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ABSTRACT
When the classical �2 goodness-of-fit test for Hardy-Weinberg (HW) equilibrium is used on samples with

related individuals, the type I error can be greatly inflated. In particular the test is inappropriate in
population isolates where the individuals are related through multiple lines of descent. In this article, we
propose a new test for HW (the QL-HW test) suitable for any sample with related individuals, including
large inbred pedigrees, provided that their genealogy is known. Performed conditional on the pedigree
structure, the QL-HW test detects departures from HW that are not due to the genealogy. Because the
computation of the QL-HW test becomes intractable for very polymorphic loci in large inbred pedigrees,
a simpler alternative, the GCC-HW test, is also proposed. The statistical properties of the QL-HW and
GCC-HW tests are studied through simulations considering a sample of independent nuclear families, a
sample of extended outbred genealogies, and samples from the Hutterite population, a North American
highly inbred isolate. Finally, the method is used to test a set of 143 biallelic markers spanning 82 genes
in this latter population.

WHEN there are no disturbing forces such as selec- outlined by Douglas et al. (2002), testing for HWE is
tion, mutation, or migration that would change an additional tool with which to identify genotyping

allele frequencies over time and when there is random errors. Xu et al. (2002) have shown how systematic use
mating in a very large population, the two alleles of an of HW testing in case samples and in control samples
individual are known not to be associated. As a conse- may help to avoid false detection of association signals
quence, the genotype frequencies are given by the prod- driven by genotyping errors in only one of the two
uct of the allele frequencies and the population is said samples (either cases or controls).
to be in Hardy-Weinberg equilibrium (HWE). Although Classical approaches to testing for HWE include Pear-
it is one of the most basic and oldest tests in genetics, son’s �2 goodness-of-fit test (Gof-HW) and the corre-
HWE testing has lately regained serious attention from sponding likelihood-ratio test for unrelated individuals.
human geneticists. Nielsen et al. (1999) proposed using However, these tests are not suitable for use in samples
it to fine map susceptibility loci. Indeed, as shown by containing related individuals as they assume indepen-
these authors, when considering case-only samples and dence among the observations. Neglecting these corre-
thus conditioning on phenotypes, departure from HW lations may lead to spurious conclusions (as we demon-
is expected at susceptibility loci acting in a nonmultipli- strate in results). Further, permutation-based tests
cative manner. More recently, Lee (2003) proposed us- where alleles are randomly reassigned to genotypes to
ing the test as a genome-wide screening tool for associa- get null distributions are not suitable. Indeed, for such
tion. As outlined by Weinberg and Morris (2003), this tests to be valid, the alleles must be exchangeable under
latter strategy should be considered very carefully. It the null hypothesis, which is not generally the case when
has important caveats that include little power to detect considering related individuals. In this article, we pro-
some plausible genetic models and nonnegligible prob- pose a method for solving the problem of testing for
ability of detecting departures from HW (HWD) due HWE in a sample with any kind of related individuals,
to other reasons, which include selection not driven by provided that their relationship is known. The method
the phenotype under study, population stratification, is designed to be suitable for large inbred pedigrees in
and genotyping errors. In the present context of inten- which the relatedness among individuals may be consid-
sive use of SNP markers, for which the proportion of erable with many or all individuals related through mul-
genotyping errors that are not detectable by routine tiple lines of descent. In addition to requiring correction
Mendelian incompatibility checks is fairly significant, as for nonindependence among the individuals, testing

for HWE in large inbred pedigrees also requires precise
specification of the hypothesis to be tested. This is be-
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TABLE 1

Notations

N No. of individuals in the sample
a No. of distinct alleles at the locus
M No. of possible distinct genotypes
hi Inbreeding coefficient of individual i
�ij

k kth identity coefficient between individuals i and j
pk Frequency of allele k
r Fixation index
Y � (Y1, . . . , YN) N(M � 1) vector of genotype indicators
� � (�1, . . . , �N) N(M � 1) vector of genotype indicator expectations
Dp [N(M � 1) � (a � 1)] matrix with kth column equal to ��/�pk

Dr N(M � 1) vector equal to ��/�r
p � (p1, . . . , p(a–1)) Vector of the (a � 1)-independent allele frequencies
� [N(M � 1) � N(M � 1)] covariance matrix of Y when r � 0
K � in the absence of inter-individual correlations
p̂0 Estimate of p when r � 0
D̂p , D̂r , �̂0, �̂, K̂ Dp, Dr, �, �, K computed at r � 0 and p � p̂0

the inbreeding coefficient hi. When the genealogy of a quasi-likelihood score test for HWE (QL-HW test).
Because it is based on genotypes rather than on alleles,the population is available, the inbreeding coefficient

can be computed for any individual so that the correla- the QL-HW statistic is more complex than the QLS.
Allele frequencies do not factor out of the mean andtion between the two alleles of any individual due to

the pedigree structure can be measured. We propose a derivative vectors and out of the covariance matrix, as
they do in the QLS. Further, whereas the QLS requirestest performed conditional on the relationship among

the genotyped individuals specified by the pedigree. In only the inbreeding and kinship coefficients to summa-
rize the correlation within an individual and betweenthis case, the null hypothesis of the test is that, condi-

tional on the pedigree information, the random variable any pair of individuals, the QL-HW requires the values
of the nine condensed identity coefficients for any pairrepresenting assignment of genotypes to genotyped in-

dividuals follows the distribution that would be obtained of individuals. We use the efficient algorithm of Abney
et al. (2000) to compute these coefficients in complexif the founders’ alleles were i.i.d. draws from a distribu-

tion (p1, . . . , pa), where pi is the frequency of allele i, inbred pedigrees. Because the computation of the QL-
HW test may become intractable for very polymorphicpi � 0, and �pi � 1 and if, at each meiosis in the pedigree,

one of the two parental alleles was passed on with chance loci in large inbred pedigrees, we propose a simpler
alternative, the generalized corrected �2 test for Hardy-1/2 each (notation defined throughout the article is

summarized in Table 1). Deviation from this hypothesis Weinberg (GCC-HW test). In the case of an outbred
sample with a biallelic locus, the GCC-HW test is equiva-could arise if, within the population, conditional on

relationship, mate choice further depended on the ge- lent to the Gof-HW test with a variance correction that
appropriately accounts for inter-individual correlations.notypes at a given locus. It could also arise due to geno-

typing errors, selection, mutation, or, at a susceptibility In the case of an inbred sample or when considering
loci with more than two alleles, the GCC-HW test is alocus, conditioning on phenotype information.

