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A PARTIAL INDEPENDENCE ITEM
RESPONSE MODEL FOR SURVEYS
WITH FILTER QUESTIONS
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In many surveys, responses to earlier questions determine whether
later questions are asked. The probability of an affirmative re-
sponse to a given item is therefore nonzero only if the participant
responded affirmatively to some set of logically prior items, known
as “filter items.” In such surveys, the usual conditional indepen-
dence assumption of standard item response models fails. A weaker
“partial independence” assumption may hold, however, if an indi-
vidual’s responses to different items are independent conditional
on the item parameters, the individual’s latent trait, and the par-
ticipant’s affirmative responses to each of a set of filter items. In
this paper, we propose an item response model for such “partially
independent” item response data. We model such item response
patterns as a function of a person-specific latent trait and a set of
item parameters. Our model can be seen as a generalized hybrid
of a discrete-time hazard model and a Rasch model. The proposed
procedure yields estimates of (1) person-specific, interval-scale
measures of a latent trait (or traits), along with person-specific
standard errors of measurement; (2) conditional and marginal
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item severities for each item in a protocol; (3) person-specific
conditional and marginal probabilities of an affirmative response
to each item in a protocol; and (4) item information and total
survey information. In addition, we show here how to investigate
and test alternative conceptions of the dimensionality of the latent
trait(s) being measured. Finally, we compare our procedure with
a simpler alternative approach to summarizing data of this type.

1. INTRODUCTION

In social surveys, it is common to inquire about whether events have
occurred, and if so, to inquire about specific aspects of these events,
such as their frequency and intensity. Examples include substance use
(whether one has used a substance, and if so how often and how heav-
ily); crime (whether one has been involved in a given type of crime, and
if so, how often); symptoms of a disease; purchases of a given prod-
uct. Protocols of this type have a conditional structure: responses to
earlier questions determine whether later questions are asked. The re-
searcher presumes that the entire ensemble of responses carries useful
information about one or more underlying “latent” behavioral traits or
attributes.

Unfortunately, standard latent variable models for item response
data are not suited for the analysis of data having a conditional structure.
Instead, such models assume local independence—that is, conditional
independence of all item responses given the item parameters and the
person traits being measured (Lord & Novick 1968). Such an assump-
tion cannot hold when responses to a prior item determine whether a
later item is asked. However, a weaker “partial independence” assump-
tion may hold, where by “partial independence” we mean local inde-
pendence of item responses given a participant’s affirmative responses
to each of a set of logically prior items.

In this paper, we propose a principled procedure for modeling
response patterns to such protocols as a function of a person-specific
latent trait and a set of item parameters. Our procedure yields estimates
of four quantities of interest: (1) person-specific, interval-scale measures
of a latent trait (or traits), along with person-specific standard errors of
measurement; (2) conditional and marginal item severities for each item
in a protocol; (3) person-specific conditional and marginal probabilities
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of an affirmative response to each item in a protocol; and (4) item in-
formation and total survey information. In addition, we show here how
to investigate and test alternative conceptions of the dimensionality
of the latent trait(s) being measured. Finally, we compare our proce-
dure with a simpler alternative approach to summarizing data of this
type.

We achieve these aims by formulating fixed and random effects
models for item responses that may be conditional on prior responses
while being independent of responses to other items. The modeling ap-
proach can be seen as a generalized hybrid of a discrete-time hazard
model and a Rasch model. The conditional structure of the items enables
us to define “risk sets” of individuals who possess a nonzero probabil-
ity of responding affirmatively to sets of logically subsequent items; the
logic of the discrete-time hazard model (Allison 1982) and the (formally
equivalent) continuation ratio model for ordinal outcomes (Armstrong
and Sloan 1989; Cox 1988; Fienberg 1980) provides guidance here. Un-
like the discrete-time and continuation ratio models, however, our model
incorporates the possibility that multiple “locally-independent” items
may be asked of each individual in a risk set. The model assumes that
each person possesses a latent trait or attribute that affects the proba-
bility of an affirmative response to each such locally independent item,
conditional on having affirmatively answered all logically prior items. In
addition, each such item may have subsequent items conditional upon
it, allowing us to fit models based on complex sets of both conditional
and independent items.

Although the approach we develop in this paper has applica-
tion to a wide range of substantive survey domains, we focus on a
single potential application—the problem of estimating latent alco-
hol and marijuana use from a set of survey items regarding substance
use in the last year—in order to provide a concrete illustration of the
method. In particular, we demonstrate the application of our model
to study the alcohol and marijuana use of a large, diverse, and rep-
resentative sample of children growing up in Chicago. To illustrate
how our model can be used to investigate the dimensionality of la-
tent characteristics, we then investigate whether adolescent alcohol and
marijuana use can be considered aspects of a single underlying latent
substance use trait, or whether they represent distinct behavioral tra-
its.



260 REARDON AND RAUDENBUSH

2. BACKGROUND AND SIGNIFICANCE

Researchers interested in adolescent substance abuse—as well as in a
wide range of other substantive domains—have contended with the
conditional structure of survey data in a variety of ways. Each has some
utility in particular circumstances, but none of the available methods
used to date efficiently combines information across all item responses
within the framework of latent trait analysis, which is the aim of the
current paper.

2.1. Single-Item Analysis

A simple strategy for analyzing data having a conditional structure is
to study one item at a time (Adalbjarnardottir 2002; Bailey, Flewelling,
and Rachal 1992; Chassin, Pitts, and Prost 2002; Hill et al. 2000; Khoo
and Muthen 2000). Suppose, for example, that the first question on
a survey is “Have you had a drink during the past year?” Modeling
responses to such a question as a function of covariates or exposure to
prevention programs could be quite useful.

One obvious limitation of single-item analysis is that it does not
allow a pooling of information across item responses to reduce the error
with which a latent trait is measured. This limitation of single-item anal-
ysis provides an important rationale for latent trait models for multiple
item responses. Latent trait models also supply a basis for quantify-
ing measurement error, a benefit that single-item analysis cannot enjoy.
Moreover, if a questionnaire includes many items, single-item analysis
applied to each item will give rise to a large number of hypothesis tests,
increasing the risk of a Type I error. It may prove difficult to summarize
evidence across the many analyses so generated.

The limitations of single-item analysis described above apply to
all multiple-item surveys, even those without a conditional structure.
However, when single-item analysis is applied to survey items having
a conditional structure, a subtle and potentially pernicious additional
concern arises: conditioning on an error-prone response. To illustrate,
consider a case in which persons who respond affirmatively to the ques-
tion “Have you had a drink in the past year?” are asked “Were you drunk
in the last year?” Applying single-item analysis to this second, condi-
tional question requires that those who responded negatively to the first
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question be discarded. Yet, some of those cases may be discarded simply
as a result of measurement error.

Consider a thought experiment in which two persons with the
same propensity to drink respond differently to the first question
because of differences in estimating when they last had a drink or be-
cause the timing of the last drink differed slightly. For example, one per-
son might have had a drink 364 days ago and correctly responded “yes”
to the first question while a second person with an identical propen-
sity to drink may have had a drink 366 days ago and thus correctly
responded “no” to the first question. In this case, single-item analysis
for the second item would require that the second person be discarded,
strictly as a result of measurement error. Selecting the sample for an
analysis conditional on measurement error may then create unwanted
results such as regression to the mean. The only way to avoid such a
problem using single-item analysis is to restrict application to noncon-
ditional items. But such a procedure then requires that information from
all conditional items be discarded, meaning that the expense required
to collect this additional information will have been wasted.

