresholds and inflated type 1 error rates
(Abney et al. 2002; Zou et al. 2005; Aulchenko et al. 2007;
Cheng et al. 2010; Cheng and Palmer 2013). A simple alter-
native to this approach would be to use a Bonferroni correc-
tion of the P-values calculated from the test statistics. But
this would lead to overly stringent significance thresholds
because it would ignore correlations between the markers—
that is, it would ignore the fact that the association tests are
not independent.

Despite these concerns with the standard permutation
test (that assumes independence of the samples), we have
reason to expect that this permutation test will still provide
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reasonably accurate significance thresholds because (1) we
do not observe systematic population stratification in the AIL
(e.g., clusters of samples that are more related to each other
than they are to other mice) and (2) no individuals are
closely related to each other (e.g., no mice from the same
litter). Careful inspection of our marker-based estimates of
kinship coefficients confirms that expectations 1 and 2 do
not apply to our AIL. Therefore, we performed permutation-
based tests using R/qtl, ignoring unequal relatedness of the
individuals (note that the tests for association still used the
full-relatedness model). To obtain an estimate for the signif-
icance threshold at the 100(1 2 a)th percentile of the test
statistic, with a = 0.05, we recorded the maximum LOD
score for each permutation replicate and defined the signif-
icance threshold to be the empirical percentile obtained
from 1000 maximum LOD scores, following the recommen-
dation of Churchill and Doerge (1994).

To provide an independent validation of this significance
threshold, which is based on the assumption that the sam-
ples are exchangeable, we compared it against a more com-
putationally intensive permutation test that accounts for
relatedness among individuals (Cheng et al. 2010; Cheng
and Palmer 2013), similar to the permutation test proposed
by Aulchenko et al. (2007). This permutation procedure
differs from the standard method in two key ways: (1) it
estimates parameters of a “null” model that includes the
polygenic effect, in which kinship coefficients are calculated
using the markers, and (2) instead of permuting the pheno-
types, it permutes the genotypes, which preserves the relation-
ship between phenotype and polygenic effect. (Note that the
accuracy of this permutation procedure hinges on how well
the polygenic covariance matrix captures the true covariance
structure in the phenotype, which is, of course, unknown.)
Following our procedure described above, we fitted a sepa-
rate mixed model for each chromosome during the permu-
tation tests to avoid the problem of proximal contamination.
In Results, we show empirically that this more sophisticated
permutation-based test produced significance thresholds
that closely corresponded to the thresholds obtained from
the much simpler permutation procedure using R/qtl.

QTL regions: We used a 1.5-LOD support interval to ap-
proximate the confidence interval for the location of the
QTL. This is a slightly smaller interval than the suggested
1.8-LOD interval based on simulations in two intercrosses,
although in practice the best interval for each QTL de-
pends on a number of factors, including the QTL effect size
(Manichaikul et al. 2006). The main reason we chose this
interval was to be consistent with our previous studies using
AIL mice (e.g., Parker et al. 2011; Bartnikas et al. 2012).

Assessment of multiple QTL: For several phenotypes, the
initial genome-wide scan indicated appreciable support
for QTL at multiple locations on the same chromosome.
However, testing each marker one at a time cannot indicate
whether there is support for multiple QTL on a chromosome.

To address this question, we included the SNP with the highest
LOD score as a covariate, and then we recalculated the LOD
scores for all other SNPs on the same chromosome. We repeated
this procedure for each of the 30 QTL regions identified in the
initial genome-wide scans for the six phenotypes.

X chromosome: QTL mapping must be performed differ-
ently in the X chromosome due to differences in males and
females (Broman and Sen 2009; Wise et al. 2013) and due
to recombination frequencies that are specific to the X chro-
mosome (Broman 2012). Therefore, a proper analysis of the
X chromosome that corrects for confounding due to familial
relationships is beyond the capabilities of QTLRel. Nonethe-
less, we used QTLRel to obtain rough estimates of support
for QTL to investigate whether there was a suggestion that
markers might warrant further investigation. To adapt the
mixed model to analyze the X chromosome, we included sex
as an interactive covariate—that is, we included separate
additive and dominance effects for males and females. We
then estimated the null distribution of the test statistic using
the same model (without marker effects), using 1000 per-
mutation replicates as before. Note that this model has one
too many degrees of freedom (there is no need to include
both additive and dominance terms in hemizygous males
since there are only two possible genotypes), so our analysis
was overly conservative, and one could improve on our X
chromosome analysis, for example, following the approach
of Pan et al. (2007). On the X chromosome, we computed
genotype probabilities for missing genotypes separately for
females and hemizygous males.

Bioinformatics databases: To identify genes containing non-
synonymous coding SNPs within 1.5-LOD support intervals,
we used sequence data for LG/J and SM/J inbred strains
generously provided by James Cheverud and Heather Lawson
from the Genome Sequencing Center at Washington University
[http://genome.wustl.edu (Norgard et al. 2011)].

The full code and data reproducing the steps of the
analyses are available for download at http://github.com/
pcarbo/lgsmfear.

