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Qumatum fluctuation during the inflationary phase in the early Universe should leave their imprint on the 
present-day structure of the Universe. Here we discuss how to read this imprint in the cosmic microwave back- 
ground and the large-scale structure of the Universe to discover something about the microphysics driving inflation. 

1. I N T R O D U C T I O N  

There are many models for cosmic inflation. 
All of them involve a rapid growth of the size 
of the Universe. This is most easily illustrated 
by considering a homogeneous, isotropic Universe 
with a flat Fr iedmann-Robertson-Walker  (FRW) 
metric, where the "size" is parameterized by a 
scale factor a(t), and "rapid growth" means a pos- 
itive value of 5/a =- --(47rGN/3)(p + 3p) where p 
is the energy density and p the pressure. 

It is useful to identify the energy density driv* 
ing inflation with some sort of scalar "potential" 
energy density V that  is positive, and results in 
an effective equation of state p ~ - p  _ V, which 
satisfies 5 > 0. If one identifies the potential en- 
ergy as arising from the potential  of some scalar 
field ¢, then ¢ is known as the inflaton field. 

Observational consequences of inflation today 
are the stochastic spectra of density (scalar) per- 
turbations and gravitational wave (tensor) modes 
generated during inflation. Each stretches from 
scales of order centimeters to scales well in ex- 
cess of the size of the presently observable Uni- 
verse. Once within the Hubble radius, gravi- 
tational waves redshift away and so their main 
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influence is on the large-scale microwave back- 
ground anisotropies, such as those probed by 
COBE [1]. The scalar density perturbat ions are 
thought to lead to structure formation in the 
Universe. They produce microwave background 
anisotropies across a much wider range of angular 
scales than do the tensor modes, and constraints 
on the scalar spectrum are also available from the 
clustering of galaxies and galaxy clusters, pecu- 
liar velocity flows and a host of other measurable 
quantities [2]. 

Generally, inflation predicts a nearly Gaussian 
spectrum of density perturbations that  is weakly 
scale dependent, i.e., the amplitude of the per- 
turbation depends upon the length scale. Such 
a dependence typically arises because the Hub- 
ble expansion rate during the inflationary epoch 
changes, albeit slowly, as the field driving the ex- 
pansion rolls towards the minimum of the scalar 
potential. This implies tha t  the amplitude of the 
fluctuations as they cross the Hubble radius will 
be weakly time-dependent.  

In slow-roll inflation, any scale dependence for 
density perturbations is possible if one considers 
an arbitrary functional form for the inflaton po- 
tentiai, V(¢). In this sense, inflation makes no 
unique prediction concerning the form of the den- 
sity perturbat ion spectrum and one is left with 
two options. Either one can aim to find a deeper 
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Figure 1. The basic idea of inflation is that as the field evolves under the influence of the inflaton potential, 
quantum fluctuations in the inflaton field produce scalar density perturbations As, while fluctuations in 
the transverse, traceless metric components produce tensor gravitational wave perturbations, AG. Also 
indicated is the main observational information from the cosmic microwave background and large-scale 
structure surveys. 



120 E. ~g Kolb et al./Nuclear Physics B (Proc. SuppL) 43 (1995) 118-125 

physical principle tha t  uniquely determines the 
potential, or observations that  depend on V(¢) 
can be employed to limit the number of possibil- 
ities. One such observation is the amplitude of 
the tensor perturbat ions produced by inflation. 

In the past two years we developed a formal- 
ism which allows one to reconstruct the inflaton 
potential V(¢) directly from a knowledge of these 
spectra [3]. This developed an original but  incom- 
plete analysis by Hodges and Blumenthal [4]. An 
important  result tha t  follows from our formalism 
is that  knowledge of the scalar spectrum alone is 
insufficient for a unique reconstruction. Recon- 
struction from only the scalar spectrum leaves an 
arbitrary integration constant,  and since the re- 
construction is nonlinear, different choices of this 
constant lead to different functional forms for the 
potential. Some minimal knowledge of the ten- 
sor spectrum, say its amplitude at a single wave- 
length, is sufficient to lift this degeneracy. 

The most ambitious aim of reconstruction is 
to employ observational data  to deduce the in- 
flaton potential over the range corresponding to 
microwave fluctuations and large-scale structure,  
although at present the observational situation is 
some way from providing the quality of data  that  
this would require [3]. 