2.2. Multiple Item Analysis

A second strategy is to develop a transformation that combines multiple-
item responses to a single variable believed to determine these multiple-
item responses. This strategy is widely used. (Recent examples are found
in Barnes et al. 2000; Bennett et al. 1999; Colder and Stice 1998; Dun-
can, Duncan, and Hops 1996; Hussong, Curran, and Chassin 1998;
Scheier et al. 2000; Schulenberg et al. 1996; Silberg et al. 2003; Wills
and Cleary 1999.) In this approach, item responses might be added,
for example, or combined into ordered categories. In comparison to
single-item analysis, such an approach has the advantage of combining
more information from the survey to measure the variable of interest,
in principle reducing measurement error and also allowing a more par-
simonious analytic plan. A limitation of this method, however, is that
it is not based on a probabilistic model for how the item responses are
generated. Thus, the benefits of latent trait analysis via item response
modeling are not available. These include a principled calibration of
items, study of item fit, the quantification of measurement error, and
the evaluation of dimensionality.
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The study of dimensionality has emerged as an important topic in
item response modeling (Adams, Wilson, and Wang 1997; Cheong and
Raudenbush 2000; Raudenbush, Johnson, and Sampson 2003; Reck-
ase 1985). Study of dimensionality has important implications for the
assessment of construct validity. Suppose, for example, that responses to
items about alcohol use and marijuana use are treated as a single dimen-
sion when in truth two separate dimensions, one for each substance, are
driving the item responses. Such a unidimensional analysis would fail
to reveal the different processes that predict use of the two substances.
Multidimensionality takes a different form when subgroups (e.g., males
and females) respond differently to particular items even holding con-
stant the latent trait of interest. Such differential item functioning (DIF;
Holland & Wainer 1993), sometimes called “item bias,” can be studied
in a principled way using item response modeling, but this benefit has
not yet been extended to surveys having a conditional item structure.

Finally, when the items have a partially conditional structure,
constructing a variable by a simple transformation of multiple-item re-
sponses may propagate measurement error. Let us again take up the
example described above, in which two persons having the same propen-
sity to use alcohol responded differently to the question “Have you used
alcohol during the past year?” In this case, the person responding affir-
matively, but not the person responding negatively, will be asked more
questions, perhaps many more questions, increasing the opportunity for
the two cases to be incorrectly differentiated when all item responses are
combined.

2.3. The Case for a Latent Trait Model for Partially Independent Item
Response Data

The foregoing discussion suggests that the advantages afforded by la-
tent trait analysis ought to be extended to survey data having a partially
conditional structure. This requires a reasonable probabilistic model to
describe responses to a mixture of item types. We shall define a “gate”
item as one that must be answered affirmatively if a set of logically sub-
sequent items is to be administered to a given respondent. Individuals
who answer a given “gate” item or set of items affirmatively are then in
the “risk set” for logically subsequent items. Our probabilistic approach
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regards the marginal probability of an affirmative response to a given
item as the product of the probability of responding affirmatively to
its gate item(s) (i.e., being in the risk set for the given item) and the
conditional probability of responding affirmatively to that item given
that one responded affirmatively to its gate item(s). Our approach thus
combines a hazard model of the probability of passing a gate, given that
prior gates have been passed, and a Rasch model to describe variation
in the probabilities of responding affirmatively to sets of items, con-
ditional on being in the risk set for each item. To illustrate, we apply
this approach to a large and representative sample of data on children
growing up in Chicago.

3. SAMPLE AND DATA

For the illustrative examples in this paper, we use data on adoles-
cent substance use from a subsample of the longitudinal cohort study
of the Project on Human Development in Chicago Neighborhoods
(PHDCN), an ongoing, multilevel, prospective, longitudinal study de-
signed to investigate the effects of neighborhood demographic and so-
cial context on a wide array of developmental and behavioral outcomes.
The PHDCN study consists of a representative sample of children and
youth living in 80 neighborhoods of Chicago between 1995 and 1996.
The sampling design and data collection procedures for PHDCN are
described in detail in Sampson, Morenoff, and Raudenbush (2005).

Our sample consists of adolescents from the 12-, 15-, and 18-year-
old cohorts of the PHDCN sample. Each adolescent was interviewed
three times, at roughly two- to three-year intervals. For each adolescent
in our subsample, we use only one of three available longitudinal obser-
vations for the analyses reported here—wave 1 interview data from the
18-year-old cohort; wave 2 interview data from the 15-year-old cohort;
and wave 3 interview data from the 12-year-old cohort. We restrict the
age range in our sample in order to avoid confounding measurement
issues with potential age variation in the measurement model. Of the
1531 eligible subjects, we exclude 79 subjects (5%) missing data on any
of the four alcohol items (70 subjects) or on any of four demographic
variables—age, gender, race/ethnicity, and socioeconomic status
(9 subjects). Thus our subsample consists of interview data from a
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representative sample of 1452 Chicago adolescents, aged 16–19 between
1995 and 2001 (mean age=17.4, S.D.=.8; 53% female; 19% white, 37%
black; 44% Latino).

Adolescents in the PHDCN sample were asked a set of questions
about their alcohol use in the last year. We use information from four
alcohol use questions:

1. How many times did you drink alcohol in the last year? (possible re-
sponses were: never, 1–2 times, 3–5 times, 6–11 times, 12–24 times,
25–50 times, 51–99 times, 100–199 times, 200 or more times).

2. How many times were you drunk in the last year? (asked of those whose
response to question 1 indicated they had a drink at least once in the
last year—subjects could answer with any number; responses ranged
from 0 to 300).

3. How many times did you drink in the last month? (asked of those whose
response to question 1 indicated they had a drink at least once in the
last year—possible responses were: never, 1–2 times, 3-5 times, 6–9
times, 10–14 times, 15–20 times, 21 or more times).

4. How many times did you have more than 5 drinks in a row in the last
month? (asked of those whose response to question 3 indicated they
had a drink at least once in the last month—possible responses were:
never, 1 time, 2 times, 3–5 times, 6–9 times, 10 or more times).

From these four questions, we construct 11 binary items, each of
which indicates whether an individual’s response to a specific question
is at or above a certain threshold level. For example, using thresholds
of 1, 6, and 25 for the first question, we construct three items: Did you
drink at least 1 time in the last year? Did you drink at least 6 times in the
last year? Did you drink at least 25 times in the last year? For question 2
we use thresholds of 1, 6, and 25; for question 3, we use thresholds of
1, 3 and 10; and for question 4 we use thresholds of 1 and 3.

This procedure results in 11 binary items (see Table 1). Each of
these items has a “risk set”—the set of persons who could have logically
answered ‘yes’ to the item, given their prior responses. This is the set
of persons who answered yes to the logically prior item or items (e.g.,
the risk set for the ‘had at least one drink in the last month’ item is the
set of persons who said yes to the ‘had at least one drink in the last
year’ item). The conditional probability for an item is the probability of
saying yes to the item, conditional on being in the risk set for the item.
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TABLE 1
Observed Alcohol Item Response Frequencies

Gate Marginal Risk Number Conditional
Item Description Items Probability Set of yes Probability

1 Alcohol in year -none- .554 1,452 805 .554
2 Alcohol 6x in year 1 .262 805 380 .472
3 Alcohol 25x in year 1, 2 .116 380 169 .445
4 Drunk in year 1 .341 805 495 .615
5 Drunk 6x in year 1, 4 .094 495 137 .277
6 Drunk 25x in year 1, 4, 5 .038 137 55 .401
7 Alcohol in month 1 .320 805 464 .576
8 Alcohol 3x in month 1, 7 .158 464 229 .494
9 Alcohol 10x in month 1, 7, 8 .039 229 57 .249

10 Binge in month 1, 7 .160 464 233 .502
11 Binge 3x in month 1, 7, 10 .064 233 93 .399

The marginal probability for an item is simply the probability of saying
yes to the item.

Although we could have constructed more items or fewer items
by selecting a different set of thresholds, our choice of thresholds was not
arbitrary. We chose thresholds that would differentiate well across the
range of responses and would give conditional probabilities far from 0 or
1, since constructing the items this way preserves most of the information
in the responses while keeping the number of constructed items relatively
parsimonious.1

4. THE MODEL

4.1. Item Structure and the Gate Matrix

Suppose that persons i = 1,. . .,n respond to items k = 1,. . .,K, gener-
ating, for each person, the response vector Yi = [yi1,yi2,. . .,yiK ], where

1In additional analyses (not shown) we use 8 thresholds for questions 1 and
2 (1, 3, 6, 12, 25, 51, 100, 200), 6 thresholds for question 3 (1, 3, 6, 10, 15, 21), and 5
thresholds for question 4 (1, 2, 3, 6, 10). This uses the maximum possible information
from questions 1, 3, and 4, and most of the information from question 2, and results
in 27 items rather than 11. Results based on this more detailed set of conditional
items are not substantially different from those based on the more parsimonious set
of items, so we present the more parsimonious set here for simplicity of presentation.
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yik = 1 if person i responded affirmatively to item k, and yik = 0 if person
i responded negatively to item k or if person i did not respond to item k
because he or she responded negatively to a gate item for item k, and so
was not asked item k. We indicate the item structure as follows: we say
that item j is a gate for item k if yj = 0 implies that yk = 0. We define
the K × K gate matrix G, where element G[k,j] = Gkj = 1 if item j is a
gate item for item k, and 0 otherwise (by definition, Gkk = 0, since an
item cannot be a gate item for itself). The pattern of 1s in a given row
k of G indicates which items are gate items for item k; the pattern of 1s
in a given column j of G indicates which items are conditional on item
j (items for which j is a gate item).

