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ABSTRACT Genome-wide association studies of complex traits often are complicated by relatedness
among individuals. Ignoring or inappropriately accounting for relatedness often results in inflated type I
error rates. Either genotype or pedigree data can be used to estimate relatedness for use in mixed-models
when undertaking quantitative trait locus mapping. We performed simulations to investigate methods for
controlling type I error and optimizing power considering both full and partial pedigrees and, similarly, both
sparse and dense marker coverage; we also examined real data sets. (1) When marker density was low,
estimating relatedness by genotype data alone failed to control the type I error rate; (2) this was resolved by
combining both genotype and pedigree data. (3) When sufficiently dense marker data were used to
estimate relatedness, type I error was well controlled and power increased; however, (4) this was only true
when the relatedness was estimated using genotype data that excluded genotypes on the chromosome
currently being scanned for a quantitative trait locus.
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In their simplest form, genome-wide association studies (GWAS)
assume that all subjects are unrelated. However, human population
isolates and various model organism populations contain individuals
with varying levels of relatedness. For polygenic traits, this results in
correlations among both genotypes and phenotypes and can produce
inflated type I error rates when performing GWAS (Newman et al.
2001; Cheng et al. 2010). Mixed models are commonly used to ac-
count for relatedness using a random effect and may optionally model
the effect of individual markers as a fixed effect (Goldgar 1990; Amos
1994; Xu and Atchley 1995; Abney et al. 2000; Yu et al. 2006; Kang
et al. 2008; Cheng et al. 2010). Relatedness can be estimated from
a pedigree or from genotype data. The use of genotype (e.g., Yu et al.
2006; Kang et al 2008) or pedigree (Abney et al. 2002; Cheng et al.
2010) data for GWAS has been implemented previously. However,
when both types of data are available, methods to control the type I

error rate while maximizing power have not been systematically
explored.

Although siblings share an average of 50% of their genome
identity-by-descent (IBD), the realized sharing is variable. Genotype
data allow estimation of realized sharing (Ritland 1996; Lynch and
Ritland 1999; Wang 2002; Frentiu et al. 2008), as opposed to the
average level of sharing that is obtained from pedigree data. However,
genotypes only provide information about identity-by-state (IBS),
which is only an approximation to IBD. Furthermore, the accuracy
of estimates of realized sharing depends on the density of genotype
data. When both pedigree and genotype data are available, a very
pragmatic question arises: how should these data be used to control
false-positive rates while increasing power?

In this study, we used simulations to address this question. We
estimated relatedness by using genotype data, pedigree data, and the
combination of both genotype and pedigree data under various
models. We sought methods that could control the type I error rate
and maximize power.

METHODS, SIMULATIONS, AND RESULTS

Statistical models
Our methods are based on the linear mixed model for quantitative
traits with a single major diallelic quantitative trait locus (QTL)
modeled as a fixed effect and P polygenes modeled as random effects,
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y ¼ mþ xaþ zd þ
XP

l¼1

ui þ e; (1)

where y is the vector of trait values; m is the vector of trait means
that may depend on known covariates; x is a vector of genotypes
with values 21, 0, and 1 corresponding to genotypes AA, AB, and
BB of a QTL; a is the additive effect of the QTL; z is a vector whose
elements take on value 1 when the subject has QTL genotype AB and
value 0 otherwise; d is the dominance effect of the QTL; ui is the
genetic effect at the ith polygenic locus; and e is the vector of re-
sidual effects. We assume the random effects to be distributed nor-
mally, e � Nð0; Is2

eÞ, where I is the identity matrix; ui ~ N(0, Vi),
with the polygenic effects ui independent of each other and inde-
pendent of the residual effect e. We model the polygenic covariances
as Vi ¼ 2Fis

2
a;i þ Dis

2
d;i, where the (j, k)th element of Fi is the

probability that at polygene i a randomly drawn allele from subject j
and a randomly drawn allele from subject k are IBD, the (j, k)th
element of Di is the probability that at polygene i the two alleles in
subject j are both IBD with the two alleles in subject k and that
neither subject is autozygous, and s2

a;i and s2
d;i are the additive

and dominance polygenic variances at locus i. In general, when in-
breeding is present, there are additional variance components pres-
ent (Gillois 1964; Harris 1964). The additional variance components,
however, typically are small (Lynch and Ritland 1999; Abney et al.
2000) and we choose to ignore them here. The total covariance
matrix for the polygenic effect, then, is