We have recently proposed (Bourgain et al. 2003) a generalization of the corrected �2 test. GCC-HW is also
performed conditional on the pedigree structure.valid test for case-control association studies in samples

with related individuals that is suitable for large inbred In what follows we first describe the QL-HW and GCC-
HW statistics. Type I error of the two tests is assessedpedigrees too complex for exact likelihood computa-

tions. Inference is based on the quasi-likelihood score in samples of outbred nuclear or extended families and
in samples of Hutterites from South Dakota, a Northfunction proposed by McPeek et al. (2004) and a quasi-

likelihood score (QLS) statistic for case-control associa- American religious and highly inbred isolate with
known genealogy. The inflated type I error introducedtion is constructed. Under certain model assumptions

and regularity conditions, this test is asymptotically the in the classical Gof-HW test by the presence of related
individuals, using either the �2 distribution or a permu-locally most powerful test of a general class of linear

tests, which includes the �2 test for case-control associa- tation procedure to get significance, is illustrated in the
outbred samples. Power of the QL-HW and GCC-HWtion corrected for the correlation within and between

the individuals. Here, we use a similar idea to construct tests to detect deviations from HWE in samples of inbred
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TABLE 2 whose frequencies must sum to 1, our model for � is
equivalent to the fully parameterized model that hasDefinition of the model chosen for E(Y) � � in the case of
any two of the three genotype frequencies as free param-a locus with a different alleles
eters. With a biallelic marker and inbred individuals,
there is not a unique two-parameter model for � thatGenotype E(Yi,g) � �ig

takes into account inbreeding. Either the HED model
k/k (1 � hi � r)p 2

k � (hi � r)p k or the model based on a disequilibrium coefficient
a/a (1 � hi � r)(1 � �a�1

j �1pj)2 � (hi � r)(1 � �a�1
j �1pj) could be a natural choice. However, it turns out that ink/l 2(1 � hi � r)p k pl the biallelic case with inbreeding, these two models re-a/l 2(1 � hi � r)pl(1 � �a�1

j �1pj) sult in strictly equivalent score tests, so there is no need
hi is the inbreeding coefficient of individual i, p k is the to choose between them. Thus, in the context of SNP

frequency of allele k, and r is the fixation index. studies where most deviations from HWE are likely to
result from genotyping errors, our model is very general
in allowing for deviation from HWE.and outbred individuals is evaluated. Finally, the QL-

For multiallelic markers, our choice of model for �HW test is applied to a set of 143 intragenic biallelic
narrows the alternative hypothesis to excess of all kindsmarkers typed in samples of Hutterites.
of homozygous genotypes and lack of all kinds of hetero-
zygous genotypes when r � 0 or the contrary when r 	

METHODS 0. A primary reason for choosing such a model is that
it is relatively parsimonious in that it has only a freeModel: Consider a sample of N individuals and a locus
parameters. Furthermore, it is motivated by previouswith a different alleles. Define M � a(a � 1)/2, the
findings using microsatellites in which excess of all kindsnumber of possible distinct genotypes. Let Y � (Y1, . . . ,
of heterozygotes has been observed, in particular in theYN)T be a vector of length N(M � 1) (a [N(M � 1)]
HLA region (Ober et al. 1997; Robertson et al. 1999).vector) with Yi � (Yi 1, . . . , Yi(M�1))T a (M � 1) vector
Testing for an excess or a deficit of homozygosity is alsoof indicators, where Yig equals 1 if individual i has geno-
of interest for detection of genotyping errors (Sobel ettype g and 0 otherwise. Define E(Y) � � � (�1 , . . . ,
al. 2002; see discussion). We believe that the HED�N)T with �i � (�i 1, . . . , �i g, . . . , �i(M�1))T. As recognized
model, in which the departure from HWE for homozy-by Weir (1996), departures from HWE can be character-
gous genotypes depends on the frequency of the corre-ized in several ways, including use of fixation indices
sponding allele, is better suited to detection of genotyp-(correlations between any pair of alleles within individu-
ing errors than is the model based on a disequilibriumals) and disequilibrium coefficients (difference between
coefficient, in which the departure from HWE is thea frequency and its value expected when there is no
same for all homozygous genotypes. More complexassociation between alleles). We propose considering a
models involving more than a parameters may be cho-model based on a fixation index, the model of heterozy-
sen when evidence for such alternative models is avail-gote excess and deficiency (the HED model) studied
able. Otherwise, the increase in degrees of freedom ofby Rousset and Raymond (1995), and we extend it to
the test will reduce its power when the true alternativeexplicitly include N different inbreeding coefficients
is indeed in the direction specified in our model.(hi) for the N individuals. Table 2 gives the correspond-

Covariance matrix: For a pair of individuals in aning expression of �i , the ith component of �. This model
inbred pedigree there are 15 possible ways in whichhas a distinct parameters: the (a � 1) independent allele
the four alleles of the pair at a particular locus can befrequencies p � (p1, . . . , pk , . . . , pa�1) and the fixation
identical by descent (IBD; see Figure 1 and also Langeindex r with the following constraints on these parame-
1997, Chap. 5). When the paternal and the maternalters,
allele of an individual do not need to be distinguished,
these 15 configurations reduce to 9, referred to as iden-0 	 pk , �

a�1

k�1

pk 	 1 (1)
tity states. Following Jacquard (1974), for a pair of
individuals (i, j), we let �ij

k, k � 1, . . . , 9, denote the
1 � mini hi �

1
1 � mink pk


 r 
 1 � maxi hi , (2) conditional probability of identity state k given the rela-
tionship between the individuals i and j. These �k’s are
called condensed identity coefficients. In outbred indi-where the constraints on r are derived from the con-

straint that each genotype frequency lies between 0 and viduals, �ij
7, �ij

8, and �ij
9 are, respectively, the probability

of sharing two, one, or zero alleles IBD given the pedi-1. Under the null hypothesis, r � 0 while r � 0 under
the alternative hypothesis. p is a nuisance parameter to gree, and all other �ij

k � 0. Abney et al. (2000) have
implemented an efficient algorithm to compute thebe estimated.

