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Abstract The present study measured variation in body

weight using a combined analysis in an F2 intercross and an

F34 advanced intercross line (AIL). Both crosses were

derived from inbred LG/J and SM/J mice, which were

selected for large and small body size prior to inbreeding.

Body weight was measured at 62 (±5) days of age. Using

an integrated GWAS and forward model selection

approach, we identified 11 significant QTLs that affected

body weight on ten different chromosomes. With these

results we developed a full model that explained over 18%

of the phenotypic variance. The median 1.5-LOD support

interval was 5.55 Mb, which is a significant improvement

over most prior body weight QTLs. We identified

nonsynonymous coding SNPs between LG/J and SM/J

mice in order to further narrow the list of candidate genes.

Three of the genes with nonsynonymous coding SNPs

(Rad23b, Stk33, and Anks1b) have been associated with

adiposity, waist circumference, and body mass index in

human GWAS, thus providing evidence that these genes

may underlie our QTLs. Our results demonstrate that a

relatively small number of loci contribute significantly to

the phenotypic variance in body weight, which is in

marked contrast to the situation in humans. This difference

is likely to be the result of strong selective pressure and the

simplified genetic architecture, both of which are important

advantages of our system.

Introduction

Phenotypic variation in complex quantitative traits is

attributed to combinations of genes, environmental factors,

and their interactions with each other (Flint and Mackay

2009; Cheverud et al. 2010). Variation in body weight is

linked to health disorders in both humans and agricultural

animals (Bouchard 1991; Campfield and Smith 1999;

Willet et al. 1999). Levi et al. (2010) describe numerous

environmental influences contributing to the recent spike in

body weight in humans, but strong evidence also indicates

that body weight has a significant genetic component.

Family and twin studies estimate that the heritable varia-

tion contributing to body weight ranges from 30 to 70%

(Rankinen et al. 2006). More recently, genome-wide

association studies (GWAS) have identified genetic vari-

ants that contribute to body weight, obesity, and body mass

index (BMI) in human populations, yet each individual

variant explains less than 0.05% of the heritable variation

(Loos and Bouchard 2008; Stratigopoulos et al. 2008;

Willer et al. 2009; Scherag et al. 2010; Speliotes et al.

2010). The discovery that these single-nucleotide poly-

morphisms (SNPs) account for only a tiny fraction of the
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genetic variation creates uncertainty regarding the ability

of GWAS to identify the bulk of heritable variation for

body weight. Reasons for this ‘‘missing heritability’’ are

thought to be due in part to the presence of rare alleles,

epistasis, and gene-by-environment interactions (Manolio

et al. 2009).

Mouse models are complementary to human genetic

studies and offer unique advantages, including the ability to

control environmental variance, perform dangerous or

invasive procedures, conduct well-defined crosses, func-

tionally evaluate candidate genes in vivo or in vitro, and

undertake rigorous mechanistic studies. Quantitative trait

locus (QTL) studies have been successful in identifying

chromosomal regions associated with body weight in mice,

yet gene identification has remained elusive (Brockmann

et al. 1998; Morris et al. 1999; Ishikawa and Namikawa

2004; Bennett et al. 2005; Neuschl et al. 2007). This is

partially because QTL studies in mice have traditionally

used recombinant inbred lines (RI), backcrosses, F2 inter-

crosses (F2), and similar strategies to identify QTLs that

underlie phenotypic variability. Due to a lack of recombi-

nation, these techniques are able to identify only large

genomic regions and are thus unsuitable for identifying the

genes that underlie QTLs (Peters et al. 2007; Flint 2011).