Results

QTL mapping for open field and conditioned
fear phenotypes

We performed a genome-wide association analysis for six
traits: (1) distance traveled in the periphery of the open
field, (2) distance traveled in the center of the open field,
(3) percentage of time spent in the center of the open field,
(4) pretraining freezing, (5) freezing to context, and (6)
freezing to cue. To assess support for genotype–phenotype
correlations at 4601 candidate SNPs, we used a linear mixed
model that accounted for possible confounding due to differ-
ences in genetic sharing, in which levels of sharing were
estimated from the genotype data. We assessed evidence
for QTL separately in the LG/J 3 SM/J F2 intercross, in
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the F34 advanced intercross, and in the combined sample
(Figure 1, Figure 2, and Table 1).

In the analysis of the combined sample, we identified
a total of 24 QTL exceeding significance thresholds (we
discuss the significance thresholds in greater detail below).
Specifically, we identified 12 QTL for OF phenotypes and 12
QTL for CF phenotypes, and we identified at least 1 QTL for
each of the six behavioral traits.

Our analysis did not yield any compelling QTL on the X
chromosome; the largest LOD score, 4.6, for the phenotype
“percentage of time spent in center,” was considerably below
the significance threshold, 5.7 (at a = 0.05). Since sex-linked
chromosomes require a separate treatment from that of au-
tosomal chromosomes, X chromosome results are not shown
in Table 1, Figure 1, and Figure 2. (Note that our analysis of
the X chromosome was probably overly conservative, and an
improved analysis of the X chromosome correcting for relat-
edness could yield stronger support for QTL; see Materials
and Methods for more details.)

The initial genome-wide scan (Figure 1 and Figure 2)
identified multiple distinct regions located on the same chro-
mosome containing significant QTL (Table 1). In all cases ex-
cept one—chromosome 2 for freezing to cue—support for a
second QTL fell short of our significance thresholds once we
conditioned on the estimated effect of the peak SNP from the
same chromosome. Table 1 gives two regions on chromosome
17 that each show strong evidence for containing a QTL for
freezing to context, although we have sufficient support for
a QTL in only one of the two loci.

Several phenotypes were associated with regions that ap-
pear to overlap each other (Table 1). However, the QTL map-
ping did not yield sufficient resolution to determine whether the
overlapping QTL regions highlight the same gene or genes. Be-
low, we examine some of the more interesting overlapping QTL.

Most of the QTL with the strongest support from the com-
bined sample were also identified using the F2 sample alone.
One exception was the QTL for freezing to cue on chromo-
some 2. This locus showed no appreciable association signal
in the F2 sample, but strong support from the F34 data.

In the F2 analyses, each of the QTL regions (based on 1.5-
LOD support intervals) covered a large portion of the chromo-
some, owing to limited recombination in F2 crosses. Compared
to the QTL regions in the F2 cross, the QTL were much nar-
rower in the F34 alone. However, few SNPs reached the thresh-
old for significance at a = 0.05, owing to a loss of power due
to many more candidate haplotypes. By comparison, in the
combined analysis, we identified 24 QTL with narrow 1.5-
LOD support intervals, ranging in size from 1.7 Mb to 29.4
Mb and with a median interval length of 4.3 Mb. Of these, 13
QTL had support intervals ,5 Mb in length. The number of
annotated genes within these intervals ranged from 10 to 236,
with a median of 71 genes.

As expected, support for QTL in the F2 sample for the
most part did not change appreciably when we accounted
for possible confounding due to relatedness; F2 crosses are
full sibs with respect to one another and hence are expected

to exhibit roughly the same amount of genetic sharing. None-
theless, there were several cases where support for a QTL
increased notably in the F2 cross after accounting for varying
relatedness and occasionally yielded a significant QTL only
after correcting for relatedness. This comparison was not sys-
tematic, nor did we experience a uniform increase in support
across the genome after correcting for relatedness. Nonethe-
less, this hints at the potential gains in applying mixed models
to conventional intercrosses—a topic that we plan to explore
in greater depth in subsequent work.

Since we had kept track of the complete pedigree for the F34
mice, we were able to compare the QTL mapping results, cor-
recting for relatedness using (1) marker-based estimates of the
kinship coefficients and (2) pedigree-based estimates. Both ana-
lyses showed broad agreement; compare the dark blue and
light red lines in Figure 1, J–L, and Figure 2, M–O. In several
regions, the association signal was considerably stronger in the
analysis using marker-based estimates. A notable exception to
this tendency was the QTL on chromosome 4 for freezing to
cue. These results are consistent with a more systematic com-
parison of pedigree- and marker-based estimates of relatedness
for QTL mapping in simulated populations (Cheng et al. 2013).

