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We numerically examine the effect of thermal fluctuations on a first-order phase transition in~211!
dimensions. By focusing on the expansion of a single bubble we are able to calculate changes in the bubble
wall’s velocity as well as changes in its structure relative to the standard case where the bubble expands into
a homogeneous background. Not only does the wall move faster, but the transition from the symmetric to the
asymmetric phase is no longer smooth, even for a fairly strong transition. We discuss how these results affect
the standard picture of electroweak baryogenesis.@S0556-2821~97!03602-3#

PACS number~s!: 98.80.Cq, 64.60.Qb

I. INTRODUCTION

Recent numerical and analytical work on weak first-order
phase transitions has shown that there may be significant
changes to the standard theory of phase transitions as a result
of thermal fluctuations@1–6#. Instead of a smooth homoge-
neous background there may be a significant amount of
phase mixing due to the existence of subcritical bubbles.
Though not without controversy@7,8#, these findings suggest
we may need to reevaluate the standard theory of nucleation
of critical bubbles because in very weak first-order phase
transitions the standard assumption of only small amplitude
fluctuations breaks down. As the phase transition increases in
strength we expect the role of fluctuations to diminish until
the approximations made for homogeneous nucleation be-
come applicable. The effects of thermal fluctuations may ex-
tend beyond the regime of nucleation however, and alter the
dynamics of bubbles as they expand. Due to the complex
nature of the system, analytic investigations of this question
would be difficult. On the other hand, numerical simulations
in 311 dimensions would be very computationally exten-
sive. We therefore address the problem of dynamics by un-
dertaking numerical simulations in~211! dimensions. Our
primary motivation is to gain at least a qualitative under-
standing of how thermal fluctuations may affect the elec-
troweak phase transition in the early universe and the conse-
quent ramifications on baryogenesis at this epoch.

Work on the topic of electroweak baryogenesis has, in
general, been concentrated in three areas: the form of the
effective potential@9#, the dynamics of the transition@8, 10–
14#, and how to calculate the baryon asymmetry@15–20#.
These three areas effectively form a hierarchical structure
where the means by which one computes the baryon asym-
metry depends on the dynamics of the transition, which in
turn depends on the form of the effective potential. Though
we do not yet know what the true effective potential looks
like, it nevertheless makes sense to investigate the other two
areas by assuming certain generalities. That is, we may
choose a theory with a scalar order parameterf responsible
for spontaneous symmetry breaking. If we assume a potential

which may be approximated by

V5af22bf31cf4, ~1!

where the coefficients are temperature dependent, we can
compute quantities such as the temperature needed to nucle-
ate bubbles of the new phase, the thickness of the bubble
walls, and the rate at which the old phase is converted to new
phase as a function of the coefficients.1 We require a first-
order transition because of the third of Sakharov’s conditions
for baryogenesis, the lack of thermal equilibrium. Because
the cooling rate of the Universe is extremely slow at the
electroweak transition, depending only on the rate of expan-
sion, the cosmological fluid maintains thermal equilibrium.
However, by allowing a bubble of stable vacuum to appear
within the metastable vacuum, a first-order transition gives
rise to out of equilibrium processes in the neighborhood of
the bubble wall. It is only within this confined region where
baryogenesis can take place.

The order and strength of the electroweak phase transition
is the subject of ongoing research which will only be solved
by a calculation of the effective potential which is valid to all
orders of perturbation theory. In any case we will assume a
potential of the general form of Eq.~1!. The strength of the
transition is determined by a ratio of the coefficients in Eq.
~1!, the value of which is temperature and model dependent.
In the minimal standard model for the electroweak theory the
quark, gauge boson, and Higgs masses determine the height
of the energy barrier separating the two minima of the effec-
tive potential. If the Higgs mass is small the transition is
strongly first order, whereas a large Higgs mass results in a
transition which is at most weakly first order and possibly
second order. While most work on phase transition dynamics
has been done for a strong first order transition, the experi-
mental lower bound on the Higgs mass of 65 GeV@21# has
all but ruled out this regime in the context of the minimal
standard model. More recently, there has been interest in the
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1In fact, the rate of phase conversion depends on the velocity of
expansion of the bubble walls, which depends not only on the
strength of the transition but also on the interaction of the wall with
the cosmological plasma.
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dynamics of very weak first order transitions@1–6#. In this
case the phase transition may be completed through the pro-
cess of phase mixing, whereby subcritical bubbles effec-
tively restore symmetry, rather than the conventional nucle-
ation of critical bubbles. However, it is also possible that the
dynamics lie in the intermediate region between a strong
transition — nucleation and expansion of bubbles in a homo-
geneous background — and a weak transition — phase mix-
ing and domain coarsening.

This work focuses on the dynamics of a transition which
lie in this intermediate region. In this case fluctuations will
not be strong enough to completely dominate the transition
and restore thermal equilibrium, yet may have an effect on
processes such as the nucleation and expansion of bubbles.
Though we will not address the issue of nucleation~see
@5–7# for discussions on this topic!, we will investigate the
ramifications of fluctuations on the speed and structure of the
bubble wall and what the implications are on the standard
mechanisms for generating excess baryons at the elec-
troweak phase transition. These mechanisms depend strongly
on particle interactions with the bubble wall, and calculating
the resulting baryon abundance requires knowledge of the
details of the transition, including the wall’s speed and struc-
ture. Some authors have argued that subcritical bubbles are
not relevant to baryogenesis since fluctuations only have an
effect when the phase transition is only very weakly first
order, too weak to be of interest to baryogenesis@7,8,15#.
These arguments, however, deal primarily with the question
of whether the phase transition proceeds through the nucle-
ation of critical bubbles. The issue addressed in here is
whether the fluctuations can have a significant effect on criti-
cal bubbles after they nucleate.