In the simple case of outbred individuals and a bial- condensed identity coefficients in large complex pedi-
grees. Note that the inbreeding coefficients of individu-lelic marker, where there are three possible genotypes
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(��/�pk). Table 4 gives the expressions for (��ig/�r)
and (��ig/�pk). To construct our Hardy-Weinberg test
statistic, we use a similar idea to that used in Bourgain
et al. (2003) for the problem of case-control association
testing. In analogy with the classical likelihood score
statistic when there is a nuisance parameter (see, e.g.,
Cox and Hinkley 1974, Chap. 9), we use U to build a
quasi-score statistic WQL–HW:

WQL–HW � U T
r (r0 , p̂0)I rr(r0 , p̂0)Ur(r0 , p̂0).

Here I rr is the (r, r) component of [E(UU T)]�1, where
E(UU T) is analogous to the information matrix. In our
case, the value of r under the null hypothesis is r0 �
0. p̂0 is the quasi-likelihood estimate of the nuisance
parameter p when r � r0. In other words, p � p̂0 is the
solution of

Up(r0 , p) � [DT
p ��1(Y � �)]r�r0

� 0 (3)

subject to constraints (1), assuming that there is exactly
one such solution. Because we cannot derive a closed-
form solution for Equation 3, we obtain p̂0 by use of the
Newton-Raphson method with Fisher scoring as pre-
sented by McCullagh and Nelder (1989) for the
quasi-likelihood framework. p̂0 is obtained by iterating

p̂ i�1
0 � p̂ i

0 � [(D̂T
p �̂�1D̂p)�1D̂T

p �̂�1(Y � �̂0)]p�p̂ i
0

(4)

until convergence occurs. Here, p̂ i
0 is the approximation

to p̂0 at step i, �̂, D̂p , and �̂0 are computed at r � 0 and
p � p̂ i

0. To reduce the number of iterations before con-
vergence, we start the iteration procedure with p̂ 1

0 equalFigure 1.—Fifteen possible identity states for individuals
to the best linear unbiased estimator (BLUE) of p pro-A and B, grouped according to their nine condensed states.
posed by McPeek et al. (2004). This estimator is basedLines indicate alleles that are IBD (from Abney et al. 2000).
on allele information and does not make use of the
additional information of genotypes, i.e., which alleles
are paired within the individuals. Finally,als i and j can be obtained from the identity coefficients:

hi � �ij
1 � �ij

2 � �ij
3 � �ij

4 and hj � �ij
1 � �ij

2 � �ij
5 � �ij

6. WQL–HW � (Y � �̂0 )T�̂�1D̂rLet � � var0(Y) be the [N(M � 1) � N(M � 1)] covari-
ance matrix of Y under the null hypothesis when r � � [D̂ T

r �̂�1D̂r � D̂ T
r �̂�1D̂p(D̂ T

p �̂�1D̂p )�1D̂T
p�̂�1D̂r ]�1

0. Table 3 gives the entries of � as a function of p and
� D̂T

r �̂�1(Y � �̂0 ), (5)the 9 condensed identity coefficients. Define � to be the
covariance matrix of Y under the alternative hypothesis, where �̂, D̂p , D̂r , and �̂0 are evaluated at r � 0 and p �
where � may depend on both p and r. To derive a test p̂0 . As demonstrated in Heyde (1997), under the null
statistic, we require only that � be differentiable and hypothesis, the quasi-score statistic should follow a �2

invertible and that, under the null hypothesis, � � �. distribution with 1 d.f. provided that Var0(U)�1/2U �
Quasi-score test for Hardy-Weinberg equilibrium ���(0, I) under the null hypothesis. We tested the

(QL-HW test): We propose basing inference on the accuracy of the �2 approximation to the null distribution
quasi-score function U (see, e.g., McCullagh and Nel- of WQL–HW (see Null distribution and power study of the WQL–HW

der 1989, Chap. 9): and WGCC–HW statistics).
To efficiently perform the calculations required in

Equation 4, at each step, we take the Cholesky decompo-U(r, p) � �Ur(r, p)
Up(r, p)� � �D

T
r ��1(Y � �)

DT
p ��1(Y � �)� ,

sition of �̂, i.e., we find an upper triangular matrix B
such that BTB � �̂, using an algorithm that simultane-

where Dr �
��

�r
and Dp �

��

�p
. ously computes b0 � B�TD̂p and b1 � B�T(Y � �̂0) at little

extra cost (Graybill 1976). Then Equation 4 becomes
Here Dr is a [N(M � 1)] vector and Dp is a [(N(M � p̂ i�1

0 � p̂ i
0 � (bT

0 b0)�1bT
0 b1, where bT

0 b0 is an [(a � 1) �
(a � 1)] matrix, also inverted using its Cholesky decom-1)) � (a � 1)] matrix with the kth column equal to
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TABLE 3

Expressions for the covariances among the genotype indicators Yi,g

Genotypes cov(Yi,g1 , Yi,g2 )

Covariances between indicators of genotypes g1 and g2 in individual i
g1, g2 � g1 �0

i,g1
(1 � �0

i,g1
) a

g1, g2 � g1 ��0
i,g 1 �0

i,g2

g1 g2 cov(Yi,g 1
, Yj,g2

)

Covariances between indicators of genotype g1 in individual i and genotype g2 in individual j
k/k k/k pk �ij

1 � p 2
k(�ij

2 � �ij
3 � �ij

5 � �ij
7 ) � p 3

k(�ij
4 � �ij

6 � �ij
8 ) � p 4

k �ij
9 � �0

i,k/k�
0
j,k/k

k/k l/l pk pl�
ij
2 � pk p 2

l �
ij
4 � p 2

kpl�
ij
6 � p 2

k p 2
l �ij

9 � �0
i,k/k �0

j,l/l

k/k k/l �ij
3 pk pl � 2�ij

4 p 2
k pl � �ij

8p 2
k pl � 2�ij

9 p 3
k pl � �0

i,k/k�
0
j,k/l

k/k l/m 2�ij
4pk pl pm � 2�ij

9p 2
kpl pm � �0

i,k/k �0
j,l/m

k/l l/l �ij
5pk pl � 2�ij

6pk p 2
l � �ij

8 pk p 2
l � 2�ij

9 pk p 3
l � �0

i,k/l�
0
j,l/l

k/m l/l 2�ij
6 pk pm pl � 2�ij

9 pk pm p 2
l � �0

i,k/m �0
j,l/l

k/m k/m 2�ij
7 pk pm � �ij

8(p2
k pm � pk p 2

m) � 4�ij
9 p 2

k p 2
m � �0

i,k/m �0
j,k/m

k/m k/l �ij
8 pk pm pl � 4�ij

9 p 2
k pm pl � �0

i,k/m �0
j,k/l

k/m b/l 4�ij
9 pk pm pb pl � �0

i,k/m �0
j,b/l

a The expressions for �0
i,g, expectation of Yi,g under the null, are given in Table 2 setting r � 0.

position. WQL–HW is computed with a similar technique Special case—corrected �2 test for HW for biallelic loci
in outbred samples with related individuals: Let us firstin Equation 5.

