Basic Monopoly Theory

E. Glen Weyl

University of Chicago

Lecture 9
Regular Section
Elements of Economic Analysis II
Fall 2011
Introduction

Competitive model so far assumes *price-taking*:

1. If firm charged even little above “market price”, *no demand*
2. If firm increases production *no fall in price*

Never literally satisfied and bad approximation in detail

⇒ Today we’ll begin to study incentives to move prices

1. What is monopoly and when to apply?
2. Incentive to reduce quantity
3. Marginal revenue: mathematical and graphical examples
4. The Lerner elasticity pricing rule
 - Basic principles of trade-off, alternative metrics
 - Data and tricky cases
5. Deadweight loss and measurement
 - Quantifying the inefficiency created by monopoly
 - Tax pass-through and size of deadweight loss
 - How big are the economic losses from monopoly in practice?
When does monopoly apply?

Monopoly sounds like “this is the only company”
- But basic mechanism applies to *any non-price-taker*
 - Includes when company *can affect purchase price*
- More or less severe depending on size of distortion
- So when do we use monopoly v. oligopoly?
 1. Monopoly focuses on *direct effects of interventions*
 - Effects through changes in other eq. behavior ignored
 - Monopoly takes these as fixed, changes small
 2. Monopoly ignores welfare effects on other firms
 - Value to them ignored or pecuniary
 - Cannot be used to think about cross-firm externalities
 3. Monopoly model cannot study changes in structure
 - Useless for topics like merger analysis, effect of competition

⇒ Focus on incentives of one firm, input to other analysis
Monopoly and quantity reduction

Basic idea: monopolies reduce quantity to raise price

- To sell more, price must fall on all *infra-marginal* units
 - Would not arise if could charge different prices to each
 - We will talk more about this possibility on Thursday
- Thus monopoly will reduce quantity below \(P = MC \)
- Monopolies trying to reduce quantity omnipresent?

1. Occupational licensure from first class
2. Labor unions opposition to immigration, closed shops
3. Farmer cooperative try to prevent “over-production
4. Drug cartels actually greatly reduce drug quantities
 - When drug baron Escobar killed, cocaine price fell
5. Drug companies invest massive amounts in reducing supply
 - No reimportation, strictly delineated territories, etc.
6. Digital materials sharply restricted, lawsuits v. students
The marginal revenue curve

To represent, consider derivative of revenue \(R(q) = P(q)q \)

- Under perfect competition, set \(P = MC \)
- Now set \(MR = R' = MC \)
- By product rule?

\[
MR(q) = P(q) + P'(q)q
\]

- Two terms:
 1. Standard price, just as in competitive market
 2. Second term: change in price times quantity currently sold
 - Always negative, as long as demand downward sloping
 - Incentive to reduce quantity, to raise price on infra-marginal

- Distortion proportional to quantity, impact
 \(\Rightarrow \) Important to extent you are a large player
Examples of marginal revenue curve

Let’s derive for some simple examples (most common curves):

1. Concave demand $P(q) = 1 - q^2$; derive MR?
 - $P'(q) = -2q$, $MR(q) = 1 - q^2 - 2q^2 = 1 - 3q^2$
 - Diverges from demand increasingly rapidly with q

2. Linear demand $P(q) = 1 - q$?
 - $P'(q) = -1$, $MR(q) = 1 - q - q = 1 - 2q$
 - Steeper than demand, but starts together

3. Exponential: $P(q) = 1 - \log(q)$?
 - $P'(q) = -\frac{1}{q}$, $MR(q) = 1 - \log(q) - 1 = -\log(q)$
 - Below P by a constant (1), same slope

4. Constant elasticity: $P(q) = \frac{1}{q^2}$?
 - $P'(q) = -\frac{1}{2q^3}$, $MR(q) = \frac{1}{q^2} - \frac{1}{2q^2} = \frac{1}{2q^2}$
 - Constant fraction of demand, less steep, closer higher q
Graphical representation of marginal revenue
Elasticity and marginal revenue

Another way to write MR is $P(q) \left(1 - \frac{1}{\epsilon}\right)$; why?

- $\epsilon = -\frac{dQ}{dp} \frac{p}{q}$ so $-\frac{1}{\epsilon} = \frac{dP}{dq} \frac{q}{p}$
- So $-\frac{P}{\epsilon} = P'q = MR - P$

\implies Marginal revenue is negative if $\epsilon < 1$

- Monopolist *will never produce where demand inelastic*
- There, revenue falls w/ quantity, always reduce quantity!