This issue is related to one which has recently become of
interest in condensed matter physics. Specifically, there has
been an effort to understand how noise affects the properties
of front propagation in a phase transition@22#. The results of
these studies has varied depending on the specifics of the
model in question. Here, though fluctuations play the role of
the noise in the phase transition, the system we consider and
the model we use to analyze it is significantly different from
those evaluated within the context of condensed matter.

Once one understands the dynamics of the electroweak
phase transition it becomes possible to calculate the baryon
asymmetry. Traditionally, baryogenesis has been investi-
gated in two different limits, thin walls or thick walls. In the
thin wall regime the wall is thin compared to the mean free
paths of the particles, which behave as if they were scattering
off a potential barrier withCP-violating reflection coeffi-
cients. The reflected charge results in a baryon asymmetry in
the region preceding the phase boundary. In the thick wall
case the plasma is treated as though it were in quasistatic
thermal equilibrium. Chemical potentials are introduced for
quantities which vary slower than the time it takes for the
bubble wall to pass, and baryogenesis is the result of a
change in theCP-violating phase, which acts like a chemical
potential for baryon number@17#. In both cases the transition
from one vacuum state to the other is smooth, with the order
parameter varying monotonically. If fluctuations play a sig-
nificant role it is likely that there would be deviations away
from the smooth transition model. It is unclear, though, for
what transition strength these deviations can be ignored. Fur-

thermore, our assumptions about how thick the wall is for a
given transition strength may have to be modified.

The plan of this article is as follows. In Sec. II we discuss
the potential we use in our simulations and its temperature
dependence. Section III contains the evaluation of the nucle-
ation temperature and expansion velocity of critical bubbles
in the standard homogeneous background model in~211!
dimensions. We elaborate on our model for the phase transi-
tion with thermal fluctuations in Sec. IV, covering such is-
sues as the equation of motion, lattice considerations, and
specific results. Finally, in the conclusion, we discuss rami-
fications to electroweak baryogenesis as well as possible im-
provements for future work.

II. THE STANDARD SCENARIO

A. The potential

The potential we select deliberately resembles the
temperature-dependent electroweak effective potential for
the minimal standard model:

Ṽ~f,T!5
a

2
~T22T2

2!f22
ã

3
Tf31

l̃

4
f4. ~2!

The parametersã and l̃ determine the strength of the phase
transition and in the minimal standard model are related to
the gauge boson masses and the Higgs boson mass, respec-
tively. The application of this potential, however, may be
more general and useful in studies of first order transitions.
Because of the~211!-dimensional nature of the simulations,
Ṽ has a mass dimension of@M3# with f̃ being@M1/2#. Fur-
thermore, we do not associate particular values ofã and l̃
with particle masses, but rather concentrate on which regions
of parameter space constitute weak and strong transitions as
determined in Ref.@2#.

We will find it useful to change from dimensional to di-
mensionless variables as follows:

x→x/AaT2 , ~3!

t→t/AaT2 , ~4!

f→xT2
1/2, ~5!

T→uT2 . ~6!

The potential is now

V~x,u!5
1

2
~u221!x22

1

3
aux31

1

4
lx4, ~7!

where a5ãa21T2
21/2 and l5l̃a21T2

21. For
u,u15(12a2/4l)21/2 the potential has one maximumx2

and two minima x0, x1 located at x050 and
x65au/2l(16A124l(12u22)/a2). At the critical tem-
peratureuc5(122a2/9l)21/2 the two minima are degener-
ate with the minimum atx1 being the global minimum for
u,uc . At u51 the minimum atx0 disappears. Figure 1
shows the potential for l50.1, a50.4,
u5uc20.002551.2432.
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B. Dynamics

The dynamics of the phase transition depends to a large
degree on the amount of supercooling undergone before the
nucleation of bubbles. If the supercooling is large, as in the
case of a strong first-order transition, the bubbles expand
very rapidly and have a relatively thick wall. In a weak tran-
sition the free energy of a bubble is minimized for a thin wall
and the small cooling results in a slowly moving wall. The
first step, then, is to determine the temperature at which
nucleation takes place.

As the universe cools below the critical temperature the
symmetric vacuum becomes metastable with a finite prob-
ability of decaying into the asymmetric stable vacuum. The
theory of bubble nucleation from a metastable to a stable
state was developed by Langer@23# and later applied to cos-
mological phase transitions@24,25#. The equation describing
the rate of nucleation per volume in 311 dimensions, how-
ever, must be changed to account for the different scaling in
a ~211!-dimensional model. Recall that in two dimensions
volume scales asT22 and notT23. The nucleation rate per
volume is

G/V5AT3e2Fc /T, ~8!

whereFc is the free energy of a critical bubble. The rate is
dominated by the exponential; hence, the exact value ofA is
not very important and we set it equal to one. The nucleation
temperature is given by the temperature at which the prob-
ability of nucleating a critical bubble inside a horizon ap-
proaches one. We must, therefore, determine the size of the
horizon as a function of temperature. In a~211!-dimensional
universe during the radiation dominated era, the energy den-
sity of the Universer varies with the scale factora accord-
ing to r}a23. The time-temperature relation is then

t5j
mPl

1/2

T3/2
, ~9!

wheremPl51.2231019GeV is the Planck mass andj'1/30
@28#. The volume inside the horizon at a temperatureT is

VH'4j2
mPl

T3
. ~10!

