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ABSTRACT
Computing identity-by-descent sharing between individuals connected through a large, complex

pedigree is a computationally demanding task that often cannot be done using exact methods. What I
present here is a rapid computational method for estimating, in large complex pedigrees, the probability
that pairs of alleles are IBD given the single-point genotype data at that marker for all individuals. The
method can be used on pedigrees of essentially arbitrary size and complexity without the need to divide
the individuals into separate subpedigrees. I apply the method to do qualitative trait linkage mapping
using the nonparametric sharing statistic Spairs. The validity of the method is demonstrated via simulation
studies on a 13-generation 3028-person pedigree with 700 genotyped individuals. An analysis of an asthma
data set of individuals in this pedigree finds four loci with P-values ,10!3 that were not detected in prior
analyses. The mapping method is fast and can complete analyses of "150 affected individuals within this
pedigree for thousands of markers in a matter of hours.

COMPUTATION of identical-by-descent (IBD) allele
sharing between related individuals is a necessary

ingredient in many methods for linkage mapping of
complex traits. Typically, IBD allele sharing is used
either directly to assess whether affected individuals are
sharing more at a locus than expected under the null
hypothesis or as a component in the covariance matrix
in a variance component model. A number of algo-
rithms for computing IBD exactly exist (e.g., Elston
and Stewart 1971; Lander and Green 1987;
Kruglyak et al. 1996; Fishelson and Geiger 2002);
however, these methods become computationally in-
feasible when pedigrees are very large and complex.
Under such circumstances approximate methods be-
come necessary, whether Markov chain Monte Carlo
(Thompson et al. 1993; Sobel and Lange 1996; Heath
1997) or regression based (Fulker et al. 1995; Almasy
and Blangero 1998). Even these methods, however,
have difficulty when the pedigree is very deep withmany
generations of individuals with no data.

In humans, very deep, and possibly complex, pedi-
grees often arise in conjunction with genetic studies
of isolated populations. Isolated populations are com-
monly thought to have characteristics that may prove
advantageous formapping (Wright et al. 1999; Peltonen
et al. 2000; Escamilla 2001; Shifman and Darvasi 2001;
Service et al. 2006), yet may require specialized statis-
tical methods to both properly leverage these advan-

tages and provide a valid test for the presence of a trait-
influencing gene (Bourgain and Genin 2005). Large
pedigrees also arise in other animal systems where breed-
ing is carefully controlled. For example, there is interest
inmethods that are applicable to complex pedigrees for
both livestock (Thallmanet al. 2001) and dogs (Sutter
and Ostrander 2004).
What I present here is a rapid computational method

for estimating, in large complex pedigrees, the proba-
bility that pairs of alleles are IBD given the single-point
genotype data at thatmarker for all individuals. Because
the method is very fast, it can easily be used on geno-
mewide data with many thousands of markers on hun-
dreds of related individuals. It can be used directly to
do linkage mapping with affected individuals using the
Spairs statistic or to compute approximate multipoint
probabilities both for alleles being IBD, using regres-
sion-based approaches (e.g., Almasy and Blangero
1998), and for alleles being homozygous by descent
(HBD) using a hidden Markov model (HMM) (Abney
et al. 2002). Here, I describe this computational method
and its application to qualitative trait linkage analysis.
Although computing Spairs is straightforward, in prin-
ciple, a number of challenges must be overcome in
creating a practical and valid mapping method for very
large, and possibly complex, pedigrees. In particular, it
is common in studies involving large pedigrees to have
one, or a few, pedigrees, making the asymptotic distri-
bution of the test statistic, which is appropriate when
there are many independent pedigrees, not necessarily
applicable. Also, the allele-frequency distribution may
have a major influence on the test statistic when
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inheritance information is obscured by missing data.
Unfortunately, the relevant allele-frequency distribu-
tion is that in the founders of the pedigree, which in
large pedigrees may be many generations earlier than
the sampled individuals. As a result, estimation of the
founder allele-frequency distribution from the sampled
data can result in a large bias of the conditional
expected sharing statistic. The difficulties posed by
not knowing the true allele-frequency distribution can
be largely overcome through the use of simulations, but
the capacity to do many simulations requires a compu-
tationally efficient method, particularly when a large
number of markers are involved. Below, I describe the
theoretical basis of the IBD estimation method, the
approximations used, and how it differs from earlier
methods that take a similar approach (Wang et al. 1995;
Davis et al. 1996). I then show its application to single-
point linkage mapping using Spairs and how the diffi-
culties mentioned above are solved. The appendix
describes how to use the IBD estimation method to
obtain multipoint estimates of HBD by modifying the
HMM of Abney et al. (2002).

METHODS

IBD estimation

The objective is to compute the probability of two
alleles being IBD given all available genotype data at
that locus and the entire, unbroken pedigree. The
method is based on the recursive strategy suggested by
Wang et al. (1995) and Davis et al. (1996). In both of
these studies the probability is computed in a manner
analogous to the recurrence relation for kinship coef-
ficients, fAB ¼ 1

2fMB 1 1
2fFB, whereM andF are the

mother and the father of individualA, and individualB
is not a descendant of A. The equivalent recurrence
equation when there are genotype data at the locus, as
given by Wang et al. (1995) and Davis et al. (1996), is
valid only when there are no missing genotypes and is

PrðA1[B1 jGÞ ¼PrðA1)M1 jGÞPrðM1[B1 jGÞ
1PrðA1)M2 jGÞPrðM2[B1 jGÞ
1PrðA1)F1 jGÞPrðF1[B1 jGÞ
1PrðA1)F2 jGÞPrðF2[B1 jGÞ; ð1Þ

where PrðAi)Mj jGÞ is the probability that the ith allele
fromA was inherited from the jth allele ofA’s mother,
given the observed genotype data; and Ai [ Bj means
allele Ai is IBD with allele Bj. This equation is applied
repeatedly until the founders of the pedigree are
reached and boundary conditions are used to obtain
the probability. When there are no individuals with
missing genotypes the method is both fast and returns
exact probabilities.

Unfortunately, as recognized by both Wang et al.
(1995) and Davis et al. (1996), Equation 1 is not valid

when there are missing genotypes in the data. Although
neither study formulated a version of Equation 1 that
holds under missing data conditions, they each sug-
gested approaches for this case. Themost recent version
of SimIBD (Davis et al. 1996) uses a Monte Carlo
procedure where, for each realization, a random geno-
type is assigned to each missing genotype, and the
recursive algorithm is applied. The final probability is
the average of the probabilities computed at eachMonte
Carlo realization. In contrast, Wang et al. (1995) suggest
two different possibilities. In the first, when the recursive
algorithm encounters an individual who has a missing
genotype, the relevant inheritance probability [e.g.,
PrðA1)M1jGÞ] is computed by summing over all
possible genotypes for the missing data weighted by
the probability of the genotype given the observed
genotypes. To simplify the computation, one can use
the probability of the genotype given only the genotypes
of close relatives rather than all observed genotypes. The
second possibility is to find the genotype configuration
for all individuals with missing genotypes that has the
highest probability and apply the recursive algorithm to
that configuration. Finding the highest-probability ge-
notype configuration, however, can be computationally
demanding if there are many missing genotypes.

A common situation when analyzing large pedigrees
is to have several generations of the pedigree completely
untyped. None of the above strategies are entirely
sufficient in such a situation. The problem is that there
is little information in the untyped portion of the
genealogy from which to infer the genotype probability
distribution in those individuals. Simulating over valid
genotype configurations can then be time consuming
and, possibly, inaccurate. Summing over all possible
genotypes, on the other hand, may be computationally
impracticable.

