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Abstract

This paper develops and quantifies the implications of the stock-flow matching

model for unemployment, job vacancies, and worker flows. Workers and jobs are hetero-

geneous, so most worker-job pairs cannot profitably match, leading to the coexistence

of unemployed workers and job vacancies. Productivity shocks cause fluctuations in

the number of active jobs, which in turn cause fluctuations in labor market outcomes.

We derive exact expressions for employment and worker transition rates in a finite

economy and analyze their limiting behavior in a large economy. A calibrated version

of the model is consistent with the co-movement of labor market variables observed in

U.S. data and can explain about one third of their volatility.
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1. Introduction

This paper develops and quantifies the implications of the stock-flow matching model (Taylor,

1995; Coles and Muthoo, 1998; Coles and Smith, 1998) for labor market outcomes. Workers

and jobs are heterogeneous, so most worker-job pairs cannot profitably match, leading to the

coexistence of unemployed workers and job vacancies. Productivity shocks affect the number

of jobs that firms create, which in turn causes fluctuations in unemployment, job vacancies,

and worker flows. We derive exact expressions for these variables in a finite economy and

quantitatively analyze their limiting behavior in a large economy.

Suppose there are L workers and M jobs in the economy at some point in time. Further-

more assume that E workers are employed in a productive match and there is no possibility of

productively matching any of the U = L−E unemployed workers with any of the V = M−E

vacant jobs. If an idiosyncratic shock causes a filled job to exit the labor market, its worker

looks at the stock of vacant jobs to see if she can productively match with one. If not, she

joins the stock of unemployed workers. Similarly, when a firm finds it profitable to create a

new job, it examines the stock of unemployed workers to see if one is suitable. If not, the job

becomes vacant. Thus the inflow of newly unemployed workers matches with the stock of

available jobs and symmetrically the stock of unemployed workers matches with the inflow

of new jobs, the eponymous stock-flow matching.
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The number of employed workers is a random variable, even conditional on the number of

workers and jobs. We derive an exact formula for the distribution of the number of employed

workers as a function of the current number of workers and jobs and the probability that any

worker-job match is productive. We also derive an exact formula for the probability that the

entry of a new job leads to an unemployed worker finding a job and for the probability that

the exit of a job leads to an employed worker becoming unemployed.

We then consider a limiting version of the economy where the expected number of workers

who can productively match with a job α remains fixed, but the number of workers goes

to infinity. In the large economy, the employment rate is no longer a random variable, but

simply depends on the contemporaneous ratio of the number of jobs to workers, m, and the

parameter α. Similarly, the probability that a job exiting causes an employed worker to

become unemployed and the probability that a job entering causes an unemployed worker

to become employed are deterministic functions of m and α.

Finally, we quantitatively examine how the economy responds to aggregate productivity

shocks. The behavior of the calibrated model is nearly indistinguishable from the “mismatch”

model in Shimer (2006). It replicates two robust features of the U.S. labor market: the

negative correlation between unemployment and vacancies at business cycle frequencies (the

Beveridge curve) and the positive correlation between the rate at which unemployed workers
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find jobs and the vacancy-unemployment (v-u) ratio (the reduced-form matching function).

In the model and in the data, vacancies are slightly more volatile than unemployment

and the correlation between the two variables is strongly negative. The model predicts that

a ten percent increase in the v-u ratio should be associated with a two percent increase in the

job finding rate. In particular, the elasticity of the model-generated reduced-form matching

function is virtually constant. Empirically the elasticity is constant but closer to 0.3.

The calibrated model explains more than a quarter of the volatility in the job finding

rate, more than a third of the volatility in the v-u ratio, and more than 40 percent of the

volatility in the separation rate of employed workers to unemployment in response to small

productivity shocks. These numbers are much larger than the corresponding values that

Shimer (2005) found in a search and matching model based on Pissarides (1985).

Previous research on stock-flow matching models has focused either on wage setting

(Taylor, 1995; Coles and Muthoo, 1998) or on the model’s implication that the number of

matches depends on both the stock and inflow of unemployed workers and job vacancies

(Coles and Smith, 1998; Coles and Petrongolo, 2003; Smith and Kuo, 2006); see also Lagos

(2000). They have typically also assumed that all matches last forever, which simplifies the

exposition but limits the possibility of using the model to match labor market facts. In par-

ticular, these papers have not derived the distribution of employment or the transition rate
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from employment to unemployment and back in the finite economy, nor the limiting behavior

in the large economy; and they have not shown that stock-flow matching is quantitatively

consistent with the empirical Beveridge curve and reduced-form matching function.

