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Identity by Descent Estimation With Dense Genome-Wide
Genotype Data
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We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related
individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the
challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of
accommodating the background linkage disequilibrium (LD) that is present in high-density genotype data. We show that
IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is
highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate
the probability for each possible IBD sharing state at every SNP from a high-density genotyping array for hundreds of
thousands of pairs of individuals. We use it to estimate point-wise and genomewide IBD sharing between 185,745 pairs
of subjects all of whom are related through a single, large and complex 13-generation pedigree and genotyped
with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship for individuals who
were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow-up QTL
mapping studies. IBDLD is implemented as an open source software package and is freely available. Genet. Epidemiol.
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INTRODUCTION

The potential for novel genetic insights afforded by
high-density genotyping arrays has spurred a renewed
interest in methods for estimating identity by descent
(IBD) between pairs of individuals. Estimates of IBD have
allowed for the discovery of large scale chromosomal and
genomic sharing [Visscher et al., 2006], refined estimates of
heritability and genomic partitioning of genetic variance
[Visscher et al., 2007], discovery of deletions [Gusev et al.,
2009], and, of particular recent interest, the identification
and use of short shared segments between distant relatives
[Purcell et al., 2007; Browning, 2008; Browning and
Browning, 2011, 2010; Huff et al., 2011].

More traditionally, IBD estimates have been used for
linkage analysis in families where the IBD estimates have
assumed independence between markers [Lander and
Green, 1987; Kruglyak et al., 1996; Abecasis et al., 2002;
Abecasis and Wigginton, 2005]. This assumption, however,
no longer holds with modern genotyping arrays where
there may be extensive linkage disequilibrium (LD)
between markers. Recent methods that incorporate LD in
their estimates of IBD within families are designed for
pedigrees of small size Keith et al. [2008]; Kurbasic and
Hossjer [2008]. Other approaches that have been used
include clustering of tightly linked markers [Abecasis and

Wigginton, 2005] or to filter out markers in LD leaving a
set of SNPs that can be used in standard software
packages, e.g. Bellenguez et al. [2009a]. The first of these
approaches can dramatically increase the computational
effort while the latter results in large amounts of
potentially informative genotype data being discarded.

Loss of information may also happen when large
pedigrees are used. Extended pedigrees, though known
to have higher power for linkage mapping than small
pedigrees [Chapman and Wijsman, 2001], present challen-
ging computational problems [Bellenguez et al., 2009b].
When the pedigrees are too large for exact computation of
IBD, one typical strategy is to split the pedigree into
multiple smaller subpedigrees [Falchi et al., 2004;
Brocklebank et al., 2007; Liu et al., 2008; Bellenguez et al.,
2009b]. Treating these subpedigrees as independent may
result in a loss of power from ignoring the information that
exists between subpedigrees [Dyer et al., 2001]. In some
circumstances Markov chain Monte Carlo methods [Sobel
and Lange, 1996; Heath, 1997; George and Thompson,
2003; Sung et al., 2007] and approximate IBD estimation
algorithms [Almasy and Blangero, 1998] have proven
useful, though the effectiveness and properties of these
approaches will need further exploration when marker
data are extremely dense or pedigrees are very large or
complex. Two issues, then, have limited the utility of
pedigrees, particularly extended pedigrees, for IBD-based
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mapping, (1) the challenges of doing computations with
high degree or complexly related relatives, and (2) the
difficulties of using dense marker data with high LD
between markers. Here, we present a computationally
efficient method that overcomes both of these problems,
allowing estimation of multipoint IBD between pairs
of arbitrarily related individuals using high-density
genetic markers.

The method we present, referred to as IBDLD, is based
on a hidden Markov model (HMM) of IBD between pairs
of individuals but with modifications to incorporate LD in
the observed genotype probabilities. IBDLD can build a
background LD model based on a panel of either phased
haplotypes or unphased genotypes and is fast enough to
estimate IBD at hundreds of thousands of SNPs for
hundreds of thousands of pairs. We consider two models
for background LD. The first model requires individuals in
the panel be phased, with the background LD modeling
based on two-locus haplotype frequencies. This approach
was recently used by Albrechtsen et al. [2009]. The second
model requires only unphased genotypes in the panel and
uses a multilocus model of LD. Below, we demonstrate the
accuracy of IBDLD using simulations in both sibling pairs
and pairs of individuals related through a large, complex
genealogy. We also analyze a real data set consisting of
185,745 pairs (609 individuals) all of whom were typed
with the Affymetrix 500 k chip and are related through a
13 generation, 3,555 person pedigree. Finally, we discuss
the utility of the method and implications for complex trait
mapping.

MATERIAL AND METHODS

HMMs are effective tools for estimating IBD in small to
medium-sized families [Lander and Green, 1987; Kruglyak
et al., 1996; Abecasis et al., 2002], as well as providing a
useful approximation in larger pedigrees [Thompson,
1994; McPeek and Sun, 2000; Abney et al., 2002], but their
continuing utility in the era of dense marker data will
necessarily rely on a computationally efficient method that
incorporates LD that may extend over a distance that
encompasses many markers. Below we briefly review the
standard HMM before describing our extensions to
include LD.