We conclude this section by describing the form of consider a biallelic locus genotyped in an outbred sample
with independent individuals. In this case, the QL-HWthe QL-HW test statistic in the case of N individuals

belonging to F independent families. For each f, 1 
 test is the same as the Gof-HW test, which can be written
as Gof-HW � (1/N)[(Np̂2

n � N11)/p̂n(1 � p̂n)]2, where Nijf 
 F, let Nf be the number of sampled individuals in
family f, and let Yf, �f, Dpf, Drf, and �f be the vectors or is the observed count for genotype ij and p̂n is the allele

frequency estimate of allele 1 obtained by naive countingmatrices previously described but restricted to the Nf

members of family f. Allele frequencies are then com- [p̂n � (2N11 � N12)/2N].
We next give an equivalent form for Gof-HW in termsputed using Equation 4, where D̂T

p �̂�1D̂p � �F
f�1D̂T

pf�̂�1
f D̂pf

of a vector-valued functionand D̂T
p �̂�1(Y � �̂0) � �F

f�1D̂T
pf �̂�1

f (Yf � �̂0f). Similarly
WQL–HW is computed using Equation 5, where all terms
of the form XT�̂�1B (where X and B are either vectors S(r, p) � �Sr(r, p)

Sp(r, p)�,or matrices) in the formula are computed as XT�̂�1B �

�F
f�1XT

f �̂�1
f Bf . which can be left unspecified except that is has the prop-

GCC-HW test: As the number of alleles per locus and erty that
the number of individuals in a family increase, the calcula-
tions of the Cholesky decompositions required in (4) and S(r0 , p) � �D

T
r K�1(Y � �0)

DT
p K�1(Y � �0)�,(5) become much more computationally intensive. In

practice, with this method, we were not able to analyze
where r0 � 0. Here Dr , Dp , Y, and �0 are the vectorsHutterite samples of 400 individuals for loci with more
and matrix described in Quasi-score test for Hardy-Weinbergthan five alleles. To overcome this limitation, we developed
equilibrium (QL-HW test). K is the [(M � 1)N � (M � 1)N]an alternative test, the GCC-HW test, which is computa-
covariance matrix of Y. Because all the individuals aretionally simpler than the QL-HW test and therefore suit-
outbred and independent, K is a block-diagonal matrixable for an even wider set of situations (larger samples,
with K � IN � Kind, where Kind is a 2 � 2 matrix whoselarger number of alleles per locus). For outbred samples
entries depend only on p and are given in the first partin the biallelic case, the GCC-HW test is Pearson’s Gof-
of Table 3. It turns out that the Gof-HW test is equal toHW corrected using the variance that appropriately ac-
W�2

HW
, wherecounts for inter-individual correlations. In inbred samples

or when considering multiallelic loci, the GCC-HW test is W�2
HW

� (ŜT
r [var� 0(S)�1]rr Ŝr). (6)

a generalization of this approach. We start by presenting
Here, Ŝ r is computed at (r, p) � (r0 , p̂0). p � p̂0 is thethis alternative test in the case of a biallelic locus in an
solution of Sp(r0, p) � 0 and is actually equal to p̂n.outbred sample with related individuals and present its

general expression in a second step. We then clarify how
it differs from the QL-HW test.

[var� 0(S)�1] rr denotes the (r, r) entry of var(S)�1 com-
puted at (r, p) � (r0 , p̂0). It is actually equal to 1/N.
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TABLE 4

Expressions for (��/�pk ) and (��/�r) in the case of a locus with a different alleles

Genotype ��ig /�pk ��ig /�r

k/k hi � r � 2(1 � hi � r)pk pk (1 � pk )
l/l 0 pl (1 � pl )
a/a �2(1 � hi � r)(1 � �a�1

j �1pj) � hi � r (1 � �a�1
j �1pj )�a�1

j �1pj

k/l 2(1 � hi � r)pl �2pk pl

m/l 0 �2pm pl

a/l �2(1 � hi � r)pl �2pl (1 � �a�1
j �1pj )

a/k 2(1 � hi � r)(1 � �a�1
j �1pj � pk ) �2pk (1 � �a�1

j �1pj )

One way to extend (6) so that it is valid when the
individuals are related is to consider the same S(r, p)

C�(r, p) � ��Cr

�r
�Cr

�p
�Cp

�r
�Cp

�p
� .function (with K � IN � Kind, thus neglecting the inter-

individual correlations) and to recompute [var� 0(S)�1]rr

to take the inter-individual correlations into account. We
Then,have var0(Y) � �, with elements given in Table 3, where

all hi � 0 in this case. Using var0(S) � Ê0(SST) and noting
� r̂ � r
p̂ � p� � �E(C�(r, p))�1C(r, p) (8)that DT

r K�1Dp � 0 for outbred individuals, we get [var� 0

(S)�1] rr � [D̂T
r K̂�1�̂K̂�1D̂r]�1, where �̂, K̂, and D̂r are com-

puted at (r, p) � (r0 , p̂0) (here again, p̂0 � p̂n). We assess and
the accuracy of the �2 approximation to the null distribu-
tion of this corrected �2 (WCC–HW) statistic in Null distribution var� r̂ � r

p̂ � p� � E(C�(r, p))�1var[C(r, p)]E(C�(r, p))�1. (9)
and power study of the WQL–HW and WGCC–HW statistics.

General form of GCC-HW test: There does not appear Under the assumptions made on ( r̂
p̂),

to be a Pearson �2 test corresponding to the HED model
for multiallelic loci. Furthermore, in the case of inbreed-

W � (r̂ � r)T�var�� r̂ � r
p̂ � p�� rr

�
�1

(r̂ � r) (10)ing, while one can extend the Gof-HW test to allow for a
mean level of inbreeding, it does not take into account

should have an asymptotic �2 distribution with dim(r) d.f.the different inbreeding coefficients for different individu-
Hereals. To generalize the WCC–HW statistic, we consider the

following framework. Let
var�� r̂ � r

p̂ � p�� rr
C(r, p) � �Cr

Cp
�

is the (r, r) entry of var( r̂�r
p̂�p). To test the null hypothesis

r � r0, we plug in r � r0 in (10). p is a nuisance parameterand define ( r̂
p̂) to be the solution of C(r, p) � 0 subject

and we use its restricted estimator p̂0, where p � p̂0 is theto constraints (1) and (2), assuming that there is exactly
solution of Cp(r0, p) � 0, subject to constraints (1), assum-one such solution. Although the framework is more gen-
ing that there is exactly one such solution. Under certaineral, we consider here C to be the form
regularity conditions, this is asymptotically equivalent to

Ci � DT
i L�1(Y � �) with i � r, p, � � E(Y), and Di � ��/�i, the case when the true p is used.