Comparison of the pedigree- and marker-based estimates of
the kinship coefficients also offers the opportunity to point out
some features of the marker-based estimates. Figure 3 shows
the distribution of pairwise relatedness coefficients Rij ¼ 2Fij

in the F2 and F34 crosses. First, using the marker data we were
able to predict that some F2 mice share a greater proportion of
their genome than others (Figure 3B), whereas pedigree-based
estimates of sharing are all identical, as the relationship to the
inbred founders is the same for all F2 crosses. (For any F2 cross,
pairwise relatedness is Rii ¼ 3=2 and Rij ¼ 1; for i 6¼ j; see
Lange 2002.) By comparison, using the marker data we predict
much less variation in genetic sharing between pairs of F34-
generation mice (compare Figure 3B with Figure 3D). This
was expected because of the greater number of accumulated
crossovers in the F34 mice. Second, we observed that the
marker-based estimates were for the most part unbiased; dif-
ferences in the marker- and pedigree-based estimates were
centered near zero (see Figure 3, A, B, E, and F). Even though
the genetic sharing estimates in F34 AIL mice agreed on aver-
age, the estimates did not agree in a large proportion of the
samples—the scatterplot (Figure 3G) illustrates this point in
detail. The larger discrepancies in the sharing estimates may
explain the differences observed in the QTL mapping (Figure 1
and Figure 2). Finally, the marker data allowed us to estimate
sharing for F2–F34 pairs of mice (Figure 3H), whereas these
calculations are very complex using the pedigree data (and
would not have been meaningful in this case because the F2
are not the direct progenitors of the F34).

To assess significance of the LOD scores in our genome-
wide scans, we applied a simple permutation test (see Materi-
als and Methods for details). Although this simple permutation
test can lead to inadequately stringent significance thresholds
when phenotype samples are correlated (Abney et al. 2002;
Zou et al. 2005; Aulchenko et al. 2007; Cheng et al. 2010;
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Cheng and Palmer 2013), as they are here, we have assessed
empirically in our AIL that the distribution of the test statistic
under the null is similar regardless of whether the permuta-
tions account for relatedness (Figure 1 and Figure 2). One
possible explanation why the standard permutation test seems
to adequately control for type 1 error in our AIL sample is that we
have carefully avoided including highly related mice—in partic-
ular, no mice share a common grandparent—unlike our previous
AIL studies (e.g., Cheng et al. 2010; Cheng and Palmer 2013).

In summary, the combined analysis identified more QTL
than either the F2 or the F34 samples alone (due in part to

a larger sample size). Importantly, the combined analysis
located the QTL within narrower regions compared to those
identified from the F2 mice alone.

Sequence analysis

We examined our 1.5-LOD support intervals for the pres-
ence of “consequential” SNPs that had the potential to di-
rectly alter proteins (i.e., nonsynonymous coding, stop-gain,
stop-lost, frameshift, and splice sites). The number of genes
with consequential SNPs in significant QTL intervals ranged
from 1 to 59, with a median of 12 genes (Table S1).

Figure 1 Open field behavior and genome-wide map of open field behavioral traits in LG/J3 SM/J F2, F34, and combined cohorts. A–C summarize open
field (OF) testing. Mice were placed in the center of the open field arena, and the following measurements were made in the first 10 min of testing: (A)
distance traveled (centimeters) in the periphery, (B) distance traveled (centimeters) in the center, and (C) percentage of time spent in the center. Error
bars represent standard error. D–L show genome-wide association signal from F2 samples alone (D–F), from F34 samples alone (G–I), and from combined
F2 + F34 cohort (J–L). In all panels, dark blue lines show LOD scores (log10 likelihood ratio) at each genotyped marker. These LOD scores are calculated
using marker-based estimates of pairwise relatedness. In D–F, the light blue line shows LOD scores obtained when ignoring hidden relatedness in F2
mice. In J–L, light red lines give LOD scores obtained using pedigree-based estimates of relatedness. For each genome-wide scan, we define the
significance threshold as the 95th percentile of the test statistic under the null (a = 0.05). We show significance thresholds obtained from null
distributions estimated in two different ways: using a naive permutation test in which samples are assumed to be exchangeable (dashed, light blue
line) and using a permutation test that preserves the covariance structure of the samples, which is estimated from the marker data (dotted black line).
See Materials and Methods for a detailed explanation of these permutation tests. Autosomal chromosomes 1–19 are shown in alternating shades of gray.
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Figure 2 Conditioned fear and QTL genome-wide map of conditioned fear traits in LG/J 3 SM/J F2, F34, and combined cohorts. A–F summarize
conditioned fear (CF) testing in mice. A 3-day procedure was used to phenotype each subject. On day 1, a baseline indicator of freezing
tendency, “pretraining freezing,” was measured in F2 (A) and F34 (D) mice from 30 to 180 sec, after which mice were exposed to two 30-sec
tones (indicated by gray bars, labeled T1 and T2) that coterminated with a 2-sec, 0.5-mA foot shock (indicated by arrows, labeled S1 and S2). On
day 2, freezing to context was measured in F2 (B) and F34 (E) mice from 30 to 180 sec. On day 3, freezing to cue was measured in F2 (C) and F34
(F); time spent freezing to each tone was averaged to obtain the freezing to cue variable (180–210 sec + 240–270 sec). Each data point
represents average percentage of freezing calculated across the 30-sec time bin; error bars represent standard error. G–O show the genome-
wide association signal from F2 samples alone (G–I), from the F34 samples alone (J–L), and from the combined F2 + F34 cohort (M–O). See Figure 1
legend for a detailed explanation of the panels.