This serious limitation can be addressed by using pop-

ulations with greater numbers of accumulated recombina-

tions, such as advanced intercross lines (AILs) (Darvasi

and Soller 1995; Parker and Palmer 2011). AILs are pro-

duced by randomly mating many individuals beyond the F2

generation. These additional breeding generations produce

additional recombinations, which allows for the more

precise identification of QTL regions. Because AILs are

derived from two inbred founders, they maintain the sim-

plicity of more traditional crosses. The F2 and F34 AIL used

in the present study are derived from the Large (LG/J) and

Small (SM/J) inbred mouse lines originated from mice

selected for large or small body size at 60 days of age,

respectively (Goodale 1938; MacArthur 1944). After both

lines were fully inbred, they displayed a 24-g difference in

body weight at 60 days of age (Chai 1956). These strains

have been studied extensively as genetic models of body

weight and obesity-related traits (Cheverud et al. 2001;

Ehrich et al. 2003, 2005a, b; Fawcett et al. 2008, 2010).

The extreme phenotypic variability between these strains

makes them ideally suited for the identification of genetic

influences on body weight since they are expected to

possess many segregating alleles that confer differences.

In the present study, we use the power of LG/J 9 SM/J

F2 mice and the precision of LG/J 9 SM/J F34 AIL mice in

conjunction with a forward model selection procedure to

identify and fine-map loci associated with body weight.

Knowledge about the genes identified in these regions may

have many applications, including improvement of farm

animal meat quality and breeding procedures or the

development of treatments for growth- and obesity-related

disorders in humans. In addition, from a technical per-

spective, the use of a highly recombinant mouse population

in conjunction with our forward model selection QTL

mapping procedure has broader applications for the anal-

ysis of complex traits.

Materials and methods

Subjects

All procedures were approved by the University of Chicago

Institutional Animal Care and Use Committee (IACUC) in

accordance with NIH guidelines. Details regarding the

mice and genotypes used in the present study have been

described previously (Cheng et al. 2010; Lionikas et al.

2010; Samocha et al. 2010). We obtained inbred male SM/J

and female LG/J mice from the Jackson Laboratory (Bar

Harbor, ME). These mice were used to produce LG/J 9

SM/J F1 mice, which were then bred to create the F2

generation (n = 488, 239 females and 249 males).

In addition, we obtained 140 F33 breeders from the

laboratory of Dr. James Cheverud (Washington University,

St. Louis, MO). The F33 mice were outbred, with more than

50 families having been maintained per generation since

their inception. Breeding was random except that siblings

were not mated with one another. We chose to study the

SM/J and LG/J strains mainly because they were selected

to have high and low body weight and so were expected to

segregate many relevant loci, and because of the avail-

ability of an F33 AIL, which represents almost 10 years of

breeding. Records from Dr. Cheverud’s lab allowed us to

construct a pedigree for each F33 mouse that traced back to

the original inbred founders. From these 140 F33 mice, 119

were successfully bred to create an F34 generation

(n = 701, 343 females and 358 males) in which pheno-

types were measured. We produced only one F34 litter per

breeding pair. Breeding pairs were rotated after each litter

in order to avoid producing large numbers of full sibs;

however, the phenotyped (F34) generation inevitably con-

tained many sibs, half-sibs, and cousins as well as more

distant and complex relationships. All F2 and F34 mice

were housed in standard laboratory conditions with a

12:12-h light cycle and ad libitum access to standard lab

chow and water.

Phenotyping

Mice were weighed when they were approximately 2

months old (mean age = 62 days, SD = 5 days) at the

same time of day during the light phase of the day using a
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Fisher Scout II scale; weights were rounded to the nearest

0.1 g. These measurements were taken as part of a

behavioral study investigating methamphetamine sensitiv-

ity (Cheng et al. 2010), but were obtained before any drug

was administered. Additional data collected from these

mice after the measurement of body weight have also been

published (Lionikas et al. 2010; Samocha et al. 2010). Our

study uses a novel forward selection technique and inves-

tigates body weight QTLs, which were not studied in any

of the previous papers.

