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ABSTRACT: This article discusses problems with and solutions to performing valid permutation tests for quantitative trait loci
in the presence of polygenic effects. Although permutation testing is a popular approach for determining statistical significance
of a test statistic with an unknown distribution—for instance, the maximum of multiple correlated statistics or some omnibus
test statistic for a gene, gene-set, or pathway—naive application of permutations may result in an invalid test. The risk of
performing an invalid permutation test is particularly acute in complex trait mapping where polygenicity may combine with
a structured population resulting from the presence of families, cryptic relatedness, admixture, or population stratification.
I give both analytical derivations and a conceptual understanding of why typical permutation procedures fail and suggest an
alternative permutation-based algorithm, MVNpermute, that succeeds. In particular, I examine the case where a linear mixed
model is used to analyze a quantitative trait and show that both phenotype and genotype permutations may result in an invalid
permutation test. I provide a formula that predicts the amount of inflation of the type 1 error rate depending on the degree
of misspecification of the covariance structure of the polygenic effect and the heritability of the trait. I validate this formula
by doing simulations, showing that the permutation distribution matches the theoretical expectation, and that my suggested
permutation-based test obtains the correct null distribution. Finally, I discuss situations where naive permutations of the
phenotype or genotype are valid and the applicability of the results to other test statistics.
Genet Epidemiol 39:249–258, 2015. © 2015 Wiley Periodicals, Inc.
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Introduction

In the search for genetic determinants of complex traits, we
may be faced with the difficulty of determining the statistical
significance of a given test statistic that does not necessar-
ily follow any known probability distribution. This arises
when correcting for the multiple comparisons of many cor-
related tests—for example, to determine genome-wide sig-
nificance [Abney et al., 2002; Cheng and Palmer, 2010]—or
in methods where multiple variants (e.g., rare variants) are
aggregated into an omnibus test. Methods that use weights
that vary depending on the phenotype data, for instance,
typically do not have a known asymptotic distribution and
require resampling methods to estimate significance [Fang
et al., 2012; Sha et al., 2012]. Even when an asymptotic dis-
tribution is known, realities of genetic data, such as popu-
lation structure or linkage disequilibrium, may result in an
inflated false-positive rate [Epstein et al., 2012; Liu et al., 2013;
Tintle et al., 2011]. Family-based methods, though often ro-
bust to population stratification, can also have false-positive
rates above the nominal level [Greco et al., 2014; Kazma and
Bailey, 2011]. Permutation tests can be a solution in such
cases [Basu and Pan, 2011; Lin and Tang, 2011], but they
rely on the assumption that the subjects are independent.
This assumption is violated, for instance, in the presence of
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population stratification [Epstein et al., 2012; Liu et al., 2013]
or familial relatedness [e.g., Abney et al., 2002; Bourgain and
Genin, 2005; Kazma and Bailey, 2011], preventing the valid
application of a permutation test.

At the heart of the invalidity of a permutation test in
the presence of population stratification or relatedness is
the presence of polygenic effects and its confounding with
genotypes. As I discuss below, this may result in a lack of ex-
changeability between subjects, a fundamental requirement
of a permutation test. It is worth noting that relatedness is
not always a barrier to a valid permutation test. For instance,
in some model organism breeding designs, exchangeability
exists, allowing a valid permutation test [Churchill and Do-
erge, 1994], and more-complicated breeding designs can also,
with careful thought, lead to valid permutation tests [Cheng
et al., 2013; Cheng and Palmer, 2010; Churchill and Doerge,
2008; Peirce et al., 2008]. Similarly, given specific restric-
tions on the types of relatedness that is present among the
subjects (e.g., only siblings), it may be possible to formu-
late a valid permutation test[e.g., Allison et al., 1999; Fang
et al., 2012]. However, many forms of population structure,
including familial relatedness, can cause confounding that
can invalidate a permutation test. Although in a simple pop-
ulation stratification scenario—where a limited number of
principal components can adjust for the background genetic
confounding—it is possible to formulate a valid permutation
test [Epstein et al., 2012], in more-complicated scenarios, as
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often exist in human studies—where close or distant related-
ness, cryptic or otherwise, may possibly combine with other
forms of population structure—a clear statistical framework
to help researchers determine the applicability of a permuta-
tion test, or how precisely to do such a test, has been lacking.

Here, I consider possible permutation approaches for
quantitative traits where arbitrary forms of population struc-
ture may exist in the sample. The presence of both population
structure and polygenicity leads me to using the linear mixed
model (LMM) for multivariate normal data as a foundation
on which to build, as this is a standard model used in the ge-
netic analysis of quantitative traits. Although the approaches
used here may be applicable to nonnormal types of data, I
do not consider this issue. Certainly, permutation tests in
LMMs have been considered in the past [e.g., Anderson and
Robinson, 2001; Anderson and Ter Braak, 2003], however
these studies consider the case where either the “treatment”
(e.g., genotypes) is assigned randomly by the researcher or
the stochastic components of the model (i.e., the random
effect plus the error terms) are independent. Neither of these
situations generally holds true in the genetic analysis of a
complex trait, where the researcher is not at liberty to assign
genotypes at random and the polygenic effect generally re-
sults in nonindependence of the random effect. In addition
to defining the LMM, I show how misspecification of the
covariance matrix leads to an altered asymptotic distribution
of the standard test statistic, and how different permutation
approaches can be modeled through different forms of mis-
specification of the covariance matrix. I discuss this issue
further below. Finally, I also discuss what precisely should be
permuted—phenotypes, residuals, or genotypes—and pro-
vide simulation results supporting the analytical findings.