The approach I propose relies on classifying individ-
uals into two groups,A and S. An S individual is someone
who either is genotyped or has at least one ancestor who
is genotyped, while an A individual is someone who is
not among the S group. Note that by this definition the S
group may contain individuals for whom no data were
actually collected. I also define a set of individuals called
‘‘quasi-founders,’’ where each quasi-founder is either an
S individual with both parents in the A group or an A
individual with a spouse in S. A version of recurrence
Equation 1, reformulated to hold true even under
missing data, is applied to the S individuals until the
quasi-founders are reached, at which point boundary
conditions are employed to determine the final proba-
bility. This allows one to avoid using the recurrence
equation over those generations with no genotype data,
thereby speeding up the computation significantly.
Furthermore, additional computational efficiency is
gained by applying approximations designed specifi-
cally to work well when the rate ofmissing genotype data
in S is reasonably low (e.g., ,20%). Note that this
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constraint on the rate of missing genotype data in S still
allows for potentially many generations of untyped indi-
viduals in A.

The algorithm is described in four parts. First, I
describe the general form of Equation 1 and how to
use this as a recurrence relation by updating the
genotype information the probabilities are conditional
on. I then show how the conditional probability of two
alleles being IBD given some genotype information
should be expressed when the allelic type of either of
those alleles is unknown. This provides a general
expression that can be applied recursively to compute
the IBD probability. Applying this expression requires
computing transmission probabilities in the presence of
missing data. I derive an equation for calculating this
probability and describe the approximations made to
assure computational efficiency. Finally, the recursive
algorithm is completed by specifying the boundary
conditions to the recurrence equations.

Recurrence rules: The following notation is used
throughout the remainder of this article. Individuals are
indicated with uppercase script characters (e.g.,A,B,M,
F), while the true genotypeof, for instance, individualA
comprises two random variables (A1, A2), where the
alleles A1 and A2 may each take on one of the L possible
allelic types at the locus, n1; . . . ; nL . Note that the
ordering of A1 and A2 is arbitrary. Throughout, I assume
that the pattern of missing genotype data is noninfor-
mative and that there is no genotyping error. Hence,
observed allelic types indicate the true underlying
genotype whereas the event that a genotype is missing
provides no information, by itself, on the true genotype.
Furthermore, the entire analysis is done conditional on
the pattern of missing data. I let G represent the geno-
type information, which, as I show below, will grow
during the course of the algorithm. Then, G ¼ gr

represents the information at the rth stage, where gr is a
vector with two elements for each quasi-founder and for
eachperson in S, where the element g rA;1 ¼ ni if the allelic
type of the first allele of individual A at the rth stage is
known to be ni (i.e.,A1¼ ni at stage r) or is equal to zero if
unknown. The vector g0, then, has elements represent-
ing all directly observed genotypedata or data that can be
inferred without ambiguity. The vector 1A has the same
length as gr with entries equal to zero at all locations
except for the two elements representing the alleles ofA.
Then, for instance, 1A & qr , where & is the inner product, is
a vector with entries for A equal to the corresponding
entries of gr and all other entries equal to zero.

To extend Equation 1 to the case when some
genotypes are missing, first note that it includes condi-
tional probabilities for descent events involving only
one allele at a time from A (e.g., {A1)M1}, {A2)M2},
etc.). In fact, if A1 came from the mother, for instance,
then A2 must have come from the father. A version of
Equation 1 that includes the descent events for the
other allele and is true even with missing data is

PrðA1[B1 jGÞ
¼ PrðA1)M1;A2)F1 jGÞPrðM1[B1 jA1)M1;A2)F1;GÞ
1PrðA1)M1;A2)F2 jGÞPrðM1[B1 jA1)M1;A2)F2;GÞ
1PrðA1)M2;A2)F1 jGÞPrðM2[B1 jA1)M2;A2)F1;GÞ
1PrðA1)M2;A2)F2 jGÞPrðM2[B1 jA1)M2;A2)F2;GÞ
1PrðA1)F1;A2)M1 jGÞPrðF1[B1 jA1)F1;A2)M1;GÞ
1PrðA1)F1;A2)M2 jGÞPrðF1[B1 jA1)F1;A2)M2;GÞ
1PrðA1)F2;A2)M1 jGÞPrðF2[B1 jA1)F2;A2)M1;GÞ
1PrðA1)F2;A2)M2 jGÞPrðF2[B1 jA1)F2;A2)M2;GÞ; ð2Þ

where G ¼ gr for all terms. This equation is valid as long
as B and A are not the same individual and B is not a
descendant of A. If A and B are the same individual
the equation becomes

PrðA1[A2 jGÞ
¼ PrðA1)M1;A2)F1 jGÞPrðM1[F1 jA1)M1;A2)F1;GÞ
1PrðA1)M1;A2)F2 jGÞPrðM1[F2 jA1)M1;A2)F2;GÞ
1PrðA1)M2;A2)F1 jGÞPrðM2[F1 jA1)M2;A2)F1;GÞ
1PrðA1)M2;A2)F2 jGÞPrðM2[F2 jA1)M2;A2)F2;GÞ: ð3Þ

Unlike Equation 1, Equations 2 and 3 are not strictly
recurrence equations because the IBD probabilities on
the right-hand side have additional descent conditions
not present in the left-hand side probability. In the case
of no missing genotype data, the equations may be ap-
plied recursively by noting that terms such as PrðM1[
B1jA1)M1;A2)F1;G¼g r Þ¼PrðM1[B1jG¼g r Þ on the
right-hand side of Equations 2 and ‘‘expanding’’ these
terms using the appropriate recurrence relation. Also,
the descent probabilities PrðA1)M1;A2)F1jG¼g r Þ,
etc., are easily tabulated on the basis of the possible
genotype configurations of A, M, and F. When there
are missing genotypes, it is still possible to employ a
recursive method based on Equations 2 and 3 by
updating G with the genotype information provided
by the descent events (e.g., A1)M1;A2)F1). To show
this I describe the application of the updating scheme to
the first term on the right-hand side of Equation 2, but
the arguments apply equally well to all terms on the
right-hand side. First, focus on the conditional IBD
probability PrðM1[B1jA1)M1;A2)F1;GÞ, keeping in
mind that Equation 2holds onlywhenB is neitherAnor
a descendant ofA. IfA has a known genotype but either
F orM does not, then the additional information from
the conditions A1)M1 and A2)F1 must be included in
the probability calculation. If, for example, M and A
have known genotypes, F does not, and A2 ¼ nl, then
PrðM1[B1jA1)M1;A2)F1;G¼g r Þ¼PrðM1[B1jF1¼nl ;
G¼g r Þ¼PrðM1[B1jG¼g r11Þ, where gr11 is identical to
gr, but with component g r11

F;1 ¼nl . The subsequent ap-
plications of the recurrence Equation 2 from this term
must be done conditional on G¼ gr11 rather thanG¼ gr.
Note that this implies that the computations must allow
for the case of a partially known genotype, as F2 is known
but F1 may not be.
In general, then, the IBD probabilities Pr(A1 [

B1 j G ¼ gr) and Pr(A1 [ A2 j G ¼ gr) are conditional on
both the observed genotype data and the additional
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genotype information that results from the previous
application of recurrence Equations 2 and 3. Even with
the additional information, however, it is possible for A1

or B1 to be unknown. In this case, the probabilities must
be written as a sum over the allelic types for the
unknown alleles before the recurrence equations are
applied. So, if A1 is unknown and g r

