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Understanding and modeling genetic or nongenetic factors that influence susceptibility to complex traits has been the focus
of many genetic studies. Large pedigrees with known complex structure may be advantageous in epidemiological studies
since they can significantly increase the number of factors whose influence on the trait can be estimated. We propose a
likelihood approach, developed in the context of generalized linear mixed models, for modeling dichotomous traits based
on data from hundreds of individuals all of whom are potentially correlated through either a known pedigree or an
estimated covariance matrix. Our approach is based on a hierarchical model where we first assess the probability of each
individual having the trait and then formulate a likelihood assuming conditional independence of individuals. The
advantage of our formulation is that it easily incorporates information from pertinent covariates as fixed effects and at the
same time takes into account the correlation between individuals that share genetic background or other random effects.
The high dimensionality of the integration involved in the likelihood prohibits exact computations. Instead, an automated
Monte Carlo expectation maximization algorithm is employed for obtaining the maximum likelihood estimates of the model
parameters. Through a simulation study we demonstrate that our method can provide reliable estimates of the model
parameters when the sample size is close to 500. Implementation of our method to data from a pedigree of 491 Hutterites
evaluated for Type 2 diabetes (T2D) reveal evidence of a strong genetic component to T2D risk, particularly for younger and
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INTRODUCTION

Identifying the genetic and environmental factors that
influence susceptibility to common complex diseases, such
as T2D, is a major goal of current biomedical research.
Although environmental risk factors can often be esti-
mated by studying unrelated individuals, estimation of
genetic risks requires related individuals. In fact, the
presence of familial aggregation of a disease is often taken
as indicative of a genetic factor in susceptibility. A
common measure of the degree of familial aggregation is
the sibling relative risk A, the ratio of the risk of the
disease in the sibling of a case to the risk in the general
population. The relative risk to a sibling (or other
relationship type) holds significant interest because the
pattern of risk across different relatives may reveal
information about the mode of transmission of the disease
and because it is a critical parameter in determining the
power to map disease loci [Risch, 1990a,b]. A typical study
design for estimating A; would be to ascertain affected
individuals from the population and measure the rate of
disease among the probands’ siblings, making adjustments
for ascertainment bias, as needed [Olson and Cordell,
2000; Zou and Zhao, 2004]. This approach, however, does
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not easily account for individual specific risk factors, for
example, age and gender, or common environmental
effects. Apparent familial aggregation, then, may in fact
be the result of shared nongenetic factors among families,
but estimates of risk are uninformed by knowledge of
these factors.

One approach to the analysis of binary traits that
incorporate both environmental covariates and genetic
correlation due to familial relatedness makes use of the
generalized linear mixed model (GLMM) statistical frame-
work. Although using GLMMs provides the necessary
flexibility in modeling, it comes at the cost of large
computational demands. In particular, the likelihood
under such a model typically involves an integral of
dimension equal to the number of individuals in the study.
This difficulty, though, is ameliorated when the subjects
can be grouped into nuclear families as the integral
reduces to a product of integrals each of which has
dimension equal to the size of the nuclear family. Recent
work has addressed the case of binary trait data in nuclear
families using either a Gibbs sampling approach [Burton
et al., 1999] or an h-likelihood [Noh et al., 2006].

Within the context of using a GLMM to model a binary
trait, however, a sample of many related individuals
presents significant computational challenges. Unlike the
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case of using nuclear families, where the likelihood
separates into many independent likelihoods, with each
being an integral of relatively small dimension, the
likelihood for a large family will have a high-dimensional
integral. Finding maximum likelihood estimates (MLE),
then, becomes a daunting task. The particular application
we undertake here involves the analysis of binary traits in
hundreds of individuals, all of whom are joined together
in a single, complex genealogy. Our approach is to use a
Monte Carlo expectation-maximization (MCEM) algo-
rithm to find MLEs of the GLMM [McCulloch, 1994,
1997; Booth and Hobert, 1999]. The Monte Carlo (MC)
approach to the EM algorithm is computationally demand-
ing because each calculation of the expectation calls for an
MC sample. Here, we speed up the MCEM through the
use of importance sampling [Levine and Casella, 2001],
which allows relatively few MC samples while maintain-
ing the efficacy of the MCEM.

In this article, we first describe the GLMM framework
and the likelihood associated with it, as well as the
development of the MCEM and importance sampling
implementations. We then demonstrate the validity of the
method by applying it to a simple case where exact MLEs
can also be computed. Simulations are used to show that
the method gives reliable estimates in the more computa-
tionally challenging case of many related individuals.
Finally, we demonstrate this method in a Hutterite
pedigree in which 491 related individuals have been
assessed for T2D, 36 of whom were affected.

METHODS

HIERARCHICAL MODEL

Consider a family of arbitrary structure consisting of n
members, and let yt = (Y1,...,yn) be a vector of zeros and ones
indicating whether an individual is affected (1), or not (0) by
a binary trait of interest. We assume that for each person i
the susceptibility to the trait is influenced by an underlying
(unobserved) random polygenic effect #; and (potentially)
by some known covariates x; (e.g., age, sex, etc.). Further-
more, suppose that given the random effects u;, each
pedigree member i independently has the trait with
probability p;. In other words, given u = (uy,...,u,), the y/s
are assumed to be independent Bernoulli trials, each with
parameter p;. Finally, the probabilities p; are modeled as
functions of the covariates and the random effects as follows

pi = h(x p+u;),

where B is a vector of fixed unknown regression coefficients
and /1 is an appropriate function that takes values between
zero and one. Although there are a variety of functions that
satisfy this condition, throughout we will assume that
I is the inverse logit function, that is h(t) = e'/(1+e").
To completely specify our model we assume that the
random effects u follow a multivariate normal distribution
with mean zero and some covariance matrix Q, i.e.,
u~MVN(0,Q2). Under additivity across the effects of the
trait contributing loci, it can be shown [Jaquard, 1974; Abney
et al., 2000] that Q has the following form

Q = 2062 +V,;05+ V05 +V,Covy(a,d)+V,, SS,,, (1)

where ¢2 and ¢7 are the additive and dominance genetic
variance in the population, oﬁ and Covy(ad) are the
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dominance variance and additive-dominance covariance in
homozygous populations, and SS, is the inbreeding
depression. Finally, ® is a known matrix whose (i))th
element is the kinship coefficient between individuals i and
j, while the elements of the V matrices are also known and
are functions of the condensed coefficients of identity
[Jaquard, 1974]. Here we make the simplifying assumption
that all genetic variances other than additive are zero so that
Equation (1) only retains the first term and in that case the
total genetic variance o, is equal to the additive component
6,. Also, note that unlike in the case of a quantitative trait,
this formulation does not include residual environmental
variance. Here, this random residual effect is captured by
the Bernoulli trials for the affection status.