Next we define hik, the gate value for item k for person i, as
follows: define hik = 1 if yij = 1 for all items j that are gate items for k,
and hik = 0 if yij = 0 for at least one item j that is a gate item for k:

hik =
K∏

j=1

[
1 − Gkj

(
1 − yi j

)]· (1)

In other words, hik indicates whether the gate item or items for item k
for person i are satisfied, and so indicates whether person i is in the risk
set for item k. In a survey, hik will be 0 for items that person i is not
asked because he or she did not meet the conditions necessary to be
asked them (because his or her response to item k is determined by his
or her negative response(s) to one or more of the gate items for item k).
We denote the risk set Rk for item k as the set of all individuals i who
have hik = 1.

To make this more concrete, consider a simple set of three items,
where all individuals are asked item 1, but where items 2 and 3 are asked
conditional on an affirmative response to item 1. Such an item structure
can be illustrated as follows:

For this item structure, the gate matrix G would be
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G =

0 0 0

1 0 0
1 0 0


 . (2)

If we added a fourth item that was conditional on item 3, the item
structure and corresponding gate matrix would be

(3)

For our alcohol data, the item structure and corresponding gate ma-
trix defined by the questionnaire skip fields and the thresholds we use
to define the binary items are (where the items are numbered as in
Table 1):

(4)

As an aside, note that the gate matrix can be more complex than this:
In our case, item 2 (drank alcohol 6 or more times in the last year), for
example, is a logical gate for item 5 (was drunk 6 or more times in the last
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year), even though this is not reflected in the skip patterns of the survey
questionnaire. If we incorporated this logical gate (and other similar
ones) into the gate matrix, we would have

(5)

In our illustrative example for this paper, we use gate matrix (4) above,
though the model applies equally well to a matrix like that in (5).2

4.2. Model Notation

Let φ ik denote the conditional probability of a yes response to item k
for person i (conditional on a yes response to all gate items for item k).
That is,

φik = Pr (yik = 1|hik = 1) . (6)

2The problem with (5) is that the data may not exactly correspond to the
logical gate matrix in (5): for example, some subjects may have said they were drunk
6 or more times in the last year but also said that they had not had a drink 6 or
more times in the last year. To use the logical gate matrix in (5) with such data
requires us to decide that one of these two responses is incorrect and to recode it. To
use the questionnaire gate matrix in (4) allows us to use the responses as provided
(but erroneously assumes the responses to the two items in question are condition-
ally independent, which is incorrect—item 5 is conditional on item 2). In our data,
there are 22 cases (1.5% of 1452 total cases) containing logically inconsistent re-
sponses to the four alcohol use questions (e.g., a subject reported drinking fewer than
6 times in the last year, but reported being drunk 6 or more times in the last year,
or drinking 10 or more times in the last month).
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We assume that each individual has a conditional probability of saying
yes to each item k, even if he or she is not asked item k because he
or she does not say yes to the necessary gate item(s). This conditional
probability will be a function of θ i, the unobserved latent trait for person
i. In the fixed effects models below, θ i is a fixed parameter, while in the
random effects models, we shall assume θ i∼N(0,τ ).

Finally, let π ik denote the marginal probability that person i re-
sponds affirmatively to item k:

πik = Pr (yik = 1)
= φik · πi Rk,

(7)

where π iRk is the marginal probability that person i is in the risk set for
item k:

πi Rk = Pr (hik = 1)

=
K∏

j=1
φ

Gkj

i j .
(8)

Thus we have

πik = φik · πi Rk

= φik

K∏
j=1

φ
Gkj

i j
(9)

To summarize our notation:
k indexes items.
i indexes persons.
yik is the observed response to item k for person i.
Yi is the observed response vector for person i.
hik is the observed gate value for item k for person i.
Hi is the observed vector of gate values for person i.
Rk is the risk set for item k.
Gkj indicates whether item k is conditional on item j.
φ ik denotes the conditional probability of a yes response to item

k for person i.
π ik denotes the marginal probability of a yes response to item k

for person i.
θ i denotes the (unobserved) latent trait for person i.



270 REARDON AND RAUDENBUSH

γ k denotes the conditional severity of item k.
τ denotes the variance of θ i.

4.3. Fixed Effects Likelihood

We model the conditional probability of a positive response to item k
as

φik = [
1 + e−(θi −γk)]−1

. (10)

Under the fixed effects specification, the parameters are γ 1, . . . , γ K ; θ 1,
. . . , θ n. The probability of observing response pattern Yi for person i is
then given by

Pr (Yi ) =
K∏

k=1

[
φ

yik
ik (1 − φik)(1−yik)

]hik

(11)

From this, we write the fixed effects log-likelihood, lf , of observing the
response pattern Y found in the data, where γ = (γ 1, . . ., γ K ) and θ =
(θ 1, . . ., θ n), as

l f = ln[L(Y; γ, θ)] =
n∑

i=1

K∑
k=1

hik

[
yik ln

(
φik

1−φik

)
+ ln (1 − φik)

]

=
K∑

k=1

∑
i∈Rk

[yikηik + ln (1 − φik)]

=
K∑

k=1
l f k

=
n∑

i=1
l f i ,

(12)

where l f k = ∑n
i=1 hik [yikηik + ln (1 − φik)] is the fixed ef-

fects log-likelihood for item k, given γ k and θ; l f i =∑K
k=1 hik [yikηik + ln (1 − φik)] is the fixed effects log-likelihood

for person i, given γ and θ i; and ηik = ln [ φ ik/(1 − φ ik)]. Note that yik

= 0 by definition when hik = 0, so lfk is the log-likelihood of observing
the pattern of responses to item k for all who satisfied the gate items to
item k (all those in Rk). The observed (structural) 0s for item k among
those who did not satisfy the gate items for k contribute no information
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to the log-likelihood lfk since they are determined by the condition hik

= 0.
Since lfk depends only on those who can possibly have answered

item k, we can drop item k for person i from the data set if hik=0.
This is what we do in a discrete-time hazard model. In fact, equation
(12) above is the log-likelihood for the hazard model in the special case
where hi (k+1)=yi k for all k—that is, where the items are strictly ordered
and each item is conditional on the prior item.3 In addition, in the case
where hik = 1 by definition for all k (where there are no gate items; each
individual responds to all questions), then (12) above is the likelihood
for the fixed effects Rasch model with K items per person.

We note that γ k is interpretable as the “conditional severity”
of item k, and θ i is the value of the latent trait of individual i. The
conditional severity of item k corresponds to the value of θ i at which a
person would have a 0.5 probability of answering item k affirmatively,
conditional on that person having satisfied the gate conditions for item
k. Expressed differently, the conditional severity of item k is the log-
odds of a negative response to item k for a person with a value of θ i = 0
(an “average” person), conditional on that person having met the gate
conditions for item k.

The fixed effects model can be estimated using standard software
for logistic regression under the model

ηik = θi +
K∑

j=1

γ j Di j , (13)

where Dij is a dummy variable indicating that person i is responding to
item j. One limitation of the fixed effects Rasch model is that we must
discard all information from individuals who either endorse all items or
who fail to endorse any items. This means that we obtain estimates of θ i

for only the subset of individuals who endorse some, but not all, items.