Genotyping

Genotyping was performed as previously described (Cheng

et al. 2010). Briefly, 162 evenly spaced SNPs were used as

markers in the F2 mice (Petkov et al. 2004). For the F34

mice, we designed a custom SNP array that assayed SNPs

using the Illumina Infinium Platform (http://www.illumina.

com). SNPs were chosen to provide uniform coverage of

the mouse genome and contained *4,000 markers that

were polymorphic between LG/J and SM/J strains. A full

list of these SNPs is available at the JAX Phenome website

under the name ‘‘Chicago1’’ (http://phenome.jax.org/db/

q?rtn=projects/detailsandsym=Chicago1). We performed

genome-wide association analysis in the combined popu-

lation of the F2 and F34 intercrosses using the R package

QTLRel, which is available from CRAN (http://cran.

r-project.org/web/packages/QTLRel/index.html). This soft-

ware allowed us to account for the complex relationships

(e.g., sibling, half-sibling, cousins) among the F34 mice by

using a mixed model as described previously (Cheng et al.

2010). Because of well-known effects of sex on body

weight, we explored genetic models where sex was inclu-

ded as an additive covariate.

Multiple QTL mapping and model selection

The initial genome scan identified QTLs on nine chromo-

somes that contributed to variation in body weight, with

multiple peaks on the same chromosome. After the initial

scan, we fit our model with all of the identified QTLs,

sequentially performed a series of tests, and removed QTLs

that were not significant given other QTLs in the model.

For model selection, we used Akaike’s (1974) information

criterion (AIC):

AIC ¼ � logðMÞ þ kjMj

where log(M) is the log-likelihood of model M under

consideration, |M| is the number of parameters in the model

M, and k = 2. Markers were tested using a 2-degree-of-

freedom test which models both additive and dominant

QTL effects. Instead of using the classical AIC in which

k = 2, we chose k to be half the 0.05 genome-wide

threshold. This extended AIC is called BICd by Broman

(2002) and posits that the chance of selecting any QTL by

the criterion will be 0.05 if there is actually no QTL.

We wanted to select the multi-QTL model that produced

the minimum AIC value. Because the number of loci tested

was large, it was impractical to search through the whole

model space to select the optimal model. Therefore, we

adopted two well-known model search strategies, forward

selection and backward elimination. First, we performed a

forward selection, starting with the model that included no

QTL. Next, a genome scan was performed and the locus

that resulted in the smallest AIC was added to the model. A

second genome scan was conducted while including the

previously selected QTL in the model. This procedure was

repeated until no loci had sufficiently large AIC to be

added to the model. The forward selection method identi-

fied 11 QTLs, two of which were on chromosome 6. These

results were broadly similar to the results obtained when

we performed a single QTL scan; however, the forward

selection procedure identified a QTL on chromosome 14

that was not significant when using a single QTL scan,

which demonstrates the advantage of our approach.

After generating this model, we further refined the

locations of these 11 QTLs by moving them to nearby

locations that reduced the AIC. This was done by use of a

coordinate descent algorithm (Nocedal and Wright 1999).

For this we cyclically moved each of the 11 identified

QTLs around its linkage region while keeping the locations

of other QTLs constant. The location of each QTL was

updated with the location that provided the smallest AIC;

this procedure is similar to one previously described by

Zeng et al. (1999).

Finally, we performed backward elimination to see if

any QTL should be excluded from the model. The rationale

is that the contribution of a QTL depends on other QTLs in

the model and forward selection can result in extraneous

QTLs (Broman 2002). This procedure did not remove any

of the QTLs. We defined the confidence interval for each

QTL as the 1.5-LOD dropoff on either side of the peak.

This interval was expressed in physical map position

(Mb) by using the genotyped SNP that was at or beyond the

1.5-LOD support interval.