THE LIKELIHOOD

In order to estimate the genetic parameters of interest
6> =c2, as well as the covariate parameters B that
correspond to the fixed effects, we need to formulate the
likelihood function given the observed data under our
model. If the random genetic effects were observed, then

this likelihood function would simply be

1 n - 1 - .
LC(B:O'Z;Yau):_(ZTE)n/Zl [pra—p)" Wexp(—zuTQ 1u)IQI :
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where B(-)and ¢,(0,2) denote the density functions for the
Bernoulli and the multivariate normal with mean zero and
variance-covariance matrix Q, respectively. However, in
practice we only observe the affection statuses y. Thus, we
need to integrate out the u/s to obtain the marginal
likelihood

Lo(boy)= [ [[Bibandu 0.2 @)
i=1

Evaluation, as well as maximization of this marginal
likelihood requires the computation of an n-dimensional
integral, where 7 is the number of individuals. In general,
unless 7 is small or Q has a fairly simple form, exact
computation of the above integral is infeasible [Booth and
Hobert, 1999]. Nevertheless, there are several approaches
available that can be useful in overcoming this obstacle,
such as the Monte Carlo Newton-Raphson (MCNR) method
[Lange, 1995], the Simulated Maximum Likelihood (SML)
approach [Geyer and Thompson, 1992], the Stochastic
Approximation Expectation-Maximization (SAEM) [Delyon
et al., 1999], or the Monte Carlo EM (MCEM) [Wei and
Tanner, 1990], to name a few. We opt to use the last one
since simulation studies suggest that it performs at least as
well as the other approaches for a variety of models
[McCulloch, 1997; Booth and Hobert, 1999].

An EM algorithm is a natural method to use for this type
of problem because the loglikelihood of the complete data
(2) is considerably simpler than the observed data like-
lihood (3). In this case the E-step entails calculating the
conditional expectation over u of the complete data
loglikelihood given the observed y. It is this step that
presents the primary computational challenge of this
problem. Our approach combines MCMC and importance
sampling techniques and is detailed in the Appendix.
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CONVERGENCE OF THE ALGORITHM

In order to study the convergence properties of our
algorithm we perform the following study. We created an
artificial super-family of 208 individuals by concatenating
52 nuclear families. Note that the fact that not all the
individuals are related to each other should not affect the
behavior of the MCEM algorithm, except that the matrix ®
will simply have a block diagonal form. However, using
the independence across families allows us to compute the
exact likelihood curve for this super-family and obtain the
true value of the MLE’s for the model parameters. We
analyzed this super family assuming a model with no
covariates and only with additive genetic variance. The left
graph in Figure 1 displays the likelihood curve around the
vicinity of the MLE of the oy, 1.42, marked by the solid
gray line. We can see that the likelihood seems to be well
behaved in this region.

To gauge the effect of the choice of the starting point on
the convergence of the algorithm, we maximized the
likelihood 250 times each time randomly selecting a
staring point in the interval from 0.5 to 6.5. We avoided
starting points closer to 0, since from preliminary analyses
such starting points seemed to result in an MCEM that
takes too long to move away from that neighborhood. For
all runs we used a burn-in period of 1,000 iterations before
we switched to the importance sampling version. For the
stopping rule we required that the criterion be met three
consecutive times to avoid premature stopping of the
algorithm. The resulting MCEM estimates from those runs
are summarized in the middle and right graphs of Figure 1.
The solid gray line corresponds to the true value of the
MLE, while the black dashed line on the third graph marks
the 1,000 iteration where the algorithm switches to the
importance sampling. As we can see from these graphs,
the estimates of the MLE from these 250 runs were very
close to the true MLE demonstrating that, as long as the
starting point is not too far away from the neighborhood of
the true MLE, the algorithm will converge to the right
value with high accuracy with a mean relative error from

Likelihood Curve

Estimates of 250 Runs
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the true MLE of 0.04. Furthermore, we can see that
typically, regardless of the starting point, we need about
500 iterations for the MCEM to bring us in the neighbor-
hood of the MLE. Finally, note that our model had only
one parameter, the genetic variance component. As a
result, the likelihood function was very sharp in the
vicinity of the MLE, allowing the algorithm to converge
quickly and with high accuracy. Due to the limited
information inherent in binary data, adding more para-
meters (covariates) in the model would likely result in a
flatter likelihood function [McCulloch, 1997; Sung and
Geyer, 2007]. In such a case, the MCEM algorithm would
require larger number of MC realizations to converge to
the true MLE with the same accuracy, thereby resulting in
longer runs of the algorithm.

A SIMULATION STUDY

To explore the properties of our method we performed a
simulation study. We considered three different types of
multi-generational pedigrees, all modeled after specific
sub-branches of the Hutterite pedigree [Abney et al., 2000;
Ober et al., 2001]. The first two pedigrees resembled a five
and seven generation family with 220 and 382 members,
respectively. The third pedigree, of 491 individuals, had
exactly the same covariance structure as the Hutterite sub-
pedigree we analyze below and consisted of the four most
recent generations of a 1,623 member pedigree founded by
64 individuals of European descent (see description
below). The genetic model we considered included two
fixed effects, intercept (By) and gender (B,), and a genetic
additive random effect (o). The values of the parameters
Bo, B1, and oy, of the simulation model were set to —1,
—0.25, and 4, respectively, and they were chosen in such a
way as to yield an average disease prevalence in the family
close to 12%, while making sure that the model would not
generate pedigrees with too few affected individuals that
could potentially cause problems in the algorithm (Table I).
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Fig. 1. Convergence of the MCEM algorithm: The graph to the left displays the likelihood curve in the vicinity of the MLE, vertical
solid grey line, of the genetic variance component (sy). The graph in the middle displays the observed distribution of the resulting MLE
values of 250 runs of the MCEM. The vertical solid grey line marks the true value of the MLE. The graph to the right displays the paths
of a sample of 10 runs for varying starting points in the interval [0.5, 6.5]. The dashed vertical line marks the end of the burn-in period,
while the solid horizontal grey line corresponds to the true value of the MLE.
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TABLE I. Average number of affected individuals in the
pedigrees under the simulation model (based on 10,000
simulated families)

Number of affected members (%)

Pedigree

size Mean SD
220 25.7 (11.7) 11.0 (5.0)
382 46.5 (12.2) 16.8 (4.4)
491 60.4 (12.3) 279 (5.7)

The values of the parameters By, B1, and o, of the simulation
model were set to —1, —0.25, and 4, respectively.

For each pedigree type we generated phenotypes for 200
replicates and analyzed them according to the following
scheme. First, values for the underlying quantitative risk
for all family members were randomly generated from a
multivariate normal with mean zero and covariance matrix
given in (1). Then, for each member of the family we
computed the person-specific probability of being affected
by the trait using the logit function and the information on
the covariates. These probabilities were then used to
determine the affection statuses of the family members
through conditionally independent Bernoulli trials. For the
MCEM computations, we set the number of initial burn-in
iterations B to 500. The stopping criterion used was the one
described in the Appendix, where we required that the
criterion be met for three consecutive times before
convergence was declared. Finally, in order to moderate
the effect of potential local maxima, we decided to run the
MCEM algorithm five times, each time using a different
starting point, and take as MLE'’s for each model parameter
the median of the resulting values from these five runs.