(7) The WGCC–HW statistic has the general form defined in
(10), where C(r, p) is given by (7) with L set to K, thefor some invertible matrix L that may depend on r and
matrix defined in the subsection Special case—corrected �2

p, with Di, L, and � not depending on Y. Assume that
test for HW for biallelic loci in outbred samples with related

( r̂
p̂) is consistent for the parameters ( r

p) of the HED model individuals.
and is asymptotically normal. Following the arguments
used by Cox and Hinkley (1974, Chap. 9) to derive the (r̂ � r) and �var�� r̂ � r

p̂ � p�� rr
�
�1

score test, under certain regularity conditions, we consider
the expansion of C(r, p) in a Taylor series about ( r̂

p̂)
are approximated with Equations 8 and 9, respectively.
Doing so, we can consider the same HED model as the

C(r, p) � C(r̂, p̂) � C�(r̂, p̂)� r � r̂
p � p̂� � �E(C�(r, p))� r̂ � r

p̂ � p�, one used in the QL-HW test, which allows a distinct hi for
each individual, by simply using for � the model described
in Table 2. To test for HW, we use r0 � 0. The K matrixwhere
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used in C(r, p) is the covariance matrix of Y where the 7. We compare actual power of GCC-HW and QL-HW
under simulated scenarios in results.intra-individual correlations are taken into account but

Null distribution and power study of the WQL–HW andwhere the inter-individuals correlations are neglected.
WGCC–HW statistics: To test the accuracy of the �2 approxi-Thus, K is still a block diagonal matrix but with distinct
mation to the null distributions of the WQL–HW andmatrix elements Ki of size (M � 1) � (M � 1), whose
WGCC–HW statistics, we assessed their distributions underentries depend on p and hi, and K�1 is a block-diagonal
the null hypothesis using (i) a sample of 30 outbredmatrix with matrix element K�1

i . We show in the appendix
independent nuclear families with two parents and twothat WGCC–HW reduces to WGCC–HW � Ĉ2

r /denGCC, where Ĉr �
sibs typed (sample nuc), (ii) a sample of 456 individualsCr(r0 , p̂0) and
from 10 extended outbred genealogies (sample gaw),

denGCC � [D̂ T
r K̂�1�̂K̂�1D̂r � 2D̂ T

r K̂�1D̂p (D̂ T
p K̂�1D̂p )�1D̂ T

p K̂�1�̂K̂�1D̂r and (iii) two samples of 611 (sample H1) and 306 (sam-
ple H2) Hutterites. The 10 extended genealogies were

� D̂ T
r K̂�1D̂p (D̂ T

p K̂�1D̂p )�1D̂ T
p K̂�1�̂K̂�1D̂p (D̂ T

p K̂�1D̂p )�1D̂ T
p K̂�1D̂r ]

simulated for the Genetic Analysis Workshop 12 (Almasy(11)
et al. 2001). The different genealogies are independent
but the mean within-genealogy kinship coefficient iscomputed at (r, p) � (r0 , p̂0). In outbred samples, p̂0
0.0415 ([0.030–0.054]). The Hutterites are a Northcorresponds to the naive counting estimator in which
American religious isolate originating from Tyrol whoseallele frequencies are estimated by their observed propor-
entire population can be traced back to 90 ancestors intions. In inbred samples, Cp(r0, p) � 0 may not have a
the 1700s/1800s. The complete genealogy of the sampleclosed-form solution, in which case we use the Newton-
could be constructed from a �12,000-person HutteriteRaphson method, as we did for the QL-HW test: p̂0 is
pedigree. This yielded a 1623-person pedigree that in-obtained by iteration using Equation 4, where � is replaced
cluded all known ancestors of the individuals in samplesby K. We start the iteration procedure with p̂1

0 equal to
H1 and H2. The nine identity coefficients for all pairsthe BLUE (McPeek et al. 2004) computed under the pre-
of individuals, from which the inbreeding coefficientstense that all the individuals have their correct inbreeding
can also be obtained, were computed using the efficientcoefficients but are independent. Note that, because
algorithm implemented by Abney et al. (2000). Geno-Dr

TK�1Dp � 0 when considering a biallelic locus in an out-
type information for a marker was simulated by ran-bred sample, WCC–HW is a special case of WGCC–HW. Whereas
domly drawing alleles independently from the same al-the computation of WQL–HW requires the Cholesky de-
lele frequency distribution for (i) the parents of thecomposition of �, a covariance matrix of size [(M �
nuclear families or (ii) the founders of the 10 genealo-1)N � (M � 1)N], the computation of WGCC–HW requires
gies or (iii) the founders of the 1623-person pedigree.only the Cholesky decompositions of the N Ki matrices
Mendelian transmission of these alleles was then simu-of size [(M � 1) � (M � 1)]. It is thus much less
lated (i) in the nuclear families, (ii) in the 10 genealo-

computationally intensive. Similarly to the WQL–HW quasi-
gies, or (iii) throughout the 1623-person pedigree. The

score statistic, we assess the accuracy of the �2 approxi- validity of the �2 null distribution for WQL–HW and WGCC–HWmation to the null distribution of WGCC–HW in results. was assessed by comparing the proportion of simulations
When the N individuals belong to F independent showing a statistic whose value is greater than the �2

families, WGCC–HW and p̂0 are computed using the same threshold for a nominal type I error and the value of
formulas as in the one-family case presented above but this nominal type I error. For the outbred nuc and gaw
with all the terms of the form XTK̂�1�̂K̂�1B computed as samples, the empirical type I error of the classical Gof-
XTK̂�1�̂ K̂�1B � �F