STANDARD HMM

The model described here is essentially identical to the
HMM used in the PLINK [Purcell et al., 2007] software
package to identify IBD segments in pairs of individuals.
Because we wish to estimate IBD between pairs of
individuals joined by a known pedigree while allowing
for inbreeding, we define the hidden state variable Si at
marker i to take on values 1,y,9 according to which of the
condensed identity states [Jacquard, 1974] describes the
IBD sharing between the pair (see Fig. 1). Computation in
the HMM depends on three probabilities (1) the con-
densed identity state probability at the first marker, (2) the
transition probabilities between states and (3) the prob-
abilities of the observations given the underlying state.
The condensed identity state probability at the first
marker P(S1 5 r) is equal to the prior probabilities for
each condensed identity state (i.e. depending only on the
known pedigree) given by quantities D1,y,D9. We model
the sequence of IBD states at L markers S1,y,SL with

a Markov chain with the resultant property that condi-
tional on Si, the distribution of the state at marker
i11 depends only on the transition probability matrix
Trt ¼ PðSi11 ¼ tjSi ¼ rÞ. Though the IBD states are not, in
fact, Markov, this approximation has proven effective in
previous studies [Thompson, 1994; McPeek and Sun, 2000;
Abney et al., 2002]. The final element of the HMM are the
emission probabilities which give the probabilities of the
genotypes of the pair given their underlying condensed
identity state P(Gi|Si). With these probabilities specified it
is straightforward to use the forward–backward algorithm
[Baum, 1972] to estimate the probabilities of each
condensed identity state at an arbitrary point of
the chromosome given all the observed genotype data
for that pair.

The transition probabilities depend on both the genetic
distance between the markers as well as the pedigree
connecting the pair under consideration. We propose
estimating the transition probabilities in the following
way. Let ST

i ¼ ð1Si¼1; . . . ; 1Si¼9Þ be a vector whose elements
are indicator functions of the IBD state at position i. Then
the probability distribution at marker i11 is
PðST

i11Þ ¼ PðST
i ÞTðxi11 � xiÞ, where T(x) is the transition

Fig. 1. The condensed identity states. The 15 possible detailed
identity states for individuals A and B, grouped according to

their nine condensed states. Points represent alleles and lines

indicate alleles that are IBD.
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probability matrix for genetic distance x. Because we
assume the hidden states form a Markov chain, the
transition matrix can be written TðxÞ ¼ eQx where Q is
the infinitesimal rate matrix. Note that TðxÞ ¼ UDðxÞU�1,
where U is a matrix whose columns are the eigenvectors of
Q and DðxÞ ¼ diagðel1x; . . . ; ellx; . . . ; el9xÞ where ll is the lth
eigenvalue of Q and 0 ¼ l1 � . . . � l9. Hence, Trt(x), the
probability of transitioning from state r to t over distance x,
can be written in the form

TrtðxÞ ¼
X9

l¼1

al;rte
llx: ð1Þ

The elements of the transition matrix, Trt are subject to
the following boundary conditions:

Trtð0Þ ¼
0 r 6¼ t
1 r ¼ t

and lim
x!1

TrtðxÞ ¼ Dt:

�
ð2Þ

We approximate the transition probabilities in
Equation (1) with a single exponential term,

TijðxÞ � a1;ij1a2;ije
lx; ð3Þ

which, combined with the boundary conditions
(Equation (2)), gives a1;ij ¼ Dj and a2;ij ¼ �Dj for i6¼j or
a1;ii ¼ Di and a2;ii ¼ 1� Di for i 5 j. Note that the para-
meters al and l are specific to the pair of individuals. This
model is equivalent to one where the next state entered is
drawn from the stationary distribution.

The emission probabilities are the probabilities of the
true genotypes for the pair of individuals given their
underlying condensed identity state at locus i, P(Gi|Si),
where Gi ¼ ðG1

i ;G
2
i Þ are the true genotypes for the pair.

Here we assume that all markers are biallelic SNPs with
allelic types 0 and 1, and denote the genotype of person p,
G

p
i , as 0, 1, or 2. These emission probabilities depend on the

allele frequency at the locus and are readily computed for
each condensed identity state and are given in Supple-
mentary Table S1 [Abney, 2008]. Actual observations of the
genotypes, however, may differ from the true underlying
genotypes due to errors or missing data. We, therefore,
include an additional set of probabilities allowing us to
model these effects. We let Oi ¼ ðO

1
i ;O

2
i Þ be the observed

genotypes at marker i for the two individuals and
M 5 (M1,M2) to be the set of missing genotypes for that
pair. We condition all observations on the set of missing
genotypes, which amounts to assuming that the missing
value mechanism is independent of the underlying
genotype, resulting in PðO

p
i ¼ �jM

pÞ ¼ 1, where ‘‘–’’
represents a missing genotype. To allow for genotyping
error we introduce the parameter e and use the probabil-
ities as shown in Supplementary Table S2.