The results from the simulations are summarized in
Table II. We can see that when the family size was 220
individuals, the estimates of the parameters showed some
bias. In particular, the estimates for the random polygenic
effect seemed to be slightly positively biased. However, as
the family size increased, the bias was significantly
reduced. This is not entirely surprising. Biased estimates,
especially for the random effects, may be expected in the
GLMM context [Moreno et al., 1997; Burton et al., 1999;
Noh et al.,, 2006; Yun and Lee, 2004]. Bias can be
particularly pronounced in situations in which the trait
prevalence is less than 15%, as it is in this case [Yi and Xu,
1999; Stock et al., 2007]. Furthermore, restricting the
genetic variance to be positive was also expected to
positively bias the MLEs [Burton et al., 1999]. Including
more individuals in the analysis should, in principal, help
moderate the bias on the estimates, whether this bias
comes from low prevalence or from the constraint that the
parameter has to be positive, however, at the cost of
greater computational intensity.

The last column of Table II provides the observed
coverage of the 95% confidence intervals based on the
asymptotic normality of the MLEs. We can see that the
coverage for the genetic variance component was lower
than the nominal one. This is again not surprising. Low
coverage probabilities of the confidence intervals for the
variance components have also been observed before in
the MCEM context [Burton et al., 1999]. The very low
coverage probability may indicate issues with the starting
points leading to local maxima. Such problems are not
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TABLE II. Simulation results for the MCEM with five
runs per replicate based on 200 replicates

Size® Parameter True value® Mean® Median® SD°¢ 95% CP¢

220 Bo —1.00 —-0.69 —-0.88 3.08 0.975
B1 —0.25 -035 —-028 029 0935
Cg 4.00 533 430 354 0.660
382 Bo —1.00 —-0.82 062 265 0.955
B4 —0.25 —-030 —-0.27 022 0.840
Cg 4.00 4.56 401 231 0525
491 Bo —1.00 -1.18 —-090 1.80 0.920
B1 —-0.25 -027 —-026 011 0.880
Oy 4.00 4.32 414 169 0555

For each replicate the MLE values were taken to be the median
values of the resulting MLEs from the five runs.

“Number of family members in the pedigree.

PTarget value of parameter under simulation model.

‘Observed mean, median, and SD of the resulting MLEs.
dObserved coverage probability defined as the proportion of the
ClIs that captured the target value.

unusual in GLMMSs, where non-unimodal likelihood
functions are observed quite often [McCulloch, 1997; Sung
and Geyer, 2007]. Furthermore, the coverage probably
might have also been affected by the fact that the estimates
of the parameters, and especially those for the genetic
component, are biased. An additional reason for this low
coverage probability may also be that the distribution of
the MLE’s seemed to not have reached asymptotic
normality. Indeed, as we can see from Figure 2, the
observed distribution of the MLEs, and especially of that
for the genetic variance, seem to be rather skewed even
when the family comprised 491 individuals, implying that
this size may not be sufficiently large for the central limit
theorem to take effect. This could be the result of
estimating the target function to be maximized using an
MCMC sampling scheme, which can affect the validity of
the asymptotic normality of the resulting MLEs [Sung and
Geyer, 2007]. Moreover, we observed flatness in the
likelihood function in the neighborhood of the MLE,
suggesting asymptotic normality has not yet been
achieved in the data set. To investigate the effect of the
choice of the starting point on the bias of the estimates and
the coverage of the asymptotic confidence intervals, we
decided to increase the MCEM runs to 21, and again take
the median estimates as MLEs. As we can see from
Table III increasing the number of runs of the MCEM
significantly reduced the bias. Even though the coverage
probability was also significantly increased, it remained
below the nominal value, indicating that the problem with
the non-normality of the asymptotic distribution of the
MLE:s is probably still an issue.

TYPE 2 DIABETES IN THE HUTTERITES

The Hutterites are a religious isolate of more than 40,000
members living on approximately 400 communal farms in
the northern United States and western Canada. Due to the
small number of founders and their communal lifestyle,
the Hutterites have been the focus of genetic studies for
over 50 years [Ober et al., 2001, 2008, 2009; Steinberg et al.,
1967; Hostetler, 1974]. Here we consider 491 Hutterites of
age 15 years or older who were evaluated for T2D between
1996 and 1997. Information on pertinent covariates, such
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Fig. 2. Distributions of the MLEs from 200 replicates with five runs per replicate. The vertical dashed lines represent the true value of

the parameter under the simulation model.

TABLE III. Simulation results for the MCEM with 21
runs per replicate based on 200 replicates

Size® Parameter True value® Mean® Median® SD° 95% CP¢
220 Bo —1.00 -1.03 -1.10 233 0.980
B1 —0.25 —0.30 —0.28 0.20 0.955
Og 4.00 4.90 448 241 0.795
382 Bo —1.00 —-0.97 —0.72 231 0.975
By —0.25 —-0.28 —-0.27 0.18 0.915
Og 4.00 4.39 414 1.79 0.650
491 Bo —1.00 —-1.21 —-1.04 1.26 0.980
B1 —0.25 —0.26 —-0.26 0.07 0.970
(o8 4.00 4.07 401 111 0.745

g

For each replicate the MLE values were taken to be the median
values of the resulting MLEs from the 21 runs.

“Number of family members in the pedigree.

PTarget value of parameter under simulation model.

‘Observed mean, median, and SD of the resulting MLEs.
dObserved coverage probability defined as the proportion of the
ClIs that captured the target value.

as gender, age, and BMI, were available for all subjects. All
individuals in our study are related to each other through
a complex pedigree of 1,623 individuals that traces back to
64 ancestors who were born between the early 1700s and
the early 1800s in Europe [Abney et al., 2000]. For more
information on the history and the relationship of the
pedigree members, the reader is referred to Ober et al.
[2001] or Steinberg et al. [1967].

A total of 36 individuals were clinically diagnosed with
T2D based on their fasting glucose levels, according to the
American Diabetes Association criteria [2010], yielding an
overall prevalence of 7.5% (Table IV). There were slightly
more women with T2D than men, 20 (8%) versus 16 (6%).
Hutterites with T2D were significantly older than those
without T2D (average age of 60.1 versus 33.6 years,
respectively), and more overweight (mean BMI=231.1
and 25.8, respectively). Only seven individuals with T2D
were younger than 50 years at the time of study. Because of
the highly polarized distributions of age and BMI, and
possible differences in gender between the Hutterites with
and without T2D, we fit several models that included

Genet. Epidemiol.
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different combinations of these covariates: (a) Model I
included gender and age, (b) Model II included gender,
age, and BMI, (c) Model III included only age, (d) Model IV
included age and BMI, and (e) Model V included age, BMI,
and the interaction between age and BMI (Age x BMI). For
the MCEM computations, we used the same values for all
tuning parameters as in the simulations. That is, we set B to
500 and we required that the stopping criterion be met for
three consecutive times before convergence was declared.
Based on the simulation results we decided to run the
MCEM algorithm 21 times using different starting points
and took as MLE's for the model parameters the medians of
the resulting values from these runs.

