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We examine the dynamics of a rotating viscous fluid following an abrupt change 
in the angular velocity of the solid bounding surface. We include the effects of a 
density stratification and compressibility which are important in astrophysical objects 
such as neutron stars. We confirm and extend the conclusions of previous studies 
that stratification restricts the Ekman pumping process to a relatively thin layer 
near the boundary, leaving much of the interior fluid unaffected. We find that 
finite compressibility further inhibits Ekman pumping by decreasing the extent of 
the pumped layer and by increasing the time for spin-up. The results of this paper 
are important for interpreting the spin period discontinuities (‘glitches’) observed in 
rotating neutron stars. 

1. Introduction 
The approach to solid-body rotation of a fluid inside a rotating boundary is a 

familiar phenomenon with many applications. For instance, not only can we directly 
observe this phenomenon in the laboratory, but it may also play an important role 
in solar models, neutron stars and other environments. Greenspan & Howard (1963) 
give a fundamental analysis of the linearized version of this problem by considering 
a rotating axisymmetric container filled with a viscous incompressible fluid. They 
examine the behaviour of the fluid after the angular velocity of the container is 
suddenly changed by a small amount. Their solution consists of three distinct, time- 
separated phases : boundary layer formation, Ekman pumping and viscous relaxation. 
The bulk of the fluid spin-up (or down) occurs through Ekman pumping. Subsequent 
studies of the effect a stratification in density has on the Ekman pumping process 
(Waiin 1969; Sakurai 1969; Buzyna & Veronis 1971; Hyun 1983; Spence, Foster & 
Davies 1992) found that some regions of the interior do not reach the final angular 
velocity until the viscous diffusion time has elapsed. The basic three-stage structure of 
spin-up, however, remains intact where the intermediate Ekman pumping time results 
in a quasi-steady state in the fluid interior (see the review of Benton & Clark 1974 
for a complete discussion of this subject). 

The spin-up of a compressible fluid has been studied in the context of rapidly 
rotating gases (Sakurai & Matsuda 1974; Bark, Meijer & Cohen 1978; Lindblad, 
Bark & Zahrai 1994). These studies concluded that the basic structure for spin-up 
remained unchanged, but with some important and interesting differences. Numerical 
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studies have also been carried out for both the linear and nonlinear regimes (Hyun 
& Park 1990, 1992; Park & Hyun 1994) with the results lending support to the 
analytical results. The compressible fluid research, however, was motivated by a 
desire to understand the dynamics of gas centrifuges where the effects of gravity are 
negligible compared to centrifugal forces. A density gradient results, but in a direction 
perpendicular to the angular velocity. 

In this investigation, we are primarily concerned with the possible astrophysical 
applications of the theory of stratified compressible rotating fluids. Indeed one of the 
primary motivations for studying spin-up of a stratified fluid was to understand the 
Sun’s rotation (Howard, Moore & Spiegel 1967; Sakurai, Clark & Clark 1971; Clark 
et al. 1971). Though the Sun does not have a solid outer crust, Ekman suction may 
arise because of solar wind torque, or boundary layer flow taking place between fluid 
interfaces. Ekman pumping in multilayer fluids was investigated by Pedlosky (1967) 
with his theory tested experimentally by Linden & van Heijst (1984) and O’Donnell 
& Linden (1992). Recently, the possibility that Ekman pumping may play a role in 
the synchronization of some binary stars has also been discussed (Tassoul & Tassoul 
1990, 1992; Rieutord 1992). We, however, are motivated by the phenomenon of 
pulsar ‘glitches’, a sudden slight increase in a neutron star’s rotational frequency, and 
the resultant response of the fluid core. The simplified model of a rotating neutron 
star that we consider includes the effect of compressibility of the inner fluid as well 
as a density gradient parallel to the gravitational field and angular velocity. A strong 
magnetic field, as exists on the surface, may alter the internal dynamics, but the 
presence of a magnetic field in the core is not well established and we choose to 
ignore it. The effects of a magnetic field which threads the core are discussed in 
greater detail in a forthcoming paper. 