3The discrete-time hazard model and the continuation ratio model for
ordinal data are formally equivalent models, and both can be seen as a special case
of our model, corresponding to a gate matrix where all entries below the diagonal
are equal to 1, and all entries on or above the diagonal are 0. In the usual discrete-
time and continuation ratio models, we drop θ i from the model in equation (12),
since there is no information from which to estimate it, though we keep θ i in the case
of the multilevel versions of these models (Barber et al. 2000; Reardon, Brennan,
and Buka 2002).



272 REARDON AND RAUDENBUSH

4.4. Random Effects Likelihood

Under the random effects model, we assume that

θi ∼ N(0, τ ), τ ≥ 0. (14)

The parameters to be estimated are then (γ 1, . . . , γ K , τ ) and the random
effects likelihood4 for participant i is

L(Yi ; γ, τ ) = (2πτ )−1/2
∫

el f i −θ2
i /2τ dθi . (15)

The integral is not available in closed form but can be approximated in
several ways, including adaptive Gauss-Hermite Quadrature (Pinheiro
and Bates 1995) and the Laplace method (Raudenbush, Yang, and Yosef
2000).

Under the random effects model, person-specific inferences are
readily obtained from the posterior distribution of the latent variable θ i

given the data Yi and the parameter estimates (γ̂ , τ̂ ). The point estimate
and uncertainty estimate for the person-specific latent trait are obtained,
respectively, from the posterior mean

θ∗
i = E (θi |Yi, γ̂, τ̂ )

= ∫
θi p (θi |Yi, γ̂, τ̂ )dθi

= [L (Yi; γ̂, τ̂ )]−1(2πτ̂ )−1/2
∫

θi el̂ f i −θ2
i /2τ̂ dθi ,

(16)

and the posterior variance

V∗
i = E

[(
θi − θ∗

i

)2 |Yi, γ̂, τ̂
]

= ∫ (
θi − θ∗

i

)2 p (θi |Yi, γ̂, τ̂ )dθi

= [L(Yi;γ̂, τ̂ )]−1(2πτ̂ )−1/2
∫ (

θi − θ∗
i

)2 el̂ f i −θ2
i /2τ̂ dθi ,

(17)

where l̂ f i = l f i evaluated at γ = γ̂. These posterior means and vari-
ances are obtained from integrals approximated via the Laplace method

4Note that in the special case where hik=1 by definition for all items (where
none of the items are conditional on other items), the likelihood in (15) is identical
to that of the random effects Rasch model with K items (Raudenbush, Johnson,
and Sampson 2003).
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(Raudenbush et al. 2005). They are regarded as empirical Bayes esti-
mates because they are conditional upon point estimates of γ and τ .
Unlike the fixed effects model, the random effects model allows us to
retain all persons in the analysis, including those who answered all ques-
tions negatively or all questions affirmatively. Another advantage is that
the random effects model summarizes heterogeneity between persons in
a single parameter (τ ), allowing efficient estimation even in the presence
of item missing data under the comparatively mild assumption that the
data are missing at random (Little & Rubin 2002). Finally, the ran-
dom effects model extends naturally to the case where person traits are
modeled as a function of covariates, a procedure we illustrate below.

5. AN EMPIRICAL EXAMPLE

To fit the partially conditional item-response model, we first construct
a person-item data set based on the observed response patterns. We
illustrate the construction of the person-item data set using hypothet-
ical data from three observed subjects. Table 2(a) describes observed
responses to the four alcohol use questions for three hypothetical sub-
jects. Subject 1, a 17-year-old, reported that he had not had a drink in
the last year, and so did not answer the remaining three questions. Sub-
ject 2, a 16-year-old, reported 3 to 5 drinking occasions in the last year.
Because she reported at least one drinking occasion in the last year, she
was also asked how many times she had been drunk in the last year, and
how many times she had had a drink in the last month. She responded
negatively to each of these, meaning that she was not asked the fourth
question. Finally, subject 3, an 18-year-old, reported drinking 25 to 50
times and being drunk 5 times in the last year, and drinking 3 to 5 times
and binge drinking 3 times in the last month.

The information in these four ordinal items is recoded into 11
binary items, as described above (see Table 1). Table 2(b) reports the
observed item response pattern for these 11 items, with skipped items
coded as (structural) zeros.

Converting the binary item response pattern in Table 2(b) to a
person-item data set is analogous to constructing a person-period data
set for use with a discrete-time hazard model (Singer and Willett 2003),
although it requires reference to the gate matrix G in order to construct
it. The person-item data set has 11 item indicator dummy variables, one
for each of the 11 binary items in our data. In addition, the person-item
data set includes a binary response variable y, which indicates whether a



274 REARDON AND RAUDENBUSH

TABLE 2(a)
Observed Responses for Three Hypothetical Subjects

# Times # Times # Times Had # Times Had
Had a Drink, Drunk, a Drink, 5+ Drinks,

ID Last Year Last Year Last Month Last Month Sex Age

1 0 times -skip- -skip- -skip- M 17
2 3–5 times 0 times 0 times -skip- F 16
3 25–50 times 5 times 3–5 times 3 times M 18

TABLE 2(b)
Binary Item Response Pattern for Three Hypothetical Subjects

Item Number

ID 1 2 3 4 5 6 7 8 9 10 11 Sex Age

1 0 0 0 0 0 0 0 0 0 0 0 M 17
2 1 0 0 0 0 0 0 0 0 0 0 F 16
3 1 1 1 1 0 0 1 1 0 1 1 M 18

TABLE 2(c)
Person-Item Data Set for Three Hypothetical Subjects

ID y D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Sex Age

1 0 1 0 0 0 0 0 0 0 0 0 0 M 17
2 1 1 0 0 0 0 0 0 0 0 0 0 F 16
2 0 0 1 0 0 0 0 0 0 0 0 0 F 16
2 0 0 0 0 1 0 0 0 0 0 0 0 F 16
2 0 0 0 0 0 0 0 1 0 0 0 0 F 16
3 1 1 0 0 0 0 0 0 0 0 0 0 M 18
3 1 0 1 0 0 0 0 0 0 0 0 0 M 18
3 1 0 0 1 0 0 0 0 0 0 0 0 M 18
3 1 0 0 0 1 0 0 0 0 0 0 0 M 18
3 0 0 0 0 0 1 0 0 0 0 0 0 M 18
3 1 0 0 0 0 0 0 1 0 0 0 0 M 18
3 1 0 0 0 0 0 0 0 1 0 0 0 M 18
3 0 0 0 0 0 0 0 0 0 1 0 0 M 18
3 1 0 0 0 0 0 0 0 0 0 1 0 M 18
3 1 0 0 0 0 0 0 0 0 0 0 1 M 18

subject responded affirmatively to the item represented by each specific
line of data.

In the person-item data, there is one observation for each item k
for each person i where hik=1. Thus, in Table 2(c), there is a single line
of data for subject 1, corresponding to item 1 (had at least 1 drink in the
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FIGURE 1. Distribution of estimated latent alcohol use (empirical Bayes estimates).

last year), since he was in the risk set for item 1 (everyone is in the risk
set for item 1, because it is not conditional on any other item—it has no
gate items), but not in the risk set for any other item. Likewise, there are
four lines of data for subject 2, one for item 1, to which she answered
affirmatively, and one each for items 2, 4, and 7. Because she responded
negatively to each of these, she is in the risk set for none of the remaining
items, and so none are included in the person-item data. Finally, subject
3 has 10 lines of data in the person-item data, since he was in the risk
set for all but one of the questions—he responded negatively to item 5
(was drunk at least 6 times in the last year), and so was not in the risk
set for item 6 (was drunk at least 25 times in the last year).