B;1 ¼ nk ,

PrðA1[B1 jG ¼ g r Þ
¼
X

i;j

PrðA1[B1 jG ¼ g r ;A1 ¼ ni ;A2 ¼ njÞ

& PrðA1 ¼ ni ;A2 ¼ nj jG ¼ g r Þ
¼ PrðA1[B1 jG ¼ g r ;A1 ¼ nkÞPrðA1 ¼ nk jG ¼ g r Þ:

ð4Þ

Note that in this equation Pr(A1[ B1 j G¼ gr, A1¼ nk)¼
Pr(A1[ B1 j G¼ gr11). Then, to compute the probability
Pr(A1 [ B1 j G¼ gr) one applies Equation 2 to the right-
hand side of Equation 4, obtaining

PrðA1[B1 jG ¼ g r Þ
¼ PrðA1 ¼ nk jG ¼ g r Þ
& ½PrðA1)M1;A2)F1 jG ¼ g r11Þ

& PrðM1[B1 jA1)M1;A2)F1;G ¼ g r11Þ1 . . . (:
ð5Þ

In general, if both A1 and B1 are unknown, the
summation would be over all possible values of both
A1 and B1. Doing such a sum would require applying the
recursive algorithm to all terms in the sum, which can be
computationally expensive even when there are few
alleles. When the missing genotype rate is low this will
occur infrequently, and instead of summing both A1

and B1 over all alleles, both alleles are left as unknown
and Equation 5 reduces to Equation 2. This strategy
is, in effect, equivalent to computing the probabilities
conditional only on genotype information ancestral
to A and B (and the other alleles of A and B if
known) and, in practice, generally serves as a very good
approximation.

Equation5provides a general recurrence equation that
may be applied recursively to determine the probability
that A1 and B1 are IBD, as long as B and A are not the
same individual andB is not a descendant ofA. IfA and
B are the same individual, Equation 3may be generalized
similarly. To compute the IBD probability, it is necessary
to determine the transmission probabilities fPrðA1)M1;
A2)F1jG ¼ g r11Þ; . . . g in the presence of missing data.
The derivation of these probabilities and the approxima-
tions made are described in Equations 6–10. Although
only the probability PrðA1)M1;A2)F1jG ¼ g r11Þ is
computed here, extending this derivation to the other
transmission probabilities is straightforward.

To compute this probability wemust consider the case
where A1 or A2 may be unknown. If g r11

A;2 ¼ 0, one must
sum over possible values of A2,

PrðA1)M1;A2)F1 jG ¼ g r11Þ
¼
X

i

PrðA1)M1;A2)F1 jG ¼ g r11;A2 ¼ niÞ

& PrðA2 ¼ ni jG ¼ g r11Þ ð6aÞ

)
X

i

PrðA1)M1;A2)F1 jG ¼ ½1M11F11A;1(

& g r11;A2 ¼ niÞPrðA2 ¼ ni jG ¼ g r11Þ ð6bÞ

) PrðA1)M1;A2)F1 jG ¼ ½1M11F11A;1( & g r11Þ;
ð6cÞ

where Equation 6b is exact instead of approximate if the
genotypes ofM andF are known, and where Equation
6c results from approximating PrðA2 ¼ ni jG ¼ g r11Þ )
PrðA2 ¼ ni jG ¼ ½1M 1 1F 1 1A;1( & g r11Þ. Approxima-
tion (6c) allows one to compute the probability with-
out performing a sum over all alleles by assuming
that the sum over all allelic types is approximated by
the conditional probability with A2 unknown. Note
that when A2 is known and equal to, for instance, nj,
Equation 6c becomes PrðA1)M1;A2)F1jG ¼ ½1M 1
1F 1 1A( & g r11Þ and is exact if g r11

M and g r11
F are known.

Equation 6c says that we may approximate the con-
ditional probability of transmission events A1)M1,
A2)F1 given all the genotype data with the probabil-
ity given just the genotype data ofA; M, andF. In fact,
as described below, these probabilities will be com-
puted using the genotype data from first-degree rela-
tives. In computing the conditional probability of these
transmission events I assume g r11

A ¼ ðxA1
; xA2

Þ, where
xA1

and xA2
are allowed to equal either the unknown

state 0 or one of the known allelic types n1; . . . ; nL. This
allows us to replace 1A;1 & g r11 with 1A & g r11 in Equa-
tion 6c.

The probability in Equation 6c may be computed
using Bayes’ rule,

Pr½A1)M1 ;A2)F1 jG ¼ ð1M 11F 11AÞ & g r11 (

¼ Prðg r11
A ¼ ðxA1 ; xA2 Þ jA1)M1 ;A2)F1 ;G ¼ g̃ÞP2

i;j¼1 Prðg r11
A ¼ ðxA1 ; xA2 Þ jA1)Mi ;A2)Fj ;G ¼ g̃Þ1Prðg r11

A ¼ ðxA1 ; xA2 Þ jA1)Fj ;A2)Mi ;G ¼ g̃Þ
! ";

ð7Þ

where g̃ ¼ ð1M1 1FÞ & g r11, the observed genotypes, at
the r 1 1 step, of M and F only. Consider the
numerator of this equation,

Prðg r11
A;1 ¼ xA1 ; g

r11
A;2 ¼ xA2 jA1)M1;A2)F1;G ¼ g̃Þ

¼ Prðg r11
A;1 ¼ xA1 j g r11

A;2 ¼ xA2 ;A1)M1;A2)F1;G ¼ g̃Þ
& Prðg r11

A;2 ¼ xA2 jA2)F1;G ¼ g̃Þ:
ð8Þ

The second probability on the right-hand side is
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DðA2; F1Þ
¼ Prðg r11

A;2 ¼ xA2 jA2)F1; g
r11
F;1 ¼ xF1 ; g

r11
F;2 ¼ xF2 ; g

r11
M ¼ ðxM1 ; xM2 ÞÞ

¼

1 xA2 ; xF1 are known and IBS

0 xA2 ; xF1 are known andnot IBS

1 xA2 is unknown

Prðg r11
F;1 ¼ xA2 j g r11

F;2 ¼ xF2 ; g
r11
M ¼ ðxM1 ; xM2 ÞÞ xA2 known; xF1 unknown:

8
>>><

>>>:

ð9Þ

Although the probability Prðg r11
F;1 ¼ xA2

jg r11
F;2 ¼ xF2 ;

g r11
M ¼ ðxM1

; xM2
ÞÞ in Equation 9 is conditional only on

the known values of g r11
F;2 and g r11

M , I improve themissing
data approximations in Equations 6b and 6c by instead
computing this probability conditional on the observed
genotypes of all first-degree relatives of F.