f�1 XT
f K̂�1

f �̂fK̂�
f Bf . HW test was also assessed, using either the �2 distribu-

Explanation of the difference between QL-HW and tion or a permutation procedure (where alleles are ran-
GCC-HW: Because both have an appropriate variance domly reassigned to genotypes 5000 times) to obtain
correction, both QL-HW and GCC-HW are valid tests significance.
that are approximately �2 distributed in sufficiently large For the Hutterite samples, in addition to the �2 ap-
samples under regularity conditions. The difference is proximation, we also had to develop a parametric boot-
that, in the definition of GCC-HW, the matrix K is strap procedure to assess significance, as follows: for a
plugged in for L in Equation 7, while in the definition of given data set, we estimated the allele frequencies (p̂data)
QL-HW, the matrix � is plugged in for L. This difference using Equation 4 (with �̂ for WQL–HW and K̂ for WGCC–HW)
potentially affects the power of the statistics. For in- and computed the value of the statistic Wdata (either
stance, by an argument similar to that given in Bour- WQL–HW or WGCC–HW). p̂data was then used to simulate 5000
gain et al. (2003), the QL-HW should be asymptotically replicates of the original data set under the null hypoth-
more powerful than GCC-HW for local alternatives (i.e., esis (following the procedure described in the previous
alternatives close to the null hypothesis) under certain paragraph). The statistic was computed in each repli-
regularity conditions, assuming that the HED model cate. The empirical significance was assessed as the pro-
holds, and, in fact, should be asymptotically locally most portion of simulated statistic values greater than Wdata.

In principle, one could double-check the type I errorpowerful of all statistics of the type defined by Equation
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TABLE 5 choices of s � 0.5. In such a nuclear family sampling
scheme, the classical Gof-HW test would consider onlyParent/offspring transmission model used to mimic selection
the 60 independent parents. To measure the gain in powerin the power computations
obtained while using QL-HW on the global sample in-
stead of the Gof-HW test on the parent sample, weParental Offspring

genotypes (Gp) genotype (Go) Pr(Go|Gp)* derived analytically the power of the Gof-HW test using
a noncentral �2 distribution.ii � ii ii 1

Analysis of biallelic markers: We used the WQL–HW sta-ii � jj ij 1
tistic to test for HW in a set of 143 biallelic markers inii � ij ii 1 � s

ij s 82 genes that were genotyped in samples of Hutterites.
ij � ij ii (1 � s)/2 A variety of genotyping methods were used: multiplex

jj (1 � s)/2 PCR and immobilized probe linear array system (LAS)
ij s (Mirel et al. 2002) for 48 markers (34%), single base

extension with fluorescent polarization (SBE-FP; Chen* Probability of offspring genotype conditional on parental
genotypes. et al. 1999) for 44 markers (31%), dot blot with allele-

specific oligos (Ober et al. 2000) for 26 markers (18%), re-
striction fragment length polymorphism analysis (RFLP)

of this parametric bootstrap procedure by performing for 13 markers (9%), size separation on acrylamide gel
a nested set of simulations, but we did not attempt this for 9 insertion/deletion (in/del) polymorphisms (6%),
for computational reasons. allele-specific (AS) PCR for 1 marker (0.7%), SSCP

Simulations were also used to assess power. Even though (Gonen et al. 1999) for 1 marker (0.7%), and denatur-
HW testing is used mostly to identify potential genotyp- ing high-performance liquid chromatography (DHPLC;
ing errors in SNP studies, generating a genotyping error Oefner and Underhill 1995) for 1 marker (0.7%).
model would also have created Mendelian incompati- All markers were checked for Mendelian incompatibili-
bilities. As Mendelian incompatibilities are routinely ties in the general pedigree using PEDCHECK (O’Con-
checked before any other test, considering such a geno- nell and Weeks 1998).
typing error model would have implied evaluation of a
combined Mendelian checking/HW testing approach,

RESULTSwhereas we wanted to focus solely on HW testing. Thus,
we chose to consider a model without Mendelian incom- Null Distribution of the WQL–HW and WGCC–HW statistics:
patibilities. Further, we required this model to be suit- Table 7 presents the empirical type I error of the classi-
able for samples with fixed genealogy. We simulated a cal Gof-HW, WQL–HW, and WGCC–HW statistics in the outbred
selection pattern where the allele transmission from samples of nuclear families and in the extended outbred
parent to offspring is not equally likely for the two paren- genealogies. The classical Gof-HW test, whatever the
tal alleles (we retain independence of children’s geno- significance procedure used, either the �2 distribution
types conditional on parents’ genotypes). For a biallelic or the permutation test, is anti-conservative. While the
marker, a single parameter 0 	 s 	 1 is required to de- inflation in the type I error is moderate in the nuclear
scribe our model. Table 5 gives the corresponding trans- families (type I error of 7% instead of 5%), it becomes
mission probabilities from parents to offspring as a func- substantial in the extended GAW12 genealogies (type
tion of s. Here, we considered the situation where, for I error of 10%). In contrast, when the �2 distribution
parental couples who are compatible with both homozy- is used to assess significance of the WQL–HW or WGCC–HW

gous and heterozygous children, the probability that statistics, the empirical type I error lies within the 95%
any given child is heterozygous is greater than would be confidence interval of the nominal type I error (5%)
expected under Mendelian inheritance: s � 1⁄2. Power for all three allelic distributions considered in the
was assessed in the samples nuc, H1 and H2 using 5000 founders. In the two Hutterite samples (results shown
replicates. For the Hutterite samples, founders’ alleles in Table 8), the empirical type I error for both WQL–HW

were simulated assuming HWE in the founding popula- and WGCC–HW is smaller than the nominal one. Use of
tion, with founding allele frequency taken to be 0.5, 0.7, the �2 approximations to the null distributions of the
or 0.85. In the case of nuc, we assume that the families statistics would thus lead to conservative tests in the
are sampled from a population that is in a steady state for Hutterite sample. We note, however, that when simulat-
our selection model. We give in Table 6 the population ing a sample consisting of 10 independent copies of the
genotype frequencies corresponding to this steady state 1623-person Hutterite pedigree and running the two
in an infinite-size population under random mating. statistics on a sample of 6110 Hutterites (10 times sample
When s � 1⁄2, the genotype frequency distribution depends H1), the empirical type I error for a biallelic locus with
only on s and not on p (whatever the initial allele fre- frequency 0.5 in the founders is not statistically different
quency, p � 0.5 in the steady state). The parental geno- from the nominal one when assuming a �2 distribution.
types of the nuc families were sampled independently Similarly, when considering only 2 outbred genealogies

out of the 10 from the gaw sample (corresponding tofrom the steady-state genotype distribution for various
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TABLE 6

Steady-state genotype frequencies for the selection model presented in Table 5 under random mating, for a
biallelic locus, as a function of s and of the initial allele frequency p

Genotypes 11 12 22

s � 1⁄2 p 2 2p(1 � p) (1 � p)2

s � 1⁄2 (�1⁄2 � 1⁄2 a)/(1 � 2s) (2(1 � s) � a)/(1 � 2s) (�1⁄2 � 1⁄2 a)/(1 � 2s)

s 	 1⁄2

p � 1⁄2 (�1⁄2 � 1⁄2 a)/(1 � 2s) (2(1 � s) � a)/(1 � 2s) (�1⁄2 � 1⁄2 a)/(1 � 2s)

p 	 1⁄2 0 0 1

p � 1⁄2 1 0 0

With a � √4s 2 � 6s � 3.