High-Resolution Mapping of Complex Traits 111



Ta
b
le

1
Q
TL

fo
r
o
p
en

fi
el
d
an

d
co

n
d
it
io
n
ed

fe
ar

p
h
en

o
ty
p
es

C
h
r

Pe
ak

LO
D

Pe
ak

SN
P

1.
5-
LO

D
in
te
rv
al

(M
b
)

Q
TL

w
id
th

rs
st
ar
t

rs
en

d
N
o
.g

en
es

G
en

es
w
it
h

N
S
SN

Ps

LG
/J

h
o
m
o
zy

g
o
te

m
ea

n
H
et
er
o
zy
g
o
te

m
ea

n

SM
/J

h
o
m
o
zy

g
o
te

m
ea

n
PV

E

So
u
rc
e
fo
r
Q
TL

p
re
vi
o
u
sl
y
im

p
lic
at
ed

in
fe
ar
/a
n
xi
et
y

O
pe

n
fi
el
d
ac
tiv
ity

Q
TL
:
di
st
an

ce
tr
av
el
ed

in
th
e
pe

rip
he

ry
(c
m
)

2
6.
20

rs
27

10
07

97
9.
59

4–
26

.9
88

17
.3
9

rs
33

08
84

54
rs
13

47
63

94
17

7
6

26
14

.7
7

28
43

.5
7

27
80

.7
0

0.
02

4
4

6.
75

rs
32

24
20

95
30

.2
71

–
33

.9
11

3.
64

rs
27

81
73

74
rs
27

79
08

84
15

4
26

26
.9
0

27
89

.6
2

29
39

.0
4

0.
02

6
11

6.
54

rs
29

39
12

62
73

.6
60

–
81

.9
92

8.
33

rs
29

43
57

63
rs
29

43
18

96
15

0
42

29
08

.4
4

28
36

.5
4

27
46

.9
3

0.
02

5
So

ko
lo
ff
et

al
.
(2
01

1)
14

4.
51

rs
62

89
26

0
11

1.
37

3
–
11

8.
86

2
7.
49

rs
36

70
73

6
rs
30

25
93

01
10

1
28

18
.4
5

28
36

.0
9

26
34

.6
2

0.
01

7
17

5.
01

rs
29

50
10

02
25

.8
69

–
29

.2
05

3.
34

rs
63

03
33

5
rs
49

11
03

21
78

23
25

48
.3
3

27
83

.2
5

30
02

.2
4

0.
01

9
So

ko
lo
ff
et

al
.
(2
01

1)
O
pe

n
fi
el
d
ac
tiv
ity

Q
TL
:
di
st
an

ce
tr
av
el
ed

in
th
e
ce
nt
er

(c
m
)

4
5.
11

rs
32

26
39

42
11

8.
88

0
–
12

1.
18

2
2.
30

rs
32

32
04

02
rs
31

87
83

03
40

8
59

6.
55

52
7.
09

44
2.
72

0.
01

9
N
ak
am

ur
a
et

al
.
(2
00

3)
10

4.
44

rs
62

36
37

4
12

7.
34

8
–
12

9.
06

8
1.
72

rs
61

57
05

8
rs
62

36
37

4
78

33
58

5.
54

51
3.
47

50
8.
95

0.
01

7
12

5.
12

rs
61

76
27

9
55

.9
62

–
58

.9
25

2.
96

rs
29

21
26

78
rs
29

22
18

63
14

4
45

6.
63

52
0.
83

61
8.
88

0.
01

9
Jo
ne

s
et

al
.
(1
99

9)
;

W
ils
on

et
al
.
(2
01

1)
O
pe

n
fi
el
d
ac
tiv
ity

Q
TL
:
pe

rc
en

ta
ge

of
tim

e
sp
en

t
in

th
e
ce
nt
er

4
5.
06

rs
63

18
01

4
10

4.
57

7
–
11

4.
06

4
9.
49

rs
32

43
10

61
N
A

83
15

11
.9
3

11
.0
5

10
.7
7

0.
01

9
N
ak
am

ur
a
et

al
.
(2
00

3)
10

4.
42

rs
29

36
99

56
12

5.
23

5
–
12

9.
06

8
3.
83

rs
29

33
40

25
rs
62

36
37

4
10

4
48

12
.1
5

10
.8
0

10
.6
4

0.
01

6
12

5.
12

rs
61

76
27

9
54

.2
10

–
58

.3
31

4.
12

rs
29

17
47

77
rs
29

13
44

30
38

3
10

.1
5

11
.0
0

12
.4
0

0.
01

9
W
ils
on

et
al
.
(2
01

1)
15

5.
46

rs
32

42
25

69
34

.2
89

–
38

.3
77

4.
09

rs
32

10
03

30
rs
32

51
45

74
31

8
10

.4
5

10
.8
0

11
.9
6

0.
02

0
Th

ifa
ul
t
et

al
.
(2
00

8)
C
on

di
tio

ne
d
fe
ar

Q
TL
:
pr
et
ra
in
in
g
fr
ee
zi
ng

da
y
1

4
4.
83

rs
27

52
82

11
11

6.
99

3
–
11

9.
92

3
2.
93

rs
27

49
80

62
rs
28

30
85

41
69

16
3.
34

3.
82

4.
69

0.
01

3
N
ak
am

ur
a
et

al
.
(2
00

3)
;