To complete the computation of Equation 8 one
needs to determine the probability Prðg r11

A;1 ¼ xA1
jg r11

A;2 ¼
xA2

;A1)M1;A2)F1;G ¼ g̃Þ. This probability is D(A1,
M1), but in the case where xA1

is known and xM1
is

unknown, the two conditions g r11
A;2 ¼ xA2

and A2)F1
result in the conditional probability on the right-hand
side of Equation 9 becoming Prðg r11

M;1 ¼ xA1
jg r11

M;2 ¼ xM2
;

g r11
F ¼ ðxF1 ; xF2Þ; g r11

F;1 ¼ xA2
Þ, when xF1 ¼ 0 and xA2

6¼ 0.
Hence, Prðg r11

A;1 ¼ xA1
jg r11

A;2 ¼ xA2
;A1)M1;A2)F1;G ¼

g̃Þ ¼ DðA1;M1Þ, and combining this with Equations 9, 8,
and 7, Equation 6c becomes

PrðA1)M1;A2)F1 jG ¼ g r11Þ

) DðA1;M1ÞDðA2; F1ÞP2
i;j¼1 DðA1;MiÞDðA2; FjÞ1DðA1; FjÞDðA2;MiÞ

:

ð10Þ

Equation 10 provides a rapid means of computing the
necessary descent probabilities, even in the presence of
missing data, and may be applied to the recurrence
relation of Equation 5 to find the probability of any two
alleles being IBD. This is effective because the approx-
imations in Equation 10 were chosen to minimize
computation while maintaining accuracy under the
assumption that the fraction of individuals in S with
missing genotypes is not large. This strategy works well in
practice becausemarkers are usually included in a genetic
analysis only if the rate of missing genotype data is low.

Computing Equation 9 may require knowing the
conditional genotype distribution of M if g r11

M is
unknown. Although this distribution is computed
conditional on the genotypes of first-degree relatives,
it also depends on the relatedness ofM andF (which is
zero in outbred individuals). The current implementa-
tion of the algorithm to compute this probability
ignores the relatedness of M and F because, when
there are a fair amount of genotype data among the first-
degree relatives, this has a relatively small effect, unless
M and F are very closely related. The algorithm for
obtaining the conditional genotype distribution for an
individual is to descend through the pedigree, one
generation at a time, beginning with the quasi-founders,
and for each person encountered who has missing

genotype data, compute the genotype-frequency distri-
bution given the genotypes of the parents, the spouse,
and the offspring. If the person is a quasi-founder, the
computation is done conditional only on the offspring
and population allele frequencies. If the person is not
a quasi-founder, but one or both of the parents are
untyped, the computation is done conditional on the
genotype-frequency distribution already computed for
that parent. If an offspring is untyped, that offspring is
ignored in the computation. To propagate information
from more distant relatives when close relatives are
untyped, additional iterations could be done, as needed.
Experience suggests, however, that when the rate ofmiss-
ing genotypes is fairly low (,"20% in the set S), a single
pass through the pedigree is sufficient to obtain rea-
sonably accurate estimates of the conditional genotype
distributions in individuals with missing genotype data.
The general form of Equation 10 is particularly useful

in that it naturally provides a framework to include
effects such as mutation and genotyping error. In
particular, while normally D(A1, M1) is the zero or one
indicator function when xA1

and xM1
are known, thismay

be generalized to a nontrivial function of the observed
genotypes. Selecting a particular model for mutation or
genotyping error where the observed genotypes depend
on the true underlying genotypes would allow one to
devise a more general form for D(A1, M1) than what is
given in Equation 9.
Boundary conditions: The recursive algorithm is

completed by specifying boundary conditions that are
applied to Equations 2 and 3 when A and B are quasi-
founders. I assume below that the boundary conditions
are applied at step t of the recurrence. The first rule is a
general condition that applies to all sample individuals.
Boundary condition 1: For any allele Ai of individualA,

Pr(Ai [ Ai j G ¼ gt) ¼ 1.
For the next two boundary conditions pi is the

frequency of allele i in the founding population. To
properly account for missing allele information I en-
code a missing allele as 0 and use the convention p0¼ 1.
I also define the following two functions,

d9rs ¼
1 r ¼ s or r ¼ 0 or s ¼ 0
0 otherwise;

#

and

hðr ; sÞ ¼
r s ¼ 0 or r ¼ s
s r ¼ 0
undefined otherwise:

8
<

:

For notational convenience, label the alleles of A’s
genotype ðg t

A;1 ¼ i; g t
A;2 ¼ jÞ and the alleles of B’s

genotype ðg t
B;1 ¼ k; g t

B;2 ¼ lÞ, where any of i, j, k, l may
be unknown (i.e., there may be partial or no genotype
information on one or both individuals). The condi-
tional probabilities given the genotypes of A and B in
boundary conditions 2 and 3 are exact, even in the
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presence of missing data, but approximate the condi-
tional probability given all the genotype data.

Boundary condition 2: Let fA be the inbreeding
coefficient of individualA. WhenA is a quasi-founder,

PrðA1[A2 jG ¼ g tÞ ) PrðA1[A2 jG ¼ g t
AÞ

¼
phði;jÞfAd9ij

phði;jÞfA 1 ð1! fAÞp2hði;jÞ
:

When the alleles are from two separate quasi-founders
A andB, one needs the condensed identity coefficients
( Jacquard 1974) for the pair. Without loss of generality,
I consider only the probability that A1 and B1 are IBD.

Boundary condition 3: When A and B are quasi-
founders,

PrðA1[B1 jG ¼ g tÞ ) Pr½A1[B1 jG ¼ ðg t
A; g t

BÞ(

¼
X9

r¼1

Prði [ k jG ¼ ðg t
A; g t

BÞ; Sr Þ

& Pr½G ¼ ðg t
A; g t

BÞ j Sr (DrP
s Pr½G ¼ ðg t

A; g t
BÞ j Ss(Ds

;

where Sr is condensed identity state r and Dr is its
unconditional probability.

Furthermore, the probabilities in the sum are

r Pr½i[ k jG ¼ ðg tA; g tBÞ; Sr ( Pr½G ¼ ðg t
A; g tBÞ j Sr (

1 d9ik d9ijd9ikd9ild9jkd9jld9kl pi9
i9 ¼ h½hðh½i; j (; kÞ(

2 0 d9ijd9kl pi9pk9
i9 ¼ hði; jÞ; k9 ¼ hðk; lÞ

3 d9ijd9ik
d9i9k phði9;kÞpl

d9i9k phði9;kÞpl 1 d9i9l phði9;lÞpk
1
2ð2! d9kl Þðd9i9kphði9;kÞpl 1 d9i9l phði9;lÞpkÞ
i9 ¼ hði; jÞ

4 0 ð2! d9kl Þd9ij pi9pkpl i9 ¼ hði; jÞ
5 d9kld9ik

d9k9i phðk9;iÞpj
d9k9i phðk9;iÞpj 1 d9k9j phðk9;jÞpi

1
2ð2! d9ij Þðd9k9i phðk9;iÞpj 1 d9k9j phðk9;jÞpiÞ
k9 ¼ hðk; lÞ

6 0 ð2! d9ij Þd9kl pk9pipj
k9 ¼ hðk; lÞ

7
d9ikd9jl phði;kÞphðj ;lÞ

d9ikd9jl phði;kÞphðj ;lÞ 1 d9il d9jk phði;lÞphðj ;kÞ
1
2ð2! d9ij Þð2! d9kl Þðd9ikd9jl phði;kÞphðj ;lÞ

1 d9ild9jkphði;lÞphðj ;kÞÞ
8

d9ik phði;kÞpj pl
d9ik phði;kÞpj pl 1 d9il phði;lÞpj pk 1 d9jk phðj ;kÞpi pl 1 d9jl phðj ;lÞpi pk

1
4ð2! d9ij Þð2! d9kl Þ
&ðd9ik phði;kÞpj pl 1 d9il phði;lÞpj pk

1 d9jk phðj;kÞpipl 1 d9jl phðj;lÞpipkÞ
9 0 ð2! d9ij Þð2! d9kl Þpipj pkpl :

Frequency estimation: When A and B are not just
quasi-founders but actual founders, the boundary con-
ditions reduce to those given in Wang et al. (1995) and
Davis et al. (1996). Both boundary conditions 2 and 3
depend on the allele frequencies in the founding
population, unless all the founders are genotyped. These
frequencies may be estimated either from the founding
population itself, if available, or through the genotypes
of those individuals in the pedigree. With deep pedi-
grees, where the founders livedmany generations ago, it
may be impossible to obtain accurate estimates of the
allele frequencies in the founding population. Unless
this population is large enough that genetic drift will
have had a negligible effect, sampling from the present-
day population from which the pedigree originated

might not provide accurate estimates of the founder-
allele frequencies. Instead, allele frequencies are often
estimated from the genotyped study sample.