\implies Elasticity of demand determines monopoly power

- If elasticity small, relative importance of market power small
- If elasticity large, relative importance very great
- Summarizes notion of being “big player” in the market

- Rearranging yields canonical formula:

Lerner’s elasticity pricing rule

$$\frac{p - MC}{p} = \frac{1}{\epsilon}$$
Alternative measurements of monopoly power

\(\frac{p - MC}{p} \) often called “mark-up”: relative to price

- But could also do mark-up relative to cost \(\frac{p - MC}{MC} = \frac{1}{\epsilon - 1} \)
- Or could do price-cost ratio \(\frac{p}{MC} = \frac{\epsilon}{\epsilon - 1} \)
- Or absolute mark-up \(p - MC = \frac{p}{\epsilon} \)
- Alternative, very similar ways to measure market power

Sometimes one can be more useful than others

1. Standard Lerner nice because directly elasticity
 - Use when elasticity particularly salient
2. Price-cost ratio useful for profits, especially w constant MC
3. Similarly with mark-up to cost, profitability
4. Absolute mark-up useful when costs not positive
 - What is mark-up in credit card market?
 - Make money off merchants, subsidies to consumers
 - There relative rules, elasticity are a mess
Experimenting and learning about demand

Of course, to set prices, firm needs sense of demand

- Otherwise quantity produces, demanded don’t match
- To make optimal price, need to draw out marginal revenue
- In past, firms had to just guess, gradually learn at this
- But internet has created revolution: real time experiments
- Many companies now do this all the time: Amazon, etc.
- Particularly common on Ebay:
 - Sellers experiment with with reserve price
 - Identical objects, different days, same days, etc.
 - Auction, but a lot like a demand curve; why?
 - Raising reserve price raises average price
 - If reserve price higher than second highest bid...
 - Also reduces probability of sale: may be above highest bid
 - Induces average price, probability of sale trade-off
Einav et al. (2011) got all of eBay's data, found all experiments

- Use to draw out many auction “demand” curves
- Find that all demand curves have similar shape
- Shape very interesting though:
 - Marginal revenue is increasing in some parts
 - Here marginal cost constant: probability of sale
 - This means may be multiple intersections
 - Above some cost, quantity falls discontinuously
 - \implies Price rises discontinuously with cost

- We can represent with “ironing line”
 - Line above which choose low quantity, below high quantity

To construct, I fit a 3rd degree polynomial to data
- Used this to build MR curve, drew in ironing line
 - Same area between line and curve on both sides
Einav et al. (2011) data

Each start price \((s/v) \) gives rise to a different \((Q,P) \) pair.

Measured demand curves
Fit marginal revenue
Ironing line
Fit demand curve
Why monopoly is inefficient

Monopoly has two basic effects, relative to competition:

1. Raises prices, *transferring* resources to monopolist
2. Reduces quantities, *inefficiently reducing output*
 - How do we know this reduction is inefficient?
 - At $p = MC$ everyone who values above cost consumes
 - When $p > MC$, some who value *more than cost* don’t
 - This is an efficiency loss: could consume, compensate firm
 - Again, because firm cannot distinguish among consumers

Inefficiency of monopoly apparent in real life:

1. Why aren’t information goods (music, etc.) available freely?
 - Completely non-rival, so cost obviously zero
2. Empty parking lots in busy cities charge high rates
 - People waste time looking on street, even though no cost
 - Clearly a waste of time and energy
The monopoly wedge

Effectively, monopoly means consumers have externality

- The more they purchase, the more profits firm makes
- Marginal externality equal to mark-up \(p - MC \)
- Extra profits created; not mediated through price system
- This naturally suggests standard Pigouvian solutions:
 1. Subsidize consumers for purchasing the good
 2. Regulate firm’s price down to cost
 3. Mandate efficient quantity produced (floor+trade)

Some of these used in practice (Lecture 12)
- But far less common than you’d think
- In lecture 13 we’ll talk about why, but keep in mind
- Other solutions common (prestigious products, advertising)
- For now, we treat as if it cannot be internalized easily
- Like any tax/externality, value of production \((p - MC)dq \)
The deadweight loss triangle

As a result, we can measure with standard tool

- *Deadweight loss* “triangle”
- Only difference is size determined by monopoly’s optimum

→ Particular size, relationship to monopoly profits
 - We’ll explore this in a bit
 - Triangle bounded by supply, demand, equilibrium quantity
 - Monopoly profits can be measured graphically in two ways:
 1. Area between equilibrium price and MC
 2. Or area between MR and MC

- Also *CS* (losses from no discrimination) is either:
 1. Area between demand and price
 2. Or area between demand and marginal revenue