O
w
en

et
al
.
(1
99

7)
C
on

di
tio

ne
d
fe
ar

Q
TL
:
fr
ee
zi
ng

to
co
nt
ex
t
da

y
2

2
5.
86

rs
33

18
84

52
26

.9
88

–
56

.3
59

29
.3
7

rs
13

47
63

94
rs
32

87
25

27
23

6
6

8.
35

9.
92

11
.8
9

0.
02

2
3

5.
99

rs
31

28
94

63
12

2.
09

8
–
12

7.
12

9
5.
03

rs
30

84
37

83
rs
46

55
12

70
25

11
8.
61

11
.2
8

11
.9
3

0.
02

2
Th

ifa
ul
t
et

al
.
(2
00

8)
17

a
6.
39

rs
33

42
59

54
23

.6
84

–
31

.4
95

7.
81

rs
33

66
40

00
rs
33

59
37

81
21

9
71

8.
97

9.
85

10
.5
6

0.
02

4
17

a
6.
74

rs
29

50
67

26
44

.8
43

–
49

.1
99

4.
36

rs
33

69
34

66
rs
33

45
49

63
95

17
8.
66

10
.3
6

10
.7
9

0.
02

5
So

ko
lo
ff
et

al
.
(2
01

1)
C
on

di
tio

ne
d
fe
ar

Q
TL
:
fr
ee
zi
ng

to
cu
e
da

y
3

1
4.
57

rs
31

86
22

54
15

2.
57

8
–
16

1.
41

0
8.
83

rs
33

86
06

80
rs
30

80
27

30
71

6
29

.8
5

35
.8
9

37
.8
1

0.
01

8
So

ko
lo
ff
et

al
.
(2
01

1)
;

W
ils
on

et
al
.
(2
01

1)
;

Ra
dc
lif
fe

et
al
.
(2
00

0)
;

C
al
da

ro
ne

et
al
.(
19

97
)

2b
5.
18

rs
27

14
31

96
31

.1
69

–
44

.4
74

13
.3
1

rs
61

68
19

8
rs
13

47
64

68
13

2
6

34
.9
8

33
.9
7

35
.7
3

0.
02

0
2

5.
75

rs
27

45
37

70
11

8.
35

2
–
12

5.
03

3
6.
68

rs
31

49
90

9
rs
33

18
69

99
11

0
59

42
.1
1

30
.6
3

29
.2
9

0.
02

3
So

ko
lo
ff
et

al
.
(2
01

1)
3

4.
57

rs
29

59
90

08
24

.6
13

–
31

.1
77

6.
56

rs
13

47
70

22
rs
31

00
41

34
30

4
28

.1
7

35
.6
2

34
.8
7

0.
01

8
O
w
en

et
al
.
(1
99

7)
4

4.
76

rs
27

53
86

69
12

9.
82

0
–
13

3.
60

1
3.
78

rs
27

51
77

61
rs
27

56
02

57
65

26
34

.6
8

30
.9
7

39
.7
7

0.
01

9
So

ko
lo
ff
et

al
.
(2
01

1)
8

5.
14

rs
37

10
38

9
82

.5
91

–
91

.5
38

8.
95

rs
63

82
41

2
rs
33

28
79

05
10

9
37

43
.5
8

34
.1
2

32
.2
0

0.
02

0
10

4.
78

rs
62

47
40

7
56

.3
24

–
60

.5
68

4.
24

rs
63

14
36

0
rs
63

72
58

9
34

12
37

.8
4

31
.3
0

37
.1
7

0.
01

9
17

8.
49

rs
33

35
79

30
26

.7
47

–
30

.5
83

3.
84

rs
36

79
79

1
rs
13

48
29

44
71

16
32

.1
6

32
.1
3

39
.5
7

0.
03

4
So

ko
lo
ff
et

al
.
(2
01

1)

Sh
ow

n
ar
e
re
gi
on

s
co
nt
ai
ni
ng

on
e
or

m
or
e
SN

Ps
w
ith

LO
D
sc
or
es

ex
ce
ed

in
g
th
e
si
gn

ifi
ca
nc
e
th
re
sh
ol
d.

Si
gn

ifi
ca
nc
e
th
re
sh
ol
ds

ar
e
de

fi
ne

d
as

th
e
95

th
pe

rc
en

til
e
of

th
e
te
st

st
at
is
tic

un
de

r
th
e
nu

ll
(a

=
0.
05

).
LO

D
sc
or
es

w
er
e

ob
ta
in
ed

by
fi
tt
in
g
a
m
od

el
to

th
e
co
m
bi
ne

d
(F
2
+
F 3

4
)c
oh

or
t,
us
in
g
m
ar
ke
r-
ba

se
d
es
tim

at
es

of
pa

irw
is
e
re
la
te
dn

es
s.
C
ol
um

ns
fr
om

le
ft
to

rig
ht

ar
e:

(1
)c
hr
om

os
om

e,
(2
)m

ax
im

um
LO

D
sc
or
e,

(3
)S

N
P
w
ith

m
ax
im

um
LO

D
sc
or
e,

(4
an

d
5)

re
gi
on

m
os
t
lik
el
y
co
nt
ai
ni
ng

ca
us
al
va
ria

nt
(s
)a

nd
si
ze

of
re
gi
on

in
m
eg

ab
as
es

(M
b)

ba
se
d
on

a
1.
5-
LO

D
su
pp

or
t
in
te
rv
al
,(
6
an

d
7)

SN
Ps

bo
un

di
ng

re
gi
on

,(
8)

nu
m
be

r
of

ge
ne

s
w
ith

in
re
gi
on

an
no

ta
te
d
to

m
ou

se
re
fe
re
nc
e

se
qu

en
ce
,(
9)

nu
m
be

r
of

ge
ne

s
w
ith

in
re
gi
on

fo
r
w
hi
ch

no
ns
yn
on

ym
ou

s
co
di
ng

po
ly
m
or
ph

is
m
s
ar
e
id
en

tifi
ed

(s
ee

Ta
bl
e
S1

),
(1
0)

m
ea

n
ph

en
ot
yp
ic
va
lu
e
fo
r
LG

/J
ho

m
oz
yg
ot
es

at
pe

ak
SN

P,
(1
1)

LG
/J
3

SM
/J
he

te
ro
zy
go

te
s,
(1
2)

SM
/J
ho

m
oz
yg
ot
es
,(
13

)p
ro
po

rt
io
n
of

va
ria

nc
e
in

ph
en

ot
yp
e
ex
pl
ai
ne

d
by

pe
ak

SN
P,

an
d
(1
4)

pu
bl
is
he

d
fi
nd

in
gs

on
fe
ar

an
d
an

xi
et
y
Q
TL

th
at

ov
er
la
p
th
is
re
gi
on

.A
ll
SN

P
in
fo
rm

at
io
n
an

d
ge

no
m
ic
po

si
tio

ns
ar
e
ba

se
d
on

M
ou

se
G
en

om
e
A
ss
em

bl
y
37

(J
ul
y
20

07
)
in

th
e
N
C
BI

A
ss
em

bl
y
D
at
ab

as
e.

a
Su

pp
or
t
fo
r
th
e
ot
he

r
Q
TL

on
ch
ro
m
os
om

e
17

fa
lls

sh
or
t
of

ou
r
cr
ite
ria

fo
r
si
gn

ifi
ca
nc
e
on

ce
w
e
co
nd

iti
on

on
th
is
Q
TL
;
ou

r
da

ta
su
pp

or
t
at

m
os
t
on

e
Q
TL

on
ch
ro
m
os
om

e
17

.
b
SN

Ps
in

th
is
re
gi
on

ex
ce
ed

th
e
si
gn

ifi
ca
nc
e
th
re
sh
ol
d
on

ly
af
te
r
co
nd

iti
on

in
g
on

th
e
ef
fe
ct

of
SN

P
rs
27

45
37

70
on

th
e
sa
m
e
ch
ro
m
os
om

e.

112 C. C. Parker et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167056/-/DC1/TableS1.xlsx


Discussion

We investigated the genetic basis of anxiety-like behavior,
based on open field and conditioned fear tests, in a combined
F2 and F34 AIL mouse population. To map QTL across the
genome, we analyzed phenotypes using a linear mixed mod-
el that accounts for differences in genetic sharing, an impor-
tant confounding factor in tests for association. Taking this
mixed-model approach, we identified a total of 24 QTL
affecting six traits related to fear and anxiety-like behavior.
Because our study maintained uniform environmental con-
ditions and ensured alleles with high frequency, we expect
a limited contribution of gene–environment interactions to
variation in these traits.

The integration of the F2 and F34 populations provided
good power to detect QTL, presumably because of the F2
cross; and good resolution, presumably because of the F34
advanced intercross. The median size of a QTL region was
4.3 Mb. The QTL were slightly narrower than QTL intervals
we identified in this population for other traits, such as red
blood cell parameters [median 1.5-LOD support interval =
4.7 Mb (Bartnikas et al. 2012)] and body weight [median
1.5-LOD support interval = 5.5 Mb (Parker et al. 2011)].

In the 1.5-LOD intervals that contained #15 genes with
coding SNPs, we searched for candidate genes that could
plausibly explain the variation in the traits we measured.
Some of the genes within these regions had coding SNPs
known to be involved in anxiety-like behavior and/or con-
ditioned fear; examples include the nuclear receptor sub-
family 6, group A, member 1 gene [Nr6a1 (Heydendael
et al. 2013)], the phospholipase D1 gene [Pld1 (Sun et al.
2013)], the cadherin 23 gene [Cdh23 (Terracciano et al.

2010, but see Schwander et al. 2009)], the prosaposin gene
[Psap (Hovatta et al. 2005; Donner et al. 2008)], and the
SLIT and NTRK-like family, member 5 gene [Slitrk5 (Shmelkov
et al. 2010)]. However, we are cautious about interpreting
the functional relevance of nonsynonymous coding SNPs;
we do not currently have expression QTL (eQTL) data that
could be used to detect heritable regulatory polymorphisms.
Thus, the current results are not sufficient to identify specific
causal genes.