V ¼
XP

i¼1

Vi ¼ 2
XP

i¼1

Fis
2
a;i þ

XP

i¼1

Dis
2
d;i: (2)

Our objective is, given the genotype data at a marker, to
test whether the marker is a QTL. That is, we test the null hy-
pothesis H0: a = 0 and d = 0 vs. the alternative H1: a 6¼ 0 or
d 6¼ 0. We use the likelihood ratio test with the trait model
y � Nðmþ xaþ zd; V̂þ Is2

eÞ, where we must use an estimator V̂
for the true covariance matrix in equation (2) because the true
relationship matrices Fi and Di and polygenic variances s2

a;i and
s2
d;i are unknown. Typically, Fi and Di are estimated by their

expected value given a pedigree, EðFiÞ ¼ F̂p and EðDiÞ ¼ D̂p for
all loci i, where F̂p and D̂p are the pedigree based estimates. How-
ever, it is also possible to estimate these quantities from the
marker data, and when the marker data are informative enough,
this may more accurately estimate the true sharing at the poly-
genic loci. We label the marker-based estimates F̂m and D̂m and
are described in Relationship matrices subsection. This leads us to
consider three possible models for the polygenic covariance in the
likelihood ratio test, VM1: V̂p ¼ 2F̂pŝ

2
p;a þ D̂pŝ

2
p;d where the re-

lationship matrices are estimated using only pedigree information,
VM2: V̂m ¼ 2F̂mŝ

2
m;a þ D̂mŝ

2
m;d where the relationship matrices

are estimated using only observed genotype data, and VM3:
V̂mp ¼ 2F̂mŝ

2
m;a þ 2F̂pŝ

2
p;a þ D̂mŝ

2
m;d þ D̂pŝ

2
p;d where relationship

matrices are estimated from both genotype and pedigree data are
used. In all three variance models the variance parameters ŝ2

� are
estimated by maximum likelihood.

Relationship matrices
We obtained relationship matrices as described and implemented in
the R package “QTLRel” (Cheng et al. 2011). The pedigree estimates
are based on Karigl’s algorithms (Karigl 1981). To obtain the marker

based estimates F̂m and D̂m, we considered each genotyped locus for
a pair of subjects and used an estimator based on IBS rather than IBD.
For a diallelic marker l the (j, k)th element of F̂m;l takes on value 1.0
when subjects j and k are both homozygous for the same allele, 0.5
when one is homozygous and the other heterozygous or both are
heterozygous, or 0 when both are homozygous for different alleles.
We define the (j, k)th element of D̂m;l as 1.0 when both j and k are
heterozygous and 0 otherwise. Our marker based estimates are the
mean across L markers used in the estimator, F̂m ¼ 1

L

PL
l¼1F̂m;l and

D̂m ¼ 1
L

PL
l¼1D̂m;l . In Table 1 we consider different sets of the L loci in

our estimators. Note that under the assumption that all the additive
polygenic variances s2

a are equal and all the dominance polygenic
variances s2

d are equal, the true polygenic covariance matrix given
in Equation (2) would closely resemble our estimated covariance matrix
V̂m given in VM2, with the summation over polygenes replaced by
a summation over markers. Although we do not require this assump-
tion to use our estimators for the relationship matrices, it does suggest
that a more efficient estimator might be chosen by appropriately
weighting each term in the summations for F̂m and D̂m, with the
optimal weights depending upon both how IBS at a marker captures
IBD at a polygene and the relative magnitude of the variance at that
polygene. We do not explore this issue here.

Mapping populations
We considered two mapping populations: an advanced intercross line
(AIL) F26 and a structured population (STR). For the AIL, we assumed
that one male and one female offspring from each of 144 Fn (2# n#
25) breeding pairs was randomly mated with a nonsibling to produce
the next generation. The final sample used for mapping consisted of
four offspring from each of 144 F25 breeding pairs for a sample size of
576. The STR consisted of subsamples from three subpopulations. The
first subsample was from an AIL F26,where one male and one female
progeny from each of 48 Fn (2 # n # 25) breeding pairs was ran-
domly mated with nonsiblings to produce the next generation and
four offspring of each F25 breeding pair contributed to the subsample.
The other two subsamples were generated as follows. A male and
a female progeny from each of 96 Fn (2 # n # 12) breeding pairs
were randomly mated with nonsiblings to produce the next genera-
tion. The F13 breeding pairs were randomly split into two subpopu-
lations of equal size and bred until F26 with the same breeding scheme
as above within each subpopulation. The STR sample size was also
576. These pedigrees were created once and were used in replicate
simulations.