- Monopoly gains $= (p - MC)q$ square...
 - Firm profit side of the DWL triangle
Graphical example of welfare quantities
Demand and pass-through

When tax imposed in competitive market, shared burden

- Price rises less than 1-for-1 unless supply perfectly elastic
- Depends only on elasticities: \(\rho_C = \frac{dp}{dt} = \frac{1}{1 + \frac{\epsilon_D}{\epsilon_S}} \)

- Under monopoly, slope of marginal revenue also crucial
 \(\Rightarrow \) Curvature of demand, not just elasticity, important
- Close to competitive (elasticity high) \(\Rightarrow \) close to \(\rho_C \)
- Highly monopolized (\(\epsilon_D \) low) \(\Rightarrow \) curvature crucial
- Curvature determines how sharply defined optimum is
 - If demand very concave then “price the market will bear”
 - Firms dare not go above this even if costs high
 - No value in going below it, just give up profits
 - If demand highly convex, then indifferent over range
 - Changes in cost can break this indifference, jump up
 - Einav et al. example an extreme case (upward sloping MR)
Graphical representation of pass-through
Division of surplus and demand

Same properties determine division of surplus

- What makes monopolist have “single right price”?
 - Little consumer surplus or deadweight loss
 - Capturing everything “there is to get” with current price
 - Concave: dies off quickly above, but don’t gain below

- What makes monopolist indifferent over range of prices?
 - Lots of consumer surplus, deadweight loss
 - Getting only small part of pie, tempted in both directions
 - Convex: dies off slowly above, but high price below

- Cost properties for high pass-through raise CS, DWL too:
 - If MC increasing, then lots of profits, small pass-through
 - If MC flat, smaller profits, larger pass-through
 - Also increasing MC reduces DWL triangle directly

⇒ Pass-through is same as division of surplus
Graphs of division of surplus

\[P \]

\[\Delta P \]

\[\Delta MC \]

\[D \]

\[MR \]

\[MC \]

\[Q \]

\[P \]

\[\Delta P \]

\[\Delta MC \]

\[D \]

\[MR \]

\[MC \]

\[Q \]

\[P \]

\[\Delta P \]

\[\Delta MC \]

\[D \]

\[MR \]

\[MC \]

\[Q \]

\[P \]

\[\Delta P \]

\[\Delta MC \]

\[D \]

\[MR \]

\[MC \]

\[Q \]
Harberger’s economy-wide exercise

1950’s: Chicago’s Arnold Harberger tried to measure, how?

1. Identified “abnormal profits” with monopoly; assumptions?
 - Assumes constant marginal cost/constant returns

2. Assume all industries have constant elasticity of 1
 - This allows him to determine, based on profits, size of DWL
 - Use relationship of profits to size of DWL as in diagram

3. Assume resources allocated perfectly within industry
 - Firms in industry same monopoly power

4. Got data on profitability of industries, compared
 - “Average” degree of profitability is opportunity cost of capital
 - Profits above this identified with monopoly

5. Backed out degree of excess profits
 - Determined how much reallocation needed to cure
 \[\Rightarrow \text{Total cost of cost of monopoly to economy} \]
Harberger’s shocking numbers and problems

Found something very surprising; what?

- Total loss from monopoly very small!
- About $\frac{1}{10}$ of one percent of GDP!
- Basic reason: triangle proportional to square of distortion
 \[\Rightarrow \text{Lots of small distortions make little difference} \]
 - Requires a few big distortions to really matter
 \[\Rightarrow \text{Not everything that matters in theory matters in practice} \]
- Lots of things are wrong with Harberger’s analysis?
 1. Monopoly arises particularly with increasing returns
 - This makes one firm more productive than many
 \[\Rightarrow \text{Greatly understates degree of monopoly} \]
 2. Most of heterogeneity is within industry, not across
 - Apple v. Motorolla, HTC, etc.
 3. Elasticity of demand uncertain, heterogeneous
Broader lessons from Harberger’s work

Still, carries some important lessons:

1. Monopoly distortions exist, but not necessarily large
 - I love antitrust policy and we’ll study a lot
 - But you should be skeptical about how important it really is

2. Takes large price change before DWL significant
 - Monopoly deadweight loss can be large relative to profits
 - But a bit of market power (not fully monopoly) not so bad
 - Starting from competitive, first mostly profits increase
 - If all prices elevated, cost from elevating one price smaller
 - Raising price has positive, real externality on other firms

 ⇒ Monopoly model (in symmetric industry) overstates DWL

3. Primary impact of monopoly may be transfer, not DWL
 - We’ll return to this in Lecture 13

4. Details (costs, heterogeneity) crucial for measurement