MODELING LD

The standard HMM ignores the dependence between
genotypes that exists in the presence of LD. Below, we
modify the HMM so that the emission probabilities
P(Gi|Si) at SNP i depend on the genotypes at previous
loci. Extending the HMM to use conditional emission
probabilities can greatly add to the computational burden,
if one were to attempt to exactly model the LD in the entire
set of SNPs. Our focus is to model the LD as completely as
possible while still keeping the computations tractable. In
general, modeling LD requires a large enough set of

individuals from the population from which the pattern of
dependence between loci can be estimated. We term this
set of individuals the ‘‘training’’ sample, and they are used
to obtain estimates of the parameters in our LD model.
Below, we describe two LD models that we have
implemented. The first can be used when the training
sample has completely phased genotypes, while the
second can be used even when phase is unknown. In both
cases, as in the standard HMM, the sample of individuals
within whom we wish to estimate IBD need not be phased.

Modeling LD: conditioning on a single SNP
genotype. We modify the emission probabilities using
an approach developed by Albrechtsen et al. [2009]. In this
model we condition the current genotype probability on
the genotype and condensed identity state at a single
previous marker, PðGijGh; Si ¼ Sh ¼ sÞ, where i is the
current marker, h is a previous marker and s is the current
condensed identity state. We obtain the joint probability of
the genotypes at the two loci given a condensed identity
state PðGi;GhjSi ¼ Sh ¼ sÞ by summing over all possible
phasings of the genotypes using Supplementary Table S1
for the genotype probabilities given a particular phasing.
In this case, the allele frequencies in Supplementary
Table S1 should be interpreted as haplotype frequencies.
For instance, if two individuals were both heterozygote
(0,1) at both loci h and i, conditional on condensed identity
state 7, we would obtain the joint probability PðGh;GijSh ¼

Si ¼ 7Þ ¼ 2f00f1112f01f10, where fx is the frequency of
haplotype x. The final emission probabilities for the
observed genotype at locus i are

PðOijOh;Si¼ Sh¼ r;eÞ

¼
PðOi;OhjSi¼ Sh¼ r;eÞ

PðOhjSh¼ r;eÞ

¼

P
Gi ;Gh

PðGi;GhjSi¼Sh¼ rÞ ð
Q2

l¼1 PðOl
ijG

l
i;eÞÞð

Q2
l¼1 PðOl

hjG
l
h;eÞÞP

Gh
PðGhjSh¼ rÞ ð

Q2
l¼1 PðOl

hjG
l
h;eÞÞ

:

It is possible that between loci h and i the Markov process
has made a transition to a different state. In this case we
now assume that the emission probability at locus i is
conditionally independent of the genotype and state at
locus h,

PðOijOh; Si 6¼ Sh; Si ¼ r; eÞ

¼ PðOijSi ¼ r; eÞ ¼
X

Gi

PðGijSi ¼ rÞ
Y2

l¼1

PðOl
ijG

l
i; eÞ

 !
:

We note that, as in Albrechtsen et al. [2009], we do not
necessarily choose locus h to be the marker immediately
preceding i. Below, we consider the two cases where it is
either the immediately preceding marker or the marker
with highest correlation, in the training sample, to marker i
among the L previous markers within a specified distance.

Modeling LD: conditioning on multiple SNP
genotypes. The above procedure for modeling LD
should be effective when the allele at SNP i on a given
haplotype is conditionally independent of the other
markers on that haplotype given the allele at SNP h. This
may often be approximately true when the LD between the
two SNPs is sufficiently large, but may be less accurate
when pairwise LD is small yet there is strong dependence
given the alleles at multiple loci. Extending the above
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model to include L rather than one previous marker would
require summation over 2L11 possible haplotype phases to
get the joint genotype probability for the L markers for the
two individuals. Doing this across the genome can quickly
become computationally intractable as L increases above
one. Instead, we propose a novel method that approx-
imates the LD structure through a linear model. This has
the advantage of maintaining computational efficiency in
spite of the underlying complexity, allows the use of
unphased data—a particular advantage when obtaining
fully phased data may be either difficult or impractical, in
pedigrees for instance—and, as we show in the Results,
accurately corrects the HMM in the presence of LD.

To motivate our approach consider the conditional
probability of individual 1 having genotype 0 at marker i
given the genotype at locus i–1,

PðG1
i ¼ 0jG1

i�1Þ ¼ PðG1
i ¼ 0jG1

i�1 ¼ 0Þ1G1
i�1
¼0

1PðG1
i ¼ 0jG1

i�1 ¼ 1Þ1G1
i�1
¼1

1PðG1
i ¼ 0jG1

i�1 ¼ 2Þ1G1
i�1
¼2

¼ gi;01gi�1;001G1
i�1
¼01gi�1;201G1

i�1
¼2;

where 1x is the indicator function equaling one when
event x is true and is zero otherwise. In this case we
have gi;0 ¼ PðG1

i ¼ 0jG1
i�1¼1Þ, gi�1;00 ¼ PðG1

i ¼ 0jG1
i�1 ¼ 0Þ�

PðG1
i ¼ 0jG1

i�1 ¼ 1Þ, gi�1;20 ¼ PðG1
i ¼ 0jG1

i�1 ¼ 2Þ� PðG1
i ¼

0j G1
i�1 ¼ 1Þ. We propose extending this linear model as

an approximate way to include the effects of LD across L
loci. We first define a representation for the genotype of
individual p at a locus i in terms of indicator functions,
~G

p
i ¼ ð1G

p

i
¼0; 1G

p

i
¼2Þ

t. We then have

Pð ~G
p
i j
~G

p
i�1; . . . ;

~G
p
i�LÞ¼

PðG
p
i ¼ 0jG

p
i�1; . . . ;G

p
i�LÞ

PðG
p
i ¼ 2jG

p
i�1; . . . ;G

p
i�LÞ

 !