We fit a random effects model (equations 13–15) to these data
using the EM algorithm with Laplace approximation to the likelihood
(Raudenbush, Yang, and Yosef 2000) using the software package HLM6
(Raudenbush et al. 2005). From the fitted model we obtain four quan-
tities of interest: (1) person-specific, interval-scale measures of a latent
trait (or traits), along with person-specific standard errors of measure-
ment; (2) estimates of conditional and marginal severities for each item
in the protocol; (3) person-specific conditional and marginal proba-
bilities of an affirmative response to each item in the protocol; and (4)
measures of item information and total survey information. We describe
how to obtain and interpret these quantities in the following sections.
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5.1. Person-Specific Estimates of Latent Alcohol Use

From the fitted random effects model, we obtain empirical Bayes
person-specific posterior means (θ∗

i) and variances (V∗
i) as given by

equations (16) and (17). Figure 1 illustrates the distribution of θ∗
i , i =

1, . . ., n. The fitted random effects model also yields an estimate of the
variance τ of the latent alcohol use trait (τ̂ = 4.816), and the solid line
in Figure 1 describes this estimated distribution of the latent trait. The
distribution of θ∗

i has a large spike at θ∗
i = −1.58. In fact, 647 of the 1452

subjects have θ∗
i = −1.58; these are those individuals who responded no

to the first item (ever drink in the last year). Because these individuals
were asked no other items, their estimated θ∗

i is based on a single item,
and so contains much more uncertainty than does θ∗

i for individuals
who were asked more questions.

Figure 2 illustrates the precision of θ∗
i , given by the posterior stan-

dard deviation (V∗
i )1/2. The left-vertical describes the posterior standard

deviation in the units of θ ; the right-vertical axis describes the posterior
standard deviation expressed in terms of the estimated standard devi-
ation of θ , (V∗

i /τ̂ )1/2; this conversion makes the magnitude of the pos-
terior standard deviations more interpretable. The 647 subjects who re-
ported never drinking in the last year have the largest posterior standard

0.7

0.6

0.5

0.4

0.3

1.6

1.4

1.2

1.0

0.8

0.6

E
st

im
at

ed
 s

ta
nd

ar
d 

de
vi

at
io

ns
 o

f θ

S
ta

nd
ar

d 
er

ro
r 

of
 e

st
im

at
e

(p
os

te
rio

r 
st

an
da

rd
 d

ev
ia

tio
n)

-2.0 0.0 2.0 4.0 6.0

Estimated latent alcohol use (posterior mean)

FIGURE 2. Precision of estimated latent alcohol use.



A PARTIAL INDEPENDENCE ITEM RESPONSE MODEL 277

TABLE 3
Estimated Conditional and Marginal Item Severities

Estimated Conditional Estimated Marginal
Item Description Severity Severity

1 Alcohol in year −0.362 (0.089) −0.362
2 Alcohol 6x in year 1.388 (0.116) 1.656
3 Alcohol 25x in year 2.823 (0.150) 3.215
4 Drunk in year 0.481 (0.114) 1.003
5 Drunk 6x in year 3.423 (0.152) 3.557
6 Drunk 25x in year 4.195 (0.223) 4.777
7 Alcohol in month 0.729 (0.113) 1.169
8 Alcohol 3x in month 2.133 (0.144) 2.577
9 Alcohol 10x in month 4.666 (0.202) 4.846

10 Binge in month 2.081 (0.138) 2.543
11 Binge 3x in month 3.607 (0.186) 4.017

Note: Standard errors in parentheses. Conditional difficulties are estimated
coefficients from fitted model; marginal difficulties are the value of θ that corresponds to a
marginal probability of 0.5, given the estimated conditional item difficulties and the gate
matrix.

deviations ((V∗
i )1/2 = 1.50 = .69τ̂ 1/2), reflecting the lack of information

from which to estimate θ i for these individuals. The precision is greatest
for individuals with values of θ∗

i in the middle range of the estimates—
corresponding to individuals whose latent use is well-differentiated by
the items on the survey. We return to this point in the discussion of the
survey information function below.

5.2. Estimated Item Conditional and Marginal Severity

The fitted random effects model yields the estimated parameters shown
in Table 3. The estimated coefficients on the 11 item indicator variables
represent the estimated item conditional severity for each of the items.
As we noted above, the conditional severity of item k is interpreted as
the value of θ i at which an individual would have a 0.5 probability of
answering item k affirmatively, given that he or she is in the risk set for
the item.

In addition to obtaining estimates of the item conditional sever-
ities, we can also obtain estimates of the item marginal severities. The
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FIGURE 3. Estimated item conditional probabilities, by latent trait.

marginal severity of item k is the value of θ i at which an individual would
have a 0.5 probability of answering item k affirmatively, given the esti-
mated item conditional severities and the gate matrix. These marginal
severities are of more interest—and are more interpretable—than the
conditional severities, since they correspond to estimated behavioral
prevalences in the population. Given the estimated item conditional
severity parameters from Table 3, we compute the item marginal sever-
ities by finding the value of θ such that π k = 0.5, where π k is given
by

πk = (
1 + e−(θ−γ̂k))−1

K∏
j=1

(
1 + e−(θ−γ̂ j )

)−Gkj

(18)

Since π k is a strictly increasing continuous function of θ , we solve
π k(θ) = 0.5 for θ by interpolation. Table 3 reports these estimated
item marginal severities.

Figures 3 and 4 illustrate the fitted conditional and marginal
probability curves for each item. Figure 3 illustrates the conditional
probability curve for each item, with the estimated distribution of
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θ i overlaid. Note that the item conditional severity parameters reported
in Table 3 and illustrated in Figure 3 should not be interpreted as pro-
viding a meaningfully ordered ranking of item behavioral severity. For
example, the conditional severity of item 11 (had 5 or more drinks in a
row at least 3 times in the last month) is slightly higher than the con-
ditional severity of item 5 (was drunk at least 6 times in the last year),
but we cannot tell from these coefficient estimates alone whether the
prevalence of binge drinking three or more times in the last month is
greater or less than the prevalence of being drunk at least six times in
the last year. This is because the conditional severities depend on the
item structure (the gate matrix) and so are not straightforwardly inter-
pretable. We note also that, in our example, the estimated conditional
severities are all greater than 0, except that for item 1 (ever drank in
the last year). This implies that we have little information in the data
with which to discriminate individuals with low values of θ i from one
another, a point we return to below.

Figure 4 illustrates the estimated marginal probability curves,
computed from equation (18). Unlike the item conditional probability
curves, the marginal probability curves are not parallel, since they are
the product of multiple conditional probability curves. However, the
marginal probability curves do yield a meaningful ordered ranking of
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item severity. As we expect given the item structure, the least severe item
is item 1 (ever have a drink in the last year); next are items 3 (ever drunk
in the last year) and 4 (ever have a drink in the last month). At the other
end of the ranking, the highest severity are items 9 (had a drink 10 or
more times in the last month) and 6 (was drunk at least 25 times in the
last year). Note that the marginal probability curves for these two items
cross. Although the curves are so close in this case as to be statistically
indistinguishable (particularly given the small number of individuals in
the risk set for either item), the curve crossing—were it significant—
would be interpreted as indicating that item 6 is the most severe item
among those with values of θ i above 4.0, while item 9 is the most severe
among those with lower values of θ i.

5.3. Estimated Person-Specific Item Conditional and Marginal
Probabilities

Given the estimated item conditional severity parameters from Table 3
and the person-specific (empirical Bayes) estimates of θ i, we can com-
pute estimated person-specific conditional probabilities for each item.
These are given by substituting the estimated conditional severity pa-
rameters and the estimated θ̂∗

i from equation (16) into equation (10):

φ̂ik =
(

1 + e−(θ∗
i −γ̂k)

)−1
. (19)

From these estimates, we can compute the predicted person-specific
marginal probability for each item k as

π̂ik = φ̂ik

K∏
j=1

φ̂
Gkj

i j . (20)

5.4. Comparing Observed and Predicted Item Conditional
and Marginal Probabilities

In addition to examining the fitted conditional and marginal probabil-
ity curves, we wish to examine the fit of the model to the observed data.
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One way of doing this is to assess how closely the model predictions fit
the observed conditional and marginal proportions of individuals en-
dorsing each item. We have two methods of checking this. The first relies
on predicting the person-specific conditional and marginal probabilities
as above, and then averaging these over those in the risk set for a given
item. Specifically, we first compute each φ̂ik and π̂ik from equations (19)
and (20), and then, for each item k, we compute ¯̂

φk = ∑
i hikφ̂ik, the

predicted average conditional probability of endorsing item k among
those in the risk set for item k, and ¯̂πk = ∑

i π̂ik, the predicted average
marginal probability of endorsing item k among those in the sample.
We then compare these predictions with the observed conditional and
marginal proportions in the data (see Table 4).