From this we can write down the probability of nucleating a
bubble inside a causal volume at a temperatureT:

dP'GVHdt'6j2SmPl

T D 3/2e2Fc /T
dT

T
. ~11!

We define the nucleation temperature as the temperature for
which the total probability of having nucleated a bubble ap-
proaches one:

1'4j2SmPl

Tn
D 3/2e2Fc /Tn, ~12!

where Tn is the nucleation temperature. EstimatingTn is
made much simpler by approximatingTn in the prefactor of
the right hand side of Eq.~12! as the critical temperature.
Because of the exponential, the final answer is not very sen-
sitive to the value of the critical temperature chosen. A value
of Tc5100 GeV yields

53'Fc /Tn . ~13!

In order to calculate the free energy of a vacuum bubble, we
choose the energy of the metastable vacuum as zero,
V(^f&50)50. The excess free energy of a bubble is

F5E d2x@ 1
2 ~¹f!21V~f,T!#. ~14!

The first term in the integral represents the surface energy of
the bubble, while the second term is the volume energy,
coming from the difference in free energy inside and outside
the bubble. The free energy, in general, must be found nu-
merically. The difficulty in calculatingF arises because one

FIG. 1. Potential for l50.1, a50.4,
u5uc20.002551.2432.
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needs to know the value of the field at all points in space,
which in general may not take a simple functional form.
Under certain limits, however, approximations prove fairly
accurate. In the case of extremely small supercooling the
wall approaches the well-known kink solution, the ‘‘thin
wall’’ approximation. As the temperature drops further be-
low the critical temperature the wall shape is reasonably ap-
proximated by a Gaussian@10#. At temperatures appropriate
to nucleation, neither approximation turns out to be particu-
larly good. In spite of the fact that the thin wall approxima-
tion fails to accurately predict the free energy associated with
the nucleation of critical bubbles, we use it here as a way of
estimating a value forTn . One should bear in mind, how-
ever, that the free energy of the true critical bubble solution
is larger than the free energy in the thin wall case at a given
temperature. As a result the nucleation temperature in the
thin wall case is higher, i.e., less supercooling, than in the
true case. We, however, are not most interested in what the
actual nucleation temperature is, but rather in the dynamics
of bubble expansion. Within this context the thin wall ap-
proximation gives a reasonable estimate. Also, recent studies
have shown that the actual nucleation temperature may be
significantly higher than what one obtains by the standard
method @5,6#. The basic idea is that in a weak first-order
transition large amplitude fluctuations cause the energy den-
sity of the metastable vacuum to shift away fromV(0). In-
stead one must include a nonperturbative correction to the
free energy of a critical bubble which has the effect of rais-
ing the nucleation temperature.

To calculate the free energy in the thin wall limit, when
supercooling is small, we use a perturbative expansion in
D[12u/uc , the amount of cooling below the critical tem-
perature. To first order the potential is

V~x,u!5
1

2
~uc

221!x22
1

3
aucx

3

1
1

4
lx42DS uc

2x22
1

3
aucx

3D . ~15!

A bubble of true vacuum which is just large enough to grow
satisfies the static solution to the equations of motion,

d2x

dr2
1
1

r

dx

dr
5

]V

]x
. ~16!

In the thin wall limit the spatial derivatives are small except
in the bubble wall. Furthermore, whenD is small the radius
of a critical bubble becomes very large and the first order
derivative term in Eq.~16! becomes negligible. This gives

dx

dr
5A2V. ~17!

The free energy of a bubble of radiusR is

F'pRE
x~R2dR!

x~R1dR!

dxA2V12pE
0

R

dr rV~x1 ,u!, ~18!

wherex1 represents the value of the field of the true vacuum
and is given by

x1'
2auc
3l

2DS 2auc
3l

2
6

auc
D . ~19!

As a function of the radiusR and the amount of supercooling
D the free energy is

F~R,D!'
2pR

81
A2lS auc

l D 32 4pR2

9 S auc
l D 2D. ~20!

By taking the derivative with respect toR we get the radius
of a critical bubbleRc5auc /(18A2lD). SinceD is small,
the nucleation temperature is approximately the critical tem-
perature, and after equating with Eq.~13! we get for the
critical free energy to temperature ratio

Fc

un
'

p

1458

a4uc
3

l3D
'53 ~21!

or

D'~4.0731025!
a4uc

3

l3 . ~22!