Model testing

We used the following model to identify QTLs; for the ith

individual

yi ¼ xibþ
XK

k¼1

ai;kba;k þ
XK

k¼1

di;kbd;k þ gi þ ei

where xi represents covariates; ai,k = 1, 0, or -1 if the

genotype at the kth QTL is AA, Aa, or aa; di,k = 1 or 0 if

C. C. Parker et al.: Fine-mapping alleles for body weight 565

123

http://www.illumina.com
http://www.illumina.com
http://phenome.jax.org/db/q?rtn=projects/detailsandsym=Chicago1
http://phenome.jax.org/db/q?rtn=projects/detailsandsym=Chicago1
http://cran.r-project.org/web/packages/QTLRel/index.html
http://cran.r-project.org/web/packages/QTLRel/index.html


the genotype at the kth QTL is heterozygous or

homozygous; b’s are the corresponding effects; gi is the

polygenic effect; and ei is the residual effect. Furthermore,

assume (g1, g2, …, gn) * N(0, R) and (e1, e2, …, e3) *
N(0, Ir2). The model that we arrived at predicted body

weight (yi) as follows:

ŷi ¼ �3:40þ 1:37xsex þ 0:04xage þ 0:15ai;1 þ 0:03di;1

þ � � � þ 0:14ai;11 þ 0:01di;11

where xsex = 1 or 0 if the ith individual is male or female

and xage is its age in days.

Sequence analysis

Sequences for LG/J and SM/J inbred mice were provided

by Dr. Jim Cheverud from The Genome Sequencing Center

at Washington University (http://genome.wustl.edu) and

are described in detail elsewhere (Norgard et al. 2011).

Briefly, the sequencing data identified over 4 million

autosomal polymorphisms between LG/J and SM/J inbred

mice, and all SNPs used in the study are available at

dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/). We

used these data to identify nonsynonymous coding SNPs

within our QTL regions.

Results

Phenotypic analysis

On average, F2 mice weighed 25.01 g (SD = 5.48 g). F34

mice weighed an average of 26.21 g (SD = 5.67 g); these

differences were not significant. As expected, there was a

highly significant effect of sex on body weight

(p \ 0.0001). Figure 1 displays the distribution of body

weight, split by generation and sex.

QTL analysis

We performed multiple-QTL model selection using for-

ward selection and backward elimination on the integrated

LG/J 9 SM/J F2 and LG/J 9 SM/J F34 populations. The

resulting full model consisted of 11 QTLs on chromosomes

1, 2, 4, 6 (2 loci), 7, 8, 9, 10, 11, and 14 (Supplementary

Fig. 1 Histogram of body weight in F2 and F34 mice. a The body weight distribution for F2 female mice. b The weight distribution in F34

females. c The weight distribution in F2 males. d The weight distribution in F34 males
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Fig. 1). Table 1 displays the confidence intervals, peak

LOD scores, number of genes in the interval, and percent

variance explained for each QTL. The 1.5-LOD support

interval for body weight QTLs ranged between 1.82 and

18.79 Mb, with a median interval length of 5.55 Mb. The

number of annotated genes within these intervals ranged

from 5 to 109, with a median of 39 genes.

Sequence analysis

By comparing the sequences of LG/J and SM/J mice, we

identified nonsynonymous coding SNPs in the 1.5-LOD

support intervals of the QTLs and narrowed the list of

candidate genes (Supplementary Table 3). The number of

genes with nonsynonymous coding SNPs within each

interval ranged from 0 to 52, with a median of 4 genes.

Five of the QTL intervals contained fewer than 5 genes

with nonsynonymous coding SNPs. Three of the genes that

we identified (Rad23b, Stk33, and Anks1b) have been

associated with adiposity and BMI in human GWAS

studies (Willer et al. 2009; Croteau-Chonka et al. 2010).

Discussion

We performed genome-wide mapping of QTLs affecting

body weight in an F2 and F34 AIL population of mice

derived from strains selected for high and low body weight.

We used a forward selection and backward elimination

method to identify 11 QTLs affecting body weight. This

procedure identified one additional QTL that was not sig-

nificant when standard single QTL mapping was per-

formed. As expected, all LG/J alleles were found to be

associated with higher body weight. The integration of the

F2 and F34 populations provided good power (F2) and good

resolution (F34); the median resolution was 5.55 Mb, with

four loci \3 Mb.