2. Ekman pumping 
2.1. Fluid dynamics 

To investigate the response of the fluid in a rotating container, we examine the 
usual, simple model of a cylinder of height 2L, and radius r,, rotating with angular 
velocity Q. (here and elsewhere an asterisk subscript indicates a dimensional variable 
or operator; quantities without this subscript are dimensionless.) When the angular 
velocity of the container is abruptly changed by a small amount, the differential 
rotation between the fluid and the top and bottom of the cylinder generates the 
‘Ekman pumping’ process. Unlike previous studies, we introduce an equation of state 
relating the mass-energy density p, to the pressure p. and to the composition. For a 
fluid with a kinematic viscosity vt,  the Navier-Stokes equations of motion in a frame 
rotating with angular velocity 0, are 

where 
z* > 0 

+g.e, z. < 0, 
r-* is the cylindrical radius, and we take Q. = Q,e, with e, the unit vector in the 
z-direction. From this point onward we consider only the upper half-plane, noting 
that all quantities are symmetric about z ,  = 0. 

This particular form of g. represents a constant inward-pointing acceleration, 
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even though in a self-gravitating body the acceleration is a decreasing function of 
the radius, becoming zero at the centre. However, as we will show below, for the 
parameter ranges applicable to a neutron star the significant dynamics occurs in a 
thin layer near the boundaries where gradients to the gravitational acceleration are 
negligible. 

As long as rc+ is not too large the centrifugal acceleration is small compared to the 
gravitational acceleration and can be neglected. More precisely, we assume that finite 
Froude number effects can be ignored, i.e. F 3 4L??r,./g. << 1, where F is the Froude 
number. This results in a state of rotational equilibrium where the pressure ps. and 
density ps. are functions only of z.. The Navier-Stokes equation for the equilibrium 
system is 

a 
z P s *  = -ps*g*. (3) 

We now look at a perturbed system in which the angular velocity of the boundary 
is suddenly changed by a relatively small amount AO.. The resulting pressure and 
density are 

p. = ps.(z.) + dp.fr.,z., L*), 

p. = ps.(z*) + dp.(r.,z., L). 

To first order in dp . ,  6p. and u.(r.,z., t . )  we have 

(6 )  
au. 1 1 
- + 20.e~ x v. = - - ~ , d p .  - -dp. 9. + v.v?v.. 
at. PS'  Ps* 

We non-dimensionalize the equations by writing variables and operators as a dimen- 
sional constant times a non-dimensional variable or operator as follows : 

v. = (L.6O.) tt ,  
Y. = L. r ,  

t ,  = (E'/22Q.)-' t ,  

zI = L,  z e,, 
d p .  (2Q*po*L?AO,)dp, 6p ,  E (2O.po.L.AQ,/g.)6~, 

ps* = Po. ps, 

where po. is a fiducial value for the equilibrium density. 
dimensionless viscosity, or Ekman number, 

v. = ( l /L*)V ,  

We also introduce the 

V* E = -  
2Q. L? . 

The Navier-Stokes equation for the perturbations is now 

1 / 2  1 1 
- + e, x v = --Vdp - -6pe,  -t EV2v, 
at Ps Ps 

E 

or in terms of the individual cylindrical components, 

(7) 

where (u, v, w) are the velocities in the ( r ,  8, z)-directions. We need two more equations 
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in order to complete the formulation of the problem: an equation of state and the 
continuity equation. 

We describe the fluid in terms of the pressure and the concentrations of its 
constituent elements. Within the context of neutron stars these elements are mainly 
electrons, protons and neutrons. The equation of state then relates the density to these 
quantities, p. = p.(p., Y i )  where Yi is the concentration of the ith particle species?. 

The nature of the restoring force and the corresponding Brunt-VaisaIa frequency 
is most readily calculated in the Lagrangian, as opposed to the Eulerian, formulation 
of the perturbations. We use 6q., for an Eulerian perturbation of a quantity q., the 
difference between the actual and non-perturbed values of that quantity at a given 
point in space and time. A Lagrangian perturbation Aq* describes the change from 
the non-perturbed value an eiement of fluid experiences as it travels from one point 
to another. The two perturbations are related by a displacement vector field, t., 

Aq. = 6q. + {. V*qo., (12) 

where qo.(v) is the non-perturbed quantity. The displacement vector field <. is related 
to the velocity by 

a 
at. 

21. = -5.. 