In this talk I will discuss the promise of po- 
tential reconstruction assuming one knows 1) the 
amplitude of the tensor spectrum at one point 
from microwave background fluctuations, pre- 
sumably on quadrupole scales corresponding to 
3000h-lMpc,  and 2) the scalar spectrum from 
microwave background fluctuations and the large- 
scale s t ructure investigations from quadrupole 
scales down to scales of several Mpc. 

2. R E C O N S T R U C T I O N  E Q U A T I O N S  

To some extent all inflationary calculations rely 
on the use of the slow-roll approximation. In the 
form we present here, the slow-roll approximation 
is an expansion in terms of quantities defined from 
derivatives of the Hubble parameter  H. In gen- 
eral there are an infinite hierarchy of these which 
can in principle all enter at the same order in an 
expansion. 

The slow-roll approximation arises in two sep- 

arate places. The first is in simplifying the classi- 
cal inflationary dynamics of expansion, with the 
lowest-order approximation ignoring the contri- 
bution of the inflaton's kinetic energy to the ex- 
pansion rate. The second is in the calculation 
of the per turbat ion spectra; the s tandard expres- 
sions are true only to lowest-order in slow-roll. In 
the expressions in the previous section, we uti- 
lized the Hamilton-Jacobi approach [5] to t reat  
the dynamical evolution exactly. 

A very elegant calculation of the per turbat ion 
spectra to next order in slow-roll has now been 
provided by Stewart and Lyth [6]. The slow-roll 
approximation can be specified by parameters de- 
fined from derivatives of H(¢) .  There are in gen- 
eral an infinite number of these as each derivative 
is independent, but  usually only the first few en- 
ter into any expressions. We shall require the first 
two, which are all of the same order when defined 
by 

2 [H'(¢)12 2 H"(¢) 
e(¢) = ~ -  [ g ( ¢ ) J  ; 7/(¢) - ~2 H(¢)  ' (1) 

where n 2 = 87rGN, ~nd prime denotes d/d¢. The 
slow-roll approximation applies when these slow- 
roll parameters are small in comparison to unity. 
The condition for inflation, 5 > 0, is precisely 
equivalent to e < 1. 

The lowest-order expressions for the scalar 
(As) and tensor (AG) amplitudes assume {e, ~/} 
are negligible compared to unity. Improved ex- 
pressions for the scalar and tensor amplitudes for 
finite but  small {e, r/} were found by Stewart and 
Lyth [6]: 

v/2t¢ 2 H 2 
A s  "~ 8zr3/2 g '  [1 - ( 2 C +  1 )e+  C~/] 

/£ 

AG '~' 4~.3/----- ~ H [1 - (C + 1)el,  (2) 

where C = - 2  + In2 + 3, -~ -0 .73  is a numeri- 
cal constant, 3' ~ 0.577 being the Euler constant. 
The right hand sides of these expressions are eval- 
uated when the scale in question crosses the Hub- 
ble radius during inflation, 2~r/A = all .  The 
spectra can equally well be considered to be func- 
tions of wavelength or of the scalar field value. 

The standard results to lowest-order are given 
by setting the square brackets to unity. Histori- 
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cally it has been common even for this result to 
be written as only an approximate equality (the 
ambiguity arising primarily because of a vague- 
ness in defining the precise meaning of the density 
perturbat ion) ,  though the precise normalization 
to lowest-order was established some time ago by 
Lyth [16] (see also the discussion in [2]). 

The improved expressions for the spectra in 
Eqs. (2) are accurate in so far as e and 1/are suffi- 
ciently slowly varying functions that  they can be 
t reated adiabatically as constants while a given 
scale crosses outside the Hubble radius. Correc- 
tions to this would enter at next order. This dif- 
fers from the usual situation in which H is treated 
adiabatically. For the standard calculation to be 
strictly valid H must be constant, but  provided it 
varies sufficiently slowly (characterized by small 
• and I~71), it can be evaluated separately at each 
epoch. This injects a scale dependence into the 
spectra. There is a special case corresponding 
to power-law inflation for which • and q are pre- 
cisely constant and equal to each other. In this 
case there are exact expressions for the perturba- 
tion [6,17]. Furthermore,  the corrections to each 
spectrum are the same and they cancel when the 
ratio is taken. In the general case • and ~ may be 
t reated as different constants if it is assumed that  
the timescale for their evolution is much longer 
than the tim•scale for perturbations to be im- 
printed on a given scale. This assumption worsens 
as y is removed from •, which would be charac- 
terized by the next order terms becoming large. 