¼
1 0

0 1

� �
gi;0

gi;2

 !
þ

gi�1;00 gi�1;20

gi�1;02 gi�1;22

 !
~G

p
i�1

1 . . .1
gi�L;00 gi�L;20

gi�L;02 gi�L;22

 !
~G

p
i�L:

ð4Þ

We additionally impose lower and upper bounds
of 0.01 and 0.99, respectively, on the predicted

probabilities Pð ~G
p
i j
~G

p
i�1; . . . ;

~G
p
i�LÞ. From the above we can

readily compute the probability of the heterozygote from
PðG

p
i ¼ 1jG

p
i�1; . . . ;G

p
i�LÞ ¼ 1� PðG

p
i ¼ 0jG

p
i�1; . . . ;G

p
i�LÞ�

PðG
p
i ¼ 2jG

p
i�1; . . . ;G

p
i�LÞ. It should be noted that in this

multilocus linear model the g parameters no longer have the
simple probability interpretation they do in the two locus case.

Equation (4) provides an efficient framework for
determining the genotype frequencies at a locus given
the genotypes at previous loci in an individual. The
emission probabilities require the joint genotype probabil-
ities of two individuals at a locus given the underlying
condensed identity state. Supplementary Table S1 pro-
vides these probabilities given the allele probabilities at a
locus. To use these probabilities we have to convert the
genotype probabilities obtained from Equation (4) for each
subject into an equivalent, subject-specific allele probability.
A difficulty with this approximation, however, is that the
joint genotype probabilities in Supplementary Table S1

assume a common allele probability for both individuals,
which is not the case here. For example consider two
individuals both homozygous for allele 0. Conditional on
the individuals being in condensed identity state S 5 1 at
that locus the probability PðG1 ¼ 0;G2 ¼ 0jS ¼ 1Þ ¼ f0,
where f0 is the probability of allele 0. In our treatment,
these individuals may have different genotypes at
previous loci and, hence, different probabilities for allele 0,
leaving it unclear what value to use for f0. We formulate
our solution to this in the following way. Define the
quantities pg and qg as the probability of genotype g 5 0,1
or 2 for the two individuals A and B, respectively, where
the genotype probabilities are computed conditional on
the genotypes at previous loci, as described above. The
allele probabilities in person A are e0 ¼ p01ð1=2Þp1 for
allele 0 and e1 ¼ p21ð1=2Þp1 for allele 1, and similarly for
person B with allele probabilities f0 and f1. For an allele a
that is shared IBD between the two individuals, the joint
genotype probabilities conditional on the genotypes at
previous loci is given by a function M½h1ðeaÞ; h2ðfaÞ� of the
frequencies in the two individuals for the allele that is IBD.
The functions h1,h2 are determined from conditional
probability arguments and are derived explicitly in the
Supplementary Text. For the function M(,), we considered
min(,), max(,), and mean(,) and, based on simulations
(data not shown) we found that the highest accuracy
was achieved with min(,). The complete set of joint
genotype probabilities is given in Supplementary
Table S3. For instance, in the above example, where
A and B are in condensed identity state S 5 1, we obtain
the joint conditional probability at locus i PðG1

i ¼ 0;
G2

i ¼ 0jS ¼ 1;Gi�1; . . . ;Gi�LÞ ¼Mðe0; f0Þ, where M is the
min(,) function. To allow for error we assume the observed
genotype at marker i depends on the true genotype and
use the same error model described above. For simplicity,
we assume that the genotypes at the previous markers we
condition on are observed without error. The final emission
probability, including the genotyping error rate, is

PðOijGi�1; . . . ;Gi�L; Si ¼ r; eÞ

¼
X

Gi

PðGijGi�1; . . . ;Gi�L; Si ¼ rÞ
Y2

l¼1

PðOl
ijG

l
i; eÞ

 !
:

Using this emission probability, it is straightforward to use
Baum’ forward-backward algorithm [Baum, 1972] to
estimate the probabilities for each condensed identity
state at a locus.

ESTIMATING PARAMETERS

Implementation of the HMM to estimate IBD probabil-
ities conditional on multilocus genotype information
requires, for each pair, estimates of the unconditional
condensed identity state probabilities Dj, transition rate
parameter l and background LD parameters g or two-
locus haplotype frequencies. The condensed identity state
probabilities are computed from a pedigree using known
algorithms [Karigl, 1981; Lange and Sinsheimer, 1992;
Abney, 2009].