This paper also contributes to the search (Lucas and Prescott, 1974) and matching

(Pissarides, 1985; Mortensen and Pissarides, 1994; Pissarides, 2000) literature and especially

to recent attempts to evaluate the matching model’s ability to explain the business cycle be-

havior of unemployment, vacancies, and worker flows (e.g. Shimer, 2005; Hall, 2005). Our

approach here abandons two of the key assumptions in the search and matching model.

Rather than posit the existence of a stable matching function, we derive a matching process

explicitly from the microeconomic heterogeneity. And rather than assume wages are set via

Nash bargaining, we assume that a firm is able to drive down the wage of a worker who has

no other job opportunities, but must pay a high wage to a worker with another opportu-

nity. This version of the Mortensen (1982) rule ensures that the decentralized equilibrium

maximizes the output produced in the economy. Fortuitously, going back to first principles

on the matching and wage determination significantly improves the ability of the model to

match the cyclical behavior of labor markets.

Finally, this paper is most closely related to Shimer (2006). In that paper, workers

and jobs are located in distinct labor markets, corresponding to occupations or geographic
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locations. Any worker in a labor market can take any job in the labor market, and each

labor market clears with wages determined competitively. By assumption, the allocation

of workers and jobs to labor markets is random, and so there are unemployed workers in

some labor markets and vacancies in others. In the current paper, whether a worker and job

can productively match is idiosyncratic, independent across workers and jobs. Although the

microeconomic matching structure is different, the quantitative results shown in Table 2 in

that paper and Table 3 in this paper are remarkably similar. This suggests to us that these

results may be more general than either particular model.

In any case, the frictions analyzed in search models, mismatch models, and stock-flow

matching models are complementary. A more comprehensive model would recognize that

there are distinct labor markets with poor possibilities of substituting workers across labor

markets, as in Shimer (2006); that not every worker can take every job within a labor market,

as in this paper; and that locating a suitable job may require some time-consuming search,

as in Lucas and Prescott (1974).

The next section describes our model. Section 3 characterizes the equilibrium of the finite

economy. Section 4 considers the behavior of the limiting economy with many workers and

jobs. Section 5 calibrates the model and evaluates its quantitative performance. Section 6

briefly concludes.
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2. Model

2.1. Idiosyncratic Heterogeneity

We study a continuous time, infinite horizon model. At any point in time t, there are a

finite number L workers and a large number of firms. Each firm may have at most one open

job. While the number of workers is exogenous, the number of jobs M(t) is determined

endogenously by firms’ job creation decision discussed below.

Every job is described by a time-invariant L-vector of zeros and ones. Element i of the

vector tells us whether the job has a productive match with worker i (1) or not (0). When

a firm creates a new job, it immediately realizes the value of this vector, with x ∈ (0, 1) the

probability that any particular worker-job pair is unproductive. The realization of each of

these random variables is independent across worker-job pairs.

A productive worker-job pair can jointly generate a flow p(t) units of the numeraire

homogeneous consumption good if matched at time t, while an unproductive or unmatched

pair yields nothing. A single (unemployed) worker produces z ∈ (0, p(t)) units of the same

good at home, while a single (vacant) job produces nothing. These stark assumptions give

a concrete notion of unemployment and vacancies.
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2.2. Preferences, Wage Setting, and Job Creation

Each worker is risk-neutral and infinitely-lived. She may be either unemployed or employed

by a job which has a productive match with her. An employed worker’s wage can take on one

of two values: if she has a productive match with a job that is currently vacant, competition

with the potential employer drives the wage up to p(t); otherwise, the worker receives her

leisure value z. In other words, wages are determined by Bertrand competition between

employers. Many other wage setting rules are conceivable in a stock-flow matching model;

see Taylor (1995), Coles and Muthoo (1998), and Coles and Smith (1998) for three examples.

We choose this one because it has a desirable efficiency property (see Section 4.4); however,

we stress that wage setting is not important for many the mechanics of unemployment,

vacancies, and worker flows.

Firms are also risk-neutral and infinitely-lived. Any firm without a job may create one

by paying a sunk cost k > 0. A job may be either vacant or filled by one worker who has a

productive match with it. A job is hit by an idiosyncratic productivity shock with arrival

rate l, rendering it permanently unproductive. When this shock hits, the firm closes the

job, laying off its employee if it has one. The firm may then create a new job, but each

worker’s ability to match productively with it is drawn anew. The arrival of the layoff shock
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is independent across jobs and over time.