In two instances, contextual and cued fear mapped to
overlapping chromosomal regions on chromosomes 2 and
17 (Figure S2 and Figure S3) despite known differences in
their neuroanatomical substrates (Fanselow and Ledoux
1999; Jovanovic and Ressler 2010). This may indicate the
presence of alleles that influence both traits; alternatively, it
could be due to different alleles that are located close to
each other in the genome. We (Ponder et al. 2007a,b; Sokoloff
et al. 2011; Parker et al. 2012b) and others have reported
similar results; Talbot et al. (2003) reported that contextual
and cued fear were highly correlated (r = 0.63) in hetero-
geneous stock mice, and selection for freezing to context has
been shown to cause coincident changes in freezing to cue
(Radcliffe et al. 2000; Ponder et al. 2007a). Thus, it is likely
that contextual and cued fear are modulated by some of the
same alleles, but further studies are needed to definitively
identify the alleles that give rise to such correlations.

One of the underlying motivations for this study was the
belief that a subset of alleles would pleiotropically influence
both conditioned fear and anxiety-like behavior in the open
field. Previous studies by our laboratory (Ponder et al. 2007a,b;
Sokoloff et al. 2011) and other groups (Lopez-Aumatell

Figure 3 Comparison of marker- and pedigree-
based estimates of pairwise relatedness. A–D
and H show the extent to which relatedness,
or genetic sharing, varies among the AIL
mice. More precisely, A–D and H give the ob-
served distributions of estimated pairwise relat-
edness coefficients, or two times the kinship
coefficients, for all pairs of mice (i, j) in which
i and j are different individuals (i 6¼ j) or when
i = j (in which case the coefficients correspond
to inbreeding levels). These are “realized related-
ness” estimates obtained by calculating aver-
age allele sharing over all SNPs genotyped in
the F2 and F34 crosses. Diagonal entries of the
relatedness matrix, Rii ¼ 2Fii ; are shown in A and
C, and off-diagonal entries Rij ¼ 2Fij ; i 6¼ j;
are shown in B, D, G, and H. To compare the
marker-based estimates to the estimates of allele
sharing obtained from the AIL pedigree data, in E
and F we show the distribution of differences
between the marker-based and pedigree esti-
mates of pairwise relatedness. In G we show
a scatterplot providing a more detailed compar-
ison of the marker- and pedigree-based pairwise
relatedness estimates Rij ; i 6¼ j; in which each

point in the scatterplot corresponds to a pair of F34 mice. In the F2 cross, all pedigree-based pairwise relatedness estimates are Rii ¼ 1:5 and Rij ¼ 1:0; as
indicated in A and B. Finally, H shows the distribution of marker-based pairwise relatedness estimates for all F2–F34 pairs, using only markers available in the
F2 mice (shaded bars) and using all markers (solid line).

High-Resolution Mapping of Complex Traits 113

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167056/-/DC1/FigureS2.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167056/-/DC1/FigureS3.pdf


et al. 2009) have indicated a shared genetic control of these
two traits. The overlap between the QTL on chromosome 17
for conditioned fear (freezing to context and freezing to cue)
and distance traveled in the periphery (Figure S3) provides
some additional support for a shared genetic basis. Interest-
ingly, we observed QTL on chromosome 2 for freezing to
context and freezing to cue that were immediately adjacent
to, but did not overlap with, the chromosome 2 QTL for
distance traveled in the periphery (Figure S2). And in one
case, the QTL on chromosome 4 for pretraining freezing
showed modest overlap with the chromosome 4 QTL for dis-
tance traveled in the center of the arena (Figure S4). How-
ever, pretraining freezing (freezing before administration of
any tones or shocks) is more indicative of unlearned anxiety
rather than conditioned fear. The absence of regions common
to several traits may indicate that in this population the ge-
netic origin of fear and anxiety-like behavior is relatively dis-
tinct, or it may reflect a lack of power to detect QTL, so we
cannot interpret this result as implying that genes in these
regions do not jointly affect these traits. An integrated anal-
ysis of these traits [e.g., building on multivariate mapping
approaches (Stephens 2013)] may yield an improved under-
standing of how QTL modulate these anxiety-like behaviors
and represents an important research direction.

Traditionally, F2 intercrosses are used to identify QTL un-
derlying phenotypic variation, and fine-mapping is carried
out as a second step, using congenic strains. This time- and
labor-intensive effort to identify specific genes is often
derailed by the discovery that a single QTL of large effect is
in fact caused by multiple loci of small effect located in the
same chromosomal region (Legare et al. 2000; Mott et al.
2000; Cheng et al. 2010; Shao et al. 2010; Parker et al.
2013). An AIL is an improvement over these traditional
methods because it merges identification and fine-mapping
into a single step, which can often discriminate between loci
that are due to single vs. multiple alleles (Darvasi and Soller
1995). The trade-off is that the power to detect QTL in AILs
is often lower than in F2 populations. This is because the AIL
mice experience greater numbers of crossover events than
the F2 mice, so more tests are performed, and a correspond-
ing higher threshold is needed to control for false positives.
For example, a QTL was observed on chromosome 1 for freez-
ing to context in the F2 intercross, but in the F34 AIL it
appeared to split into two smaller regions, neither of which
had a LOD score exceeding significance. On the other hand,
we observed a highly significant QTL peak in the F34 AIL
for freezing to cue that was not originally seen in the F2
intercross and was subsequently supported in the integrated
analysis. While the advantages of an integrated analysis of
an AIL have been shown in previous work, this study pro-
vides further support for the benefits of this approach and
can serve as a prototype for how to identify QTL in AILs
using a mixed-model approach that accounts for related-
ness, using marker data. (We have made available the code
and data used to implement the steps of our analysis at
http://github.com/pcarbo/lgsmfear.)