In non-dimensional notation 5. = (L,AQ2,/2Q2,)  5 and 

To relate the density and pressure perturbations, consider a fluid displacement in 
which some quantity Y is held constant, i.e. AY = 0. The Lagrangian perturbations 
Ap. and Ape are then related by 

1 
Ap. = ($ ) Ap* --= -Ap.. 

Y .$ * 

If the fluid is displaced adiabatically so that the entropy and composition are fixed, 
then c y .  is the usual sound speed. We characterize the equilibrium relationship 
between the density and the pressure by 

With (12)-( 16) we can relate 6p, and 6p.  : 

6p* = Ap. - 5. Vps.  

with rz. the z-component of 5.. Once again, non-dimensionalizing we obtain 

t In the core of an equilibrium neutron star the Yi are the concentrations that minimize the free 
energy through nuclear and weak interaction reactions. In the perturbations considered here, the 
fluctuation time scales are short compared to those for the weak interactions to adjust the ratio of 
neutrons to proton. The values of the Yi can thus be considered as fixed properties of the matter. If 
the equilibrium values of Y, give a stable stratification, buoyant forces will cause perturbations to 
oscillate with the Brunt-Vaisala frequency. 
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where the Brunt-Vaisala frequency N ,  is 

and the two dimensionless parameters ICY = g.L,/c$, and N = N./252. are the 
'constant-Y compressibility' and the normalized Brunt-Vaisala frequency, respec- 
tively. In previous studies ICY was assumed to be negligible, but in self-gravitating 
astronomical bodies tiy can be of order unity or much larger. Returning to our 
example of the neutron star, for instance, we can estimate the size of I C Y .  Using the 
values g. = 10'4cms-2, L. x 106cm and cy .  m 109cms-' (Epstein 1988), we obtain 
I C ~  = lo2. N characterizes the influence of density stratification on Ekman pumping. 

At this point, it is worth noting that (18) is a generalization of more familiar 
formulas for low-frequency density perturbations in a compressible stratified fluid. 
In particular, in studies of the terrestrial atmosphere one usually assumes that the 
fluid motions are slow enough to allow the pressure of displaced fluid to adjust to its 
surroundings so that 6p  = 0 and the first term in the left-hand side of (18) vanishes. 
This is equivalent to what we find in $6.4 of Pedlosky (1979). Furthermore, if we 
consider the incompressible limit, c$, + co, then 

which is the familiar incompressible formula for the Brunt-Vaisala frequency. 
The final equation is the continuity equation for the perturbations, 

With (12), the continuity equation becomes 

Using (16) and (18), and taking the time derivative of (24), we get 

In non-dimensionalized units this is 
aw I a ~ 1 / 2 ~ ~ - -  a 6 P  - tiyw + - + --(ru) = 0, 

at Ps d z  r dr  

where we have introduced the dimensionless angular velocity, 

CY * 

We can now rearrange the complete set of perturbation equations in a more 
convenient form. We use (19) to eliminate 6 p  in (1 1) and take the time derivative to 
obtain 
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Parameter Formula Value 

N2 N?/(451?) 6 
E v./(251.~3 10-7 

ICY g.L. l c$ .  102 
F 4QL.2rC./g. 10-4 

A K  N?L./g. 10-4 
512 251: L:/c$, 10-2 

TABLE 1. The dimensionless parameters. The values quoted are order of magnitude estimates 
for a characteristic pulsar. 

where the ‘equilibrium compressibility’ is 

g .  L* 
lCeq EE -. 

C f *  

Since the constant-Y and equilibrium compressibilities are comparable, we write 

The variable 6 p  only occurs in the combination 6p/p,, so we define 6 P  E 6p/p,. The 
final equations are now 

a 
at 

E’/’-v+u=E 

a2w a a  a a 
E -  = - N ~ w  - Ell2 --6P + E ’ / 2 A ~ - 6 P  + E 3 / 2 V 2 - ~ ,  

at2 a2 at at at 

a a i a  
E’12Q2-6P - K Y W  + -W + --(TU) = 0. 

at 3.z r dr 

(33) 

(34) 

Note the harmonic restoring force provided by the Brunt-Vaisala term in (33). The 
above four equations, (31)-(34), describe the evolution of the four unknowns, u and 
6 P .  We have dimensionless parameters, E ,  N 2 ,  AK,  K Y  and Q2. In order to reduce 
the parameter space we consider only slow rotation, Q2 << 1, and AK << 1. Both 
52’ and AK are easily included in the general solution, but since they only appear 
as a product with their effects are small and we do not consider these terms 
in what follows. Table 1 contains definitions of the dimensionless parameters and 
representative values for a neutron star. 