Traditionally, F2 intercrosses are used to identify QTLs

underlying phenotypic variation, and fine-mapping is car-

ried out as a second step using congenic strains or other

fine-mapping tools. This time- and labor-intensive effort at

subsequent dissection and gene identification is often

derailed by the discovery that a single QTL of large effect

is in fact caused by multiple loci of small effect located in

the same chromosomal region (Legare et al. 2000; Mott

et al. 2000; Cheng et al. 2010; Shao et al. 2010). An AIL is

an improvement over these traditional methods because it

merges identification and fine-mapping into a single step,

which can often discriminate between loci that are due to

single versus multiple alleles (Darvasi and Soller 1995).

One drawback is that the power to detect QTLs in AILs is

lower than in F2 populations. This is because the AILs have

greater amounts of recombination than the F2, so more tests

are performed and a corresponding higher threshold is

needed to control type I errors. The integration of the F2

and F34 AIL populations combines the detection power of

the F2 with the precision of the F34 AIL.

After identifying 11 QTLs associated with body weight

that accounted for approximately 18% of the phenotypic

variance, we then used the obesity gene map (http://www.

obesitygenes.org), the mouse genome informatics database

(http://www.informatics.jax.org/), and the published liter-

ature on body weight phenotypes to identify approximately

60 other body weight QTLs that shared overlapping con-

fidence intervals with our regions of interest (Supplemen-

tary Table 1). While it is likely that some of the QTLs

identified in our study are the same as those identified

by other researchers, in most cases we have mapped

QTLs with far greater precision than earlier body weight

studies, which have a median QTL interval of 31.6 Mb.

Table 1 1.5-LOD support intervals for the QTLs for body weight

QTL Chr CI (Mb) Width (Mb) Peak (Mb) LOD Genes

in interval

% Var

BodWt1 1 133.16–137.59 4.44 136.186097 8.10 86 1.2

BodWt2 2 153.44–156.37 2.93 154.430807 7.70 67 1.1

BodWt4 4 53.93–55.82 1.89 54.622596 14.04 5 1.9

BodWt6a 6 76.09–81.85 5.76 77.070185 13.59 11 2.1

BodWt6b 6 142.67–144.50 1.82 143.980441 12.56 6 2.1

BodWt7 7 114.79–120.60 5.81 118.259509 15.56 92 2.2

BodWt8 8 28.87–47.66 18.79 47.658428 11.73 99 3.1

BodWt9 9 47.86–50.19 2.33 50.090963 9.25 20 1.2

BodWt10 10 87.27–92.82 5.55 88.687559 8.89 39 1.3

BodWt11 11 90.65–97.67 7.02 94.39318 7.91 109 1.1

BodWt14 14 87.93–102.70 14.77 93.996854 6.50 27 0.9

The width of the interval and peak marker location are given in Mb position based on Build 37 of the mouse chromosome. LOD score, number of

genes in the interval, and percent variance explained are also provided
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Interestingly, our QTLs also overlapped regions in other

mouse populations associated with phenotypes such as

obesity, bone mineral density, limb length, and organ

weights (Supplementary Table 2). This may indicate the

influence of a single gene on multiple phenotypic traits

(pleiotropy), or may simply reflect the fact that body

weight is a composite trait consisting of the weights of

muscle and fat compounds as well as those of organs,

bones, and body fluids (Brockmann et al. 1998). For

example, Cheverud et al. (2010) reported that 20% of the

weight of an animal in the LG/J 9 SM/J population is

dissectible fat, and in some cases this proportion can

approach 50%. While many of our body weight QTLs

overlapped with regions associated with organ weights and

fat percentages, only 1 of the 11 body weight QTLs

overlapped with the muscle weight QTLs identified by

Lionikas et al. (2010) in the same population of mice,

suggesting that these two phenotypes may have different

underlying genetic influences. Still, a limitation of our

study design was that we considered only total body weight

rather than the weight of specific components that may be

driving the observed variation in body weight.