2.3. Matching

There are no search frictions in this economy, only the frictions caused by idiosyncratic

heterogeneity. Suppose there are M(t) jobs and E(t) employed workers, each in a productive

match with one job, at time t. Also assume none of the U(t) = L−E(t) unemployed workers

has a productive match with any of the V (t) = M(t) − E(t) vacant jobs. If no jobs enter

and no jobs leave, the matching between workers and jobs is unchanged. If a firm creates a

new job, it is filled if it has a productive match with at least one unemployed worker; if it

has more than one, we assume it hires the worker who has been unemployed the longest.1

Otherwise the job is vacant. Conversely, suppose a job exits. If it was vacant, the matching

between workers and jobs is unchanged. Otherwise, if the displaced worker has at least one

productive match among the vacancies, she immediately takes the job that has been open the

longest. If she has no productive match, she becomes unemployed. Note that this behavior

ensures that at almost every instant, no unemployed worker has a productive match with a

1Our assumption that an entering firm hires the worker who has been unemployed the longest has a small
effect on our quantitative conclusions; see Section 3.3. The assumption that a newly-unemployed worker
takes the job that has been vacant the longest turns out to be irrelevant.
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vacant job.

To implement this matching behavior, we require a complete ordering over jobs based on

the time that they were created. If two or more jobs were created at the same instant, as may

happen after a positive productivity shock, we assume the order of the jobs is determined

by a coin flip. We show that the outcome of the coin flip affects the probability that each

job is later subsequently filled and the wage that it pays if it is filled; however, these effects

offset so the coin flip does not affect the expected profitability of the job.

Finally, we note that, although this matching behavior ensures that unemployed workers

and job vacancies never have a productive match, breaking up existing matches and rematch-

ing workers and jobs would often reduce unemployment and vacancies. For example, suppose

there are two workers and one job. Both workers can productively match with the job, but

it is held by worker 1. Now a new job enters and has a productive match with worker 1 but

not with worker 2. Under our assumption, worker 1 stays matched with the old job while

worker 2 is unemployed and the new job is vacant. Reallocating worker 1 to the new job

would free the old job for worker 2. We assume that this cannot happen, perhaps reflecting

some unmodeled turnover cost or job-specific human capital.
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2.4. Aggregate Shock

We focus on a single type of aggregate shock, fluctuations in aggregate productivity p(t),

but our analytical results extend to fluctuations in other parameters. Assume

p(t) = py(t) = exp y(t) +
(

1 − exp y(t)
)

p (1)

where y(t) is a jump variable lying on a finite grid:

y ∈ Y ≡ {−ν∆,−(ν − 1)∆, . . . , 0, . . . , (ν − 1)∆, ν∆}.

∆ > 0 is the step size and 2ν + 1 ≥ 3 is the number of grid points.

A shock hits y according to a Poisson process with arrival rate λ. The new value y′ is

either one grid point above or below y:

y′ =







y + ∆

y − ∆
with probability







1
2

(

1 − y
ν∆

)

1
2

(

1 + y
ν∆

)

.

The probability that y′ = y + ∆ is smaller when y is larger, falling from 1 at y = −ν∆ to 0
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at y = ν∆. This implies y tends to revert to its mean of zero. Indeed, Shimer (2005) shows

that one can represent the stochastic process for y as

dy = −γydt + σdb,

where γ ≡ λ/ν measures the speed of mean reversion and σ ≡
√

λ∆ is the instantaneous

standard deviation.2 To save on notation, let EpXp′ denote the expected value of an arbitrary

state-contingent variable X following the next aggregate shock, conditional on the current

state p.

2.5. Decentralized Equilibrium

In a decentralized equilibrium, each firm decides at each date t whether to create a new job

as a function of the current values of productivity p(t) and the number of jobs M(t), taking

as given the behavior of all other firms. Let H t ≡ {M(τ), p(τ)}t
τ=−∞ denote the observable

history of the economy up to and including time t.