The current method uses the best linear unbiased
estimator of allele frequencies ofMcPeek et al. (2004) to
obtain estimates from the genotyped study sample. The
estimator of the frequency pn for allele n is given by

p̂n ¼ ð1tK!11Þ1tK!1yn;

where 1 is a vector with each element equal to one, K is
a matrix with elements Kij ¼ 2fij with fij being the kin-
ship coefficient between individuals i and j, and yn is the
vector whose ith element equals one-half the number of
alleles of type n in individual i.

The danger of using the same population both for
estimating frequencies and for computing sharing is
that the sharing estimate will now be negatively biased.
This is a general phenomenon when estimating IBD
sharing among individuals and can be understood as
follows. When related individuals share an allele iden-
tical by state there is some probability that this allele is
also shared IBD. The rarer this allele is in the founding
population, the higher the probability is that these two
copies were inherited from a common ancestral allele
and are IBD. Conversely, an allele shared between
individuals that was fairly common in the founders is
relatively unlikely to be IBD. Because of genetic drift,
the frequency of an allele in the typed individuals will
vary from its frequency in the founding population, and,
when IBD is estimated for individuals sharing this allele,
the estimate will be either too high or too low depend-
ing on whether the allele frequency has drifted down or
up, respectively. Underestimating the probability will,
on average, happen more often because common
alleles, where underestimation most often takes place,
are necessarily more frequent than rare alleles. Without
some adjustment for this effect, Pr(A1[ B1 jG) will tend
to be below its expected value. The approach taken here
is to use simulations to estimate the amount of bias when
the allele frequencies are estimated. This is discussed in
more detail below.

Linkage mapping

I implement a nonparametric, affecteds-only map-
ping method by using the sharing statistic Spairs. For
affected pair k (composed of individuals A and B),

Spairs;k ¼
X2

i;j¼1

1A i[B j

 !

! 4fAB;

Spairs ¼
XNpairs

k¼1

Spairs;k ;

where 1E is 1 if E is true and 0 when E is false and fAB is
the kinship coefficient between A and B. Here, the
summation for Spairs is done over all possible pairs,
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including whenA andB represent the same individual,
in which case 4fAB ¼ 2ð11 fAÞ and Spairs;k ¼
2ð1a1[a2 ! fAÞ, where fA is the inbreeding coefficient
of A. Under the null hypothesis of no linkage, we have

EðSpairs;kÞ ¼ 0

and

EðSpairsÞ ¼ 0:

The definition of Spairs,k relies on knowing the true,
unobserved IBD state of the alleles. Instead, we use its
expectation given the available genotype data at that
locus G,

Ŝpairs;k ¼ EðSpairs;k jGÞ ¼
X2

i;j¼1

PrðAi [Bj jGÞ

" #

! 4fAB;

Ŝpairs ¼
XNpairs

i¼1

Ŝpairs;k :

Linkage mapping may be undertaken by ascertaining a
sample of affected individuals and computing Ŝpairs;k for
every possible pair of individuals at a locus. Under the
null hypothesis of no linkage Ŝpairs will form a distribu-
tion with a mean of zero, whereas under the alternative
of linkage there should be excess sharing and Ŝpairs will
generally be positive. Hence, to test for linkage one
would do a one-sided test of Ŝpairs and reject the null
hypothesis if Ŝpairs . t for some value of t.

Significance: A major challenge of the method is
determining the proper statistical significance of the
estimated sharing Ŝpairs at a marker. Three problems, in
particular, must be overcome: (1) Computation of an
exact likelihood-ratio statistic, as done in Kong andCox
(1997), is computationally prohibitive; (2) with only a
single large pedigree, asymptotic theory for the distri-
bution of Ŝpairs might not hold and, hence, using a
normal distribution approximation, as in Kruglyak
et al. (1996), might not be valid; and (3) obtaining an
empirical distribution for Ŝpairs for each marker, condi-
tional on that marker’s allele frequency, could entail
analysis of 102–105 simulated data sets per locus, depend-
ing on the degree of evidence for linkage at the locus.
(The varying number of simulations per locus results
from a time-saving strategy of using a limited number of
simulations to screen out potentially interesting
markers for which more accurate empirical distribu-
tions are then found.) This may be computationally
impractical for data sets with many markers.

A potential solution is to develop a more computa-
tionally efficient variation on approach (3), in which the
screening step is based on an appropriate transforma-
tion of the empirical distribution from a single com-
pletely informative marker. Because a completely

informative marker allows immediate identification of
which alleles are IBD, it is possible to rapidly compute
the distribution of Spairs. A first-pass P-value could then
be estimated at each locus by comparing Ŝpairs at the
marker against this distribution. For markers showing
strong evidence of linkage, the more accurate and time-
consuming approach (3) could be used. The difficulty
with this approach is twofold. First, the variance of Spairs
is much larger than the variance of Ŝpairs. The less
informative themarker, the greater the difference in the
variances. For essentially any marker the P-value ob-
tained by comparing Ŝpairs to the distribution of Spairs is
far too conservative to be useful. Second, when allele
frequencies are estimated from the sample Ŝpairs is
negatively biased. Without some form of correction
the P-value becomes even more conservative.
With a fast enough method, simulations can be used

to estimate the bias and variance at amarker and correct
the estimate of Ŝpairs. Note that the number of simu-
lations needed to correct the bias and variance at a
marker would typically be much less than the number
needed to assess the empirical P-value at the marker by
method (3). To do this, for each simulation the
founders are given marker alleles according to the
allele-frequency distribution estimated in the real data
set. The allele frequencies for each simulated data set
are computed from the same individuals who are typed
in the real data set, and these frequencies are used to
compute Ŝspairs for that simulation. The mean value over
the simulated Ŝspairs is used as an estimator for the bias,
b̂ ¼

P
s Ŝ

s
pairs=Nsim, where Nsim is the number of simu-

lations. The statistic for that marker is adjusted by this
bias. Although this procedure can dramatically reduce
the bias, it cannot completely eliminate it, even as Nsim

becomes very large, because estimates of the bias are
themselves biased. This comes about because the
estimated frequencies are, in general, larger than the
true frequencies (e.g., rare alleles are often lost) and
simulating founder genotypes using these estimated
frequencies results in the simulated estimates of S̃pairs
being slightly more biased than the actual data. The
final result is a slight overcorrection. The ideal solution
would be to use allele frequencies determined not from
the study sample itself but from the population from
which the founders originated.
The distribution problem is solved by assuming that

the distributions of Spairs and Ŝpairs have the same shape,
but different variance. Normalizing both Spairs and Ŝpairs
to have a variance of one would allow one to compare
Ŝpairs to the distribution of Spairs. I estimate the variance
of Ŝpairs from the values of Ŝspairs obtained from the
bias estimation procedure. A new statistic is defined as

S̃pairs ¼ ðŜpairs ! b̂ Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðŜ s

pairsÞ
q

. The statistic S̃pairs can

now be compared directly against the empirical distri-
bution obtained for Spairs=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSpairsÞ

p
to obtain an

approximate P-value. The amount of computation per
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marker now includes a single analysis of the real data
and analysis of Nsim simulated data sets with allele
frequencies and marker informativeness based on the
real marker data. Note that in the case where the founder-
allele frequencies are known, adjusting for the bias is
unnecessary, but simulations are still needed to estimate
VarðŜspairsÞ. The procedure of adjusting the bias and
normalizing the variance has the benefit that now S̃pairs
(and, hence, the approximate P-value) is directly com-
parable across all markers, regardless of markers’ allele-
frequency distributions. This is unlike Ŝpairs, where the
distribution depends significantly on the informative-
ness and allele frequencies of the marker.