Because of shrinkage in θ∗
i as an estimate of θi, the predicted aver-

age conditional probabilities will be biased, though the direction of bias
is not consistent. Persons with high true values of θ i will be assigned
estimates θ∗

i that are biased negatively (toward zero), thus underesti-
mating their conditional probabilities φ ik. In contrast, persons with low
true values of θ i will be assigned estimates θ∗

i that are biased positively
(toward zero), thus overestimating their conditional probabilities φ ik.
For any given item k that is conditional on at least one other item, the
risk set Rk will, in general, contain more individuals with high values of
θ i than with low values of θ i, since those with higher values of θ i will be
more likely to respond affirmatively to the gate items for k. Thus, when
we average the φ̂ik over those in Rk, the resulting average will tend to be a
negatively biased estimate of the true average conditional probability of
item k. Even if these biases are small, when these biased conditionals are
multiplied to obtain marginal probabilities, the negative biases will tend
to accumulate, yielding larger bias in the estimated average marginal
probabilities than in the estimated marginal conditional probabilities.
This pattern is evident in Table 4.

The second method of assessing the model fit relies on integrating
the estimated marginal probability curve over the estimated distribution
of θ in order to obtain estimated average conditional and marginal
probabilities. Specifically, we compute the estimated average marginal
probability for each item k as

¯̂πk = (2πτ̂ )−1/2
∫

π̂kθe−θ2/2τ̂ dθ, (21)
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where π̂kθ is the estimated marginal probability at θ , as defined in
equation (20).5 From (21), we compute the estimated average condi-
tional probability of endorsing item k among those in the risk set for
item k as

¯̂
φk =

¯̂πk

¯̂π Rk

, (22)

where ¯̂π Rk is the estimated average marginal probability of being in the
risk set for item k. In the case where each item has at most only a
single immediately prior gate item (that is, for each item k, there is
at most one item j such that yij = 1 implies hik = 1), the marginal
probability of being in the risk set for item k is simply the marginal
probability of endorsing the single immediately prior gate item.6 Ta-
ble 5 compares the predicted average conditional and marginal proba-
bilities with the observed conditional and marginal proportions in the
data.

Note that method one (Table 4) yields very good estimates of the
average conditional probabilities, while method two (Table 5) yields very
good estimates of the marginal probabilities. This difference is likely due
to the fact that method one is based on directly estimating the average
conditional probabilities from the model estimates and then multiplying
these to obtain the average marginals. Here slight biases in the estimated
conditional probabilities (particularly if the biases are generally in the
same direction, as they are here) will be multiplied into larger biases in
the estimated marginal probabilities in this case. Method two, in con-
trast, is based on directly estimating the average marginal probabilities
and then taking ratios of these to compute the average conditionals.
Again, slight biases in the estimated marginal probabilities may be

5The integral in (21) has no closed form, so we can evaluate it numerically,
or by simulating a distribution of θ ∼ N(0,τ ) and averaging the value of π ik over
the simulated distribution of θ .

6In the more general case, as for example, in the gate matrix described by
matrix (5), the marginal probability of being in the risk set for item k is given by

πRk =
K∏

m1=1

K∏
m2=1

. . .

K∏
mK =1

(πm1 )G[k,m1]
[
(πm2 )G[m1,m2] . . .

[
(πmK )G[mK−1,mK ]

]−1
. . .

]−1
.
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compounded into larger discrepancies in the conditional probabilities
through multiplication. Since the marginal probabilities are generally
likely to be of greater interest, method two provides a more useful as-
sessment of model fit.

In both cases, the discrepancies tend to be negative, meaning that
the model appears to slightly underestimate the observed conditional
and marginal probabilities of item endorsement. The greatest discrep-
ancies between the observed and predicted probabilities occur for the
rarest items, possibly because the upper tail of the true distribution of
θ is somewhat longer than that given by the simulated normal distribu-
tion. This is also suggested by the apparent correlation between the bias
in the predicted conditional probabilities and the marginal probabilities
of the items—if the predicted distribution is too thin in the upper tail,
this will show up most dramatically in computing the conditional prob-
abilities for the items with the highest conditional severities. Overall,
however, the model appears to fit the data rather well.

5.5. Computing Item and Survey Information

As we note above, Figures 2, 3, and 4 each provide some insight into the
information content of the survey. It is evident from Figure 2 that the
uncertainty in the estimated latent alcohol use trait is smallest for θ∗

i in
the vicinity of 3.0. Likewise, Figures 3 and 4 suggest that the survey items
will discriminate best among individuals with values of θ somewhere in
the range of 1.0 to 4.0, since most of the items have conditional and
marginal severities in this range. The items are not independent of one
another, so—unlike in a Rasch model, where all items are independent
of one another—the total information in the survey does not necessarily
correspond to the density of the item severities, since more severe items
will be asked of relatively few subjects.

We formalize the notion of survey information here. We consider
two approaches to defining the survey information. First, we consider
Fisher information based on the fixed effects model. The fixed effects
model yields a simple, interpretable, and useful measure of total survey
information. Second, we compute a person-specific measure of infor-
mation: the inverse of the empirical Bayes posterior variance V∗

i of θ i

given the data and the estimates of γ and τ . A graph of this measure of
information as a function of the person-specific empirical Bayes
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estimates θ∗
i provides additional insight about the values of θ for which

the survey is most informative.
Under the fixed effects model, the observed Fisher information

for person i is defined as the negative of the second derivative of the
log-likelihood, given θ i:

Ii (θi ) = −∂2l f i

∂θ2

= − ∂2

∂θ2

K∑
k=1

hik

[
yik ln

(
φik

1 − φik

)
+ ln(1 − φik)

]

= ∑K
k=1 hikφik(1 − φik).

(23)

From this, we can derive the expected Fisher information, given θ i, as

E [Ii (θi )] = E
(

K∑
k=1

hikφik (1 − φik)
)

=
K∑

k=1
E (hik) φik (1 − φik)

=
K∑

k=1
πi Rkφik (1 − φik)

=
K∑

k=1
πik (1 − φik).

(24)

As equation (24) indicates, the expected information content of the sur-
vey protocol, given θ i, is a sum of the expected information from each
item. The information contained in each item is the product of the ex-
pected size of the risk set for the item and the expected information
content of the item.7 Items will provide the most information for values
of θ such that the risk set, given θ , is large, and the conditional proba-
bility of the item, given θ , is 0.5. This is useful for considering how to
construct survey protocols designed to measure latent traits.

The Fisher information is based on the fixed effects model—that
is, it describes the information conditional on θ . The Bayesian informa-
tion is given by the inverse of the posterior variance in equation (17).

7We note that, in the case of the Rasch model, all individuals are in the
risk set for each item, so the expected Fisher information given in (24) reduces in
this special case to

∑K
k=1 φik(1 − φik), as expected.
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FIGURE 5. Estimated total survey information, by latent trait.

Figure 5 plots both the estimated Bayesian information (V̂∗−1
i ) and the

expected Fisher information (equation 24) against θ i. The figure shows
that the total information based on the fixed effects model (solid curve)
is highest just between 3.0 and 4.0. The graph of the empirical Bayes
person-specific information (see the dots in the figure) tells a very sim-
ilar story. The maximum values of this information measure are also
between 3.0 and 4.0. As we might expect, the empirical Bayes infor-
mation is uniformly higher than the information from the fixed effects
model. The information at any θ from the fixed effects model is based
only on the data for a single person, while the empirical Bayes informa-
tion is the sum of that person-specific information and the information
about γ and τ provided by the rest of the sample. In this way, the empir-
ical Bayes procedure augments the information from each participant,
“borrowing strength” from the sample as a whole.

It is evident from Figure 5 that the survey has little discriminatory
power for individuals with θ i<0. It may be that we are not interested in
differentiating among such individuals, but if we were, Figure 5 would
suggest the need to include more low severity items in the survey proto-
col.
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6. ASSESSING DIMENSIONALITY

Dimensionality of the latent characteristic may be assessed in at least
three ways. First, we may hypothesize multiple dimensions of latent
alcohol use and attempt to confirm that different items correspond
to different latent dimensions by examining the estimated correlation
matrix among the hypothesized dimensions. Second, we may investi-
gate whether observed covariates are similarly associated with the hy-
pothesized dimensions, reasoning that if covariates are differently as-
sociated with the hypothesized dimensions, then they cannot be con-
sidered unidimensional (Raudenbush, Johnson, and Sampson 2003).
Third, we may employ a differential item functioning test to investigate
whether all the items are similarly associated with observed covariates.
We describe each of these approaches to investigating dimensionality
below.