106 individuals deriving from 41 founders), the �2 distri- 0.75, where power was computed using the �2 approxi-
mation. Figure 2 also displays the power of the Gof-HWbution provides valid type I errors for both the WQL–HW

and the WGCC–HW tests. The asymptotic conditions re- test in the sample of 60 independent parents that can
be extracted from the nuclear families. The gain inquired for the WQL–HW and WGCC–HW to have a �2 distribu-

tion under the null hypothesis should thus be met in power obtained while using WQL–HW instead of Gof-HW
can be substantial: when s � 0.65, the power of WQL–HWmost samples, except in the extreme case where all the

individuals belong to a single inbred pedigree. In this is 79% instead of 55% for the Gof-HW test. There is
still a notable increase in power at more realistic valuescase, the central limit theorem either may not apply or

may require a larger sample size to be a good approxima- of s close to 0.5. The power of WGCC–HW was also computed
for the nuc sample, but it is not shown in the plot astion, and the test may be conservative. We give in Table

8 the thresholds corresponding to a 5% nominal type the results were almost indistinguishable from those
for WQL–HW. Thus, the simpler WGCC–HW appears to beI error, for three different allelic distributions, in the

two Hutterite samples. These thresholds vary with sam- approximately as powerful as the WQL–HW in this sampling
scheme. Because they allow one to use all the informa-ple sizes and allele frequencies. We would thus recom-

mend use of empirical P-values obtained by the paramet- tion available in the families and thus to increase the
sample size, the QL-HW and GCC-HW tests may signifi-ric bootstrap (as described in methods), for samples

in which all the individuals come from a single inbred cantly enhance the power to detect HWD when familial
data are available.pedigree.

Power of the WQL–HW and WGCC–HW statistics: Figure 2 In the Hutterite sample, founder genotypes are not
available, so the Gof-HW test in founders cannot bedisplays the power of WQL–HW in the nuc sample (30

nuclear families) for values of s varying between 0.5 and performed. Thus, we compare power only for the WQL–HW

TABLE 7

Empirical type I error of the classical � 2 goodness-of-fit test for HWE with significance assessed using either
the � 2 distribution or a permutation procedure and of the WQL–HW and WGCC–HW statistics with

significance assessed using the � 2 distribution, for a 5% nominal type I error

Statistic:

Significance with:

WQL–HW: WGCC–HW:Gof-HW

Allele frequency � 2 distribution Permutation � 2 distribution � 2 distribution

Nuclear families
0.50 0.073 0.075 0.051 0.052
0.70 0.072 0.074 0.053 0.053
0.85 0.070 0.073 0.046 0.044

GAW12 genealogies
0.50 0.103 0.102 0.050 0.049
0.70 0.099 0.102 0.052 0.049
0.85 0.086 0.094 0.047 0.042

Estimates are based on 5000 simulations in a sample of 30 outbred nuclear families (nuc) and in a sample
of 456 individuals from 10 extended genealogies of the GAW12.
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TABLE 8

Empirical type I error of the WQL–HW and WGCC–HW statistics for a 5% nominal type I error and 5% corrected
threshold, in two different Hutterite samples: H1 (611 individuals) and H2 (306 individuals)

Statistic:

Sample:

Empirical type I error 5% corrected threshold b

WQL–HW WGCC–HW WQL–HW WGCC–HW

Allele frequency a H1 H2 H1 H2 H1 H2 H1 H2

0.50 0.017 0.029 0.020 0.026 2.61 3.00 2.83 3.00
0.70 0.017 0.015 0.014 0.024 2.55 2.71 2.58 2.85
0.85 0.008 0.018 0.003 0.009 2.21 2.59 1.88 2.18

Estimates are based on 5000 simulations.
a Allele frequency distribution from which the alleles of the pedigree founders are drawn.
b Uncorrected threshold is 3.84.

and WGCC–HW tests. To see a power difference between marker in a pedigree with many individuals typed)
should not have too strong an impact on power. Con-the two tests, we set s � 0.6, even though this value is

probably unrealistically high for selection in a human versely, WQL–HW should be preferred when computable.
Note that the power of both methods in the Hutteritepopulation. Table 9 displays the results, where signifi-

cance is assessed using a correct 5% nominal threshold samples is expected to increase when the allele fre-
quency becomes closer to 0.5. Indeed, as can be seenobtained by simulation under the true model (the

thresholds are shown in Table 8). For the purpose of from Table 5, our model is such that selection acts only
when there is at least one heterozygous parent. Whensimulation studies, this method of assessing significance

was used because it is much faster than the parametric the allele frequency becomes closer to 0.5, the propor-
tion of heterozygous parents increases and the impactbootstrap that we use in the real data examples. Because

the same method is used with both statistics, we expect of selection increases as a result.
Marker testing for HWE in the Hutterites: The resultsthis to have a negligible impact on the power compari-

son. The WQL–HW performs slightly better than the for the 14 markers, of the 143 biallelic markers tested,
that showed an associated P-value 	5% by the WQL–HW areWGCC–HW in the Hutterite samples; however, the power

difference between the two tests is quite small. Thus, shown in Table 10. Four of these markers (HLA-G_689,
LTA_26, OR12D2_2, OR2H3_587) are located within theuse of WGCC–HW instead of WQL–HW in situations in which

WQL–HW cannot be computed (e.g., a highly polymorphic HLA region, which has been associated with homozy-

Figure 2.—Power of the QL-HW test
in 30 nuclear families (solid line) and
power of the Gof-HW test in the corre-
sponding parent sample (dashed line), as
a function of s, for a 5% type I error.
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TABLE 9 disproportionately. We further investigated the geno-
typing history of these 14 markers. Two markers, HLA-Power of the WQL–HW and WGCC–HW statistics for different allele
G_689 and OR12D2_2, produced an excess of Men-frequency distributions in two Hutterite samples (H1 and H2)
delian errors and had already been either discardedwith s � 0.60
(for OR12D2_2) or retyped using another method (for

Sample H1 H2 HLA-G_689). Two additional markers, PSG4_1 and
PLAUR_210, had a high rate of ambiguous genotypes.Allele frequency a 0.5 0.7 0.85 0.5 0.7 0.85
Overall, it is likely that the deviations from HWE forWQL–HW 0.92 0.88 0.76 0.78 0.76 0.63
these 4 markers were due to genotyping errors, althoughWGCC–HW 0.90 0.88 0.76 0.78 0.73 0.62
only 2 were previously identified as problematic by Men-

Nominal type I error is 5%; estimates are based on 5000
delian error checking.simulations.