Statistical Model

Here I define the statistical model used in the remainder
of this article and the resultant likelihood. Given this model,
I propose a standard test statistic that, under the right set of
conditions, asymptotically follows a central chi-squared dis-
tribution with 1 degree of freedom (χ2

1). Although it is not
really necessary to use a permutation test when the distribu-
tion of the statistic is known, its analytical tractability allows
for insights that also apply to more general cases. Given the
model, I then define exchangeability and the conditions that
are needed to ensure that exchangeability holds.

Given n subjects with phenotype data y = (y1, . . . , yn)t,
where the superscript ()t indicates transpose; the n × p co-
variate data matrix X, which includes the intercept term; and
the predictor of interest (e.g., genotypes) g = (g 1, . . . , g n)t,
the LMM is

y = Xβ + gγ + e, (1)

where β is the vector of parameters for the covariates, γ

is the scalar parameter for the predictor of interest, and
e ∼ MVN(0, �σ2) is an error term. The error term encom-
passes both a random effect and residual error e∗, e = u + e∗.
The residual errors are distributed as independent normals

with variance σ2
e . In the genetic context the random effect u

will typically be the polygenic effect, and if we further assume
that it is the sum of a large number of independent additive
genetic effects in an outbred sample, the central limit theo-
rem dictates that u is multivariate normally distributed with
correlation matrix K [Lange, 1978] with the result extended
to the case of inbreeding and dominance variance in Abney
et al. [2000]. Although I do not assume a particular struc-
ture for �, a common parameterization in a genetic LMM is
� = Kh2 + I(1 – h2), where K is an additive genetic relation-
ship matrix (GRM), I is the identity matrix, and h2 is the
narrow-sense heritability. The matrix K may be estimated
from available genotype data or determined from a pedigree,
in which case it is equal to 2�, where � is the matrix of
kinship coefficients. The log likelihood of this model is

l = –
n

2
log 2π –

1

2
log |�| –

n

2
log σ2 –

1

2σ2
(y – Xβ – gγ)t�

–1

× (y – Xβ – gγ). (2)

The quantity of interest is the parameter γ, and under the
null hypothesis γ = 0. To test against the alternative γ �= 0, the

statistic T =
γ̂2

Var(γ̂) , where γ̂ is the best linear unbiased estima-
tor (BLUE, equivalently the maximum-likelihood estimator)
of γ, has a χ2

1 distribution under the null hypothesis when σ2

is known. In practice, we use

T̂ =
γ̂

V̂ar(γ̂)
, (3)

where the estimated variance V̂ar(γ̂) uses an estimator S2

in place of the true variance σ2. In an LMM approach
S2 = 1

n–p –1 (y – ŷ)t�–1(y – ŷ) and is an unbiased estimator of

σ2. This results in T̂ being asymptotically χ2
1 distributed.

However, in a genetic analysis � is not always known, leading
to the question of what the distribution of T̂ is when � is
misspecified.

In genetic analyses of complex traits, using an LMM with
a misspecified covariance matrix is likely a common occur-
rence. Perhaps the simplest example of this is when unrelated
individuals are unknowingly sampled from two populations,
with different allele frequencies at the tested marker, but are
assumed to be from a single population. If the trait is asso-
ciated with population membership, we see an inflated false-
positive rate. This sort of confounding is easily corrected by
including either a covariate with an indicator of population
membership or a block structured correlation matrix with el-
ements equal to 1 when a pair is from the same population or
0 when they are not. At the other end of the population struc-
ture scale, misspecification may occur in family studies with
a known pedigree when the pedigree is wrong or incomplete.
In fact, even if the pedigree is known without error, misspec-
ification exists when the kinship matrix (as computed from
the pedigree) is used as the additive GRM because under a
polygenic model the kinship coefficients give only the ex-
pected identity by descent (IBD) sharing across the genome
whereas the correlation in phenotype values will be the result
of the realized IBD sharing. In spite of this last form of misfit,
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the successful use of the kinship coefficient in the GRM over
many decades of pedigree studies in both humans and ani-
mals suggests a degree of robustness to the use of the expected
covariance in place of the realized covariance.

In order to quantify the effects of covariance matrix mis-
specification on hypothesis testing in the LMM, in the Ap-
pendix I derive the distribution of the test statistic T̂ in the
case where the incorrect matrix � is used instead of �. I find
that T̂ is asymptotically distributed as a scaled chi-squared

distribution, T̂
η

∼ χ2
1, where η is a constant. In the case of no

covariates and assuming that both y and g have been centered
by their mean values, η takes the form

η =
n gt�–1��–1g

gt�–1g Tr(��–1)
.

The scalar η is, in essence, the genomic control [Bacanu et al.,
2002; Devlin and Roeder, 1999] parameter, and its general
analytical form in the asymptotic limit of very large sample
sizes is in the Appendix. In any real dataset we do not know
� and, hence, cannot know η, but having an analytical form
will allow us to determine the degree of miscalibration in T̂
for hypothesized circumstances, as we will see below.