The presence of the compressibility xY distinguishes this set of equations from 
earlier studies (Walin 1969; Sakurai 1969; Clark et al. 1971). Previous studies chose 
to emphasize the effects of temperature on the density of the fluid. Specifically, the 
density was considered a function of the temperature and the stratification was a 
result of a temperature gradient which was imposed by the boundary conditions. 
The dynamical significance of the stratification and Brunt-Vaisala frequency arose 
through the effects of temperature diffusion and the heat equation. This approach 
is not appropriate to the astrophysical cases with which we are primarily concerned. 
In neutron stars, for example, thermal effects have a negligible result on the fluid 
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dynamics, whereas compressibility is quite significant. We, therefore, focus on the 
dependence on the equation of state. 

2.2. Boundary values and initial conditions 

To obtain a unique solution to (31)-(34), we need to specify both the boundary and 
initial conditions to our problem. There are, in essence, two approaches to take at this 
point. The most complete method is to state that initially the fluid rotates uniformly 
with the cylinder, and solve for the behaviour of the fluid after the angular velocity 
of the cylinder changes with the Laplace transformation technique (Greenspan & 
Howard 1963). A simpler and more physically elucidating approach, although less 
rigorous, used by other researchers in the field (Walin 1969; Sakurai 1969; Barcilon 
& Pedlosky 1967) entails recognizing that different physical processes take place on 
widely different time scales in different regions of the fluid. We will follow this latter 
approach. 

If the Ekman number E ,  or dimensionless viscosity, is sufficiently small, the 
behaviour of the fluid following an abrupt change in rotation rate of the container 
can be viewed as three distinct physical processes which occur on time scales Q:', 
E-'/2Q;1 and E-'Q;*. The most rapid process is the formation of a viscous boundary 
layer. Following the impulsive change of rotation of the cylinder, a viscous Rayleigh 
shear layer forms on the upper and lower surfaces in a time scale on the order of a 
rotation time ( tb .  = Q;l). Within this region the gradient in the azimuthal velocity 
results in an imbalance between the centrifugal and pressure gradient forces causing 
fluid to flow radially. This radial flow in the boundary layer establishes a secondary 
flow where fluid in the interior is pulled into the boundary layer to replace the flow 
in the Ekman layer, creating an opposing radial flow in the interior fluid that satisfies 
continuity requirements. This Ekman pumping spins the interior of the fluid up 
in a time scale of order E-1/2Q;'. With our choice of dimensionless variables this 
corresponds to a dimensionless time, t E  = 1. Finally, residual oscillations decay in the 
viscous diffusion time t,. = E-'Q-' I -  

Since the principal goal of this investigation is to understand the effects of the 
stratification and compressibility on the Ekman pumping in the interior of the 
fluid, we expand (31)-(34) in powers of and isolate the equations relating to 
Ekman pumping. The initial velocity distribution for the Ekman pumping equation 
is equivalent to the final velocity distribution of the boundary layer which form,s 
during the first phase. Following Walin (1969), we formulate the boundary condition 
in terms of the continuity of the velocity perpendicular to the Ekman boundary just 
outside the boundary layer, 

E'/2 
w(z  = f l )  = T-(V x u), 

3 
Ell2 1 d 

= T- - -(ru). JZ T a r  

(35) 

(36) 

It is critical to the dynamics of Ekman pumping that the vertical velocity at the 
boundary layer is O(E1/2). This standard result (see e.g. Pedlosky 1979) can be 
understood by scaling arguments. The imbalance between the centrifugal forces and 
pressure gradient forces in the boundary layer drives the Ekman pumping process. 
The thickness 2 of the boundary layer is O(E1/2) since the viscous terms in the 
dimensionless Navier-Stokes equation is EV2 = E/12  = O(1). The mass flux within 
the boundary layer is M A  cc I = O(E'/2) .  The net mass flux &I, cc w perpendicular to 
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the boundary layer is of the same order as  hi^ giving w = O(E'/') .  The sidewalls also 
have an 0 ( E ' j 2 )  boundary layer. As shown in Pedlosky (1967) the vertical velocity 
through this layer is inhibited by buoyancy forces and is O ( E ' / 2 )  leading to a net 
mass flux of O(E) .  The boundary condition of the radial velocity is then u = O ( E )  at 
rc. Since we keep terms only up to 0(E1i2),  as described in the following section, this 
gives u(r,) = 0. 