Finally, the remaining 10 markers with a P-value 
0.05a Allele frequency distribution from which the alleles of the
pedigree founders are drawn. of 143 (6.9%) represent slightly more than what is ex-

pected just by chance (but the observed proportion is
not significantly different from 5% at the 5% level).
Given that the P-values associated with each of these 10

gous deficiencies in this population (Robertson et al. markers are not dramatically small and that we had at
1999). The genotyping methods used to type the 14 mark- least 1 other marker typed in 9 of these genes that was
ers in Table 10 were not very different from those used not significant, we believe that the small deviations from
to type the 143 markers except that the only marker expectation in these 9 genes might be due to chance.
typed with allele-specific PCR was among the 14 markers We cannot rule out, however, that these departures re-
with a P-value 
0.05, markers typed by LAS were under- flect the real action of evolutionary forces.
represented (34% of all markers but only 14% of the
markers with a P-value 
0.05), and markers typed by
dot blot were overrepresented (18% of all markers

DISCUSSION
but 28% of the markers with a P-value 
0.05) (see

We demonstrated in this article that the classical Gof-Figure 3). Thus, it is unlikely that any particular geno-
typing method was more error prone or contributing HW test has inflated type I error in samples with related

TABLE 10

Results of the WQL–HW test in the Hutterites for the 14 biallelic markers with an
associated empirical P-value 
0.05

Marker name Genotyping method rs no. Sample size Allele frequency WQL–HW P-value

PLAUR_210a Dot blotc RS2302524 604 0.85 0.0002
PON1_55 LAS d RS85460 646 0.74 0.003
PSG4_1a Dot blotc RS4028448 306 0.52 0.015
C5_802 SBE-FP e RS17611 394 0.51 0.015
ZFR_1 SBE-FP e RS714932 758 0.67 0.023
IL4R_-3223 AS PCR f RS2057768 413 0.68 0.027
LTA_26b LASd RS1041981 671 0.83 0.028
NIDDM1_43 Dot blotc RS3792267 675 0.68 0.034
ESE-3_50834 in/del g RS4987414 504 0.51 0.036
IL4R_1597 Dot blotc RS15987825 410 0.56 0.036
OR12D2_2a, b SBE-FP e — 632 0.52 0.039
HLA-G_689a, b SBE-FP e RS2735022 679 0.56 0.041
ZFR_3 RFLP h RS889318 681 0.66 0.042
OR2H3_587 b SBE-FP e RS3129034 672 0.71 0.043

Genotyping methods and dbSNP rs numbers are shown. Exact P-values are computed with 5000 simulations.
a Markers for which genotyping errors are suspected.
b Markers in the HLA region.
c Dot blot with allele-specific oligos.
d Multiplex PCR and immobilized probe linear array system.
e Single-base extension with fluorescent polarization.
f Allele-specific PCR.
g Size separation on acrylamide gel.
h Restriction fragment length polymorphism analysis.



2360 C. Bourgain et al.

Figure 3.—Proportion of markers
typed with the eight different genotyp-
ing methods for the set of 143 SNPs
tested (solid bars) and for the 14 SNPs
with an associated P-value 
0.05 (open
bars).

individuals when significance is assessed either with a fies insufficiently or a band falls outside a prescribed
range. In addition, these authors also discuss the possi-�2 approximation or with a permutation test. Sing and

Rothman (1975) previously discussed the problem of bility of false heterozygosity when a stutter band is misin-
terpreted as a second allele. Thus, we expect our modeltesting for HWE in small human populations with non-

negligible correlations among the individuals. Whereas to be useful for detecting genotype errors in the cases
of both SNPs and multiallelic markers. Alternatively, athey corrected the expectation of the �2 in a very par-

ticular case of correlation among the observations, we model involving more parameters could be incorpo-
rated into our quasi-likelihood score test framework, ifpropose in this article a general approach suitable for

any sample with related individuals provided that their the available evidence favored such a model.
We also propose a simpler alternative test, the GCC-genealogy is known. Our QL-HW test models the corre-

lation between the two alleles of each individual due to HW test, to be used when the QL-HW test might not
be computationally feasible, for instance, in the case ofthe pedigree structure and, by making use of the quasi-

likelihood framework, takes into account the correla- highly polymorphic loci in large inbred pedigrees. We
found that for a variety of study designs, ranging fromtions among the individuals in the construction of the

test. many nuclear families to two or more extended genealo-
gies, the �2 approximation to the null distributions ofWe chose to base our test on the model of heterozy-

gote excess or deficiency studied by Rousset and Ray- both the QL-HW and the GCC-HW was very accurate.
It was only in the extreme case of a single large inbredmond (1995), and we extended it to allow a different

inbreeding coefficient for each individual in the sample. pedigree that the tests were rather conservative. In that
case, we recommend using the parametric bootstrap toIn the context of SNP studies, where deviations from

HWE are likely to result from genotyping errors, our assess significance. Further, we showed that the use of
the GCC-HW test in place of the QL-HW test has onlymodel is very general in allowing for deviations from

HWE. For multiallelic markers, our model specifically a very minor effect on the power to detect deviation
from HWE. Finally, we illustrated on nuclear family datatests for an excess or a deficiency of homozygosity. A

primary reason for choosing such a model is parsimony. how the QL-HW test can improve the power to detect
departure from HWE over the classical Gof-HW test.Furthermore, it is motivated by previous findings using

microsatellites in which excess of all kinds of heterozy- We believe that, by making the HWE test available
for a larger variety of samples and by increasing samplegotes has been observed, in particular in the HLA region
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