Confounding, Exchangeability, and Permutations

If we expect to perform a permutation test given purely
observational data, we should also be concerned with the
possibility of confounding. Consider the linear model y = μ +

x1β1 + x2β2 + e, where e is an independent error and we wish
to test the null hypothesis β2 = 0. In a designed experiment we
can ensure that x2 has no confounders by random assignment
of its values to each subject, and we can safely permute the
labels of x2 to obtain a valid test. With purely observational
data, however, x2 may be confounded with x1 due to unknown
structure in the data, and permutations of the x2 subject labels
would result in an invalid test. Note that joint permutation
of x1 and x2 would be valid, but this strategy fails when x1

is not observed. This situation arises in genetic studies when
there is population structure in the sample. In this case x2

would be genotype and x1 is a predictor that also depends
on the population structure, for example, a polygenic effect
or an indicator of population membership (there would be
P – 1 such indicators for P populations in the sample) with
each population having a distinct effect on the outcome y.
If genotype x2 is dependent on the population structure, we
would not want to naively permute all the subject labels of
x2, as this would give an incorrect type 1 error rate. In this
case, even if population membership is not recorded, it can
often be inferred if there is sufficient genetic data.

Less well appreciated is that, given structured data, con-
founding can occur even when the predictor x2 is sampled
independently from the unobserved structured-population
predictor x1. Note that this independence is conditional
given the covariance matrices (representing population struc-
ture) for x1 and x2 in the sense that they are vectors drawn
independently from two distinct multivariate distributions
each with a given covariance matrix. To understand this,

consider an example where the subjects are connected by
some pedigree with x2 being their genotypes at a marker that
has no genetic effect and is not in linkage disequilibrium
with any causal locus, and with x1 representing the polygenic
effect. The genotype x2 and polygenic effect x1 necessarily
have the same correlation matrix K induced by the pedigree.
Thus, when we sample x1 and x2 independently from their
distributions, having the same correlation matrix K, it is ac-
tually equivalent to x1 and x2 being conditionally independent
given the population or pedigree structure. Marginally (i.e.,
unconditional on the underlying structure) x1 and x2 are cor-
related with each other. That is, similar genotype values will
tend to match up with similar polygenic (and, hence, trait)
values simply because these vectors have a similar correlation
structure. It is this correlation between x1 and x2 that leads
to confounding when ignoring x1 in the model. Note that
this argument does not depend on whether K is the result of
population structure resulting from a pedigree or the block
diagonal form, with constant off-diagonals in each block,
that results from assuming a population-specific genetic ef-
fect. Every genetic trait will depend on genotypes with some
population structure correlation K, resulting in confounding
when testing a genetic marker that also has correlation K,
thus altering the type 1 error away from the expected amount
unless the confounding is corrected for in the test [Newman
et al., 2001]. Conversely, if the elements of either x2 or x1

are unconditionally independent—meaning either one has
the identity as the covariance matrix—there will be no con-
founding of x2 with y. For instance, if the x2 genotypes were
independent binomials as would be the case in an unstruc-
tured population, there would neither be inflation of the test
statistic nor any problems with permuting the values of x2.
Unfortunately, with observational data verifying the absence
of confounding, and the permissibility of a permutation test,
may not be possible.

Developing a permutation test for observational data
requires assessing whether the permuted quantities are
exchangeable. Quantities are exchangeable if, upon permuta-
tion of the labels of those quantities, their distribution func-
tion is unchanged [Bernardo and Smith, 2000, Sec. 4.2]. In
particular, because we want to know the distribution of the
test statistic under the null hypothesis, we require exchange-
ability when γ = 0. In an LMM, the natural quantities to
permute are the residuals e = y – Xβ. In the Appendix I show
that the residuals are exchangeable only in the special case
where �ii = a and �ij = b, i �= j for some scalar constants a
and b, where �ij is the i, j -th element of �. Note that because
we do not in general know β or σ2 but must instead estimate
them, even when � has an exchangeable structure permut-
ing the residuals technically provides only an approximate
permutation test, though the approximation tends to be very
accurate [Anderson and Robinson, 2001].

In general, when using an LMM to model polygenic vari-
ation the matrix � will not have an exchangeable structure.
Nevertheless, we might undertake a permutation test where
the residuals are permuted under the assumption that the
phenotype has an exchangeable correlation matrix � rather
than true correlation matrix �. The fundamental question

Genetic Epidemiology, Vol. 39, No. 4, 249–258, 2015 251



is will these permutations give an unbiased estimate of the
threshold for rejecting the null hypothesis at some speci-
fied false positive rate? To address this question exactly, we
would need to understand the properties of the order statis-
tics T(k), k = 1, . . . , n! under permutations of the residuals.
Instead, I address this in an approximate, but more intuitive,
approach by treating the statistics T(k) as samples from a dis-
tribution with covariance matrix that has an exchangeable
structure. In the simulation results below, we will see that the
empiric distribution we get by doing permutations closely
matches the distribution obtained from assuming � = I.