Once a critical bubble is nucleated it begins to expand be-
cause the free energy lost due to the interior being in the
lower energy vacuum offsets the gain in surface energy. The
wall quickly accelerates, and in the case of a vacuum transi-
tion, approaches the speed of light within a few wall widths
@25#. In the more realistic case where the wall is expanding
through a plasma, the wall experiences an opposing force
due to interactions with particles and reaches a terminal ve-
locity. Calculating the terminal velocity proves to be a diffi-
cult problem because it depends on detailed interactions of
the Higgs field with the plasma. Furthermore, the size of the
damping also depends on the thickness of the wall relative to
the mean free paths of the particles in the plasma@10#. Sim-
ply, this results because a thin wall causes particles to make
the transition into the true vacuum state quicker than the time
it takes for them to equilibrate. A thicker wall allows the
particles to maintain quasistatic thermal equilibrium, because
the thermalization rate is faster than the rate at which the
Higgs field changes, but not chemical equilibrium, because
some particle interaction rates occur slowly resulting in de-
partures from equilibrium populations. The result is a differ-
ent damping force depending on the regime. In any case, we
assume here that the damping force can be modeled by a
velocity dependent term in the equation of motion of the
Higgs field, where the magnitude of the proportionality con-
stant determines the terminal velocity:

d2x

dt2
1h

dx

dt
2“

2x52
]V

]x
. ~23!

In the frame moving with the wall we can change coordi-
nates tot5g(x2vt), simplifying to the case of a very large
bubble so that we may treat the problem as effectively one
dimensional. The equation of motion then takes the form

d2x

dt2
1hgv

dx

dt
5

]V

]x
. ~24!
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The boundary conditions onx state that the derivative must
vanish far from the wall. We can then integrate to obtain

hgvE
2`

` S dx

dt D 2dt5V~0!2V~x1! ~25!

52V~x1!. ~26!

Within the validity of the thin wall approximation, we may
perform the integral analytically to obtain

1

6
hgvAl

2
x1
3 5V~x1!. ~27!

Several authors@8,10,11,14# have calculated the velocity of
the bubble wall in both the thick and thin case. The results
for a thin wall arev;0.1 andv;0.2–0.6 for a thick wall.
Given a particular set of parameters for the potential, then,
we can find an appropriate value forh. Here we say thath is
generally;0.1.

Up to this point our treatment of the bubble has been from
a purely field theoretic point of view. We describe the dy-
namics of the Higgs field as a scalar field in a temperature
dependent potential. Particles in the plasma scatter off the
field effectively creating a damping force. A more macro-
scopic view of the phase transition describes the plasma
through hydrodynamics and the bubble wall as an effective
combustion front. In this case there are several effects which
arise which affect the dynamics of the bubble expansion
which are not otherwise evident in the field theoretic point of
view. The velocity of the wall, for instance, depends not only
on the damping coefficienth, but also on the ability of the
fluid to conduct heat away from the wall and the resulting
small temperature deviations created through the release of
latent heat@11,14#. Furthermore, fluid dynamical instabilities
can arise both in the plasma and the bubble wall. Perturba-
tions in the wall may grow exponentially depending on the
size of the perturbation and the strength of the front@26–31#.
The net effect is that bubbles might not grow in a spherically
symmetric way. Nevertheless, including these effects is be-
yond the scope of this work and we consider here only the
simplified scenario of a scalar field in a potential well with
damping.

III. PHASE TRANSITIONS WITH FLUCTUATIONS

Thermal fluctuations play an essential role in the phase
transition, so it is instructive to discuss briefly how they enter
into the physical picture. Without fluctuations the field re-
mains trapped in the metastable vacuum until the potential
barrier vanishes at which time the field rolls down the poten-
tial into the true vacuum. In a thermal environment, though,
it is only the expectation value of the field which is in the
metastable state. There is a finite probability that the field
can take on a value beyond the potential barrier and thus
make the transition into the true vacuum. Hence, the nucle-
ation and expansion of bubbles. This method, however,
traces the evolution of the field using the equations of motion
at zero temperature often with a damping term to simulate
the dissipation due to the thermal environment, with finite
temperature effects limited to corrections to the effective po-

tential. This approach is justifiable if one wishes to consider
only the behavior of the expectation value of the field, where
one has implicitly assumed that the variance of the field
value is very small. This assumption should hold if the
minima in the effective potential are sufficiently deep that
thermal fluctuations away from the minima are strongly sup-
pressed. Even in this case, however, the dynamics of the field
may not be adequately described by the equations of motion.
For instance, if the field is initially located at a local mini-
mum of the potential, which then becomes a local maximum
in such a way that the slope remains zero, the field remains
in this unstable extremum indefinitely. Realistically, what
happens is that fluctuations dislodge the field from the extre-
mum, which subsequently evolves according to the equations
of motion.

The question of how one is to model the thermal fluctua-
tions in field theory nevertheless remains. In classical statis-
tical mechanics one treats the problem of thermal fluctua-
tions by identifying a system and a heat bath and choosing a
model for the coupling between the two and solving for the
behavior of the system. Finding a solution is greatly simpli-
fied when the reservoir obeys particular criteria. Specifically,
if the reservoir has infinite specific heat and a relaxation time
much shorter than that of the system, it remains in thermal
equilibrium even though it interacts with a system which
may not be. When these conditions are satisfied one may
ignore the dynamics of the reservoir in favor of the dynamics
of the system. This paradigm provides a method for calcu-
lating quantities such as equilibration time scales of a system
and transition probabilities when the system is in equilib-
rium. In the case of Brownian motion, for example, where
the system is a small macroscopic particle and the bath is the
fluid in which it rests, the Langevin equation is a natural
outcome of the fluctuating thermal force of the bath on the
system.