In practice, the assumption that the shapes of the
distribution for Spairs and Ŝpairs are identical does not
always hold for very large values of the statistics, where P-
values are very small. In this case, the approximate P-
value obtained using the above method tends to be
highly conservative. Estimates for very small P-values can
be obtained empirically by doing many simulations
under the null hypothesis, using either the given or
the estimated allele frequencies. Although many simu-
lations are needed, the method is fast enough to be able
to determine the empirical distribution of a marker
under thenull hypothesis for a small number ofmarkers.

RESULTS

Simulations: Simulations were done to test the
accuracy and validity of the proposed methods. Geno-
type data for a designated set of individuals were
obtained by assigning the founders of a pedigree a
genotype at a single locus on the basis of given allele
frequencies and allowing these alleles to ‘‘drop’’
through the pedigree according to Mendelian inheri-
tance. Only a single locus (i.e., not multiple linked
markers) was simulated. Three different types of
markers were used in the simulations. The first was a
single-nucleotide polymorphism (SNP) having two al-
leles of equal frequency. The second marker repre-
sented amicrosatellite and hadfive equifrequent alleles.
The third marker was meant to be representative of a
‘‘supermarker,’’ where each allele is actually a haplotype
of tightly linked SNPs. The strategy of using haplotypes
as alleles of a marker provides a straightforward means
of using multipoint data to increase information about
the inheritance process. Hence, the marker has 21
alleles with allele frequencies given by 2 3 0.2, 0.12,
0.07, 0.06, 0.05, 15 3 0.02. This allele-frequency
distribution was chosen as being approximately repre-
sentative of haplotype distributions for 90-kb segments
on the basis of HAPMAP data for Caucasians.

Using both the method proposed here and an exact
computation as done byMERLIN (Abecasis et al. 2002),
I checked the accuracy of the proposed method by
estimating the number of alleles shared IBD for the two
individuals in the pedigree shown by solid symbols in

Figure 1. For each of the three types of markers, 1000
simulations were done with the genotypes from the top
two generations removed and 10% of the remaining
genotypes randomly set to be missing. For the purposes
of the proposed method, then, all individuals in the
third generation from the top were considered quasi-
founders. Both exact and approximate estimates of the
number of alleles shared IBD were computed for each
simulation with the results shown in Figure 2. The plots
show good agreement between the approximate and the
exact computations with the square root of the mean
squared error being 0.024, 0.049, and 0.044 for the SNP,
microsatellite, and haplotype markers, respectively.

The above methods were applied to simulated data
sets in a large, complex pedigree taken from the
Hutterite population. The Hutterites are an isolated
religious sect that originated in the Tyrolean Alps
during the 1500s and now largely reside in the northern
United States and western Canada (Mange 1964;
Hostetler 1974). The pedigree used here is an
extension of the pedigree described in Abney et al.
(2000), comprising 3028 individuals in 13 generations.
To assess the efficacy of the bias-correcting and scaling
procedures, simulations were done with 700 individuals’
assigned genotypes. These 700 are the same sample that
is currently being genotyped using the Affymetrix 500k
SNP array. From this group of 700, 148 have been
diagnosed with bronchial hyperresponsiveness and
were labeled as ‘‘affected.’’ Figures 3 and 4 show the
histograms of Spairs and S̃pairs from 10,000 simulations
with the haplotype marker before and after the bias-

Figure 1.—Pedigree used to compute the accuracy of the
IBD estimation method. The number of alleles shared IBD
was estimated for the pair of individuals (solid symbols).
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correction and scaling procedure was applied. The
distributions in Figure 4 are fairly well matched over
much of the range of statistic values, indicating that the
scaled distribution of Spairs can be used as a reference
distribution from which approximate P-values can be
obtained. It is also evident that Spairs has a heavier tail at
very large values, resulting in generally conservative
estimates for very small approximate P-values.

The main utility of the bias-correction and scaling
procedure is to put allmarkers in the study, regardless of

informativeness, on a common scale over which they
may be compared. This allows one to select the best
markers to follow up with an empirical analysis by
choosing those with the largest S̃pairs (or, equivalently,
those with the smallest approximate P-value). Figure 5
compares the distributions of S̃pairs for themicrosatellite
and SNP markers over 10,000 simulations. The two
distributions show good agreement, suggesting S̃pairs is a
reliable measure for selecting the markers that have the
largest amount of IBD sharing. In Figure 6 the distribu-
tion of S̃pairs for the haplotype marker is compared
against the distributions of the microsatellite and SNP
markers. In this case, where the allele-frequency distri-
butions of the markers are radically different, the
distributions do not compare as well, although the
microsatellite marker distribution is notably closer to
the haplotype marker distribution than is the SNP
marker distribution. Most genetic mapping studies,
however, tend to have markers with allele-frequency
distributions that are relatively similar (e.g., all SNPs, all
microsatellites, or possibly a mixture of the two),
suggesting that S̃pairs will generally be an effective
measure of sharing across markers. It is worth noting
that the haplotypemarker allele-frequency distribution,
with many alleles with small frequencies, presents the
most challenging scenario when trying to estimate the
bias and scale of the distributions. Inevitably, genetic
drift within the sampled population results in a number
of lost alleles and frequencies within the current
population that may not be very representative of the

Figure 2.—Approximate vs. exact estimates of the number
of alleles shared IBD for the pair of individuals in Figure 1
(solid symbols) for a (A) the SNP marker, (B) the microsatel-
lite marker, and (C) the haplotype marker.

Figure 3.—Histogram of the true Spairs statistic (top) and of
the Ŝpairs statistic as computed from simulated data (bottom).
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frequencies in the founding population. This results in
inefficiency in the bootstrapping method used and a
less accurate estimate of the bias of S̃pairs.

To check the type-I error rate of the empirical P-value
estimates, 5000 replicates were generated for eachmarker
type in the Hutterite pedigree. In each replicate 910
individuals in the bottom three to four generations of the
pedigreewere assigned genotypes and analyses were done

with 71 individuals assigned as affected, the same indi-
viduals as were previously diagnosed with asthma in this
population (Ober et al. 2000). In each replicate the
empirical P-value of themarker was estimated on the basis
of 5000 simulations. Two analyses were done within each
replicate, one where 10% of the genotype data was re-
moved at random to emulate missing data and another
with no missing genotypes in the sample individuals.
Results are in Table 1 and, when there are no missing
data, show good agreement with the nominal type I error.
With 10% of data missing, the empirical P-values are
slightly conservative. This results from the empirical
distribution being computed under simulations with no
missing data. Although this results in slightly conservative
P-values, the computation time can be significantly re-
duced when doing 10,000–100,000 simulations. Option-
ally, with data sets that can be analyzed quickly, one can
condition on a particular set of individuals havingmissing
data to obtain more accurate empirical P-values.