Simulations

The simulations are done in a sample of 1,415 Hutterite in-
dividuals with a known 13-generation pedigree [Abney et al.,
2000]. Phenotypes for the sample are generated under the null
model to have a mean of 3.0 and covariance matrix �σ2 with
� = 2�h2 + I(1 – h2), with � the kinship coefficient matrix
as computed from the pedigree and h2 the narrow-sense her-
itability. Genotypes are simulated by randomly assigning the
founders of the pedigree a genotype from a biallelic marker
with minor allele frequency of 0.3 and using Mendelian seg-
regation to randomly determine the genotypes of all the other
pedigree members.

First, I address the question of what happens when “naive”
permutations are done. That is, the residuals under the null
model are permuted regardless of whether the correlation
matrix is exchangeable and the new phenotype (i.e., the co-
variate effects plus the permuted residuals) is put through the
same LMM analysis as the original data. More precisely, we
assume the null model y = Xβ + e where e ∼ MVN(0, σ2�).
That is, analyses done under the null model use exactly the
same model as that used to generate the data. Using Equation
(2) with γ = 0, I first fit the null model and obtain maximum-
likelihood estimates for the parameters, β̂0, ĥ2

0, σ̂
2
0. Using gen-

eralized least squares (GLS), I test the null hypothesis γ = 0
against the alternative γ �= 0 using the test statistic T̂ (Eq. (3))
computed under the alternative model,

y = Xβ + gγ + e, where e ∼ MVN(0, σ2�̂0) and

�̂0 = 2�ĥ2
0 + I(1 – ĥ2

0). (4)

Note that T̂ is necessarily asymptotically distributed as a χ2
1

because �̂0 asymptotically converges to the true correlation
matrix �. Also note that σ2 in Equation (4) is estimated by the
sample variance when computing T̂. I want to compare this
asymptotic distribution with the empirical distribution one
obtains by doing naive permutations. To do this, I first obtain
the estimated residuals under the null, ê = y – Xβ̂0. I permute
these residuals to obtain êπ1 and a new phenotype vector
yπ1 = Xβ̂0 + êπ1 . Under the alternative model of Equation (4)
but with yπ1 in place of y, I obtain a test statistic T̂v

π1
, where

the v superscript indicates the use of naive permutations. I
repeat this process L = 104 times to obtain T̂v

π1
, . . . , T̂v

πL
. If

doing naive permutations were to provide the correct empiric

distribution for our original test statistic T̂, then the samples
T̂v

π1
, . . . , T̂v

πL
should follow a χ2

1 distribution.
As shown in Figure 1 the empiric distribution clearly fails

to follow the desired asymptotic distribution. The reason for
this is that the permutations fail to maintain the correlation
structure of the original phenotype data. As discussed above,
this form of permutation would give an accurate distribu-
tion only when the true correlation matrix of the estimated
residuals has an exchangeable structure. We can use the meth-
ods in the Appendix to quantify the inaccuracy of the em-
piric permutation distribution. We can model the statistics
T̂v

π1
, . . . , T̂v

πL
as coming from the distribution ηχ2

1 that re-
sults from assuming the incorrect correlation matrix � = I
rather than the correlation matrix �̂0. Using the theoretically
computed value of η, as given in the Appendix, and plotting
T̂v

π1
/η, . . . , T̂v

πM
/η against a χ2

1 in Figure 1 B we see that the
distributions match well. From this, we see that computing
the significance of T̂ from {T̂v

πi
} would lead to an anticon-

servative estimated level of significance. For instance, to get
nominal levels of significance of 10–4 and 10–5, the permuted
distribution would select threshold levels of 12.7 and 16.3,
respectively. Because the actual distribution of the test statis-
tic is χ2

1, the observed type 1 error rates would be 3.7 × 10–4

and 5.4 × 10–5, respectively, a substantial inflation.
Though it is not possible to do a exact permutation test

when the residuals have a nonexchangeable correlation ma-
trix, it is possible to do a valid permutation-based test. The
approach (referred to here as MVNpermute) is described in
Abney et al. [2002] and the Appendix and it relies on the
fact that there exists a linear transformation of the residu-
als that results in a vector (i.e., the transformed residuals)
whose covariance matrix is proportional to the identity ma-
trix, and is therefore exchangeable. Because MVNpermute
is based on permutations of an invertible transformation of
the phenotype residuals, all structure in the genotype data
(e.g., linkage disequilibrium, allele frequencies) is preserved.
Inverting the transformation following permutations then
results in new simulated datasets that maintain the structure
in the entire original data (i.e., phenotype correlations and
genotype structure).

I repeated the above simulations but with the permu-
tations generated using MVNpermute. This gave statistics
T̂M

π1
, . . . , T̂M

πL
, where the M superscript indicates the use of

MVNpermute. As shown in Figure 2, this results in statis-
tics that follow the expected distribution. That is, by first
decorrelating the residuals—ensuring exchangeability for a
normally distributed trait—permutations allow us to esti-
mate the proper threshold for a given false-positive rate. In
practice, MVNpermute is not necessary to determine the
P-value at a single SNP, but obtaining L permutation-based
datasets {yπi } allows us to do an empiric multiple testing cor-
rection to determine genome-wide significance, for instance
[Abney et al., 2002].

It is not unusual to realize that permuting the phenotypes
(or rather the residuals) does not result in a valid permuta-
tion test when individuals are related. A possible alternative
is to permute the genotypes instead of the phenotypes. A
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Figure 1. QQ plots under naive phenotype residual permutations. In both plots the expected quantiles are for a χ 2
1 distribution and the shaded

area is the 95% confidence region. (A) The observed quantiles are the values of the test statistic under permutations of the trait values. (B) The
observed quantiles are the values in (A) divided by the theoretical inflation factor.