6.1. Examining the Correlation Matrix Among Hypothesized
Dimensions

Let θa and θb denote latent characteristics, and let ak and bk be dummy
variables indicating whether item k is an indicator of latent characteristic
θa or θb, respectively (we assume ak + bk = 1 for all k). Then we fit the
random effects model

ln
(

φik

1 − φik

)
= akθ

a
i + bkθ

b
i +

K∑
j=1

γ j Di j ,

[
θa

i
θb

i

]
∼ N

([
0
0

]
,

[
τa τab

τab τb

])
, (25)

where Dij is a dummy variable indicating that a response refers to item
j for person i. The estimated correlation between θa and θb is indicative
of the extent to which the items measuring θa and θb represent different
dimensions.
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6.2. Examining the Association of Covariates with Hypothesized
Dimensions

If θa and θb measure the same dimension, then an observed covariate X
should be similarly associated with both. To test this, we fit the model

ln
(

φik

1 − φik

)
= ak

(
ua

i + γa Xi
) + bk

(
ub

i + γb Xi
) +

K∑
j=1

γ j Di j ,

[
ua

i
ub

i

]
∼ N

([
0
0

]
,

[
τa τab

τab τb

])
(26)

and test the hypothesis H0:γ a=γ b. A rejection of H0 indicates that θa

and θb measure different dimensions.

6.3. Assessing Dimensionality via Differential Item Functioning

A third way of assessing dimensionality is to examine the model for
differential item functioning (DIF). If the items all measure the same
latent characteristic, then observable covariates ought to be similarly
associated with each of the items. We can test for DIF by each observed
covariate X by fitting the model

ln
(

φik

1 − φik

)
= θi +

K∑
j=1

(
γ j + δ j Xi

)
Di j , θi ∼ N (0, τ ) (27)

and testing the null hypothesis H0:δ1=δ2=. . .=δK (We use a likelihood
ratio test, comparing this model’s deviance to the deviance of a model
where the δ js are constrained to be equal.)

6.4. Empirical Assessment of Substance Use Dimensionality

To illustrate these different approaches to assessing dimensionality, we
use a slightly different example than above. Here we use the same sam-
ple of adolescents from the PHDCN sample but include information
from two additional survey questions—measuring marijuana use—in
the data. Specifically, we use information from two marijuana use items:
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5. How many times did you use marijuana in the last year? (possible
responses were: never, 1–2 times, 3–5 times, 6–11 times, 12–24 times,
25–50 times, 51–99 times, 100–199 times, 200 or more times).

6. How many times did you use marijuana in the last month? (asked of
those whose response to question 5 indicated they used marijuana at
least once in the last year; possible responses were: never, 1–2 times,
3–5 times, 6–9 times, 10–14 times, 15–20 times, 21 or more times).

As with the four alcohol items, from these two items we construct
multiple binary items, each indicating whether an individual’s response
is above a certain threshold (we use thresholds of 1, 6, 25, and 100 for the
first item, and thresholds of 1, 3, and 10 for the second). The full set of 18
derived alcohol and marijuana binary items and their response patterns
are described in Table 6, and their item structure and corresponding
gate matrix is given below (where the items are ordered as above):

(28)
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TABLE 6
Observed Alcohol and Marijuana Item Response Frequencies

Gate Marginal Risk Number Conditional
Item Description Items Probability Set of Yes Probability

1 Alcohol in year -none- .557 1,431 797 .554
2 Alcohol 6x in year 1 .261 797 374 .472
3 Alcohol 25x in year 1,2 .116 374 166 .445
4 Drunk in year 1 .342 797 489 .615
5 Drunk 6x in year 1,4 .093 489 133 .277
6 Drunk 25x in year 1,4,5 .037 133 53 .401
7 Alcohol in month 1 .319 797 457 .576
8 Alcohol 3x in month 1,7 .156 457 223 .494
9 Alcohol 10x in month 1,7,8 .040 223 57 .249
10 Binge in month 1,7 .160 457 229 .502
11 Binge 3x in month 1,7,10 .064 229 91 .399
12 Marijuana in year -none- .293 1,431 419 .293
13 Marijuana 6x in year 12 .164 419 235 .561
14 Marijuana 25x in year 12,13 .094 235 134 .570
15 Marijuana 100x in year 12,13,14 .046 134 66 .493
16 Marijuana in month 12 .177 419 252 .601
17 Marijuana 3x in month 12,16 .112 252 159 .631
18 Marijuana 10x in month 12,16,17 .065 159 93 .585

Note: The sample is slightly smaller here than in Table 1, due to the omission of 21
individuals who did not answer the marijuana items.

We hypothesize that alcohol and marijuana use may be separate
dimensions of substance use. Under this assumption, we view the 11
alcohol items (unshaded above) as conditional indicators of a latent al-
cohol use dimension, and the 7 marijuana items (shaded above) as condi-
tional indicators of a latent marijuana dimension. We might hypothesize
that these two latent characteristics are distinct in the population—an
individual’s alcohol use may not correspond well to his or her marijuana
use.

When we fit the model (25) to our data, using each of the hypoth-
esized dimensional structures, we obtain an estimated correlation near
1.0 between the latent alcohol and marijuana use levels. This high cor-
relation is more a result of the fact that we have very little information
from which to separately estimate the two factors, rather than strong
evidence that they are perfectly correlated. So this is a rather weak test
of dimensionality, except in the case where we have far more items than
those here.
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TABLE 7
Estimated Coefficients on Selected Covariates Predicting Hypothesized Separate

Dimensions of Substance Use

Male SES Age Black Hispanic

Main Effecta 0.839∗∗∗ 0.160∗∗ 0.816∗∗∗ −0.823∗∗∗ −1.025∗∗∗

Dimension-Specific Effect
Alcoholb 0.771∗∗∗ 0.183∗∗∗ 0.985∗∗∗ −1.208∗∗∗ −1.098∗∗∗

Marijuanab 0.910∗∗∗ 0.137∗ 0.649∗∗∗ −0.466∗ −0.988∗∗∗

p-valuec 0.167 0.289 <.001 <.001 0.476
Differential Item

Functioning (DIF) Test
p-valued 0.095 0.084 <.001 <.001 >.500

a Asterisks indicate p-value from deviance test of null hypothesis that the estimated
coefficient is zero (∗p < .05; ∗∗p < .01; ∗∗∗p < .001). Coefficient estimates obtained from
model that assumes a single substance use domain.

b Asterisks indicate p-value from deviance test of null hypothesis that the estimated
coefficient on the specified dimension is zero (∗p < .05; ∗∗p < .01; ∗∗∗p < .001).

c p-value from deviance test of equivalence of coefficients on both dimensions.
d p-value from deviance test of equivalence of coefficients on all 18 alcohol and

marijuana items.
Notes: Coefficient estimates are taken from models of the form shown in (18), but

with the constraint ua
i = ub

i for all i (see text), and with each covariate entered separately in a
different model (except black and hispanic, which are entered in a model together).

Our second approach to assessing dimensionality derives from
the insight that if θa and θb measure the same dimension of substance
use, then an observed covariate X should be similarly associated with
both (Raudenbush, Johnson, and Sampson 2003). We test this, using
covariates age, sex, SES,8 and race/ethnicity (black and hispanic, ver-
sus omitted category white) in models of the form shown in equation
(26).9 The resulting estimates, and the p-values corresponding to the
tests of the hypothesis that the associations between X and each of the
hypothesized dimensions are equal, are shown in Table 7.

Table 7 provides some evidence of multidimensionality. First,
the relationship between age and alcohol use (γ̂a = 0.985, p < .001)

8SES is a standardized composite indicator of socioeconomic status, de-
rived from measures of mother and father’s education levels and occupations, and
family income.