Figure 4.—Histogram of the true Spairs statistic (top) and of
the bias-corrected statistic S̃pairs as computed from simulated
data (bottom). Both distributions have been scaled to have
equal variance.

Figure 5.—QQ plot of 10,000 values of S̃pairs for the SNP
marker (vertical axis) and the microsatellite marker (horizon-
tal axis).

Figure 6.—QQ plot of 10,000 values of S̃pairs for the haplo-
type marker vs. (A) the microsatellite marker and (B) the SNP
marker.
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Asthma data set: A genome screen for asthma using
563 markers, including both microsatellites and SNPs,
that was previously published (Ober et al. 2000) was
reanalyzed using the method described here. In the
previous analysis, the pedigree was divided into 20
subpedigrees with all inbreeding loops trimmed. A
single-point, semiparametric method was used where a
likelihood wasmaximized over parameters representing
the penetrances, disease-susceptibility allele frequency,
and recombination frequency. A likelihood-ratio x2 was
obtainedby comparing to amaximized likelihoodwhere
the recombination frequency was set to 0.5. Because of
the size of the subpedigrees, each marker was analyzed
separately. This analysis resulted in five markers with P-
values,0.001 with the smallest P-value being 0.0002.

The genome screen data were analyzed using the
methods described here and approximate P-values were
obtained for each marker. Four markers had approxi-
mate P-values ,0.01 and these were selected for follow-
up with empirical P-value estimates. Empirical P-values
were estimated on the basis of 100,000 simulations for
each marker. Results for these four markers are shown
in Table 2. Three of the four markers had smaller P-
values than the smallest P-value of the previous analysis
with two being much more significant. There was no
overlap between these markers and the five markers
reported previously. Approximate P-values for the five
markers identified earlier ranged from 0.13 to 0.65. Of
the fourmarkers identified with the newmethod all had
P-values .0.05 in the old analysis except for D5S1505,
which had a P-value of 0.0441. That the markers found
to have significant linkage in the two studies are
different is not surprising, considering the very different
methods used. The previous analysis finds markers that
show some evidence for linkage under some genetic
model in at least some of the subpedigrees. Although
this may, it does not necessarily indicate higher than
expected levels of IBD sharing among affecteds when
looking at the pedigree as a whole, which is what the
current method detects.

I also assessed the computation time required to do
the analyses. These were accomplished on an AMD

Opteron 252 at 2.6 GHz, running Linux 2.6. The exact
computation of the number of alleles shared IBD, as
done by MERLIN, for 1000 simulations, took 9.4 3 104,
3930, and 2880 sec for the SNP, microsatellite, and
haplotypemarkers, respectively. In contrast, the approx-
imate computations took 0.4, 0.2, and 1.5 sec for the
same data sets. The empirical P-value estimates, using
the asthma sample, took 41, 9.5, and 7 hr to estimate P-
values for 1000 markers, for the SNP, microsatellite, and
haplotype markers, respectively, where the estimates
were based on 5000 replicates for each marker. That is,
53 106 estimates of IBD sharing were computed over all
2556 pairs, averaging 0.03, 0.0068, and 0.0052 sec per
Ŝpairs estimate. When analyzing the real genotype data
for the asthma sample, where markers consisted of both
microsatellites and SNPs of varying informativeness,
each estimate of Ŝpairs took"0.074 sec. This corresponds
to obtaining approximate P-values in a genome screen
of 1000 markers, with bias estimated using 50 simula-
tions for each marker, in "1 hr. In contrast, obtaining
empirical P-values based on 100,000 replicates took "2
hr per marker.

DISCUSSION

Linkage mapping in very large and complex pedi-
grees has been a computationally daunting task. The
methods proposed here are a significant step forward in
making the estimation of IBD sharing feasible in
pedigrees of even extremely large size and complexity.
This is possible, in part, by focusing on computing
pairwise IBD probabilities, rather than computing the
entire distribution of IBD sharing among all individuals,
and by implementing a single-point method. Also, a
great deal of computational effort is saved by doing
computations only on the set of quasi-founders and
their descendants and using precomputed values of the
identity coefficients to determine the sharing probabil-
ities among the quasi-founders. This allows for efficient
computation even when there are many generations of
untyped individuals at the top of the pedigree. Al-
though determining the identity coefficients in the
quasi-founders can also be computationally challenging
if the pedigree is very large, recently developedmethods

TABLE 1

Empirical type I error based on 5000 replicates with different
rates of missing genotypes

Type I error at a nominal
type I error of

Marker type Missing rate 0.05 0.01 0.005

SNP 0 0.059 0.013 0.0054
0.1 0.052 0.0102 0.0034

Microsatellite 0 0.043 0.0084 0.003
0.1 0.038 0.0076 0.0028

Haplotype 0 0.049 0.009 0.0032
0.1 0.040 0.0066 0.0018

TABLE 2

Empirical P-value estimates for the four markers with the
smallest approximate P-values in the asthma data set

Marker Chromosome
Distance from

p terminus (cM) P-value

D4S405 4 57 0.00035
D5S1505 5 130 0a

D12S1042 12 49 0.00013
ATA41E04 16 11 3 3 10!5

a Less than 3 3 10!5 at 95% confidence.
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can accomplish this very efficiently (e.g., identity coef-
ficients for all pairs in the genotyped sample from the
pedigree described above can be done in ,1 day) (M.
Abney, unpublished data). The most significant weak-
ness of this approach is the single-point nature of the
method. However, being able to do a single-point com-
putation is often an integral part of a more general mul-
tipoint method. Indeed, as described in the appendix, I
have used the method described here to extend the
multipoint HBD method (Abney et al. 2002) to use the
genotype data from all individuals in the pedigree.
Nevertheless, even a single-point method of estimating
IBD can prove useful. In particular, as markers become
more informative the amount of information gained
from a multipoint method decreases. Tightly linked
SNPs, for instance, can be combined into haplotypes
that can be treated as alleles of a highly informative
super marker. Such a super marker would require
inferring haplotypes from SNPs that have not recom-
bined in the pedigree. This can be a challenging task in
and of itself, but a number of methods have been
proposed recently to address this problem (O’Connell
2000; Windig and Meuwissen 2004; Zhang et al. 2005;
Baruch et al. 2006; Albers et al. 2007).