Figure 2. QQ plot of the MVNpermute method. The observed quantiles
are the values of the test statitic from 10,000 MVNpermutations, whereas
the theoretical quantiles are those from a χ 2

1 distribution. The shaded
region is the 95% confidence bounds.

rationale is that the LMM inference is based on the condi-
tional distribution of the phenotypes given the genotypes.
As the phenotypes remain fixed while new genotypes get as-
signed to individuals via permutation, the correlation struc-
ture in the phenotypes is preserved, resulting in a valid per-
mutation test. In fact, many statistics used in complex trait
mapping assume a distribution that is conditional on the

genotype data, even if the form of the test statistic distribu-
tion is not known. Permuting the genotype data, then, to
estimate this distribution seems a natural approach.

To understand the consequences of a genotype permuta-
tion procedure on an arbitrary test statistic, let us first con-
sider the standard ordinary least squares (OLS) statistic,

T̃r =
γ̃

Ṽar(γ̃)
(5)

(
β̃

γ̃

)
= (MtM)–1Mty (6)

M = (X g), (7)

where ·̃ indicates estimation with a scaled covariance matrix
� rather than� (in this case� = I). That is, the statistic we use
does not explicitly account for the polygenic effect. We may be
aware that relatedness in our sample will result in T̃r not be-
ing χ2

1 distributed and, thus, perform genotype permutations
to obtain the empiric distribution of T̃r . To see if genotype
permutations recover the correct distribution, I performed
L = 104 permutations of the genotype data while keeping the
phenotype data constant to obtain {T̃r,π1 , . . . , T̃r,πL } where
π1, . . . , πL index the permutations. I then compare this to
a sample from the true null distribution that I obtain by
performing L gene dropping simulations, T̃r,1, . . . , T̃r,L . The
results in Figure 3 show that the distribution obtained by
genotype permutations is highly deflated relative to the dis-
tribution from gene dropping. Using this approach to obtain
an empiric threshold of significance would result in a highly
inflated false-positive rate.
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Figure 3. QQ plot of the empiric null distribution for the OLS statistic
against the expected null distribution. The expected null distribution is
a sample obtained by doing gene dropping. The solid line is the y = x
line.

The source of the problem with genotype permutations
can be understood by returning to the notion of confound-
ing. Because genotypes were not randomly assigned by the
researcher to subjects, the absence of confounding is not
guaranteed. In fact, the subject genotypes are correlated as
a consequence of Mendelian segregation and all markers in
the genome, whether causative or not, share the same pedi-
gree for a given set of individuals. Hence, the covariance of
the marker being tested is equal (up to a scalar constant)
to the covariance of the polygenic effect. If genotypes are
permuted, the similarity of the covariance structures of phe-
notype and genotype will not be preserved. Thus, I expect
that the null distribution of an arbitrary test statistic, not just
the OLS statistic, will not be correctly estimated by genotype
permutations, in general.

Although the null distribution of an arbitrary test statis-
tic cannot be inferred from genotype permutations, the null
distribution of the GLS statistic can be. That is, if instead
of using T̃r we use T̂ as defined in Equation (3) and do the
genotype permutation procedure as described above, we find
the permutation distribution of T̂ matches the gene drop-
ping permutation distribution (data not shown). We can
understand this result by looking at the definition of the
GLS statistic T̂. We can view the GLS statistic as the OLS
statistic computed on the data following a decorrelation step.
That is, if we define �1/2 as the symmetric square root ma-
trix of � and z = �–1/2y, W = �–1/2X, f = �–1/2g, ε = �–1/2e,
then we obtain the linear model z = Wβ + fγ + ε, with ε ∼
MVN(0, Iσ2). The GLS statistic on the original data is equiv-
alent to the OLS statistic on the decorrelated data z. Because
our new trait data z are normally distributed and uncorre-
lated, they are independent and can no longer be confounded

with the genotypes under the null hypothesis. In the absence
of confounding, then, permuting the genotypes recovers the
true null distribution of the test statistic T̂.

Software

The MVNpermute algorithm is implemented in the
R programming language and is available for download
from the Comprehensive R Archive Network (http://cran.r-
project.org) as the “MVNpermute” package.

Discussion

The fundamental challenge with performing a permuta-
tion test is ensuring exchangeability in the permuted quanti-
ties. In a genetic association test, it is generally not possible
to do an exact permutation test when the trait under study
has a polygenic component. The reason is that confounding
due to population structure exists between the genotype be-
ing tested and the unknown polygenic effect, both of which
have similar covariance structures. Only when all individuals
are equally related, as in an F2 cross [Churchill and Doerge,
1994], will a naive permutation approach obtain the correct
type 1 error rate. Nevertheless, with an accurate estimate of
the trait covariance structure, it may be possible to remove
the confounding and perform a valid permutation test. I have
described an approach we have previously proposed [Abney
et al., 2002] for removing the correlation in the phenotype
residuals and shown that it generates the correct null distribu-
tion. Strictly, the method is valid when the phenotype data are
multivariate normally distributed, where removing the cor-
relation is sufficient to ensure exchangeability. Another per-
mutation approach was proposed by Aulchenko et al. [2007].
They estimate the polygenic effect and obtain estimates of the
residual error term. Although, under multivariate normality,
the residual errors in Equation (1) are exchangeable, the es-
timated residual errors, in general, will not be. Nevertheless,
this may be a case of “close enough,” allowing for a reason-
ably accurate estimate of significance thresholds, though I
have not investigated this question.