2Suppose one changes the three parameters of the stochastic process, the step size, arrival rate of shocks,
and number of steps, from (∆, λ, ν) to

(

∆
√

ε, λ

ε
, ν

ε

)

for any ε > 0. This does not change either γ or σ, but
as ε → 0, y converges to an Ornstein-Uhlenbeck process.
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We assume firms do not observe the number of employed workers E(t), but they under-

stand how the entry and exit of jobs affects the probability that their job is filled and the

wage that they must pay if it is filled. In particular, a firm recognizes that at any future

date t′, it will earn a profit p(t′)− z if and only if it has an active job, the job filled, and the

employee has no matches among the job vacancies. Otherwise the firm’s profit is zero. In

the next section, we derive a simple formula for the probability that an active job is filled

by a worker with no matches among the job vacancies.

The assumption that a firm cannot observe the realized number of employed workers

allows us to characterize the equilibrium recursively, first studying how the distribution

of employment depends on the number of workers and jobs and the parameter x which

governs frictions, and then looking at firms’ entry and exit decision. If firms could observe

employment, the distribution of employment conditional on the number of jobs would depend

on all the parameters of the model. We conjecture that whether employment is observable

does not affect the large economy limit, where the employment rate conditional on the

number of jobs is deterministic.
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3. Characterization

We now provide a complete characterization of the equilibrium. We first construct an algo-

rithm that tells us which worker is matched to which job at any point in time. This implies

a form of history-independence: the distribution of employment at time t conditional on the

history of productivity and the number of jobs until time t, H t, in fact depends only on the

number of jobs at time t, M(t); and similarly for the probability that that the entry a job

causes an unemployed workers to become employed and the probability that the exit of a

job causes an employed worker to become unemployed. We then find analytic expression for

these distributions. Finally, we use these mechanical relationships to describe firms’ decision

to create a job.

3.1. A Matching Algorithm

We start by describing an algorithm that computes the matching pattern at any point in

time t. To execute this algorithm, we need to know how long since each worker was last

displaced from a job and the ordering over jobs based on the time that they were created.

Definition 1. The matching algorithm takes a set of L workers and M(t) jobs and itera-

tively assigns workers to jobs. Let ja denote the ath-oldest job.
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1. Set a = 1 and start with all the workers unmatched.

2. If job ja can productively match with at least one of the workers whom the algorithm

has not yet matched, assign it the one who has experienced the longest time since her

last displacement. Otherwise job ja is vacant.

3. Increase a by 1. If a ≤ M(t), repeat step 2.

We stress that this is not a description of how matching happens in the decentralized

economy, but rather a computational algorithm that allows us at any point in time to

compute who matches with whom. It is useful because it provides a simple way of establishing

some important characteristics of the decentralized equilibrium.

Proposition 1. At any time t, the assignment of workers to jobs in the decentralized

economy is the same as the one given by the matching algorithm.

The proof is in Appendix A.
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3.2. History Independence

We are interested in analyzing how a few summary statistics depend on current and past

labor market conditions. Let φ̃(E|H t) denote the distribution of employment at time t

conditional on history H t; let Π̃UE(Et, H t) denote the probability that the entry of a job at

time t leads to an unemployed worker finding a job, conditional on the observable history

H t and the unobservable history of employment Et ≡ {E(τ)}t
τ=−∞; and let Π̃EU

j (Et, H t)

denote the probability that the exit job j at time t leads to an employed worker becoming

unemployed conditional on the same variables. The following corollary simplifies this task:

Lemma 1. For any observable history H t and unobservable history Et,

φ̃(E|H t) = φ(E|M(t)),

Π̃UE(Et, H t) = ΠUE(E(t), M(t)),

and Π̃EU
j (Et, H t) = ΠEU

j (E(t), M(t)).

Proof of Lemma 1. Consider the distribution of the employment rate φ̃(E|H t). The

matching algorithm constructs the realized matching pattern just from knowledge of the
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current number of jobs, the entry order of workers and jobs, and the ability of each job-worker

pair to match. Since each entry order is equally likely and the ability of each job-worker pair

to match is a binomial random variable, the probability distribution of the employment rate

depends on the current number of jobs alone. The proof of the other results is similar.

In the remainder of our analysis, we simplify notation and the state-space by dropping

the history dependence of these variables

3.3. Employment Distribution

We now use the matching algorithm to find the probability distribution over the number of

employed workers at each moment.