In the case of field theory, however, the dichotomy of the
system and bath is less clear. If there is only one self-
interacting field one can decompose the dynamics into short
and long-wavelength modes which operate on different time
scales. The short wavelength modes respond much more
quickly and can serve as the thermal bath while we define the
system as those modes whose wavelengths are larger than
some critical value; nonlinear interactions couple the system
to the bath. Another approach is to have a second field which
acts as the bath to the first field. In either case the form of the
coupling determines the nature of the fluctuations which the
system experiences. Below, we model the fluctuations as
white noise~uncorrelated! by adding a stochastic term to the
equation of motion. In general, the noise which the system
experiences may be significantly more complicated, as is the
case in some simple cases which have been studied@32,33#.
We justify our choice by noting that it is not yet clear how
these findings might change given the relatively complicated
environment of the early universe. Furthermore, in at least
one study@33# the authors found that in the high temperature
limit the noise becomes white.

The Langevin equation is a popular way to model phe-
nomenologically a system with thermal fluctuations, though,
as mentioned above, the actual dynamics of the noise may be
different from the simple model of additive white noise.
Nevertheless, the crucial question is deciding how one is
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going to model the essential physics of the system. Certainly,
if we knew what the true equations of motion for the Higgs
and particle fields were in the early universe, we could use
those equations. This, however, is not the case. At the time
of the electroweak phase transition, aside from the Higgs,
there were many other particles, and writing the complete
dynamics is, if not impossible, extremely difficult. Given this
situation, using the Langevin equation with additive white
noise is a reasonable place to start in the investigation of how
fluctuations may affect the dynamics of the transition, and
we use it here. Also, numerical studies of nucleation of criti-
cal bubbles in 111 and~211!-dimensions carried out using
the Langevin equation to model thermal fluctuations have
demonstrated good agreement with classical nucleation
theory @34,35#.

A. The model

As described above the coupling of the field with the ther-
mal bath is modeled by a Langevin equation. The equation of
motion, then, in terms of the dimensionless variables is

]2x

]t2
5¹2x2h

]x

]t
2

]V

]x
1j~x,t !, ~28!

where we have definedj as the dimensionless stochastic
noise. The fluctuation-dissipation theorem relates the noise
to the dissipation coefficienth by

^j~x,t !j~x8,t8!&52hud~ t2t8!d~x2x8!. ~29!

In discrete form,j is

j~xi ,tn!5j i ,n ~30!

5S 2hu

dt~dx!2D
1/2

Gi ,n ,
~31!

whereGi ,n is a unit variance Gaussian random number at
each point on the lattice anddt anddx are the lattice spacing
in the time and spatial directions, respectively. We integrate
the equation of motion forward in time using a second-order
leapfrog method.

We carry out the numerical experiment by inputting initial
conditions and allowing the simulation to run. Since we are
interested in the dynamics of the bubble wall and not ques-
tions of nucleation, we use as initial conditions a wall which
stretches across the width of the lattice located at the midway
point along its length. Half of the initial lattice volume, then,
is in the asymmetric phase while half is in the symmetric
phase. The shape of the wall is chosen so that it conforms to
the kink profile appropriate for a thin wall. This profile is in
fact not the one which minimizes the free energy, but it is
sufficiently close so that the time it takes for the wall to relax
to its correct form is much smaller than the run time. By
making the wall stretch across the width of the lattice we
effectively model a large bubble and thus ignore the initial
expansion stage following nucleation. The wall, however, is
not given any initial speed, but must accelerate to its terminal
velocity. The time for this to happen is also very small.

The initial configuration of the wall is prepared without
noise added in. We include the fluctuations in the simulation
only through the dynamics of the equation of motion.
Though such a configuration is certainly unphysical given
the assumption that thermal fluctuations exist, it has no effect
on the outcome of the numerical experiment. In each of the
two phases there exists a thermal equilibrium distribution of
the other phase due to fluctuations@2,3#. Given the strengths
of the transitions we consider, the time it takes to reach this
distribution is small. Only during the initial stages of the
simulation is the bubble wall likely to be affected by particu-
lar characteristics of the initial conditions.

A first-order phase transition may be classified into weak
and strong transitions depending on the height of the barrier
separating the minima. In a weak transition considerable
phase mixing may exist with the transitions proceeding
through domain coarsening, while in a very strong transition
we expect the theory of homogeneous nucleation and bubble
expansion to be correct. We wish to explore here the inter-
mediate region and thus must choose appropriate values for
the parameters which describe the potential. Based on the
findings in Ref.@2# we select values for the parametersa and
l which explore transitions in the strong regime, where a
strong transition is one where atuc the symmetric phase
comprises at least about 60% of the total area. We, therefore,
set l50.1 and allowa to take on the values 0.4 and 0.5,
well into the strong regime.