Table V displays the MLE estimates for the parameters
for all five models we considered as well as their estimated
standard errors. The results suggest that gender is not an
important risk factor for T2D in the Hutterites. Models II
and IV suggest that the other two covariates are significant
risk factors for T2D, as expected [Narayan et al., 2007; Bays
et al., 2007], while Model V further indicates that age and
BMI are independent because the interaction term was not
statistically significant. Finally, all models clearly indicate
a significant genetic component to the trait in the
Hutterites, as for all models the estimate of the genetic
variance component was statistically significant.

Interpretation of the coefficients of the fixed effects in our
model is similar to that of the coefficients of the fixed effects
in a logistic model and they are subject-specific and not
population specific [Burton et al., 1999]. The genetic variance
component can be interpreted in a similar fashion as in the
case of variance components of a continuous trait but on the
log scale [Burton et al., 1999]. Traditionally, in the context of
continuous traits one gauges the contribution of genetics
using a measure such as broad or narrow heritability, which
are ratios of functions of the genetic variance components,
over the total variance at the trait (sum of the genetic and the
residual — environmental — variance). In our case estimation
of heritabilities is hindered because our model does not

TABLE IV. Numerical summaries of the features of the
Hutterite Pedigree

N  No. with diabetes Age BMI
Total 491 36 (7.3%) 35.6 (16.0) 26.2 (5.6)
Male 267 16 (6.0%) 353 (16.0) 25.6 (5.6)
Female 224 20 (8.0%) 359 (16.2) 26.2 (5.5
Diabetics 36 — 60.1 (10.8) 31.1 4.7)
Nondiabetics 455 — 33.6 (14.7) 25.8 (5.5
Age <50 years 394 7 (1.8%) 29.2 (9.8) 253 (5.4)
Age >0 years 97 29 (30.0%) 614 (8.9 299 (5.1

include an explicit environmental variance component.
One might consider using the binomial residual variance,
appropriately transformed on the log scale, as an estimate
of the environmental effect. However, this is not appro-
priate because the binomial residual variance is not
analogous to the environmental variance in the continuous
traits and as such it can lead to misleading conclusions
[Burton et al., 1999].

Instead, in Figure 3 we plot the population prevalence of
the trait and the recurrence probability (risk) for siblings as a
function of the age of a person. We only considered models
IIl and IV (Table V) because neither sex nor the Age x BMI
interaction term was a significant predictor of risk. For the
sibling recurrence risk we computed the probability of a
person having T2D at a certain age, given that a sibling had
T2D at the same age. To compute the risks under each model
we worked as follows. First, using the MLEs of the
parameters and for a given age, we computed the marginal
probability of a single person being affected (i.e. the
prevalence) using equation (3). This was an easy task
because the data consist of a single individual resulting in
a one-dimensional integral. In a similar fashion, we used the
same equation to compute the joint probability of two
siblings being affected by setting their phenotypes to
y1=y,=1 in Equation (3) and using the same age value
for both siblings. This was also easily computed as it
involved a two-dimensional integral and computations were
feasible using standard software packages. Finally, we
divided the joint probability by the marginal probability to
obtain the sibling recurrence risk. For the models that
included BMI as a covariate, we computed the risks
assuming the same BMI for both siblings. We selected two
different BMIs that corresponded to the average BMI
observed among Hutterites with T2D (BMI = 31, which is
considered obese) and among those without T2D (BMI = 26,
which is considered normal) at the time of examination.

From Figure 3A we can see that all models suggest a
significant increase in the risk for T2D with increasing age,
as expected [Bays et al., 2007]. Consistent with our
observations, the risk of T2D is low for Hutterites younger
than age 50 years and increasing sharply thereafter.
Obesity is also a significant risk factor, as previously
reported [Narayan et al., 2007; Bays et al., 2007]. A BMI of
31 increases one’s risk for T2D between 30 and 100%
relative to a person of the same age and with a BMI of 26.
For instance, based on the model that included BMI
(Model 1V), a 50-year-old person with a BMI of 26 has a 5%
chance of having T2D, while a 50-year-old person with a
BMI of 31 has twice this risk (10%) of having T2D.
Similarly, two individuals who are 60 years old have 24
and 32% chances of having T2D, depending on whether

TABLE V. MLE estimates of the model parameters and their estimated standard error for the four models considered

Fixed effects

Genetic effect

Model Constant Gender Age BMI Age x BMI Cg

I —11.2 (2.6) —0.98 (0.67) 0.16 (0.04) - - 2.42 (0.74)
II —32.7 (8.8) —2.33 (1.37) 0.31 (0.08) 0.34 (0.16) - 6.06 (1.98)
11 -12.2(1.7) - 0.17 (0.03) - - 2.58 (0.35)
v -19.9 4.1) - 0.18 (0.04) 0.21 (0.09) - 3.24 (0.77)
A% —14.9 (6.9) - 0.13 (0.12) 0.11 (0.22) 0.001 (0.004) 2.45 (0.71)

The estimates represent the median values from 21 runs of the MCEM algorithm.
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Fig. 3. Estimated population and sibling risks for T2D (Graph A) and Sibling Relative Risk (Graph B) as functions of the age of the
individual, based on the MLEs of Models III and IV in Table IV. The lines labeled “No BMI” correspond to model III in which BMI was

not included as a covariate.

their BMI is 26 or 31, respectively, marking a 33% increase
in the risk. Thus, the absolute risk for T2D in the Hutterites
increases with increasing age and increasing BMI.

We next specifically examined the contribution of family
history (i.e., genetics) to T2D risk. Having a sibling with
T2D increases the risk of T2D at all ages, regardless of BMI,
in the Hutterites (Fig. 3B). However, the increased risk for
T2D is highest when the affected sibling is young and with
lower BMI. For example, having a sibling with T2D by the
age of 40 years is associated with a five- to eight-fold
increased risk for having T2D at the same age, with absolute
risk increasing from 1.5-3.5% to 15-18.5%, depending on
BMI. The fold increase in risk is less pronounced at older
ages, dropping to around 1.5 at 70 years or older. This
indicates a potentially strong genetic component for early
onset T2D, with a lesser contribution of genetics to T2D risk
at later ages. Similar to the age effect, there is a stronger
genetic component to T2D risk at lower BMI. Thus, the
highest relative risk for T2D in the Hutterites are for siblings
of T2D cases who are young and of normal weight.

DISCUSSION

We have described a likelihood method, developed in the
context of the GLMMs [McCulloch, 1997], for modeling
dichotomous traits using data from a large complex
pedigree. Our formulation provides a flexible tool that can
capitalize on information on pertinent covariates by treating
them as fixed effects, while at the same time it takes into
account shared genetic background among related indivi-
duals through random effects. In particular, under our
formulation, the common genetic background is captured
by the covariance matrix of the joint unobserved genetic
components. Usually, the structure of the covariance matrix
is easily computed based on the known relationships of
the individuals in the sample. When the relationship
between individuals are not completely known, as in most
association studies, the structure of the matrix can be
estimated from marker data, thus uncovering any cryptic
relatedness in the sample [Astle and Balding, 2009].