Sparse marker simulations
We simulated 15 chromosomes that were 400 cM each; each chromo-
some had 101 evenly spaced markers (4 cM spacing). A total of 500
polygenic QTL were evenly spaced on the first five chromosomes.
We simulated two possible relationships between the markers and
the polygenic QTL (Table 1): (Completely linked), that is, all of the
polygenic QTL were exactly at marker loci, meaning that polygenic
QTL were completely linked to markers or (Incompletely linked),
that is, each polygenic QTL was midway between two adjacent markers,
meaning that polygenic QTL were incompletely linked to markers.
On chromosomes 1–5, the additive and dominance effects of a poly-
genic QTL were generated randomly from uniform distributions
U (20.15, 0.15) and U (20.08, 0.08), respectively, in each replicate
simulation. The residual effect was simulated from a normal distri-
bution N (0, 1). The polygenic QTL approximately accounted for
84% of the total variation. Heritabilities in this range are not uncom-
monly observed in model organisms and humans (e.g., Yang et al.

1862 | R. Cheng et al.



2013). We expect our results will apply across a broad range of her-
itabilities. There were no QTL on chromosomes 6–10. We scanned
chromosomes 11–15 for putative QTL. When we evaluated type 1
error rates, there were no QTL on chromosomes 11–15. When eval-
uating statistical power, there was one QTL at the position of the
marker in the middle of the 11th chromosome with an additive effect
0.5 and a dominance effect 0.2, which accounted for approximately
2.5% of the total variation.

Variance model estimators
For each variance model, VM1, VM2, and VM3, we considered
different estimators that varied in their level of informativeness. For
VM1, we obtained estimates of the relationship matrices as follows:
(1) using no pedigree (Naive), equivalent to assuming all subjects are
independent; (2) using only the final three generations (i.e., individ-
uals, parents and grandparents) of the pedigree (Last3); (3) using only
the final six generations of the pedigree (Last6); and (4) using the
entire pedigree (AllPed).

VM2 consists of estimates based on different subsets of genotype
data. Our intent was to investigate scenarios in which the markers
were more or less informative regarding the polygenes. An ideal case
is when we consider only those markers that are completely linked to
the polygenes (left column of Table 1). A less-ideal case is when we
only consider those markers that are incompletely linked to the poly-
genes (right column of Table 1). The first row of Table 1 considers
chromosomes 1–5, which contain all of the polygenes. The cells in this
column are labeled complete linkage (CL) and incomplete linkage
(IL). The second row of Table 1 considers chromosomes 6–10, which
do not contain any polygenes, in this case both columns are equivalent
and labeled unlinked (UL). The third row of Table 1 considers chro-
mosomes 1–10, thus representing the combination of the prior two
rows. These are a combination of completely linked and unlinked
(CUL), and incompletely linked and unlinked (IUL). The final row
includes CUL plus one of chromosomes 11–15, such that the addi-
tional chromosome included in the estimate of relatedness is the one
being scanned for the QTL.

For the third variance model, VM3, we combined estimators from
both VM1 and VM2. Specifically, we used the IUL set of markers
to estimate Fm and Dm and either AllPed or Last3 to estimate Fp

and Dp.
We evaluated the performance, in terms of type I error rates and

power, of the different methods for estimating the relationship
matrices. Although chromosomes 1–10 were sometimes used to esti-
mate the polygenic variation, only chromosomes 11–15 were scanned
for the presence of a QTL. In simulations in which there was not
a QTL on chromosome 11, any significant association was considered
a false positive. When a QTL was present on chromosome 11, any
significant association on this chromosome was considered a true
positive. In both instances significant associations were defined as

those exceeding a 0.05 significance level based on 5,000 permutations
(Cheng and Palmer 2012). We obtained a similar result from 5000
parametric bootstrap simulations. We performed 2500 replicates to
evaluate type I error rates and power. The maximum likelihood ratio
at each marker was used as a test statistic, as implemented in QTLRel
(Cheng et al. 2011).