The potential in Eq.~2! has a direct connection with the
electroweak phase transition. In the temperature one-loop ef-
fective potentiala is related to the gauge-boson masses
while l is determined by the Higgs boson mass. The values
we choose here for these parameters, however, should not be
construed as exploration of the parameter space of masses of
these particles. The naive interpretation that the chosen val-
ues ofa andl correspond to masses in the minimal standard
model is false in this case because the simulations describe
dynamics in a~211!-dimensional world. What constitutes a
weak and strong transition in~211! dimensions is different
from the~311!-dimensional case. We choose, therefore, not
to make any claims about particle masses, but rather focus
qualitatively on the effects of fluctuations on the phase tran-
sition.

B. The lattice

When taking a numerical approach to this problem one
must make a choice regarding the coarse-graining scale as
realized through the lattice spacing. Modes with wavelengths
shorter than the lattice spacing couple to the larger wave-
length modes through the noise term in the equation of mo-
tion. The results from placing the field theory on a lattice,
then, only apply to the long wavelength modes. When prob-
ing physics at shorter wavelengths, one must be careful in
taking the continuum limit. To do so one must include renor-
malization counterterms in order to obtain the proper con-
tinuum theory. These issues are discussed in more detail in
Ref. @34#. Following the prescription in Ref.@2# we set the
lattice spacingdx51, which is approximately equal to the
mean-field correlation length given byl cor

225V9(x0 ,uc).
In addition to choosing a grid size on the lattice, one must

choose the size of a time step, the size of the lattice, and the
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boundary conditions. Ideally a large time step would allow
one to integrate the equations of motion for a longer period
of time; however, stability considerations limit the size of
dt. To find an appropriately sized step we compared simula-
tion results as a function of different values ofdt, choosing a
value in the regime where the results become independent of
the magnitude of step. In all simulations we used a value of
dt50.2.

As with the choice fordt, selecting a lattice size is an-
other exercise in compromises. The physics one is attempt-
ing to simulate takes place in an effectively infinite volume,
but one is limited to not just finite lattices but also ones
which are fairly small because of the need for reasonable
integration times. There are dangers, however, in having too
small a lattice. Strictly speaking, in the context of phase
transitions symmetry breaking only occurs in the infinite vol-

ume limit. Within any finite volume there exists the possibil-
ity that a fluctuation will restore the symmetry regardless of
the dynamics internal to the volume. Since it is precisely
these dynamics with which we concern ourselves, it is para-
mount to choose a volume large enough that the probability
of such an occurrence becomes negligible. Essentially, what
happens is that fluctuations in the broken phase may drive
the system back to the symmetric phase, even though it is
energetically unfavorable. If the total volume is large, such
fluctuations result in only a small region of the total volume
having its symmetry restored. The chance that this could
happen with a large volume is exponentially suppressed be-
cause of the large amount of energy necessary. We can esti-
mate how large a volume we need by calculating the rate for
a large fluctuation:

G;e2F/u. ~32!

FIG. 2. Average wall position as a function of
time fora50.4,h50.2. Shown are a phase tran-
sition without fluctuations~solid line!, with fluc-
tuations~dotted line!, average over 200 simula-
tions ~short-dashed line!, and one-s width ~long-
dashed line!.

FIG. 3. As in Fig. 2 witha50.5.
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The free energyF is given by the change in effective poten-
tial energy between the two minima multiplied by the
amount of volume in the asymmetric phase. Ignoring the
gradient portion of the free energy, which only increasesF
and makes a symmetry restoring fluctuation less probable,
we have

F

u
'V

4a2ucD

9l2 , ~33!

whereV is the volume in the symmetric phase. The probabil-
ity of having a large fluctuation given the size of our lattice
and run time is approximately 10210.

Since we are interested in the dynamics of the bubble wall
as it expands, we also want to make sure that it is unlikely
that a critical bubble will nucleate in the asymmetric phase
within the lattice during a run time. Because the volume
under consideration is much less that a horizon volume and
the time is much less than a Hubble time, the probability of

this happening is similarly suppressed. The lattice size we
use in the simulations isLx5100, Ly550, whereLx is the
length in thex direction andLy is the length in they direc-
tion.

Another consideration lies in the fact that we are model-
ing an unbounded system by a finite volume with a bound-
ary. Though, as discussed above, we do not expect finite size
effects to be important, there is a distinct surface in the simu-
lations which is unphysical. We circumvent this issue by
using periodic boundary conditions in they direction and
‘‘open’’ boundary conditions in thex direction. The periodic
conditions allow us to model an essentially planar wall, ap-
propriate for a large bubble. The danger, however, with pe-
riodic conditions is that long range correlations may be in-
duced if the simulation is run for longer thanLy/2, the light
crossing time. It turns out that this is not a concern here
because the presence of dissipation and noise have the effect
of damping out and swamping any long range ‘‘communica-
tion’’ which might otherwise exist. The open boundary con-

FIG. 4. Contour plot of fieldx on the lattice
with contoursx2/2 ~dotted!, x2 ~solid!, 3x2/2
~dashed!. ~a! a50.4, h50.1. ~b! a50.4,
h50.5. ~c! a50.5,h50.1. ~d! a50.5,h50.1.
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ditions consist of assuming that for points immediately out-
side the lattice the field takes on a value equal to the field on
the boundary. Though not realistic, these boundary condi-
tions provide an approximation to the unbounded system.
Any spurious effects caused by these conditions do not ex-
tend into the lattice because of dissipation and noise.