Maximization of the likelihood function requires the
computation of a multidimensional integral that is not
feasible in analytical form. To overcome this hurdle we have
devised an efficient automated MCEM algorithm.
Simulation results suggest that our method performs
well, especially for sample sizes of more than 400
individuals. The estimates of the model parameters appear
biased with respect to the target values, especially for the
genetic variance parameters. This is not uncommon in the
context of the GLMMSs where biased estimates are expected
due to the sparse nature of the data that often result in very
flat likelihood functions or likelihoods that are non-
unimodal [Sung and Geyer, 2007; Burton et al., 1999; Noh
et al., 2006; McCulloch, 1997]. In order for the MCEM
algorithm to distinguish between values of the parameters
with similar likelihood values, one would need prohibi-
tively large Monte Carlo sample sizes that would render
computations cumbersome. This problem can be partially
mitigated by running the MCEM multiple times with
different starting points and setting as MLEs the means or
medians of the MLE values from these runs. In addition, use
of penalized likelihood functions may further reduce the
magnitude of the bias [Noh et al., 2006; Yun and Lee, 2004].
Alternatively, one could consider using liability threshold
models, such as the one implemented in SOLAR [Blangero
and Almasy, 1996]. Even though such models may also
potentially result in biased estimates in some cases [Moreno
et al., 1997], depending on the quality of the information on
the fixed effects, they usually tend to provide essentially
unbiased estimates of the genetic parameters [Williams
et al., 1999; Duggirala et al., 1997]. Notice though that the
interpretation of the genetic variance parameters of the
liability model is different than that of the variance
parameters in our modeling, since the liability-threshold
model also includes an environmental variance component.
In order to ease the computational burden associated
with the Monte Carlo part of the MCEM, we implemented
an importance sampling scheme since it can significantly
reduce the workload. Although importance sampling
techniques work well when the MCEM is very close to
the neighborhood of the MLEs, they may drift when this is
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not the case. To minimize this risk, we start our algorithm
with a number of regular MCEM burn-in iterations to
move in the vicinity of the MLE before switching to the IS
version. A burn-in iteration period of around 500 seemed
to have worked well in all the scenarios we examined.
Another factor that seemed to have some effect on the
convergence of the algorithm was the number of MCMC
realizations used to estimate the target function for the EM
algorithm in the burn-in period. We found that a sample
size of 500 MCMC realizations were sufficient for the
algorithm to behave appropriately, while smaller sample
sizes tended to move the algorithm close to the boundary
where the MCEM was eventually trapped.

As in Burton et al. [1999], in our simulations we observed
a low coverage probability of the asymptotic confidence
intervals for the true value of the genetic variance
component. The low coverage could be partially attributed
to the bias introduced in the parameter estimates because
the random component parameter is constrained to be non-
negative. An additional explanation may rest on the
asymptotic distribution of the MLEs that might not have
reached normality either due to flatness of the likelihood in
the neighborhood of the MLE, or due to the use of MCMC
techniques for generating observations used to estimate the
target function in the MCEM [Sung and Geyer, 2007].
Indeed, our simulations seem to corroborate the latter
scenario, as the empirical distribution of the MLEs of the
random effects displayed a clear non-normal pattern even
when the family had almost 500 members. Nevertheless,
the confidence intervals for the fixed effects seemed to have
maintained the correct nominal coverage probability even
for family sizes as small as 220 individuals.

We implemented our method using data for 491
Hutterites who were evaluated for T2D. We fit five models
that included different combinations of relevant covariates
such as BMI, age, and gender of the participants. Our
analyses indicated that gender is not a significant factor for
T2D in this population. On the other hand, similar to other
studies [Narayan et al., 2007; Bays et al., 2007], BMI and
age are significant and independent risk factors for T2D.
Overall, irrespective of the number and type of covariates
used in the models we considered, our results suggest a
strong genetic component contributing to risk, particularly
among younger and leaner cases. In contrast, genetics
appears to play a less important role in the development of
diabetes among older and more obese individuals, in
which case the disease is more likely due to environmental
factors (i.e., such as the obesity itself).

Our current approach assumes an additive genetic model.
This does not pose significant limitations to the method, as
in most situations the ability to uncover non-additive effects
is limited [Pawitan et al., 2004]. Nevertheless, our model can
be easily modified to include additional genetic components
such as dominance. From a theoretical point of view this is
easily achieved. However, including more genetic compo-
nents can potentially lead to problems with the convergence
of the MCEM. Due to the sparseness of the binary data that
often result in flat likelihoods, there is a great risk that the
MCEM will drive the estimates of the fixed and the random
effects to extreme opposites, increasing the bias in the
estimates and resulting in singular fisher information [Sung
and Geyer, 2007]. Instead, a penalized likelihood approach
might be more preferable in that case.

Finally, a great advantage of our method is that it can
serve as a framework for developing mapping techniques
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for loci contributing to complex traits. This can be easily
accomplished in our method by including the genotype as
a covariate in the model. One can then maximize the
likelihood, obtain the MLE of the parameter corresponding
to the locus of interest, and use this MLE to test the effect of
the marker on the trait. Even though this is a simple
approach, its practical utility is limited to candidate gene
studies where the number of markers to be tested is small,
thereby allowing for the analysis to be performed in a
reasonable time frame. However, the computational in-
tensity of the algorithm (typically around 4hr for a
pedigree of size 491 members on a single core E5530,
2.4 GHz, Dell Precision T7500 personal computer) prohibits
genome-wide scans since they involve a very large number
of markers that need to be tested. Instead, one can use an
efficient scoring function as in Abney et al. [2000] that can
significantly alleviate the computational burden of the
method, thus making GWAS more amenable. The proper-
ties of this approach will be explored in future work.

SOFTWARE

The software package BVC implementing the methods
described here is freely available at http://code.google.com/
p/papachristou-free-genetics-software/downloads/list.

REFERENCES

Abney M, McPeek MS, Ober C. 2000. Estimation of variance
components of quantitative traits in inbred populations. Am ]
Hum Genet 66:629-650.

American Diabetes Association. 2010. Risk factors for the development
of diabetes mellitus. Diabetes Care 33:1562-1569.

Astle W, Balding D. 2009. Population structure and cryptic relatedness
in genetic association studies. Stat Sci 24:451-471.

Bays HE, Bazata DD, Clark NG, Gavin JR, Green A], Lewis SJ,
Reed ML, Stewart W, Chapman RH, Fox KM, Grandy S. 2007.
Prevalence of self-reported diagnosis of diabetes mellitus and
associated risk factors in a national survey in the us population:
Shield (study to help improve early evaluation and management of
risk factors leading to diabetes). BMC Public Health 7:277.

Blangero ], Almasy LA. 1996. SOLAR: Sequential Oligogenic Linkage
Analysis Routines. Technical Notes No. 6 Population Genetics
Laboratory, Southwest Foundation for Biomedical Research, San
Antonio, TX.

Booth J, Hobert J. 1999. Maximizing generalized linear mixed model
likelihoods with an automated Monte Carlo EM algorithm. J R Stat
Soc Ser B Stat Methodol 61:265-285.