It is useful to define the dimensionless quanti- 
ties ¢ and v, and a dimensionless derivative de- 
noted by a dot: 

~4 dX 
= ; x = ( 3 )  

In addition, we can use the identity y = • + 
~/2v/e and adopt  as the expansion variables 

~,=o  •-"/2dne/d¢ "" In terms of these variables, 

the expressions for As(A), Aa(A), v, and the ¢-A 
relation become 

t~ 
Aa - 4 r a / s H [ 1 -  ( C +  1)el 

4~r"'* VEn 1 [ ~C t ] As = -;--474,~H--~ i - (C + 1)E + 

v 

d~ _ V~ ( l + e ) .  (4) 
dA A 

In the third expression, v depends upon AG(A) 
and •. Since we anticipate that  we will only have 
information about  Aa(A) at the largest scales, 
we have to use the "consistency" equation (also 
called the evolution equation) to relate AG(A) to 
the more experimentally accessible As(A) at the 
expense of introducing the additional ~ / f i  term. 4 
This was done through the identity 

Ag~q = e [ l _ C (5) 

which follows from the expressions for As and AG 
in Eq. (4). Now we develop the evolution equation 
by taking the derivative of As(¢~): 

As 1 ( 1 ~ )  1 
As - •1/2 • _  ~ 3¢- •1/--"~ [ ()2] 

C ~ 1 ) e e  C × - 7  

x [l+(C+l)e C ~ e  ] - . ( 6 )  

Now in addition to the expansion in e and its 
derivatives, a truncation is necessary. The trun- 
cation here is to assume ~/e << ~/v/~. With this 
truncation, to second order 

A s  - ~ l /2  • -  ~ . (7) 

Now we can express .4s/As in terms of the 
spectral index 1 - n defined to be dlnA2/dlnA,  
and the evolution equation becomes 

- 

dA - ( 1 +  • ) [ 2 e -  (1 - n)],  (8) 

4Of course if the consistency equat ion is only used to 
evolve e, it can not be used as a check of  inflation as dis- 
cussed in [3]. 
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where for the second equality we have used the 
de/d)` expression. This evolution equation serves 
two purposes. I t  removes t /V  ~ from the equation 
for v, and it is a differential equation tha t  can 
be evolved to give e as a function of )`. To solve 
the equation it is necessary to know the spectral  
index as a function of )`, along with the initial 
condition e()`o) as a function of 1 - no, AG()`o) 
and As(~o). 

So the system to be solved can be expressed as 

= 

× { l  + 3e(A) + C[l - n()`)l } 

_ [1 + e ( ) ` ) l  
d)` )` 
de ¢ 

- + [2e  - - n ) l .  (9) 

In the next section we discuss the simplification 
of the above expressions obtained by dropping the 
second-order te rms and working to first order. In 
the section after tha t  we solve an example first- 
order problem. 

3. F i r s t - O r d e r  A p p r o x i m a t i o n  to  R e c o n -  
s t r u c t i o n  

To first order in the slow-roll expansion vari- 
ables the expressions simplify considerably. For 

A 2/A2 A~, and example, to first order, E = a t  s, v = 

)`de/d)` = Aa/As .  The evolution-consistency 
equation is also quite simple. I t  can be writ ten as 

)` dAa(A) A2()`) 
AG()`) d)` AUs()`) " 

( 1 0 )  

Again, the procedure will be the same as in 
the second-order case. The potential  depends 
upon Aa()`),  about  which we will have infor- 
mation only on the largest scales (possibly only 
on one scale), so we specify the initial value of 
AG()`), and use the consistency-evolution equa- 
tion to evolve Aa(A) in terms of As()`). We can 
thus express the system to be solved in terms of 
two equations and a single first-order differential 
equation which can easily be solved in terms of 

the initial value Aa()`0), yielding: 

--1 [ v[~()`)l = A~2(),0) - 2 0 A' As(M) 

dM vl /2  [(~()`t)] 
= ( 1 1 )  

o )`' A s ( ) ` ' )  

3.1. A W o r k e d  E x a m p l e  
Let 's  assume a simple power-law potential  of 

the form V(¢) = )`¢¢4 with )`¢ = 4 x 10 -14. This 
generates per turbat ion  spectra  of the form (eval- 
uated at horizon crossing after inflation) 

As(),) - 4 x 10 - s  [50 Tin()`/)`0)] 3/2 ; 