IV. RESULTS

The focus of the numerical experiment is to understand
the effect of the fluctuations on the rate at which the old
phase is converted into the new phase and how that transition
is made. We expect that for a relatively stronger transition
the fluctuations will play a fairly minor role, while for a
relatively weak transition there may be a marked difference
from the homogeneous background case. We investigate the
rate of phase conversion for different transition strengths by
allowing a to vary while holding all other parameters con-

stant and comparing the results to the case where there are no
fluctuations. The values ofa we choose~0.4 and 0.5! place
the transition in the strong regime as defined in Ref.@2#. In
that study the author found that the change from a weak to a
strong transition is itself a second-order phase transition with
a critical value ofac50.36. We can characterize the strength
of the transition byf1 , the fraction of volume which fluc-
tuates from the symmetric phase beyond the maximum of the
potential barrier. At the critical valueac this fraction is 42%,
while for a50.4, f1'6% and fora50.5, f1'0.1%. Fur-
thermore, whereas in the homogeneous background case the
field in a region of space smoothly makes the transition from
the symmetric to asymmetric phase, we do not expect this to
happen when the amplitude of the noise becomes large.

In order to calculate the rate of phase transformation for a
particular transition we first introduce a definition which will
allow us to determine which phase the field is in. We label
the field at a particular lattice point as being in either the 0

FIG. 4 ~Continued!.
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phase ifx<x2 ~i.e., to the left of the maximum! or the1
phase ifx.x2 ~i.e., to the right of the maximum!. This
allows us to determine what fraction of the total volume is in
each of the two phases. Because we place the bubble wall
through the center of the lattice approximately half of the
initial volume is in each phase with deviations away from
half due to fluctuations. Lattice points move on average from
the 0-phase to the1 phase as the bubble expands. In Figs. 2
and 3 we plot the position of the wall as a function of time
for a phase transition with and without fluctuations for
a50.4 anda50.5 with h50.2. The wall position for the
case with fluctuations as shown by the short-dashed line is an
ensemble average of 200 separate trials while the long-
dashed lines show the one standard deviation width of the
distribution. The dotted line shows one realization. The solid
line is the position for a phase transition without fluctuations,
where the steplike nature is due to the discreteness of the

lattice. For the case with fluctuations the position does not
mean that the midpoint of the wall is located at that particu-
lar x position all the way across the lattice; rather, it repre-
sents an average position at that point in time. In fact there
are regions both in front of and behind the wall which belong
to the opposite phase resulting in a somewhat amorphous
boundary. Figures 4~a!–4~d! show contour plots of the field
on the lattice fora50.4, 0.5 withh50.1, 0.5 with contours
atx2/2 ~dotted!, x2 ~solid!, 3x2/2 ~dashed!. We see signifi-
cant distortions in the wall away from planar in the weaker
transitions whereas the stronger transitions approach the
plane solution, though other structure is still evident. The
rate at which phase is converted from the 0 to the1 state is
also clearly elevated relative to the transformation without
fluctuations. In Table I we show the rate of phase conver-
sion, essentially the velocity of the wall, for the different
transition parameters. The right-hand columns for a given

FIG. 5. Wall profile for a50.4, h50.1.
Shown are simulation resluts for a phase transi-
tion without fluctuations~solid line!, with fluc-
tuations~dotted line!, average over 200 simula-
tions ~short-dashed line!, and one-s width ~long-
dashed line!.

FIG. 6. As in Fig. 5 witha50.5.
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value of a and h show the average wall velocity for the
fluctuating background case along with the one sigma width;
the left-hand columns show the wall velocity for the homo-
geneous background case. In the limit of a very strong tran-
sition we can see that the rate of phase conversion ap-
proaches the homogeneous theory solution.

Also particularly relevant to electroweak baryogenesis is
the actual structure of the wall. Whether and how many bary-
ons are created depends on how particles, which are interact-
ing with the changing Higgs field, make the transition from
the 0 to the1 state. Though this depends on quantities such
as the velocity of the particle relative to the wall, which we
don’t calculate here, we can still get an idea of what a par-
ticle ‘‘sees’’ as it moves from one state to the other by taking
cross sections of the wall. In Figs. 5 and 6 we plot the values
of the field x as a function ofx at a particular time for
a50.4 anda50.5 with h50.1 for both the homogeneous

and fluctuating background theories. While the wall thick-
ness in the homogeneous theory can be clearly defined, it is
less apparent in the fluctuating case. We see that averaged
over 200 simulations the wall is thicker relative to the case
where there are no fluctuations, though the increase is only
moderate for the transition strengths used here and ap-
proaches the homogeneous background solution for a stron-
ger transition.

Figures 7 and 8 follow the behavior of a lattice point as a
function of time. The boundaries of when the transition from
the 0 to1 state begin and end is less clear in the fluctuating
case as compared to the homogeneous case. The results from
averaging over many simulations indicates that in general a
lattice point makes the transition more slowly than if there
were no fluctuations. This results because in the vicinity of
the bubble wall a lattice point may undergo several ‘‘transi-
tions’’ before finally reaching equilibrium in the1 phase.

FIG. 7. Lattice point history fora50.4,
h50.1. Shown are simulation results for a phase
transition without fluctuations~solid line!, with
fluctuations~dotted line!, average over 200 simu-
lations ~short-dashed line!, and one-s width
~long-dashed line!.