Burton PR, Tiller KJ, Gurrin LC, Cookson WO, Musk AW, Palmer LJ.
1999. Genetic variance components analysis for binary phenotypes
using generalized linear mixed models (glmms) and Gibbs
sampling. Genet Epidemiol 17:118-140.

Delyon B, Lavielle M, Moulines E. 1999. Convergence of a stochastic
approximation version of the EM algorithm. Ann Stat 27:94-128.

Duggirala R, Williams JT, Williams-Blangero S, Blangero ]. 1997.
A variance component approach to dichotomous trait linkage
analysis using a threshold model. Genet Epidemiol 14:987-992.

Geyer CJ, Thompson EA. 1992. Constrained Monte Carlo maximum
likelihood for dependent data. J Roy Stat Soc Ser B 54:657-699.

Hostetler JA. 1974. Hutterite Society. Baltimore: Johns Hopkins
University Press.

Jaquard A. 1974. The Genetic Structure of Populations. New York:
Springer.

Lange K. 1995. A gradient algorithm locally equivalent to the em
algorithm. ] Roy Stat Soc Ser B 57:425-437.



Binary Trait Variance Components 299

Levine R, Casella G. 2001. Implementations of the Monte Carlo EM
algorithm. ] Comput Graph Stat 10:422-439.

Levine R, Fan J. 2004. An automated (Markov Chain) Monte Carlo EM
algorithm. J Stat Comput Simul 74:349-359.

McCullagh P, Nelder J. 1989. Generalized Linear Models. London:
Chapman and Hall.

McCulloch CE. 1994. Maximum-likelihood variance-components
estimation for binary data. ] Am Stat Assoc 89:330-335.

McCulloch CE. 1997. Maximum likelihood algorithms for generalized
linear mixed models. ] Am Stat Assoc 92:162-170.

Moreno C, Sorensen D, Garcia-Cortes L, Varona L, Altarriba J. 1997.
On biased inferences about variance components in the binary
threshold model. Genet Select Evol 29:145-160.

Narayan K, Boyle J, Thompson T, Gregg E, Williamson D. 2007. Effect
of bmi on lifetime risk for diabetes in the U.S. Diabetes Care 30:
1562-1566.

Noh M, Yip B, Lee Y, Pawitan Y. 2006. Multicomponent variance
estimation for binary traits in family-based studies. Genet
Epidemiol 30:37-47.

Ober C, Abney M, McPeek MS. 2001. The genetic dissection of complex
traits in a founder population. Am ] Hum Genet 69:1068-1079.
Ober C, Tan Z, Sun Y, Possick J, Pan L, Nicolae R, Radford S, Parry R,
Heinzmann A, Deichmann K, Lester L, Gern ], Lemanske R,
Nicolae D, Elias ], Chupp G. 2008. Variation in the chi3ll gene
influences serum ykl-40 levels, asthma risk, and lung function.

NEJM 358:1682-1691.

Ober C, Nord A, Thompson E, Pan L, Tan Z, Cusanovich D, Sun Y,
Nicolae R, Edelstein C, Schneider D, Billstrand C, Pfanger D,
Phillips N, Anderson R, Philips B, Rajagopalan R, Hatsukami T,
Rieder M, Heagerty P, Nickerson D, Abney M, Marcovina S,
Jarvik G, Scanu A, Nicolae D. 2009. Genome-wide association
study of plasma Ip(a)levels identifies multiple genes on chromo-
some 6q. ] Lipid Res 30:798-806.

Olson JM, Cordell HJ. 2000. Ascertainment bias in the estimation
of sibling genetic risk parameters. Genet Epidemiol 18:217-235.
Pawitan Y, Reilly M, Nilsson E, Cnattingius S, Lichtenstein P. 2004.
Estimation of genetic and environmental factors for binary traits

using family data. Stat Med 23:449-466.

Risch N. 1990a. Linkage strategies for genetically complex traits. 1.
Multilocus models. Am ] Hum Genet 46:222-228.

Risch N. 1990b. Linkage strategies for genetically complex traits. I
The power of affected relative pairs. Am ] Hum Genet 46:229-241.

Robert CP, Ryden T, Titterington DM. 1999. Convergence controls for
MCMC algorithms, with applications to hidden Markov chains.
J Stat Comput Simul 64:327-355.

Steinberg AG, Bleibtreu HK, Kurczynski TW, Martin AO,
Kurczynski EM. 1967. Genetic studies in an inbred human
isolate. Proceedings of the Third International Congress of
Human Genetics. Baltimore: Johns Hopkins University Press.
p 267-290.

Stock K, Distl O, Hoeschele I. 2007. Bayesian estimation of genetic
parameters for multivariate threshold and continuous phenotypes
and molecular genetic data in simulated horse populations using
Gibbs sampling. BMC Genet 8:19.

Sung Y], Geyer CJ. 2007. Monte Carlo likelihood inference for missing
data models. Ann Stat 35:990-1011.

Wei GCG, Tanner MA. 1990. A Monte Carlo implementation of the EM
algorithm and the poor man’s data augmentation algorithms. ] Am
Stat Assoc 85:699-704.

Williams JT, Van Eerdewegh P, Almasy L, Blangero J. 1999. Joint
multipoint linkage analysis of multivariate qualitative and
quantitative traits. I. Likelihood formulation and simulation
results. Am ] Hum Genet 65:1134-1147.

Yi N, Xu S. 1999. Mapping quantitative trait loci for complex binary
traits in outbred populations. Heredity 82:668-676.

Yun S, Lee Y. 2004. Comparison of hierarchical and marginal
likelihood estimators for binary outcomes. Comput Stat Data Anal
45:639-650.

Zou G, Zhao H. 2004. The estimation of sibling genetic risk parameters
revisited. Genet Epidemiol 26:286-293.

APPENDIX: MONTE CARLO
EXPECTATION-MAXIMIZATION

The EM algorithm is a routine commonly employed for
obtaining MLEs of parameters of interest in the presence
of missing data. It iteratively alternates between an E-step
and an M-step until convergence of the parameters is
reached. The E-step entails the computation of the
expected value of the complete data log-likelihood func-
tion with respect to the distribution of the missing data,
conditional on the current estimates of the parameters and
the observed data. On the M-step, the conditional
expectation computed on the E-step is maximized to
provide the new estimates of the parameters.

We can easily adapt the EM algorithm to our specific
needs by noticing that our modeling resembles a missing
data problem where the complete likelihood function is
given by (2) and the missing data are simply the unobserved
random effects. Under this scenario, the expectation in the
E-step on the (t+1)th iteration has the following form

Q(B, *IB', %) = Eullog Lo(B, 6% y, w)ly, B, 6*]

= / {Z log B(pi; B, yi, ui)+ log(f(u; %)

i=1
x g(uly, B, 6% )du, (A1)

where f(u;6?) is the multivariate normal density,
g(uly, [Aif, &%) is the conditional distribution of u given the
observed affection statuses y and the estimates fit and 6% of
the parameters from the previous iteration. Obviously, the
above expectation still involves the computation of a high
dimension integral, and although its integrand has a much
simpler form than that in (3), its computation is also
intractable.