Estimates of the transition rate l can also be computed
from the known pedigree. Although an exact computation
is, in principle, possible for arbitrary pedigrees we use a
simpler Monte Carlo approach. To estimate l in Equation (3)
we assign every founder a pair of unique chromosomes
and allow the chromosomes to segregate through the
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pedigree, repeating this procedure 100,000 times. For a given
pair in the pedigree, we are then able to estimate the
transition probability for the pair being in condensed identity
states r and t at loci separated by a genetic distance x. We
determine these probabilities for distances from 0 to 1.0 cM
in increments of 0.0001 cM. We then find the value l̂ that
minimizes the residual sum of squares between the expected
and observed transition probabilities.

In our modified HMMs that model LD, we require either
haplotype frequencies, for the LD model that conditions on
the genotype of a single SNP, or estimates of the coefficients
g in the linear model of Equation (4) when conditioning on
multiple SNP genotypes. To estimate haplotype frequencies,
we assume a training data set consisting of phased
genotype data across all markers of interest. From this
sample, we compute the correlation between all pairs of
SNPs on each chromosome. Beginning with the second SNP
on a chromosome, for each SNP we select the single SNP,
from among the L previous SNPs within the genetic
distance of D cM, with highest correlation to the current
SNP. For this pair of SNPs we compute the haplotype
frequencies from the training sample.

Given a linear model, estimating the g parameters can
readily be done using standard linear regression on
the training sample. In the context of the HMM, however,
the purpose of the linear model is to predict the genotype
probabilities at a locus given the genotypes at L previous
loci. A difficulty with linear regression in this case is that it
is susceptible to overfitting, leading to poor predictions.
Shrinkage methods, such as ridge regression, often show
superior performance for this type of problem [Hastie
et al., 2009]. We use ridge regression with the bivariate
linear model of Equation (4) to obtain estimates ĝ. We
choose the ridge penalty for each marker by doing five-
fold cross-validation using the ‘‘one-standard-error’’ rule
(i.e. we pick the most parsimonious model within one
standard error of the minimum prediction error).

SIMULATIONS

We performed simulations to assess the performance of
our methods. We considered two pedigree types. The first
was a nuclear family with a sibling pair, and the second
was a large, complex 13-generation pedigree, with 70
founders, comprising 3,555 individuals from the Hutterite
population (this is an updated version of the pedigree
described in Abney et al. [2000]). In the large pedigree the
results were evaluated in three pairs of individuals with
three different kinship coefficients of 0.051, 0.275 and
0.518, with the last of these being a pair consisting of a
person with himself.

To generate genotype data with a realistic LD structure
we used the CEU haplotypes from the HapMap project
[International Hapmap Consortium et al., 2007]. We
created a population of phased chromosomes from the
CEU HapMap data by removing haplotypes that were
from non-founder individuals, resulting in 234 phased
haplotypes, and only using markers that were also present
on the 500 k Affymetrix gene chip. We only used SNPs
from chromosome 8 that had minor allele frequency
greater than 0.05, resulting in 11,643 total SNPs with
inter-marker genetic map distances as provided by the
HapMap project. For each pedigree we simulated geno-
types in the study sample by assigning each founder of the
pedigree a pair of randomly selected phased chromosomes

from the population. Note that chromosomes were drawn
without replacement to reduce the possibility of IBD
sharing in the founders. Any relatedness between foun-
ders in the CEU population was small and infrequent
enough to not noticeably impact our results. The founder
chromosomes were allowed to segregate through the
pedigree until all individuals in the study sample had
genotype data. Phase information in the study sample was
ignored. This procedure was repeated 1,000 times for both
the sibling and large pedigree pairs. In addition, for each
of these 1,000 replicates, we considered two genotype
data sets with the first being the simulated genotypes
at all markers (i.e. no genotyping error or missing data)
and another where each genotype was assigned an
incorrect value with 2% probability and a missing value
with 5% probability.

HUTTERITE DATA

In addition to our simulation studies, we also used real
genotype data from a collection of 609 Hutterite indivi-
duals, all of whom are related through a complex 13
generation, 3,555 person pedigree. This population has
been described previously [Hostetler, 1974; Abney et al.,
2000; Ober et al., 2001]. These individuals were genotyped
with the Affymetrix 500 k GeneChip array resulting in
genotypes at 237,902 SNPs following quality control
procedures [Coop et al., 2008].

RESULTS

Throughout our analyses we compared five methods for
computing multipoint IBD estimates. The first method,
labeled NoLD, used the standard HMM as described in the
Methods section ‘‘Standard HMM’’ with no adjustment for
LD among the markers. Our second method is identical to
the NoLD method but uses a sparser set of markers;
we label this method NoLD-S. For NoLD-S, we randomly
selected a set of markers that were separated by one
centiMorgan. Both the NoLD and NoLD-S methods use
the HMM that is essentially equivalent to the one used in
the PLINK software package [Purcell et al., 2007] for
identifying IBD segments. Method three included LD in
the model as described in the Methods section ‘‘Modeling
LD: Conditioning on a single SNP genotype’’ where
genotype probabilities at the current marker were condi-
tioned on the genotype at only the immediately previous
marker (labeled LD-1). Our fourth method uses the
same model as in LD-1, but conditions on the single
previous marker with highest correlation to the current
marker, from among the 20 previous markers within 2 cM
(LD-20). Finally, we used the linear model with ridge
regression, as described in the Methods section ‘‘Modeling
LD: Conditioning on multiple SNP genotypes’’ to account
for LD with L 5 20. We call this method LD-RR. In addition
to these five methods, for the simulated data in the sib
pair, we also estimate IBD using MERLIN [Abecasis et al.,
2002; and MERLIN with clusters [Abecasis and Wigginton,
2005] (MERLIN-CL).