Using sequence data generously provided by Dr.

Cheverud, we were able to examine more closely the

candidate genes within the QTL intervals and search for

polymorphic SNPs between strains (Supplementary

Table 3). Three of the QTLs (BodWt4, BodWt7, and Bod-

Wt10) contained genes (Rad23b, Stk33, and Anks1b,

respectively) with nonsynonymous coding SNPs that have

been associated with adiposity, waist circumference, and

BMI in human GWAS studies (Willer et al. 2009; Croteau-

Chonka et al 2010). A knockout mouse exists for Rad23b

that displays disruptions in adipose tissue, endocrine and

exocrine glands, growth, size, and metabolism (Ng et al.

2002). The GWAS finding, the existence of a knockout

mouse, and the fact that Rad23b is the only gene in the

BodWt4 QTL interval with a nonsynonymous coding

SNP makes it an especially promising candidate gene for

follow-up studies. However, it is important to note that

the polymorphisms underlying the observed trait variance

may be due to differences in gene expression rather than

in protein-coding genes. Indeed, one of our QTLs,

BodWt6a, did not contain any genes with nonsynony-

mous coding SNPs in exonic regions. It is possible that

this QTL and the others are due to SNPs in promoter or

enhancer regions that gave rise to expression QTLs

(eQTLs) resulting in differences in gene expression that

underlie body weight QTLs. Loci identified by human

GWAS are enriched for eQTLs, suggesting that the latter

may cause the former (Nicolae et al 2010). Availability

of genome-wide eQTL data in the LG/J and SM/J strains

will greatly aid in the identification of specific genes

underlying these QTLs.

Our study has several important limitations. First,

because we have used a cross between two inbred strains,

we are studying the alleles that segregate between them and

not the total universe of alleles that segregate among other

laboratory or wild mice. We did observe significant overlap

in the QTLs we identified in our population with QTLs

identified in other populations of mice (Supplementary

Table 1), which is consistent with the idea that laboratory

mice are segregating a relatively limited number of alleles

(Yang et al. 2007). Additionally, we considered only body

weight, but not body size or composition, and we examined

only one developmental time point and one diet condition.

Other studies have provided evidence that different genetic

loci may affect body weight at different developmental

stages, sexes, and diets (Cheverud et al. 2010; Lawson

et al. 2011). Despite these limitations, the QTLs we iden-

tified showed significant overlap with QTLs identified by

other researchers at a variety of ages, ranging from 21 to

252 days (Supplementary Table 1), as well as with the

results of human GWAS studies (Willer et al. 2009;

Croteau-Chonka et al 2010). Finally, we did not consider

parent-of-origin effects, which are known to be important

for body weight in these strains (Cheverud et al. 2010).

In conclusion, we have mapped a large number of body

weight QTLs using a novel multiple-QTL mapping pro-

cedure and forward selection model in an AIL. This has

allowed us to determine which QTLs contribute signifi-

cantly to variation in body weight given the existence of

other QTLs in the model. Some of the QTLs we identified

correspond to regions identified by other researchers, yet in

the majority of cases, we have narrowed the confidence

intervals quite significantly compared to previous studies.

In our study we have observed a relatively simple genetic

architecture, where a significant fraction of phenotypic

variation can be explained by a small number of loci; this is

in contrast to efforts to identify similar loci in humans and

reflects a strength of our approach. The use of a forward

model selection procedure allowed us to identify an addi-

tional locus compared to a single-QTL analysis. Further-

more, the combination of high-resolution mapping and

sequence data offers a powerful approach and permitted

identification of several candidate genes that may underlie

differences in body weight. In summary, AILs allow

GWAS to be performed in a situation where all alleles are

common and where uniform environmental conditions can

be maintained, which limits the interactions between genes

and environment. These advantages allowed us to map

QTLs with a modest sample size and identify small regions

that warrant further molecular evaluation.
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