Dense markers simulations
After completing the prior set of simulations, we were concerned that
certain VM2 conditions failed to adequately control type I error rates.
We hypothesized that this was attributable to the sparse nature of the
markers, so we conducted simulations in which we varied the density
of markers for model VM2. In this set of simulations we only
considered the STR and simulated 15 chromosomes of length 200 cM
with 500 polygenic QTL that were placed randomly across the first
10 chromosomes. The additive and dominance effects of the poly-
genic QTL were randomly generated using the same distributions
as described previously, whereas the residual error was simulated
from a N (0, 0.82) distribution. In the simulations designed to evaluate
power, we placed a QTL with an additive effect of 0.5 and a dominance
effect of 0.2 at position 10223 cM of the 11th chromosome; otherwise,
there were no QTL on the last five chromosomes. Markers were
spaced evenly on the first 10 chromosomes with intermarker distances
of 4, 2, 1, 0.5, 0.25, 0.125, or 0.0625 cM. For chromosomes 11–15 we
considered two cases (a) markers were placed with the same density as
on the first 10 chromosomes, or (b) markers were evenly spaced every
2 cM. As the marker density increased in case (a) the distance between
the QTL and its closest marker on chromosome 11 decreased; how-
ever, unlike in the sparse marker case, the QTL was never at a marker.
In these sets of simulations, for the VM1 estimator we used the entire
pedigree; for the VM2 estimator we estimated relatedness using the
markers on the first 10 chromosomes. For the VM3 estimator we
combined the VM1 and VM2 estimators, where we used the last three
generations of the pedigree for VM1. Again, chromosomes 11–15
were scanned for a QTL and type I error rates and statistical power
were estimated from 1000 replicates.

Real dataset
Finally, we used a published dataset from the 8th generation of
a mouse AIL, which were bred from two inbred strains. This dataset
consisted of 552 mice genotyped at 895 single-nucleotide polymor-
phisms (SNPs) and phenotyped for a quantitative trait, as described in
Parker et al. (2011). A full pedigree back to the inbred founders was
available. In our analyses we included both additive and dominance
variance components in the model when estimating relatedness from
the marker data or from the pedigree. All simulation code (Supporting
Information, File S1) and the analyzed data set (File S2) are available at
http://palmerlab.org/data/.

n Table 1 Names of marker sets used to estimate genotype-based relationship matrices

Chromosomes Used in Marker Set
Marker Set Name When Polygenes and Markers Are

Completely Linked Incompletely Linked

1–5 CL (complete linkage only) IL (incomplete linkage only)
6–10 UL (unlinked only)
1–10 CUL (Both CL and UL) IUL (Both IL and UL)
1–10 + (11–15 choose one)a CUL + 1 —

QTL scans were only performed on chromosomes 11–15 with the following marker sets used to estimate relatedness. QTL, quantitative trait locus.
a

Estimates of relatedness included chromosomes 1–10 and an additional chromosome selected from 11–15 such that the chromosome selected is the one being
scanned, as described in the text.
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RESULTS

Sparse markers
Results of the type I error simulations are shown in Table 2. It is clear
that ignoring the relatedness of the subjects led to a highly inflated
false-positive rate (Table 2; Naive). In the AIL population, only the
final three generations were needed to obtain sufficiently accurate
estimates of the relationship matrices to control type I error (Last3).
With the more STR, the last 12 generations were required to control
the type I error rate. Although our simulations indicate that more than
one generation typically will be required to control type I error rates,
a full pedigree is not always needed. In general, it is prudent to use all
available pedigree information, because the number of generations
needed to control the type I error rate may not be known and using
too many generations had no negative impact on power.

In an ideal situation the markers used to estimate the relationship
matrices would exactly tag the polygenic loci (CL). As shown in Table
2, under this condition we obtained the correct type I error rate and had
the greatest power. A less optimal situation was that the markers were
only in partial linkage disequilibrium (LD) with the polygenes (IL), or
even worse, the markers were completely unlinked to the polygenes
(UL); in both of these cases, type I error rates were inflated. When
additional uninformative markers (markers on chromosomes 6–10)
were added to the CL and IL cases (CUL and IUL), the type I error
rate was unaffected, however power in the CUL case was lower than the
power in the CL case. Finally, unlike the previous cases in which in-
formation about relatedness was drawn from markers on chromosomes
1–10 but the QTL scan was performed on chromosomes 11–15, we
considered the case (CUL + 1) where markers on chromosomes 11–15
were used both to estimate the relatedness and for the QTL scan. To
make the results directly comparable to CUL, only markers on the
chromosome being scanned were added to those on chromosomes
1–10 (e.g., when scanning chromosome 11 markers on chromosomes
1–11 were used to estimate relatedness). In this case, we found that the
type I error rate was too conservative resulting in dramatically de-
creased power. We attribute this phenomenon to the effect of the
QTL being partially captured by markers that are included in the poly-
genic term. Thus, the effect of the QTL is divided between the fixed and
random term in the linear mixed model. This phenomenon has re-
cently been referred to as “proximal contamination” by Listgarten et al.
(2012). This finding suggests that markers linked to the locus being
scanned should not be included in the estimate of relatedness.