We look at two measures of accuracy when comparing
the methods. Our first is an overall measure of IBD sharing
across all markers. For a pair of individuals we compute
the bias and the root mean squared error (RMSE) between
the true IBD and estimated IBD sharing, across all loci,
where the IBD sharing at a locus is the proportion of alleles
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shared at that locus. That is, at locus k, the true proportion
of alleles shared IBD is pk ¼ 1Sk¼11 1

2 ð1Sk¼311Sk¼511Sk¼7Þ1
1
4 1Sk¼8; where 1Sk¼r is the indicator function of the
pair being in condensed identity state r at locus k.
The estimated proportion of alleles shared IBD is p̂k ¼

PðSk¼1jGÞþ 1
2 ½PðSk¼3jGÞþPðSk¼5jGÞþPðSk¼7jGÞ� þ 1

4 PðSk¼

8jGÞ; where the probabilities are estimated using one of
the methods listed above. The average true and estimated

proportion of alleles IBD across K loci are p ¼
1
K

PK
k¼1 pk and p̂ ¼ 1

K

PK
k¼1 p̂k respectively. We use T

replication to measure the bias and RMSE of each method
where

Bias¼ 1
T

PT
t¼1 ðp̂

ðtÞ � pðtÞÞ and RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
t¼1 ðp̂ðtÞ�pðtÞÞ

2
q

:

SIBLING PAIRS

We computed the bias and RMSE of the IBD estimating
methods described above using the CEU haplotypes to
estimate background LD for those methods that allow for
it. When using the MERLIN methods, for the data with 2%
genotype error and 5% missing data, we first use
MERLIN’s genotyping error detection methods to remove
genotypes that are flagged as problematic. Figure 2 shows
how the chromosome-wide estimates of the average
proportion of alleles shared IBD compares with the true
values. There is high concordance between estimated and
true values for methods that account for LD, though
MERLIN-CL does less well in the presence of missing data
and genotyping error. We note that the methods that do
not include LD show a systematic positive bias when the
true sharing is low. Thinning the genotype data to include

Fig. 2. Estimated average proportion of alleles shared IBD against the true average proportions for sibling pairs. For each method we

consider the two cases where the genotype data (1) have neither missing data nor error, and (2) have 5% missing data and 2% error.
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markers with little or no LD improves the bias but
introduces greater variance in the estimates of average
IBD. Methods that include LD all show accurate estimates,
even in the presence of errors and missing data. The
MERLIN-based methods, however, show significant de-
gradation in accuracy when errors are present. Figure 3
and Supplementary Table S4 shows the biases and RMSE
of the different methods. We see that NoLD, NoLD-S and
MERLIN have higher bias and RMSE than the methods
that include LD in the model. Of the methods that include
LD, both LD-20 and LD-RR have relatively small bias and
RMSE in both missing data and genotyping error
scenarios. In addition, the Supplementary Text and Figures
show how well each method does at giving high
probability to the true IBD state at a locus.

LARGE PEDIGREE PAIRS

As in the simulated sibling pair data, we estimated
the LD parameters using the HapMap CEU founder
genotypes. As seen in Figure 4 and Supplementary
Table S4, the RMSE show a pattern similar to what was
seen in the sibling pairs with the methods that model LD
having higher accuracy at measuring overall chromosome-
wide sharing. In the models that do not include LD, the
thinning strategy resulted in much more accurate sharing
estimates than did the method that includes all markers.
This is likely because in distantly related relative pairs
relatively fewer regions are shared IBD, yet the high
degree of LD in the dense SNP data results in a larger
fraction of regions that are not IBD appearing to be IBD.
Similarly, by conditioning on the SNP with the highest LD
rather than simply the neighboring SNP, the LD-20 method
achieves higher accuracy than the LD-1 method. The LD-
RR method is very similar to LD-20 when there are no
errors or missing data but shows improved performance

when errors and missing data are present. The estimated
versus true chromosome-wide proportion of alleles shared
IBD for each method are shown in Figure 5 where we see
that the models that incorporate LD are able to accurately
recover the true chromosome-wide IBD sharing. In
addition, the Supplementary Text and Figures show how
well each method does at assigning high probability to the
true IBD state at a locus.

TIMING

The standard HMM is computationally efficient, allowing
one to include very large numbers of markers in an
analysis. Extending the HMM to include LD, however,
does impose an extra computational burden, particularly if
one wants to adjust for LD using information from many,
as opposed to a single marker. The IBDLD method can be
broken down into three separate computational tasks, (1)
estimating the transition rate parameter l; (2) estimating
the background LD parameters, either g or the two-locus
haplotype frequencies; and (3) estimating IBD for many
markers in a pair of individuals. In our large pedigree
case, accomplishing task (1) for a single pair took 172 sec
using 100,000 simulations. Estimates of the LD parameters
were based on 234 phased chromosomes for methods
LD-1 and LD-20, and on unphased genotypes from 117
subjects for method LD-RR. For a chromosome with 11,643
SNPs, these estimates took 43.35, 85.05 and 1490.81 sec,
respectively. Note that unless a phased panel is already
available, methods LD-1 and LD-20 would require
additional time to phase the LD training panel. We
recorded the time to estimate IBD across the chromosome
for each of the methods for a single pair. These results are
shown in Table I.