A direct application of the method is linkage map-
ping for qualitative traits. In this case, one computes the
S̃pairs statistic for affected individuals and determines
significance from a simulated distribution. There are a
number of challenges inherent in accomplishing this,
using pedigrees such as the one described here. Amajor
difficulty is determining the distribution of the statistic
S̃pairs. Because studies involving large pedigrees often
are restricted to a single, or a few, pedigrees rather than
many independent ones, the usual central limit theo-
rem argument may not lead to an accurate approxima-
tion of the null distribution. Without a theoretical basis
for the nature of the distribution, we must simulate to
determine its characteristics under the null. Because an
empirical distribution for a marker depends on the
characteristics of that particular marker (e.g., founder
allele frequencies, rates of missing data, etc.), one
would, in principle, need to determine the null distri-
bution for each marker in the study. This approach is
problematic not only when there are many markers, but
also for any single marker if the founder allele frequen-
cies are not known. Here, I propose an alternative
approach that may be used even when the number of
markers is large. The distribution for a marker with
perfect information is determined through simulation
and scaled to have a mean of zero and a variance of one.
The score Ŝpairs at a marker is then shifted—to remove
bias—and scaled to also have a variance of one, on the
basis of a limited number of simulations. If the shape of
the perfect marker distribution matches that of the real
marker, then this provides a computationally efficient
means of obtaining a reference distribution for S̃pairs
and an approximate P-value. Although the approximate

P-values obtained in this manner are fairly accurate over
much of the 0–1 interval, the P-values tend to become
increasingly conservative as they approach zero. Never-
theless, being able to obtain rapid estimates of the P-
value allows one to select those ‘‘best’’ markers for which
to obtain a more accurate, empirical P-value from a
large number of simulations. Note that when allele
frequencies are estimated from the data, additional
error beyond the Monte Carlo uncertainty of simula-
tions is introduced due to the bootstrap nature of
simulating data conditional on the estimated allele
frequencies. If at all possible, then, it is best to obtain
population allele frequencies that are independent of
the data. A further complication of the need to do
simulations to obtain a P-value is the difficulty of
including genotyping error. Although it is straightfor-
ward to include genotyping error in the computation
for IBD, when estimating significance, genotyping error
would also have to be included in the simulations. An
accurate P-value, then, necessitates simulating from a
genotyping error model that is representative of the
actual errors in the data. Because determination of this
model may be difficult, at present the best strategy is to
take any necessary precautions to ensure that errors in
the genotype data are minimized.

Although the current method obtains P-values that
are smaller than those done in an earlier analysis with
different methods, these results do not directly address
the question of the relative power of the two approaches.
The merits of the proposed method, however, can be
evaluated in light of the findings of the Genetic Analysis
Workshop 12, where the asthma data set described here
was analyzed by a number of different research groups.
As summarizedbyChapmanandWijsman(2001,pp.S222–
S223), none of the groups were able to perform linkage
analysis on the entire, intact pedigree, including those who
used Markov chain Monte Carlo or regression-based
approaches that are normally capable of handling large
genealogies. They also suggest that two lessons could be
learned from the results as a whole: ‘‘First, the results were
sensitive to themethodused to simplify thepedigree.’’ They
conclude that ‘‘minimal simplification of the pedigree is
desirable. In general, stronger linkage signals came from
data sets that used larger sub-pedigrees.’’ Second, they
conclude that ‘‘the method used to simplify the pedigree
maybemore important than the exactmethodof analysis
used.’’ The method described here is unique and
advantageous in that it is capable of performing linkage
mapping without any pedigree simplification. This
should not only maximize the power but also avoid the
difficulties of both creating appropriate subpedigrees
and interpreting the results when multiple pedigree
splittings have been analyzed. A power comparison with
othermethods involving possible pedigree simplification
strategies (Falchi et al. 2004; Brocklebank et al. 2007;
Liu et al. 2008) and genetic models would, nevertheless,
be informative and will be pursued in future work.
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In addition to linkage mapping for a qualitative trait,
the proposed IBD estimation method is directly appli-
cable to quantitative trait linkage mapping based on var-
iance components (Amos 1994; Almasy and Blangero
1998). There, the covariance due to a quantitative trait
locus (QTL) is modeled by the IBD sharing between all
pairs of individuals in the pedigree. The method de-
scribed here would allow rapid determination of the
QTL covariancematrix for pedigrees that have been too
large to consider as a whole. The variance component
mapping strategy is, in many ways, considerably more
straightforward than the Spairs linkage mapping ap-
proach. Because the hypothesis test is not based explic-
itly on the degree of sharing estimated, the problems
associated with determining the proper distribution of
the statistic (e.g., bias) are avoided. Although bias will
still exist in the IBD estimates, if allele frequencies are
estimated, the amount of bias for any particular pair will
generally be small. In contrast, the bias when computing
Ŝpairs can be large because it is the sum over very many
pairs, each of which has a small amount of bias.
Furthermore, an empirical distribution for the sharing
statistic need not be constructed to determine statistical
significance. The consequence is that it is not necessary
to do the simulations at each marker to determine the
bias and variance of the statistic.

The utility of a method that addresses a computation-
ally difficult problem depends critically on the time it
takes to solve the problem, particularly when many ana-
lyses and simulations are necessary. The above methods
have been implemented in freely available software coded
in C (available at http://www.genes.uchicago.edu/abney.
html) that can analyze the data presented here with, as
yet, unprecedented speed. The analyses accomplished
here, using both simulated and real data, show that it is
possible to analyze large data sets ("700 genotyped
individuals, "150 affecteds) in a large pedigree ("3000
individuals) on a timescale of hours for thousands of
markers. As far as I am aware, there are no other avail-
able methods that can perform linkage mapping with
this quantity of data on such a large, unbroken pedigree
in any reasonable length of time. With the methods and
software tools introduced here researchers with large,
complex pedigrees will be able to leverage their genetic
data to a degree that was not possible before.

I thank Carole Ober for allowing me to use the Hutterite pedigree
and asthma data and Don Conrad for his assistance in evaluating
haplotype frequencies in the HAPMAP data. This work was supported
by National Institutes of Health grant HG002899.
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APPENDIX: MULTIPOINT HBD ESTIMATION

When the above algorithm is applied to the two alleles
in a single individual, it provides an estimate of the
probability of that individual being HBD conditional on
the entire pedigree and all ancestral genotype data at
that locus. A previous method (Abney et al. 2002)
computed this probability given the pedigree and the
multipoint genotype data of that individual, while the
ancestral genotype data were ignored. Here I describe
how to extend the HMM in Abney et al. (2002) to
include ancestral genotype data.

An HMM is normally defined in the following way
(Baum 1972; Rabiner 1989). Let

akðiÞ ¼ PrðO1; . . . ;Ok ;Qk ¼ iÞ

bkðiÞ ¼ PrðOk11; . . . ;OM jQk ¼ iÞ;

where Ok are the observed genotypes at marker k, Qk is
the true HBD state (i.e., HBD or not HBD) at marker k,
and M is the number of genotyped markers. These
variables follow the recurrence formulas

ak11ðiÞ ¼
X

j

akð jÞTjiPrðOk11 jQk11 ¼ iÞ

bkðiÞ ¼
X

j

TijPrðOk11 jQk11 ¼ jÞbk11ð jÞ;

where Tij is the transition probabilities between states i
and j. The probability of HBD at marker t is

PrðQt ¼ HBD jO1; . . . ;OM Þ ¼ atðHBDÞbtðHBDÞP
i atðiÞbtðiÞ

:

ðA1Þ

Note that the quantity Pr(Ok11 j Qk11 ¼ i) in the
recurrence equations is the probability of all the
genotype data at the marker given the HBD state of a
single individual. To use the single-point algorithm that
now includes ancestral genotype data, the HMM is
modified so that the probabilities found in the re-
currence formulas are rewritten using Bayes’ rule,

PrðOk jQk ¼ iÞ ¼ PrðQk ¼ i jOkÞPrðOkÞ
PrðQk ¼ iÞ :

The probability Pr(Qk¼ I jOk) is computed as described
in the methods section, and Pr(Qk) is the inbreeding
coefficient. We do not need to compute the uncondi-
tional probability of the observed genotype data at the
marker Pr(Ok) because it cancels out in Equation A1.
The result is a method for computing multipoint HBD
given all of an individual’s ancestral genotype data and
the entire pedigree. These probabilities can then be
used in the homozygosity mappingmethod discussed in
Abney et al. (2002).
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