Finally, we considered using both pedigree and marker informa-
tion to model relatedness (VM3). We found that although the use of
markers or using partial pedigrees was unable to control type I error,
the combination of the two effectively controlled the type I error rate.
This approach may result in increased power relative to use of the
pedigree alone, but this difference, although suggestive, was not statistically
significant in our simulations.

Dense markers
As shown in Table 2, when markers were incompletely linked to the
polygenic QTL, the type I error rate was not adequately controlled.
This incomplete linkage was a consequence of inadequate marker
density; therefore, we explored the effect of increasing the marker
density. As shown in Figure 1 when only SNPs were used to estimate
relatedness (i.e., VM2) and when the marker density was inadequate,
the type I error rate was inflated. Using both marker and partial or full
pedigree data (i.e., VM3) prevented inflation of the type I error rate,
without sacrificing much power. This approach provides better power
than using the pedigree alone (i.e., VM1).

Considering Table 2 and Figure 1, the ability of VM1 to control
false-positive results was determined by the amount of pedigree in-
formation. VM2 depended on how accurately the markers captured
information about the polygenes. VM3 provides a robust alternative
when neither sufficient pedigree nor marker data are available. In
general, VM1 was the least powerful, VM2 was the most powerful if
markers linked to scanning loci were excluded in the estimation of
relationship matrices, and VM3 was a compromise.

Note that our reported powers will include positive associations
even when the “significant” locus is far from the true QTL. The
consequence is that the power values are greater than they would
be under an approach that requires the association to be close to
the true QTL. However, the relative powers of the methods will not
be affected by the differences between these two approaches.

Real data set
Finally, we applied these methods to a real data set (Parker et al.
2011). We estimated relatedness by using the full pedigree (AllPed,
i.e., VM1) or all markers on the genome (AllSNP, i.e., VM2). In
addition, because including SNPs on the chromosome being scanned
in the relatedness estimation is overly conservative (Table 2, CUL + 1),
we estimated relatedness by using all markers except the chromosome
being scanned for a QTL (AllSNP-1). In Figure 2 we compare a version
of VM3 that combines both AllSNP-1 and pedigree information
(AllSNP-1 + AllPed) with either AllSNP (Figure 2A) or AllPed (Figure
2B). The estimated heritability of this trait was 74.8% using VM3.

Note that we did not compare AllSNP-1 to AllSNP. AllSNP-1 is
comparable with IUL (Table 1) because IUL used SNP information
from chromosomes 1–10 but scanned for QTL on chromosome 11.
As shown in Table 2 and Figure 1 the ability of IUL to control the type
I error rate depends on marker density. In this real data example, it was
not clear whether our markers were sufficiently dense. Therefore, any
apparent advantage in power of AllSNP-1 compared with AllSNP might
be a result of a failure of AllSNP-1 to control the type I error rate. In
situations in which sufficiently dense markers are available, AllSNP-1

n Table 2 Marker set power and error rates

AIL STR

Type I Error Rate Power Type I Error Rate Power

Naive 0.538�� –a 0.802�� –
Last3 0.059 0.682 0.083�� –
Last6 0.051 0.674 0.060� –
Last12 0.058 0.678 0.057 0.653
AllPed 0.049 0.676 0.053 0.664
CL 0.055 0.893 0.056 0.882
IL 0.099�� – 0.102�� –
UL 0.213�� – 0.241�� –
CUL 0.048 0.805 0.042� 0.800
IUL 0.078�� – 0.080�� –
CUL + 1 0.008�� 0.559 0.014�� 0.527
IUL+Last3 0.052 0.741 0.048 0.716
IUL+AllPed 0.040� 0.734 0.052 0.716

Type 1 error rate and power at significance level 0.05 under different marker sets
and variance models. AIL, advanced intercross line; STR, structured population;
AllPed, entire pedigree; CL, complete linkage; IL, incomplete linkage; UL,
unlinked; CUL, completely linked and unlinked; IUL, incompletely linked and
unlinked.
� Indicate that the estimated type I error rate is significantly different from 0.05 at
significance levels 0.05.