Fig. 3. Bias and RMSE for the different methods in a sibling

pair. The genotype data (A) have neither missing data nor error,

and (B) have 5% missing data and 2% error.
Fig. 4. Bias and RMSE for the different methods in the large
pedigree pairs. The genotype data (A) have neither missing data

nor error, and (B) have 5% missing data and 2% error.
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HUTTERITE DATA

We obtained estimates for the HMM transition rate
parameter l for each pair of individuals as described in the
Methods section. The estimates of l̂ gave exponential curves
for the transition probabilities that matched the simulated
data extremely well, the mean coefficient of determination
across 185,745 pairs was 0.9988 with SD 0.0015.

We applied both methods LD-20 and LD-RR to the
Hutterite data. Because the Hutterites are a European-
derived population, we estimated the background LD
parameters using either the CEU phased founder haplo-
types for the LD-20 method, or the CEU unphased founder
genotypes for the LD-RR method. We then estimated the
genomewide average proportion of alleles shared IBD for
all pairs of individuals and compared these estimates to
the kinship coefficients as computed from the known
pedigree. Assuming no pedigree errors, we expect the
genomewide sharing to approximately equal the kinship
coefficient with variability resulting from the stochastic
nature of segregation. Figure 6A displays the estimated
genomewide average proportion of alleles shared IBD as a
function of the pair’s kinship coefficient. Both LD-20 and
LD-RR plots are very similar (data not shown). The plot
shows a high degree of bias in the estimates. We conjecture
this is the result of genetic drift in the allele and haplotype
frequencies between the ancestral Hutterite population
and the current CEU population. To adjust for this effect,
we then used the Hutterite genotype data as its own LD
training sample. For the LD-RR method we used the
genotypes of all the individuals to estimate the LD
parameters. To estimate the LD parameters in the LD-20
method we used the 176 phased haplotypes that were
previously determined [Coop et al., 2008]. These haplo-
types were only phased for SNPs that were completely
informative in nuclear families, resulting in haplotypes

TABLE I. Method speeds for a single pair for a single
chromosome

Method
Missing

rate
Error
rate

Sibling pair
time (sec)

Large pedigree
pair time (sec)

NoLD 0 0 0.940 1.020
0.05 0.02 0.941 1.050

NoLD-S 0 0 0.013 0.014
0.05 0.02 0.013 0.014

LD-1 0 0 1.657 1.729
0.05 0.02 1.659 1.731

LD-20 0 0 1.657 1.730
0.05 0.02 1.658 1.732

LD-RR 0 0 1.337 1.408
0.05 0.02 1.345 1.411

MERLIN 0 0 0.308 –
0.05 0.02 0.384 –

MERLIN-CL 0 0 108.360 –
0.05 0.02 1,913.580 –

Fig. 5. Estimated average proportion of alleles shared IBD against the true average proportions for large pedigree pairs. For each method
we consider the two cases where the genotype data (1) have neither missing data nor error, and (2) have 5% missing data and 2% error.
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with a high degree of missing data. Estimating the LD
parameters requires enough haplotypes with non-missing
data to get a reliable estimate of frequencies. To get good
haplotype frequency estimates we imputed missing phase
data using the weighted k-nearest neighbor method [Yu
and Schaid, 2007] with k 5 10, after removing 3,881 SNPs
with unphased data greater than 20%. Estimates of the
genomewide average proportion of alleles shared IBD
against the kinship coefficient are shown in Figure 6B
and C. The square root of the mean squared difference
between the sharing estimates and the kinship coefficients
were 0.0105 and 0.0119 with bias �0.0065 and 0.0080 for
the LD-RR and LD-20 methods, respectively.

We note that points that lie far off the line in Figure 6
represent pairs with misspecified relationships, either due
to errors in the pedigree or sample switches. In particular
we note that one pair that was entered into the pedigree as
siblings was estimated to have sharing consistent with
identical twins. Another pair which the pedigree showed
as being distantly related (kinship coefficient o0.05) also
had sharing consistent with being identical twins. Further
follow-up indicated that a sample had been mistakenly
duplicated and assigned incorrectly to another individual

in the pedigree. The majority of the other outlying points
are pairs involving this incorrectly duplicated individual
where the estimated sharing is actually consistent with the
true relationship. We also ran PREST [McPeek and Sun,
2000] on the data (Fig. 7), which shows some evidence of
misspecified relationships. Inferring the true relationship
from the computed EIBD statistic, however, would be
difficult for most of the misspecified pairs.