Aa(),)  = 4 x 10 - s  [50 + ln(),/)~0)]. (12) 

On any scale, the number  of statistically inde- 
pendent  sample measurements  of the spect ra  tha t  
can be made is finite. Given tha t  the underlying 
inflationary fluctuations are stochastic, one ob- 
tains only a limited set of realizations from the 
complete probabil i ty distribution function. Such 
a subset may insufficiently specify the underly- 
ing distribution, which is the quanti ty predicted 
by an inflationary model. The cosmic variance is 
an impor tan t  ma t t e r  of principle, being a source 
of uncertainty which remains even if perfectly 
accurate experiments  could be carried out. At 
any stage in the history of the Universe, it is 
impossible to specify accurately the propert ies 
(most significantly the variance, which is what  
the spect rum specifies assuming gaussian statis- 
tics) of the probabili ty distribution function per- 
taining to per turbat ions  on scales close to tha t  of 
the observable Universe. 

Even assuming "perfect" observations, cosmic 
variance sets a lower limit on the uncertainty at 
any one scale. Assuming tha t  the only errors 
come from cosmic variance, the determinat ion of 
the spectra  might look like in Fig. 2. In the real- 
ization generated by the random number  genera- 
tor, the value of Aa()`o) is 1.87 x 10 -6, slightly 
below the ensemble mean of 2 x 10 -6. 

As a first exercise, we simply perform a first- 
order reconstruction by doing a simple t rape-  
zoidal integration, and making the naive assump- 
tion tha t  the errors are uncorrelated. If  we do 
tha t  we obtain the reconstructed potential  shown 
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Figure 2. An illustration of an anticipated da ta  set limited by cosmic variance. The da ta  was generated 
with a A6¢ 4 potential  with A¢ = 4 x 10 -14. The upper  points are As(A), while the single lower point is 
AG(A). The  solid lille is the mean A s ( A ) ,  while the mean AG(A0) is 2 x 10 -6. 

in Fig. 3. Also shown in Fig. 3 by the solid curve 
is the actual  potential  used to generate the syn- 
thetic da ta  from which the potential  was recon- 
structed. 

There  are several things we can notice in Fig. 3. 
First of all, reconstruction works: the true poten- 
tial is within the error bars. The second obvious 
feature is tha t  the slope of the reconstructed da ta  
is be t te r  than one might expect given the errors. 

This feature can be explored by taking another  
approach to the uncertainty introduced in At(A0) 
by cosmic variance. Let ' s  ignore tha t  error, and 
pick three realizations of At(A0),  one at  the 
"measured" value, one l a  above the measured 
value, and one l a  below the measured value. 
(Here "a"  is the value determined by cosmic vari- 
ance.) If we do that ,  we generate the three curves 
shown in Fig. 4. Although we can ' t  tell which of 
the curves is the true potential,  we know that  the 
true po~tential is one of a family of curves bounded 
by the two extremes in the figure. 

We can unders tand why this occurs, because 

if we look at the slope of v -1, the initial value 
of A s ( A )  drops out, and the contribution comes 
from adding together  a large number  of different 
As(A) .  Since we are combining a large number  
of da ta  points, the central limit theorem tells us 
that  the errors in the reconstructed potential  will 
become small. 

4. C o n c l u s i o n s  

The quantum-mechanical  fluctuations im- 
pressed upon the metric during inflation depend 
upon the inflaton potential.  During inflation the 
Hubble expansion takes microscopic fluctuations 
of wavelength of order 10-2Scm and stretches 
them to super-Hubble-radius size where they are 
frozen. Today they appear  on scales as large as 
the observable Universe, 10+2Scm. It  is possi- 
ble to read the fossil record of the fluctuations 
by observing cosmic microwave background fluc- 
tuations and the power spec t rum of large-scale 
structure.  

If  the tensor per turbat ions  are large enough to 
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Figure 3. First-order reconstruction of the example )~,~4 potential. The solid line is the actual potential, 
while the points and associated errors were generated from the data of Fig. 2. 
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be identified, and if the scalar power spectrum is 
determined, the inflaton potential may be recon- 
structed. 

Hence cosmology and astrophysics may provide 
the first concrete piece of the potential of energy 
scales of 1016GeV or so. 

Not discussed here is the possibility of pertur- 
bative reconstruction, where the potential and its 
first few derivatives are reconstructed about a sin- 
gle point [3, 18, 19]. 
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