9The fitted model is slightly different than described in Equation (26):
this model would not converge when covariates were included on the alcohol and
marijuana constructs, because the alcohol and marijuana random effects ua and
ub were too highly correlated. We constrain the two random effects to be equal to
obtain the estimates shown in Table 7.
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appears greater than the relationship between age and marijuana use
(γ̂b = 0.649, p < .001). Indeed, the difference between these two coeffi-
cients (0.985-0.649 = 0.336) is highly statistically significant (p < .001).
This means that, in the age range represented in our sample, use levels
differ by age more for alcohol than for marijuana. In addition, the differ-
ence between blacks and whites in alcohol use (γ̂a = −1.208, p < .001)
appears greater than the difference between blacks and whites in mari-
juana use (γ̂b = −0.466, p < .05). In fact, the difference between these
two coefficients (−1.208−(−0.466)= −0.742) is highly statistically sig-
nificant (p<.001). We cannot, however, reject the null hypothesis that
each of the other covariates tested (sex, SES, and hispanic) are similarly
associated with the hypothesized alcohol and marijuana dimensions.

Our third approach to assessing dimensionality is to test the items
for differential item functioning (DIF). Using the same five covariates
as above, we fit models of the form shown in equation (27), and test the
null hypothesis that the association of the covariate with each of the 18
alcohol and marijuana items is constant across items. Figure 6 shows
the 95% confidence intervals for each coefficient for each item. The
solid horizontal line in each part of the figure indicates the estimated
coefficient from the model assuming a constant relationship between
the covariate and each item (these are the “main effects” reported in
Table 7). The two dashed lines in each part represent the estimated
coefficients from the model allowing the covariate to have different as-
sociations with the latent alcohol and marijuana use traits (these are the
“dimension-specific effects” reported in Table 7). Table 7 reports the p-
values from deviance tests of the null hypothesis of constant association
across items. The results of the DIF test are consistent with those of
the covariate modeling approach above: both age and race (black ver-
sus white) are differentially associated with the conditional log-odds of
endorsing different items.

The three approaches to assessing the dimensionality of the item
responses described here have different strengths and limitations. The
first approach, based on estimating the correlation among hypothe-
sized latent characteristics indicated by different items, allows us to
test the hypothesis that distinct subsets of items are indicators of sepa-
rate dimensions without reference to any specific observable covariate.
This test, however, generally has very low power, and so may easily re-
sult in a failure to detect existing multidimensionality unless the latent
characteristics are estimated with high precision (which requires a large
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FIGURE 6. Estimated coefficients from differential item functioning tests, by covariate.

number of items to provide information across the range of the latent
characteristics’ distributions). The second approach, based on testing
whether observed covariates are similarly associated with each hypoth-
esized latent characteristic, has greater power to detect hypothesized
multidimensionality, but only if that multidimensionality is associated
with observable covariates. The third approach, based on the DIF test,
has the advantage that it does not require us to specify a hypothesized di-
mensional structure to the items. The DIF test, however, has low power
when the number of items becomes large, since the test will have degrees
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of freedom equal to K, the number of items. Moreover, the DIF test,
like the second approach, can detect multidimensionality only if that
multidimensionality is associated with observable covariates.

Under the assumption of unidimensionality, the latent trait
model we propose here, like all logit models, contains an implicit set
of proportional odds assumptions. In particular, the model makes as-
sumptions analogous to the level-2 proportional odds and proportional
error assumptions described in Reardon, Brennan, and Buka (2002).
Applied to our model, these assumptions require that a given difference
in a covariate or in the residual unobserved latent trait (that part of
the latent trait not explained by the covariates in the model, if any) is
associated with a proportional difference in the conditional odds of an
affirmative response to each item. One way to view the dimensionality
tests described here is as tests of these proportionality assumptions—
our approach assumes a definition of dimensionality based on the in-
sight that multidimensionality is evident in a violation of one or more
proportional odds assumptions. Expressed differently, the proportional
odds assumption is equivalent to the additivity assumption in the Rasch
model. One could, in principle, relax this assumption and use a two-
parameter model rather than a Rasch model to study the conditional
probabilities in order to test the additivity assumption of the Rasch
scale and to identify items that do not fit the Rasch scale (Raudenbush,
Johnson, and Sampson, 2003).

7. CONCLUSION

We noted above that one approach used by some researchers in mod-
eling nonindependent items like these is to create a variable reflecting
the sum or average of the item responses. It is illustrative to compare
our estimates of the person-specific latent trait values with those that
would be obtained using this simpler sum-of-item-responses approach.
Figure 7 illustrates the relationship in our data between the observed
and expected sums of alcohol item responses10 and the estimated latent
alcohol use θ̂∗

i (we use only the 11 alcohol items here, not the additional

10The expected sum of item responses, given θ
∗
i , is simply the sum of the

K marginal item probabilities at θ
∗
i . We note also that the expected sum of item

responses tends to underestimate the observed sum of item responses, particularly
for large values of θ

∗
i , as a result of shrinkage in the estimation of θ

∗
i .
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7 marijuana items). The correlation between the observed sum of item
responses and θ̂∗

i is strikingly high (r = .989), as evident in Figure 7. We
might reasonably ask, then, what is the value of our modeling approach
when it yields estimates that are largely indistinguishable from a simple
sum of the item responses?

The latent trait model proposed here has a number of advantages
over the sum-of-item-responses approach. First, the latent trait model
provides estimates (and associated standard errors) of the item condi-
tional severities, which can be used to estimate item marginal severities.
These can be used to compute person-specific marginal probabilities of
saying yes to a given item, and so provide information regarding the
relative prevalence of specific behaviors at any given level of the latent
trait. In conjunction with the estimate of τ , these marginal probabilities
allow us to estimate the prevalence of specific behaviors in the popu-
lation. The sum-of-item-responses approach yields no information on
item severity or prevalence, which in many cases may be a primary goal
of the analysis.

Second, our approach yields not only estimates of the distri-
bution of the latent trait and person-specific estimates of θ∗

i , but also
person-specific estimates of the uncertainty in θ∗

i (equation 17). The
sum-of-item-responses approach provides no estimate of uncertainty;
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it assumes no measurement error. A third advantage of our model is
that it is robust to item-missing data, under missing-at-random (MAR)
and coarsening-at-random assumptions; see Barber et al. (2000); Little
and Rubin (2002). The sum-of-item-responses approach does not allow
missing data, since an average of nonmissing items will be biased up-
ward relative to the average of the complete set of items (because the
marginal probability of missing items will generally be lower than the
marginal probability of nonmissing items).

Fourth, the latent trait model and its interpretation are generally
robust to different item structures, while the sum-of-item-responses ap-
proach is not. To see this, note that the expected sum of item responses
shown in Figure 7 is a nonlinear function of θ∗

i . The curve describ-
ing the expected sum of item responses is steepest in that part of the
distribution of θ where the marginal probability curves (Figure 4) are,
on average, steepest. In general, this will be where the item marginal
severities are most densely concentrated. As a result, the relationship
between both the observed and expected sums of item responses and θ∗

i
will be sensitive to the item structure used. Adding or removing items
from the survey or the analysis will therefore alter the interpretation of
the metric of the sum of item responses. It will not, however change the
interpretation of the metric of θ , since θ will always be expressed in a
well-defined interval-scale metric relative to the conditional log-odds of
item responses.

Finally, the partial independence item response model is general
enough to lend itself to a number of possible applications and extensions.
It can, for example, be used to construct measurement models that use
information from a combination of dichotomous and ordinal items—a
situation common to many social surveys. It could, for example, be used
to model a discrete-time “multiple hazard” process—for example, where
an individual is exposed to multiple, partially independent events (e.g.,
conditional on having some medical procedure, a person might be at risk
for several conditionally independent postoperative complications).

In this paper, we have extended the methodology of latent trait
modeling via item response theory to the case of surveys with filter or
“gate” items—items for which the responses determine whether sub-
sequent questions are asked. Such data are common in social surveys
but violate the conditional independence assumption of standard item
response models. The partial independence assumption we rely on here
is weaker than the standard conditional independence assumption,
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as it requires conditional independence of item responses only given
membership in the risk set for each item. Thus, while the Rasch model,
the discrete-time hazard model (including the multilevel discrete-time
model), and the continuation ratio model are each special cases of our
model, the partial independence item response model is more general
than each of these.
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