DISCUSSION

In this work we developed a method, IBDLD, that can
rapidly estimate IBD sharing between pairs of individuals
related through an arbitrary pedigree given dense geno-
type data. The problem of estimating IBD in large
pedigrees given multipoint genotype data has been a
particularly vexing one to geneticists resulting in a variety
of pedigree splitting strategies. All such approaches,
however, necessarily entail a loss of information which
can either lead to a significant reduction in power [Dyer
et al., 2001] or increase in false positives [Newman et al.,
2001] when performing mapping. These difficulties have
been compounded recently with the wide use of genotyp-
ing chips with high-density genotyping data. The presence
of LD in such data has the consequence of rendering the
standard HMM inappropriate. IBDLD overcomes both
difficulties and is computationally efficient enough to use
genomewide on samples of at least several hundred
related individuals.

When using an HMM model that does not incorporate
LD, the two methods NoLD and NoLD-S represent two
extreme SNP pruning strategies, no pruning and severe
pruning, respectively. Other, more sophisticated pruning
strategies could be used which would result in accuracy
intermediate between the two extremes, while keeping
computation time to a minimum. Our results indicate,
however, that regardless of the pruning strategy used,
accuracy will be far worse than methods that incorporate LD
into the model, at the cost of additional computation time.

We explore two different models for including the
background LD. Results from the two models indicate that
they generally perform similarly, though the LD-RR
method appears to be somewhat more robust than LD-20
in the presence of missing genotypes and genotyping
error. Additionally, the LD-20 method requires phased
haplotypes in the panel of individuals from whom the
background LD will be modeled. Although if such a panel
is available this does not pose any difficulty, it may often

Fig. 6. Estimated average proportion of alleles shared IBD

across the genome against kinship coefficient for the Hutterite

sample. (A) LD-20 using the CEU population to model back-
ground LD, (B) LD-20 using the Hutterites themselves to model

background LD, (C) LD-RR using the Hutterites themselves to

model background LD.

Fig. 7. EIBD versus kinship coefficient for the Hutterite sample.
Deviations from the diagonal indicate possible pedigree errors.

EIBD was computed using PREST.
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be the case that there is no such suitable data. Using a
panel that accurately represents the LD in the study
sample is critical to the accuracy of the method. In the
analysis of the Hutterite data one might expect that the
HapMap CEU population would provide an accurate
representation of the LD as the Hutterites are a European
Caucasian-derived population. Using this panel, however,
resulted in significant bias in the estimates of IBD sharing.
Instead, using the same sample in which we wish to
estimate IBD to also model the LD gave highly accurate
estimates. In the context of estimating IBD in a sample of
individuals related through an arbitrary pedigree, then, it
becomes necessary to phase all the individuals. Standard
methods for phasing individuals with dense genomewide
data typically assume the subjects are unrelated. Phasing
within a pedigree, with the expectation that Mendelian
inheritance laws will be obeyed, is a laborious and
potentially error prone task. Approaches such as the one
used by Kong et al. [2008] may be promising in this
respect. The difficulty with phasing in this context results
in our LD-RR method, which requires only unphased
genotypes in the LD modeling panel, being advantageous.

In spite of IBDLD showing sensitivity to correctly
modeling the background LD, it is highly robust to
pedigree misspecification. In our analysis of the Hutterite
data, when a sample was duplicated into an incorrect
person in the pedigree, the estimates of IBD were
essentially unchanged, even though the estimates may
have been distant from their expected value based on the
purported positions of the individuals in pedigree.
Although a tool such as PREST remains useful at detecting
individuals who might have a misspecified relationship
with other pedigree members, it has difficulty in identify-
ing the actual relationship much of the time. IBDLD, on the
other hand, can still accurately estimate the actual amount
of IBD sharing and, hence, suggest a very likely true
position in the pedigree. Nevertheless, PREST is extremely
fast and maintains significant utility as a screening tool.
The method presented here would be particularly useful
as a follow-up for pairs that appear to be sharing
anomalously relative to their known pedigree locations.

The robustness to misspecified relationships is the result
of the high level of information in very dense SNP data.
The pedigree connecting a pair of individuals is used to
both estimate an expected level of IBD sharing and a
transition rate between IBD states. When the genotype
information is highly informative toward IBD, the infor-
mation from the pedigree contributes a relatively small
part. This leads to accurate estimates even when the
pedigree is incorrect. A particularly useful implication of
this is that it may be possible to obtain highly accurate
estimates of IBD even when the pedigree is unknown.
Though it will always be more accurate to use pedigree
information, in populations where the individuals are
likely to be highly related but where the genealogy is
unavailable, it is probable that a modification of the
method will still be able to reasonably estimate IBD
sharing. We are currently exploring this idea.

A particular use of IBDLD is in the mapping of complex
traits. Family studies that can combine both linkage and
association information may prove effective at helping to
uncover some of the ‘‘missing heritability’’ that plagues
the mapping of common traits. The ability to use large
samples of related people with dense SNP data to obtain
IBD estimates that can then be used in a mixed model

approach [Almasy and Blangero, 1998; Kang et al., 2010]
may increase power to detect QTL. Additionally, using
actual rather than expected IBD sharing may also lead to
greater insight into genetic architecture by not only
giving better estimates of overall heritability of traits
but also allowing one to assign heritability to either
particular chromosomes or chromosomal regions, e.g.
Visscher et al. [2007].
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IBDLD is available at http://home.uchicago.edu/nabney.
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