Wei and Tanner [1990] suggested substituting the Q
function in (4) with its estimate obtained from a random
sample of M realizations u®V, ..., u® from the distribution

g(uly.B.6%), ie,

IR
Qu(B.oIB.6*)=1; > _logL(B.o%y.u™)
m=1

i=1

M n
:AL/IZ [ZIOgB(Pi;B,}/iauﬁm))
m=1

i=1

M n
= AL/IZ [Z log B(pi; ﬁ,yi,uﬁ’"))ﬂogf(“(m);62)}
m=1

1M
+ (m). 2
Mmgzllogf(u ;67)

= Qpm(BIB)+ Qe m(6216%). (A2)

Due to the use of the random sample, it is not
guaranteed that Qp will increase from iteration to
iteration, but, under some mild regularity conditions,
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the MCEM will converge to the true MLEs [Booth and
Hobert, 1999].

Finally, it is worth mentioning that in (5), Qpm involves
only the fixed effect parameters B, while Q,2 s is a function
of only the parameters ¢ of the random genetic effects.

Thus, the task of maximizing Qum(p, o'2||A3t,&2') reduces to
that of separately maximizing Qpam and Qg2 )y with respect
to B and o°, respectively. But, Qpum is simply the log-
likelihood function of a generalized linear model (GLM)
whose maximization can be easily done using iterative
weighted least squares [McCullagh and Nelder, 1989]. In
addition, Qs is the log-likelihood function of a multi-
variate normal and its maximization may be achieved
quickly through a standard maximization routine (e.g.
Newton-Raphson), as long as the number of variance
components is small.

A METROPOLIS-HASTINGS (MH)
ALGORITHM

The ability of the MCEM to quickly converge depends
heavily on our ability to efficiently sample realizations

ot
from g(uly,p ,&2[), that is the conditional distribution of
the random effects u given the current estimates of the

At
parameters, p and &2[, and the affection statuses of the
individuals in the pedigree, y. The density of this
distribution has the form

at ot [T B(pi; B, yis wi)f (w; 6)

g(u|Y= B.67) fH7:1B(Pi§ B, v, ui)f(u; a?)du > (A3)
and obviously involves the likelihood function of the
observed data, that we are trying to avoid computing.
Thus, sampling directly from this distribution is not
feasible. However, it is possible to obtain a sample either
through a multivariate rejection sampling [Booth and
Hobert, 1999], or Gibbs sampling [McCulloch, 1994], or a
Metropolis-Hastings Markov Chain Monte Carlo (MCMC)
sampler [McCulloch, 1997].

Due to the very low acceptance rate of the rejection
sampler observed in our applications, we employ an
efficient MH sampler. Generally, the MH algorithm
requires the specification of a candidate distribution e(u)
from which a potential new observation u* is drawn, and a
function a(u, u®) that will provide the probability of
accepting the proposed value, u”™, over the current one, u,
as a possible realization from the target distribution.

The MH version that we implement is a component-
wise sampler, where sequentially one by one we update all
random effects to obtain a new realization from the target
distribution [McCulloch, 1997]. Assuming that u was the

previous draw from g(uly, [Aif, &%), then, we obtain the next
sample value u* by performing an n-step scan. At the ith
step of the scan, we consider updating only the component
u; by proposing a new value u}, while the rest of the u/s,
denoted by u_; remain unchanged. For each step i, we
choose e(u) to be fu 2 the conditional distribution of

il(u_;,6
the u; given the u_; and the current estimates of the
variance components parameters 6%,

There are two major advantages to this choice of e(u).
First, sampling from this univariate distribution is ex-
tremely easy because it is normal with mean
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—ul,W_i;W;;! and variance W;;!, where W; is the ijth

block of the inverse of the current estimate of the matrix Q.
Second, the acceptance probability takes the simple form

wly. B o2 e(w)
g(uly, B, 02)e(ur)

w.opl *
= min{l,B(pi b ,y,,u,)}, (A4)

a(u,u*) = min¢ 1,

;
B(pl’ B > Vi, ui)
that is, the ratio of two univariate Bernoulli distributions.

Hence, this sampling scheme allows us to quickly and
efficiently generate large numbers of realizations for the

target distributions g(uly, [Ait,&zt), thereby significantly
reducing the time needed to obtain the estimates of the
MLEs of the parameters of interest.

AN AUTOMATED MCEM

The use of the random sample to approximate the
expectation on the E-step of the EM algorithm introduces a
random error in the estimation of the model parameters.
Due to this error, holding the MC sample size M fixed
through all iterations would not lead to convergence,
unless it is significantly large causing the random error to
become negligible [Booth and Hobert, 1999]. However,
there is a trade-off between accurately estimating the
parameters of interest and the required time for generating
realizations from the target distribution. In general, it is
wasteful and unnecessary to use a large M from the
beginning when the MCEM steps are relatively large and,
thus, larger random errors can be tolerated [Booth and
Hobert, 1999]. On the other hand, it is inefficient to use
small sample sizes when we are in the vicinity of the MLEs
and greater precision is needed. Typically, one addresses
this issue by gradually increasing the number of MC
sample as the MCEM routine progresses. For example, one
can choose to let the sample linearly increase with the
number of iterations [McCulloch, 1994], or even choose a
fixed set of iteration rq, ry,..., where the MC sample size
will be increased to predetermined fixed values My, My, ...,
[McCulloch, 1994]. Nevertheless, these strategies are not
very efficient since they can potentially lead to many
wasted MCEM iterations [Booth and Hobert, 1999].

Booth and Hobert [1999] proposed a more systematic
approach that allows the algorithm to assess the adequacy
of the current MC sample size at each iteration and to
dynamically adjust it, should there is a need for it. The
advantage of this approach is that early iterations use
small values of M, thus saving computational cost, while
late iterations use larger values of M, resulting in higher
accuracy. For their approach, they assume the availability
of an independent random sample from the distribution of
interest. Based on this sample, they derive an estimate of
the MC error at each iteration t and, assuming asymptotic
normality, they use it to construct a confidence ellipsoid

around the current estimates of the parameters (Bt, 6'2[) for
the true value of the parameters that we would obtain if
we were able to perform the deterministic EM algorithm.
Then, they perform one more iteration to get the new

At
estimates of the parameters of interest ( ,&ZM). If these
new estimates fall within the limits of the confidence
region constructed from the previous iteration, then the
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MC error has swamped the EM step and an increase in M
is needed.