3. Solutions 

q = qo + E1/2q1 + Eq2 + . . .. Collecting terms of a given power of 
set of equations governing each order in the expansion. 

To solve (31)-(34) perturbatively we expand each fluid variable q as a series 
we obtain a 

We find that the 0(1) equations are 

uo = 0, 

wo = 0, 

(40) 
a i a  

- K y W o  + -wo + --(YUo) = 0, 
a Z  r d r  

and the O ( E 1 / 2 )  equations are 

a 
at 
-uo = -u1, 

N2W1 = - 

- K y w 1 +  -w1 

We define 4 = -ahPo/at, so that (37) and 

u1 = 

a 
az 

and (43) and (44) are now, respectively, 

(42) become 

d 

ar -4  

Assuming N 2  varies slowly over z ,  we treat it as a constant and simplify (47) to 

After taking the time derivative, the boundary condition, (36), is 
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By setting 6 = Z(z) R(r) T ( t ) ,  (48) becomes 

The solutions to the spatial functions are 

Z = AeB+" + BeB-', 
R = Jo(kr), 

where 

Pk = ( ~ y  f ( .y2 + 4 k 2 N 2 ) 1 / 2 ) .  

The symmetry of the boundary condition, wl(z = 0) = 0, relates A and B :  

P- 
P+ 

A = --i?. 

The constant B is arbitrary, and we choose it so that Z(1) = 1. This leads to 
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(50) 

The possible values of k are determined by the boundary condition at the sidewall at 
r = rc, i.e. ul(rc) = 0. From (45) and (52) we see that this condition corresponds to 
Jl (kmrc)  = 0 for rn = 0,1,2,. . .. The first zeros of J1 are kmr, = 0, 3.8317, 7.0156,. ... 
The solution k,  = 0 has u = 0 everywhere and is of no interest. 

We utilize the boundary condition to determine the time dependence of $. Putting 
our solution for R and Z into (36), we obtain the differential equation 

whose solution is 

where 
T ( t )  = eCof, (57) 

with A and B defined as above. 
There are two interesting limiting cases. The first is that of no stratification N + 0; 

the second is that of an incompressible fluid K Y  + 0. Let us consider the first of these 
which gives 

P + Z . Y  ( l + T ) >  k i  N 2  

k i N 2  

.Y 
p- w --, 

(59) 
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Equation (63) shows that for large compressibilities the Ekman spin-up time scale 
grows exponentially with I C Y .  The second limiting case, K Y  -+ 0, gives p+ rn +k,N 

and 

(64) 
k, N cosh k,n N 

$sinhk,nN . 
W W  

This matches the 1cy = 0, N # 0 solution which was obtained by Walin (1969). 

vo : 
We are now in a position to write the complete solution for the quantities 4 and 

'w 

4 = C,Zm(z)Jo(kmr)e-Qm'; (65) 
m= I 

the velocity, vo, is found from the relationship 

which gives 
a .  

uo(r,z, t )  = - c ~C,,Zm(z)Jl(kmr)e-wm' + u,(r,z). 
Wm m= 1 

The last term represents the final velocity due to Ekman pumping. If we take the 
frame of reference as that rotating with the cylinder before impulsive spin-up, the 
final velocity at the boundary of the interior fluid is 

u,(r,z = +1) = r. (68) 

We determine C, from the initial state of the fluid, 

The coefficients, given by the standard equation for a Fourier-Bessel series, are 

and the final velocity is 

where we have chosen r ,  = 1 (rc* = L). 