Proposition 2. The probability that there are E ∈ {0, 1, 2, . . .} employed workers when

there are M jobs is

φ(E|M) = x(L−E)(M−E)
E−1
∏

i=0

(1 − xL−i)(1 − xM−i)

1 − xi+1
. (2)

The proof is in Appendix A.
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Proposition 2 provides a precise characterization of the distribution of employment condi-

tional on the current number of jobs. Kemp (1998) calls φ the “absorption distribution” and

describes several environments where it may arise, including an unrelated birth-death pro-

cess. Her characterization of the moment generating function for the absorption distribution

is critical for many of our results.

The assumption that a newly unemployed worker takes the oldest available vacancy

affects our exact characterization of the employment distribution. As a vacancy ages, we

learn that it is unable to match with a growing fraction of the workforce—all those who

have experienced an unemployment spell since the job entered—which implies the vacancy

is less likely to be able to match in the future. This has a quantitatively small effect on the

employment distribution in the cases we have studied. For example, consider an economy

with no aggregate shocks, so whenever a job exits, a new one immediately enters. Suppose

that as soon as a filled job exits, the newly unemployed worker takes the youngest vacancy

with which she can match. After that, a new job enters and hires the unemployed worker

with the shortest unemployment duration. Let there be L = 1000 workers and M = 968

jobs (except in the instant after a job exits). Also set x = 0.9806, so the average job can

hire α = L(1 − x) = 19.4 workers.3 If workers take the oldest available job and firms

3We argue in Section 5 that an appropriately scaled version of these values is consistent with the average
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hire the longest-term unemployed worker, the average unemployment rate is 5.374 percent

with a standard deviation of 0.341 percent, as can be confirmed directly from equation (2).

Monte Carlo simulations show that the alternative assumption raises the unemployment rate

by 0.014 percentage points and has no effect on the standard deviation. This difference is

quantitatively irrelevant.

3.4. Worker Flows

We next use the matching algorithm to find the probability that the entry of a job allows

an unemployed worker to find a job.

Proposition 3. The probability that the entry of a new job leads to an unemployed worker

finding a job when there are already E employed workers and M jobs is

ΠUE(E, M) = 1 − xL−E . (3)

unemployment and vacancy rates in the U.S. economy. Moreover, the results we report in this paragraph
are nearly unchanged in an economy that is ten times larger, with L = 10, 000 workers, M = 9680 jobs, and
x = 0.99806, so α = 19.4.
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Proof of Proposition 3. The entry of a new job leads to an unemployed worker finding

a job if the new job can match with one of the unemployed workers, with probability 1−xU ,

where U = L − E is the number of unemployed workers.

The expression for the probability that the exit of a job causes an employed to become

unemployed is almost as simple but somewhat more cumbersome to derive.

Proposition 4. The probability that the exit of job j causes an employed worker to become

unemployed when there are already E employed workers and M jobs is

ΠEU
j (E, M) =

x−E − 1

x−M − 1
. (4)

The proof is in Appendix A.

We stress that ΠEU
j (E, M) does not depend on which job exits and hereafter suppress

its dependence on j. When a newer job exits, it is more likely to be vacant. When an older

job exits, it is more likely that it is filled by a worker who can immediately move to another

job. Perhaps surprisingly, these effects offset, so the probability that an employed worker

becomes unemployed when a job exits does not change with the age of the job.

ΠEU(E, M) is also an important determinant of wages, which are critical to the job

creation decision that we analyze next. Recall that a job produces nothing if it is vacant



Section 3: Characterization Back 20

and that it pays its worker her productivity if the worker has an employment opportunity

at a vacant job. A job earns positive profit only if it is filled by a worker who would

become unemployed if the job exits, with probability ΠEU(E, M). That this probability is

independent of the job’s age further simplifies our analysis.4

One can verify algebraically that ΠUE(E−1, M−1)φ(E−1|M−1) = ΠEU(E, M)φ(E|M).

This is a statement that worker flows balance: the left hand side is the probability that there

are E − 1 employed workers when there are M − 1 jobs and the entry of the M th job leads

to an unemployed worker finding a job. The right hand side is the probability that there

are E employed workers when there are M jobs and the exit of one of the jobs leads to an

employed worker becoming unemployed. Similarly,

∞
∑

E=0

ΠEU(E, M)φ(E|M) =

∞
∑

E=0

E(φ(E|M) − φ(E|M − 1)),

so the expected decrease in employment when one of M jobs exits is just the expected

difference in employment between an economy with M and M − 1 jobs.