�� Indicate that the estimated type I error rate is significantly different from 0.05
at significance levels 0.01.

a
Power results are not shown when the type I error rate is inflated.
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should control the type I error rate, as shown in Figure 1. The benefit in
power of using AllSNP-1 + AllPed is demonstrated in Figure 2, where
this method detected five genome-wide significant results, whereas
AllPed detected one and AllSNP zero genome-wide significant loci.

DISCUSSION
GWAS is a powerful tool for dissecting the genetic basis of
quantitative traits. However, accurate inference depends on a valid
test (i.e., correct type I error rates), a requirement that may not be met
if either familial relatedness or population structure is not properly
modeled. When working with model organisms, GWAS is often per-
formed with the use of populations in which individuals are closely
related to one another, necessitating a method to estimate the relat-
edness. This can be done using a pedigree, if available, but could
potentially also be performed using observed genotype data. We found
that estimates of relatedness that use sufficiently long pedigrees can
control the type I error rate. Furthermore, marker-based estimates can

also control the type I error rate if the markers are sufficiently dense to
accurately estimate the realized relatedness at the polygenes. Perhaps
more importantly, we find that an estimator that uses both pedigree
information and genotype data gave consistently accurate type I error
rates across differing levels of pedigree and genotype informativeness,
even when using either pedigree or genotype data that alone would
not result in a valid test.

We also investigated how different approaches to estimating
relatedness using marker data affect the power of a GWAS. We
found power was increased by excluding markers that are in LD with
the marker being tested. This finding is underscored by our analysis
of the AIL mouse data set, where five loci reach genome-wide significance
when this approach is used, whereas only one locus meets genome-wide
significance when all markers are used to estimate the matrices. Note
that both our real dataset and our simulations had relatively high
heritabilities; however, we expect that our conclusions can be extended
to traits with lower heritabilities.

Figure 1 Estimated type I error rate and statistical power at significance level 0.05 for varying densities of markers. Marker densities on
chromosomes 1–10 were varied, and markers on chromosomes 11–15 were either varied (left) or held fixed at 2 cM spacing (right). VM1:
relationship matrices estimated using the entire pedigree (AllPed); VM2: relationship matrices estimated using genotypes on chromosomes
1–10 (IL); VM3: relationship matrices estimated using both genotypes on chromosomes 1–10 (IL) and the last three generations of the pedigree
(Last3). Red symbols indicate conditions with inflated type I error rate.
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We propose that all markers on the chromosome being scanned be
excluded from the relationship estimation. Further power improve-
ments may be possible by excluding only those markers that are in
LD with the locus being tested rather than all markers on that
chromosome, though this would entail a more complicated imple-
mentation. Current methods for efficiently using mixed models in
GWAS (Kang et al. 2008; Cheng et al. 2010; Meyer and Tier 2012;
Zhou and Stephens 2012) would need modification and may lose
computational efficiency. Excluding all markers on the chromosome
allowed a reasonable compromise between computational speed and
power. We do note that the gains in power obtained by excluding
markers in LD with the tested locus is likely most important when
working in populations where LD extends over a significant fraction
of the chromosome, though we do not directly assess this here. Re-
cently, the loss of power due to inclusion of markers in LD with the
tested locus has recently been referred to as “proximal contamination”
by Listgarten et al. (2012).

Ideally, we would expect to obtain optimal power by not just
excluding markers in LD with the locus being tested but by only using
genotypes most informative of IBD sharing at the polygenic loci. Here
we used IBS sharing as a proxy for IBD sharing, an approximation
that is exact in the AIL and STR populations used here. In populations
where IBS is less indicative of IBD (e.g., natural populations) recent
advances allow for highly accurate estimates of IBD sharing given
sufficiently dense marker data (Han and Abney 2011, 2013). We
expect using IBD estimates obtained from such methods, rather than
solely using pedigree based estimates of relatedness, will provide gains

similar to what we obtained here. Our results, then, should provide
practical guidance to researchers seeking to model polygenic variation
in support of GWAS and related study designs.
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