FIG. 8. As in Fig. 7 witha50.5.
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V. CONCLUSIONS

We see that quantities such as the rate of phase conver-
sion and the structure of the bubble wall can be different for
phase transitions with fluctuations as compared to the stan-
dard homogeneous background model. The speed of the
bubble wall may be increased by a factor of about two
for a ‘‘mildly’’ strong transition and probably even more
for weaker transitions. Physically, this is a reasonable expec-
tation; the wall effectively ‘‘swallows’’ the field fluctuations,
moving forward as it does so. In a transition with more
large amplitude fluctuations this swallowing effect is more
pronounced. Though the rate at which phase is converted
from the 0 to the1 phase is increased globally, locally the
transition is not necessarily well defined and more gradual.
Furthermore, we see that this effect is noticeable even
though only a small percentage~about 6%) of the sym-
metric phase may fluctuate beyond the barrier at any given
time. As the amplitude of the fluctuations decrease the
bubble behaves as predicted by the homogeneous back-
ground theory. That there are large amplitude fluctuations
which can roughly ‘‘mask’’ the transition is not surprising;
in fact, this is entirely determined by the stochastic noise
term in the equation of motion. What is interesting is that the
noise should have such a significant effect on a transition
which one would consider ‘‘strong’’ by the definition given
in Ref. @2#.

It is not necessarily evident that random fluctuations
should result in an increase in the velocity of the bubble
wall. Though fluctuations from the 0 to1 phase might speed
up the wall, one might also expect that fluctuations from the
1 to 0 phase would have the opposite effect, resulting in no
net change. It is the asymmetry in the potential, however,
which prevents this from happening. Because fluctuations
are a result of a random impulse on the field at a particular
point, a fluctuation which drives the field from the 0 to1
phase is more likely to approach or exceed the maximum of
the potential than those that go from the1 to 0 phase. The
dominant effect on the dynamics, then, is to enhance to 0 to
1 transition.

The implications for baryogenesis stem from the fact that
models rely on particular assumptions of the bubble wall
structure, e.g., a smoothly varying monotonic order param-
eter. The standard picture@15# states that, depending on the
thickness of the wall, one selects a mechanism with which to
calculate the baryon number generated. In order for this to
work, however, it is necessary that the homogeneous back-
ground theory of bubble nucleation and expansion be valid.
Previous studies have called into question this paradigm by
pointing out that subcritical bubbles may affect the initial
conditions of the transition as well as bubble nucleation
@1–6# in a weak first-order phase transition. Here we inves-

tigate transitions which are stronger than those in Ref.@2#,
but still within the regime where nucleation may be affected
by the presence of subcritical bubbles@6#. Although the elec-
troweak transition is most likely weak in the minimal stan-
dard model, authors@7,8,15# have argued that baryogenesis
is likely only for a sufficiently strong transition where the
effects of phase mixing due to thermal fluctuations would be
negligible. What we have shown here is that the realm of the
phase transition for which fluctuations may play a significant
role is larger than what was expected. Their effect is not
limited to possible alterations in the picture of homogeneous
nucleation or degree of phase mixing, but also includes
the dynamics subsequent to nucleation. For instance,
not only are the wall thickness and velocity larger, but the
path from the symmetric phase to the asymmetric phase is
hardly smooth or monotonic. Any model for electroweak
baryogenesis will clearly have to take the stochastic nature of
the dynamics into account when considering the interaction
of particles with the Higgs field. The results here are not
meant to be quantitative, but they do demonstrate the impor-
tance of fluctuations in the dynamics of first- order phase
transitions.

Finally, we point out some of the limitations of this work.
Ultimately, we would like to be able to obtain a complete
picture of the electroweak phase transition in order to
determine the viability of generating the baryon asymmetry
of the Universe at this scale. What we have done here
is to examine the role thermal fluctuations are likely to have
on the transition dynamics, and what the implications are
on models of baryogenesis. However, this study was limited
to ~211! dimensions rather than the 311 dimensions
of the real world. Extending this work to higher dimensions
would be a valuable contribution to our understanding
of this problem. Also, we have assumed here that one can
model the thermal fluctuations through stochastic white
noise, as one does when studying phenomena such as
Brownian motion. Realistically, this is only an approxima-
tion of more complicated couplings between system and
bath. Indeed, how one is to divide the physical environment
into system and bath and the nature of the noise that results
is a problem currently under active investigation@32, 33#.
Lastly, the dynamics of the cosmological fluid have been
omitted. Not only should the fluctuations have an effect on
the fluid, but, as already noted, the fluid itself plays a role in
the overall dynamics. A more complete treatment would in-
clude fluid velocity, pressure, and temperature as well as
parameters for heat capacity and conductivity in the simula-
tions. In spite of these caveats, we believe that our findings
are indicative of what we may eventually find to be the
‘‘true’’ dynamics.
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TABLE I. Wall velocities for varying parameter values where
vh represents the velocity in simulations without fluctuations and
v f represents the velocity in simulations with fluctuations.

h50.1 h50.2 h50.5
a vh v f vh v f vh v f

0.4 0.15 0.2460.06 0.08 0.1660.05 0.035 0.07760.036
0.5 0.4 0.4060.06 0.21 0.2560.02 0.09 0.1260.01
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