Our main methodological contribution was to show that we
can use marker data in the place of a pedigree to infer familial
relationships in an AIL. We found that mixed models using
either pedigree- or marker-based estimates of relatedness
showed broad agreement in the QTL mapping. While there
has been a considerable amount of work demonstrating the
benefits of marker-based estimates of “realized relatedness” to
control for confounding due to population structure or due to
familial relationships (Yu et al. 2006; Kang et al. 2008; Lippert
et al. 2011; Listgarten et al. 2012; Zhou et al. 2013), there has
been little work on demonstrating these benefits in AILs. In this
article, we did not aim for a systematic comparison of ap-
proaches to correct for relatedness (for an empirical compar-
ison in simulated data sets, see Cheng et al. 2013). Our results
nonetheless suggest that it is better to use marker data to
correct for relatedness, even when the full pedigree is available,
provided genetic variation is ascertained at sufficient resolution
throughout the genome. The marker-based estimates often
yield more precise estimates of genetic sharing and are usually
less costly to obtain.

Our study has several limitations. First, because we have
used a cross between two inbred strains, we are studying
the alleles that segregate between them and not the total
number of alleles that segregate among other laboratory
strains or wild mice. For example, we observed little overlap
of QTL for conditioned fear between an F8 AIL derived from
C57BL/6J3 DBA/2J mice (Parker et al. 2012b) and the LG/
J 3 SM/J AIL in the present study. Nonetheless, we did
observe some overlap in the QTL we identified in our pop-
ulation with anxiety and fear-related QTL identified in other
populations of mice (Table 1), consistent with the possibility
that different two-strain combinations may segregate the
same alleles. It is possible that some of the QTL identified
in our study are the same as those identified by other re-
searchers; one advantage of our study is that we have map-
ped QTL with greater resolution than in previous studies.

Our approach has dramatically increased the mapping
resolution compared to that in more conventional mapping
populations. To further reduce the number of candidate
genes within our intervals, we focused on genes with coding
polymorphisms. However, it is important to note that the
polymorphisms underlying the observed trait variance may be
due to differences in gene expression, rather than alterations
in gene function. For example, some QTL may be explained
by SNPs that modulate the recruitment of proteins involved in
regulation of gene transcription; studies of complex human
traits have shown that a large fraction of the variants
underlying these traits coincide with DNA sequences related
to gene regulation (Nicolae et al. 2010; Schaub et al. 2012).
Availability of genome-wide eQTL data in the LG/J and SM/J
strains may help pinpoint the genes underlying these QTL.
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Table S1   Candidate non-synonymous coding SNPs for Open Field and Conditioned Fear QTLs. Table columns 
from left to right are: (1) chromosome; (2) base pair position of SNP, and strand; (3) gene; (4) gene symbol; (5) 

total number of nonsynonymous SNPs identified in gene. Available for download at 
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.167056/-/DC1

 
 
 
 

 
 
Figure S1   Comparison of reference genetic map and genetic distances estimated from F2 genotype data. Each 
point in scatterplot corresponds to a single SNP on the X chromosome (orange) or an autosomal chromosome 
(black). Intermarker distances are shown in centiMorgans (cM). 
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Figure S2   Overlapping QTL region on chromosome 2 for freezing to context and freezing to cue, and adjacent 
QTL region on chromosome 2 for distance traveled in the periphery. LOD scores quantify support for 
association at SNPs, accounting for differences in genetic sharing using marker-based estimates of pairwise 
relatedness. Note that LOD scores for freezing to cue are obtained by conditioning on effect of peak SNP 
(rs27453770) on the same chromosome. Horizontal red lines indicate 1.5-LOD support intervals. The dashed 
orange line shows the significance threshold at α = 0.05 obtained using the simple permutation test. 
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Figure S3   Overlapping QTL region on chromosome 17 for freezing to context, freezing to cue and distance 
traveled in the periphery. LOD scores quantify support for association at SNPs, accounting for differences in 
genetic sharing using marker-based estimates of pairwise relatedness. Red lines represent 1.5-LOD support 
intervals, and the dashed orange line shows the significance threshold (at α = 0.05) obtained using the simple 
permutation test. 
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Figure S4   Overlapping QTL region on chromosome 4 for distance traveled in the center and pre-training 
freezing. LOD scores quantify support for association at SNPs, accounting for differences in genetic sharing using 
marker-based estimates of pairwise relatedness. Red lines represent 1.5-LOD support intervals, and the dashed 
orange line shows the significance threshold (at α = 0.05) obtained using the simple permutation test. 
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