Recently, Levine and Fan [2004] extended the approach
of [6] to allow for non-independent samples, such as those
obtained by MCMC samplers. Their approach assumes
that we have available a sample of N dependent realiza-
tions u',...,u™ from the distribution of interest. Using a
Poisson samphng scheme [Robert et al., 1999] we draw
a sub-sample u”,. uSM, where s;=x;+- - - +x;, x~1~
Poisson(v;), and v; = vi¥, for some v>1 and b>0,i=1,...,
M. Under this sub- samphng scheme, the authors showed

that ([Ait,&zt), the MCEM estimates of the parameters
based on the sub-sample, follow (approximately) normal
distribution, that is,

VM, 6% ) - (B,6% )"

where ([3 ,67 ) are the values of the parameters that would
have resulted on the tth step of the deterministic EM
algorithm, and X is an appropriate covariance matrix.
Levine and Fan [2004] argued that a good approximation
to this covariance matrix can be easily obtained from the
sample itself as follows

PEEMVNQ,Z),  (A5)

t+1 -t

IR0/ [ R I
alogL(Ba,y,u ) .
[NZ{ a(p. %) “N}

olog L.(B,o6*;y,u™) . T
X{ a(p.o?) _“N}}

2), oft1 t+ ey b -1
< AQWB .67 1B,67) Hppogriger, (A6)

where (Bt,d'zt) are the MCEM estimates based on all N
dependent draws,

1 @ log LB, 6% Y, un)
2)272 g CB

(2) 2in/
Qub.ob- o) =7 2 g ey - A7
and
o log Lo(B, 6% Y, u™)
fiy = NZ 3B.0Y : (A8)

Based on this result, the authors proposed an automated
MCEM algorithm that allows not only for dynamically
deciding whether an increase in the MC sample size is
needed, but also how much this increase should be. More
specifically, based on the current estimates of the
parameters at the t+1 iteration, they construct an (1-o)
confidence ellipsoid for the true value of the parameters
on the (t+Dth iteration, had the deterministic EM
algorithm been used. This is done by aggregating all the
values (B, 6°) that satisfy

M, & ) = . AT

At+1  ottl
67 ) = (B.6N] < 73,

(A9)

where d is the number of model parameters and z3,_, is
the (1-0) percentile of the y* distribution with d degrees of
freedom. An increase in the MCMC sample size is
necessary every time the above ellipsoid includes the
point defined by the values of the parameters on
the previous iteration. The recommended new value for

N, the overall number of depended realizations, is set to

1+b
N= <M> (A10)
a
where a = {(1+b)/0}"/"* and
2
M= ’7 A1 ot f Xd;l_“ attl ot+l B 5
(B 6" )—@B.eN=P .6° )— (B0

(A11)

where [x] is the smallest integer greater or equal to x.
Following the suggestions of Levine and Fan [2004] and
Booth and Hobert [1999] we also set o= 0.25, v=1 and
b=0.5 on all of our applications. Our simulation results
indicate that these values seem to be working quite
satisfactory in the context of our method.

IMPORTANCE SAMPLING (IS)

Even though the component-wise MH sampler de-
scribed earlier is very fast, it is still very likely that it will
require a significant amount of time to generate the large
samples necessary at the late stages of the MCEM
algorithm, especially when the number of individuals #
is large. Moreover, it is inefficient to spend so much time
in generating a large amount of data only to be used on a
single iteration of the MCEM algorithm and then be
discarded. Instead, we use importance sampling.

Booth and Hobert [1999] and Levine and Casella [2001]
are among those who have explored the utility of IS in the
context of the GLMMs. Implementation of their paradigm
in our situation amounts to the following. First, we choose

. A0, n0
some fixed values for the model parameters, say (B ,6%),
and based on these values we generate a random sample

u®, .., u™ from g(uly, ﬁo,&zo). This is done only once at
the beginning of the MCEM algorithm. For each subse-
quent MCEM iteration, instead of generating a new

ot
sample from the g(uly,f, & ), we continue to use the one
obtained at the beginning. To make up for the fact that the
sample we use does not come from the correct distribu-

. . AN Cy e
tion, we substitute QM(B,o'zlﬁ,azf) with its importance

sampling estimate

Q" p,a2p 6%, §,6%)

——ZZW [ZB(puﬁyz, u™)+log(f(u™; & ))}

mlm

- %Zwin [ZB(PI*B’W?"U

= QU5 (BIB)+Q%), (62167, (A12)
where W=Y"M  w!

+%m§:jlwfn[log(f(u<m);a2))]

and the weights w!, are given by

m’

AN
w:" =g(u|Y5ﬁ »0 ) (A13)

~0 . .
guly.p.6%)
A key factor for the successful implementation of the IS is the

choice of ([i0 57 ). A good choice can result in a great deal of
time savings. On the other hand, our experience showed that
bad values can mean longer run-time than the simple MCEM,
or even a poor convergence performance. To minimize these
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risks, one needs to choose values for (§°,6° ) that are close to
the true MLEs. Levine and Casella [2001] recommended the
use of a burn-in period, that is, they suggested that we first
run a few, say K, regular MCEM iterations before switching to

the importance sampling version, with ($°.6%") chosen to be
the estimates at last iteration.

There is no universally optimal choice of the number of
burn-in iterations K. Its value depends on how close to the
true value of the MLE’s we need to be and thus it is problem
specific. Usually, a relatively small value of K, say 20, is
sufficient since in most cases the regular MCEM converges
to the neighborhood of the true MLE’s relatively fast.
However, our preliminary results suggested that for our
method longer burn-in periods may be needed. Therefore,
we chose to implement a slightly more flexible strategy. As
in Levine and Casella [2001] we also start with an initial
burn-in period with a relatively small K and then we switch
to the IS version of the MCEM. However, for each of the
subsequent iteration we check if the current estimates

([Ait,&zf) are still in the “vicinity” of (ﬁo,&zu) that were used
for generating the random sample. If the current estimates
are far from the initial ones, then we reset the IS by first
discarding the old MCMC sample, and then generating a

new one by setting (ﬁo, &20) = ([Aif, &21). For deciding whether
we are still in the neighborhood of the null parameters, we
decided to implement the following criterion

62 — &7
max rnax{lB ﬁl} max M <\,  (A14)
IB | !

1

where A is some positive number. From our experience, a
value of A =0.2 seems to give satisfactory results, and thus
we opt to use this value for all of our simulation analyses
and the analyses of the T2D data.
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CONVERGENCE CRITERIA

The classic EM algorithm usually monitors convergence
by checking if the relative change in the parameter
estimates in two consecutive iterations is less than a
predetermined small value [Booth and Hobert, 1999]. That
is, at each iteration f+1 it tests if

A+l a2t
o 6’

max< max lB ﬁl ,max g <3, (A15)
' |ﬁ [+81 ] |67 48

where §; and &, are predetermined constants with their most
commonly employed values being 0.001 and 0.002, respec-
tively [Booth and Hobert, 1999]. However, this criterion
cannot be implemented in the context of the MCEM without
taking into consideration the random error introduced by
the MCMC sample, since it could lead to premature stop of
the algorithm before convergence has been reached. This is
why Booth and Hobert [1999] suggested to stop the MCEM
iterations either when the above criterion has been met three
consecutive times, or when

|&2r+] . &2’

At+1 At
1B —Bil

max<{ max{ ————"— 3% max ! ! <&

ol var gorst | 7|/ Var@h+s;

where Var([} ) and Var( 2) are the estimates of the variance
of the parameters obtained through the use of the MCMC
sample on the tth iteration, and 9] and §; are some user-
defined constants, which need not be the same ones as in
(18). However, for our implementations we chose to use
the same values for both criteria, namely we set §; = 8] =
0.001 and &, = &; = 0.002.

(A16)