4. Discussion 
The time dependence of the Ekman pumping process is exponential with charac- 

teristic time l /w.  We plot the value of co as a function of kmN in figure 1 for different 
values of the parameter I C Y .  Larger N, corresponding to greater density stratification, 
gives larger w and reduced characteristic time. That is, a strongly stratified fluid spins 
up much quicker than a non-stratified fluid. On the other hand, an increased value of 
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6 

0 

kmN 
FIGURE 1. The spin-up characteristic time, w, as a function of k,N for varying values of K Y .  

the compressibility icy slows the pumping process for a given k,N. The spin-up time 
0 - l  decreases with increased stratification because stratification isolates much of the 
fluid from the pumping process. 

Figure 2 shows that the rotation state at the end of the Ekman pumping stage is 
not that of a solid body. The ordinate Z ( z )  is proportional to the final azimuthal 
velocity, with 2 = 1 being the largest possible spin-up. Larger values of k,N leave 
more of the internal fluid unaffected by the Ekman pumping process. In contrast, in 
a homogeneous fluid, N = 0, Ekman pumping brings the entire fluid to an angular 
velocity equal to that of the boundary. The compressibility icy further decreases the 
amount of pumped fluid, as we can see by comparing figure 2(a), for icy = 0, with 
figure 2(b), for K~ = 10. 

Compressibility thus decreases the efficacy of Ekman pumping both by lengthening 
the spin-up time and by decreasing the amount of affected fluid. To convey a clearer 
picture of how strong the effect of icy is, we plot in figure 3 the final angular velocity 
of the fluid at its central (z = 0) layer as a function of k,N for different values of icy. 

Though there is little change between icy = 0 and K~ = 1, the internal final angular 
velocity is strongly suppressed as K~ increases to 10. 

We point out that for canonical values N 2  m 6 and icy NN lo2 for a neutron star, the 
thickness of the layer affected by Ekman pumping is much smaller than the radius of 
the cylinder. Gradients in the gravitational acceleration are therefore small in these 
layers, justifying our original assumption of constant g .  in (2). 

In figure 4 we plot the average spin-up of the fluid (2) as a function of the 
normalized Brunt-Vaisala frequency N for the two lowest-order modes, kl and kz.  
We see that even modest values of N prevent most of the fluid from spinning up 
during the Ekman pumping phase. The state of the fluid after a time scale of 
t .  m E-'/252;' is, thus, one of non-uniform rotation. The process of viscous diffusion, 
which operates in a time t,. B E-'SZ;l, eventually brings the fluid into solid-body 
rotation. 

The case of spherical geometry was studied by Clark et aE. (1971), where they found 
that the solution for a sphere is qualitatively similar to that of the cylinder. That is, 
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FIGURE 2. The final azimuthal velocity as a function of depth for an arbitrary value of the radius. 
A value of 2 = 1 is complete spin-up, while at 2 = 0 there is no spin-up. (a)  K~ = 0. ( b )  icy = 10. 

the final state of non-uniform rotation also exists in the sphere, but the geometry of 
the layer that gets Ekman pumped is modified. 

We find that a particularly interesting application of these phenomena is the 
response of the interior of a rotating neutron star to a glitch, a sudden small change 
in the rotational velocity. Within the star there exists a significant stratification due to 
the strong gravitational field and the equilibrium concentrations of protons, neutrons 
and electrons. Reisenegger & Goldreich (1992) estimated a value of N ,  = 500s-' for 
a neutron star. For a canonical value of a. = lOOs-', we obtain N = 2.5. This is 
large enough to have a significant effect on the length of time the core of the star 
needs to come into rotational equilibrium. We explore these issues in a forthcoming 
paper. 
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1 .o 

0.8 

0.6 

Z(z = 0) 

0.4 

0.2 
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kmN 

FIGURE 3. The final velocity of the central layer of the fluid ( z  = 0), as a function of k , N ,  
for different values of rcy. 

1 .o 

0.8 

0.6 

<Z> 

0.4 

0.2 

0 1 2 3 4 5 6 

N 
FIGURE 4. The average final spin-up of the fluid as a function of the stratification. The top two 
curves (solid and dashed lines) were calculated for an incompressible fluid, = 0, while for the 
bottom two curves (dotted and dashdotted lines) ICY = 10. With a highly compressible fluid 
( I C Y  = 10) even very small values of N result in very little spin-up from Ekman pumping. 
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