Other resampling strategies are possible, though they also
have limitations. Gene dropping is one such approach. In
this strategy one simulates the Mendelian segregation of
the founder genotypes through all descendents. Because
Mendelian segregation is random and independent of the
phenotype, it provides a valid distribution of the test statistic
under the null hypothesis. The primary difficulties with gene
dropping is the need for a complete pedigree and knowl-
edge of the founder genotypes. If the pedigree is known, but
the founder genotypes are not, it may be possible to recon-
struct, or simply guess, them from the available data. Doing
so, however, runs the risk of introducing unknown biases as
the observed genotypes may be confounded with the pheno-
types. On the other hand, if the pedigree is not known, gene
dropping is simply not feasible.

Instead of gene dropping we might try to permute geno-
types, leaving the covariance structure of the phenotype
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intact. As discussed above, for an arbitrary test statistic this
does not necessarily result in a valid test as permutations of
the genotypes will not preserve their covariance structure. In
addition, applying a “decorrelating” transformation to the
genotypes is not sufficient to ensure their exchangeability
because, unlike the multivariate normal distribution of the
phenotype, the joint distribution of the genotypes has higher-
order dependencies. Nevertheless, in the case of a multivariate
normal phenotype being analyzed with a linear mixed model,
the standard test statistic T̂ naturally transforms the trait data
to being independent. Once independent, any sets of depen-
dent or independent genotypes, including permutations of
the original ones, can be used to recover the correct null dis-
tribution of the test statistic. This approach has been used in
mouse cross data to obtain proper genome-wide significance
levels [Cheng et al., 2013; Cheng and Palmer, 2010], and more
recently in humans [Zhang et al., 2014]. It seems likely that
any test statistic that removes the correlation in the pheno-
type data and does not depend on Mendelian segregation
under the null hypothesis would allow genotype permuta-
tions to be valid, though I have not investigated this further.
An additional caveat arises, however, with genotype permu-
tations when there are other covariates. In particular, if any
of the covariates are associated with the genotype, genotype
permutations may estimate the incorrect null distribution.
That is, it will give the null distribution for when the covari-
ate and genotype are not associated rather than for when they
are. This may arise, for instance, when a covariate is itself a
genetic trait, or when it is a principal component vector ob-
tained from a population structure analysis. It may also arise
when testing effects such as gene-by-environment interac-
tion. In this situation the null model has a nonzero genetic
main effect. In general, an approximate permutation test of
interaction effects is done by computing and permuting out-
come residuals [Anderson and Ter Braak, 2003] as done by
MVNpermute. Additional work is needed to understand this
effectiveness and validity of MVNpermute and genotype per-
mutations in the presence of genetic interaction terms and of
genotype permutations when other genetic predictors are in
the null model.

Another resampling strategy is the parametric bootstrap.
In this approach one assumes the phenotypes follow a par-
ticular parametric distribution with parameter values equal
to those estimated from the observed data under the null hy-
pothesis. Samples are then drawn from this distribution and a
test statistic computed for each sample, thus obtaining an em-
piric null distribution. For instance, one might assume the
phenotype follows a multivariate normal distribution with
fixed effect parameters and variance components estimated
by maximum likelihood under the null model. Drawing many
phenotypes from this distribution and testing the genotype
at an SNP against each randomly drawn phenotype pro-
vides a null distribution for the test statistic. This approach
relies on the parametric distribution accurately represent-
ing the observed data. Insofar as the data deviate from the
assumed distribution, biases in the estimated significance
threshold may ensue. A true permutation test has the advan-
tage of not needing to make such parametric assumptions.

The MVNpermute method also relies on certain distribu-
tional assumptions. Namely, that exchangeability under the
null is determined by the structure of the correlation ma-
trix. Intuitively, this assumption appears weaker than those
used in a parametric bootstrap, suggesting that there may
be greater robustness to the permutation-based approach,
though I have not investigated this question.

The analyses I performed here were based on using a statis-
tic known to asymptotically follow a χ2

1 distribution. This
allowed me to easily show the invalidity of particular permu-
tation procedures. In practice, one would not need a permu-
tation test for such a statistic, but the lessons extend to other
statistics as well. For instance, we might want to determine
statistical significance after correcting for multiple correlated
tests, as when doing a genome-wide scan or a scan over a
smaller region. In this case the statistic of interest would be
the maximum over all statistics in the scan. Similarly, statistics
that jointly combine information across SNPs or use pheno-
type dependent weights, for which there may not be a clear
generative model, may not have a known distribution under
the null hypothesis. Situations such as these would benefit
from a permutation test, if one exists. The presence of poly-
genic variation may make a true permutation test difficult
or impossible, but a permutation-based test may be achiev-
able by carefully considering the sources of correlation, or
nonexchangeability, in the data. Hopefully, the examples and
discussion I provided here will help bring insight into the
development of such tests.
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Appendix A

Distribution with a Misspecified Covariance Matrix

The LMM of the main text is y = Xβ + gγ + e, where e ∼
N(0, �σ2). The asymptotic distribution of the test statistic
T̂ = γ̂2/V̂ar(γ̂) is χ2

1 under the null hypothesis, but only if we
use the correct scaled covariance matrix � in our estimate of γ̂
and its variance. If we misspecify this matrix, the distribution
of T̂ becomes a scaled chi-squared distribution η · χ2

1 with
the scalar ηdepending on the amount of misspecification. To
determine η we can derive T̂ and its distribution assuming
that we have used the incorrect covariance matrix �σ2 in
place of the correct �σ2. First, we obtain the BLUE for γ.
If we let �1/2 be the symmetric positive definite square root
matrix of � and define

z = �
–1/2y

W = �
–1/2X

f = �
–1/2g

ε = �
–1/2e
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HW = W(WtW)–1Wt (A.1)

then the BLUE for γ is

γ̃ = [f t(I – HW)f]–1f t(I – HW)z,

where ·̃ indicates an estimate using � rather than �. The
variance of this estimator is

Var(γ̃) = [f t(I – HW)f]–1f t(I – HW)�(I – HW)

× f[f t(I – HW)f]–1σ2. (A.2)

where Var(z) = �σ2 = �–1/2��–1/2σ2. The statistic

T =
γ̃2

Var(γ̃)
=

(f t(I – HW)z)2

f t(I – HW)�(I – HW)fσ2
(A.3)

is χ2
1 because z is multivariate normal. The statistic T, how-

ever, is not an adequate test statistic because it depends on
the unknown matrix � and the unknown parameter σ2. In
practice we use the test statistic

T̃ =
γ̃2

Ṽar(γ̃)
=

(f t(I – HW)z)2

f t(I – HW)f S2
, (A.4)

where in place of σ2 we have the sample variance

S2 =
1

n – p – 1
(z – z̃)t(z – z̃),

where z̃ = HAz = A(AtA)–1Atz and A = (W f) =

�–1/2M, M = (X g). It is straightforward to show that
if � = � then the expectation E (S2) = σ2. In general,
however, we have,

E (S2) =
1

n – p – 1
Tr((I – HA)�)σ2

=
σ2

n – p – 1

[
Tr(��

–1) – Tr([Mt�
–1M]–1

× Mt�
–1��

–1M)
]
. (A.5)

The result of misspecifying the covariance matrix is given by
the following lemma.

Lemma 1. Let y ∼ N(Xβ + gγ,�σ2) with � nonnegative
definite and � be some symmetric nonnegative definite matrix.
Define � = �–1/2��–1/2, M = (X g), with z, f, HW,� as in
Equation (A.1) and T̃ as in Equation (A.4). If λ1(��–1) =

o(n1/2), where λ1(��–1) is the largest eigenvalue of matrix
��–1 (equivalently the largest eigenvalue of �), then as n →
∞
T̃

η
→ χ2

1 in distribution, where

η =
(n – p – 1)f t(I – HW)�(I – HW)f

f t(I – HW)f[ Tr(��–1) – Tr([Mt�–1M]–1Mt�–1��–1M)]
.

(A.6)

Proof. We can write T̃ = (γ̃2/Var(γ̃)) × (Var(γ̃)/Ṽar(γ̃)),
which is the product of a χ2

1 random variable, as given in
Equation (A.3), and the ratio of the true to estimated vari-
ance of γ̃. The true variance is given by Equation (A.2), but
the estimated variance is

Ṽar(γ̃) = [f t(I – HW)f]–1S2, where

S2 =
1

n – p – 1
zt(I – HA)z.

Thus, the test statistic is

T̃ =
γ̃2

Var(γ̃)
× f t(I – HW)�(I – HW)f

f(I – HW)f
× σ2

S2
,

the product of a χ2
1 random variable and the quantity

η =
f t(I – HW)�(I – HW)f

f(I – HW)f
× σ2

S2
.

If as n → ∞Var(S2) → 0, then σ2

S2 → σ2

E (S2) in probability,

where E (S2) is given by Equation (A.5). Thus, we obtain
Equation (A.6) of Lemma 1 when Var(S2) → 0. We can ob-
tain a sufficient condition for Var(S2) → 0 by considering

Var(S2) =
1

(n – p – 1)2
Var(zt(I – HA)z)

=
2σ4

(n – p – 1)2
Tr(�(I – HA)�(I – HA)).

Thus, Var(S2) → 0 when Tr(�(I – HA)�(I – HA)) = o(n2).
Now, consider the following eigenvalue result [Zhang,

2011, Theorem 8.12, p. 274]. Let λi(P) be the ith eigenvalue
for some n × n matrix P ordered such that λ1(P) ≥ λ2(P) ≥
. . . ≥ λn(P). Then, for any n × n nonnegative definite, Her-
mitian matrices P, Q

λi(P)λn(Q) ≤ λi(PQ) ≤ λi(P)λ1(Q).

It follows that λi(�[I – HA]) ≤ λi(�) because � is symmet-
ric, nonnegative definite and I – HA is symmetric and idem-
potent with all eigenvalues equal to 0 or 1. Furthermore,
�[I – HA] is nonnegative definite because λi(�[I – HA]) ≥
λi(�)λn(I – HA) ≥ 0, and thus λi(�[I – HA])2 ≤ λi(�)2.
Recalling that the trace of a matrix is the sum of the eigenval-
ues we have Tr[�(I – HA)�(I – HA)] ≤ Tr[�2]. If we define
B = ��–1, then Tr(�2) = Tr(B2). Hence,

Var(S2) =
2σ4

(n – p – 1)2
Tr(�(I – HA)�(I – HA))

≤ 2σ4

(n – p – 1)2
Tr(B2)

≤ 2σ4

(n – p – 1)2
n[λ1(B)]2.

Thus, a sufficient condition for Var(S2) → 0, and hence
σ2/S2 → σ2/E (S2) in probability, is λ1(��–1) = o(n1/2). �

Note that a possibly tighter sufficient condition is Tr(B2) =∑n
i=1 λi(B)2 = o(n2).

Exchangeability of the Multivariate Normal Distribution

Given a random vector y = (y1, . . . , yn) distributed as a
multivariate normal f (y) = N(μ, �), under what conditions
are the elements of y exchangeable? If we let P be a permu-
tation matrix so that Py is a permutation of the elements
of y, then y is exchangeable when f (y) = f (Py) for every
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permutation matrix P [Bernardo and Smith, 2000, Sec. 4.2].
Taking the log of both sides, this reduces to,

(y – μ)t�
–1(y – μ) = (Py – μ)t�

–1(Py – μ),

which implies the condition,

yt(Pt�
–1P – �

–1)y + 2μt�
–1(Py – y) = 0. (A.7)

In order for Equation (A.7) to hold for every y and P, each of
the two terms must be zero. If the first term is to be zero for all
y and P, then Pt�–1P = �–1. This condition is met if and only
if all the diagonal elements �ii = v, for some constant v, and
all the off-diagonals �ij = vρ, for some constant ρ. To set the
second term to zero we first note that for some vector w, the
condition wt(Py – y) = 0 implies w = α1, for some constant
α and where 1 = (1, . . . , 1)t. Hence, given the structure of
� we already determined, the second term is zero whenever
μ = (μ, . . . , μ)t for some constant μ.

In the text, the null model corresponds to y ∼ N(Xβ, �).
Let us assume the � has an exchangeable structure. In general,
however, the vector Xβ �= μ1 for some fixed μ and y is still
not exchangeable. The vector e = y – Xβ, though, does satisfy
the requirements for exchangeability, and a permutation test
can be based on permutations of the residuals. In practice,
the vector β is unknown and must be estimated, resulting
in estimated residuals ê. Permuting the estimated residuals,
then, results in only an asymptotically exact permutation test
when � has an exchangeable structure.

MVNpermute Algorithm

The permutation-based algorithm was originally presented
in Abney et al. [2002, pp. 926–927] and I review it here for
completeness. Assume the outcome y follows the model as
given in Equation (1) in the main text, and let the errors e have
known covariance matrix  = �σ2. In practice, this matrix
may not be known, in which case a consistent estimator will
maintain the asymptotic properties of the permutation based
procedure. For instance, a maximum-likelihood estimate un-
der the null model (γ = 0) could be used. The residuals under
the null model ê0 = y – Xβ̂0, where β0 = (Xt–1X)–1Xt–1y,
have covariance matrix V∗ =  – X(Xt–1X)–1Xt.

The goal, then, is to transform the residuals, which are
not exchangeable, to a new vector whose elements are
exchangeable. We can accomplish this by premultiplying
Equation (1) by C–t where C is given by the Cholesky de-
compostion  = CtC. The resulting model under the null
hypothesis γ = 0 is z = Wβ + ε where z = C–ty, W = C–tX, and
ε = C–te. The covariance matrix of the residuals ε̂ = z – Wβ̂0
is V = I – W(WtW)–1Wt. Note that V is symmetric and idem-
potent (i.e., V2 = V) and if X is of rank p then V has rank
n – p . By the spectral theorem we can make the decomposi-
tion V = U�Ut, where � is a diagonal matrix with the first
n – p elements equal to the eigenvalue 1 and the last p ele-
ments equal to the eigenvalue 0, and U is the matrix whose
columns are eigenvectors. Let U = (U1 U0), where U1 is the
matrix whose n – p columns are the eigenvectors associated
with eigenvalue 1. Then, we have V = U1Ut

1 and Ut
1U1 = In–p .

The vector ξ = Ut
1ε̂ has covariance matrix Ut

1VU1 = In–p and
its elements, under the assumption of multivariate normal-
ity of the residuals, are exchangeable. The elements of ξ are
now permuted to obtain ξπ = Pξ where P is a permutation
matrix, and then transformed by U1 to get ε̂π = U1ξ

π. Note

that I use the convention that “π” used as a superscript de-
notes the variable is permuted, whereas “π” used as a sub-
script denotes that the variable is derived from permuted and
nonpermuted quantities. A new shuffled dataset obtained
from the permutation is

yπ = Xβ̂0 + Ctε̂π

= Xβ̂0 + CtU1PUt
1C–tê0.

The MVNpermute algorithm is coded as an R function
that takes as input the outcome vector y, matrix of covariates
X, assumed covariance matrix , and the desired number
of permutations. The output is a matrix with columns being
the permutation-based outcome vectors. The MVNpermute
function is available as a download from CRAN.
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