4It also justifies our earlier assumption that when two or more jobs enter at the same instant, the order of
the jobs is determined randomly: there is no incentive to create a job slightly earlier than the competition.
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3.5. Job Creation Decision

We finally consider the decision of a firm to open a job when current productivity is p and the

current number of jobs is M . The decentralized equilibrium is characterized by a sequence of

targets M∗
p . If M < M∗

p when productivity is p, firms instantaneously create M∗
p − M jobs.

If M = M∗
p , any job that ends is immediately replaced. If M > M∗

p , no jobs are created. To

describe these targets, we write a Hamilton-Jacobi-Bellman equation for the value of a job

Jp(M) as a function of the current state (p, M); the preceding analysis implies that history

is not payoff-relevant.

If M > M∗
p , no new jobs are created so

rJp(M) = (p − z)

∞
∑

E=0

ΠEU(E, M)φ(E|M) − lJp(M)

+ l(M − 1)
(

Jp(M − 1) −Jp(M)
)

+ λ
(

EpJp′(M) − Jp(M)
)

. (5)

The first term on the right hand side is the profit from a filled job paying the low wage

z, times the probability that a job is filled by a worker with no opportunities among the

vacancies. This is simply the expected value of ΠEU(E, M) defined in equation (4), where
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the expectation recognizes the randomness of the number of employed workers E given the

number of jobs M . The second term is the probability that the job ends, leading to a capital

loss of Jp(M). The third term is the possibility that one of the M−1 other jobs end, leading

to a capital gain of Jp(M − 1) − Jp(M). The final term is the possibility of an aggregate

shock, which changes productivity from p to p′ as described in Section 2.4 and possibly leads

to the immediate entry of one or more jobs.

Second, if M = M∗
p , job creation and destruction balance so the Hamilton-Jacobi-Bellman

equation simplifies slightly:

rJp(M
∗
p ) = (p − z)

∞
∑

E=0

ΠEU(E, M∗
p )φ(E|M∗

p ) − lJp(M
∗
p ) + λ

(

EpJp′(M
∗
p ) − Jp(M

∗
p )
)

. (6)

Moreover,

Jp(M
∗
p ) ≥ k > Jp(M

∗
p + 1), (7)

so creating the M∗
p

th job is profitable but creating the (M∗
p +1)st is not. Finally, if M < M∗

p ,

entry immediately drives M up to M∗
p so Jp(M) = Jp(M

∗
p ) as well.

A decentralized equilibrium is characterized by Bellman values Jp(M) and targets M∗
p

that satisfy equations (5)–(7).
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4. Large Economy

Although it is possible to work in an economy with a finite number of workers and jobs,

it is computationally cumbersome. We show in this section that the finite economy has a

relatively simple limit as it grows large. Moreover, we find numerically that convergence

to that limit is rapid. Our approach parallels the previous section: we first describe the

mechanics of employment and worker flows conditional on the ratio of jobs to workers and

then turn to firms’ determination of the number of jobs.

Let m = M/L denote the number of jobs per worker at some point in time and α ≡
L(1 − x) denote the expected number of workers with whom a job can productively match,

an inverse measure of frictions in the economy. We focus on the limiting behavior of the

economy as L converges to infinity holding α fixed, for arbitrary values of the endogenous

variable m.

4.1. Employment

Proposition 2 provides an exact expression for the probability that there are E employed

workers when there are L workers and M jobs. This distribution has a simple limit in the

large economy.
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Proposition 5. Fix α = L(1−x). For given m = M/L, consider the limit as the number of

workers L converges to infinity. The fraction of workers who are employed, E/L, converges

in mean square to

e(m) = 1 + m − 1

α
log
(

exp α + exp(αm) − 1
)

. (8)

The proof is in Appendix A.

Manipulation of equation (8) gives the unemployment and vacancy rates as well:

u(m) = 1 − e(m) =
1

α
log
(

exp α + exp(αm) − 1
)

− m (9)

v(m) = 1 − e(m)/m =
1

m

(

1

α
log
(

exp α + exp(αm) − 1
)

− 1

)

(10)

This implicitly defines the unemployment rate as decreasing in m and the vacancy rate as

increasing in m, and hence the vacancy rate as a decreasing function of the unemployment

rate for any α, a theoretical Beveridge curve.

The first two rows in Table 1 show the rapid convergence of the unemployment rate and

vacancy rate when the job-worker ratio is fixed at 0.968 and there are on average α = 19.4
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suitable workers per job. We choose these values because they imply unemployment and

vacancy rates of 5.417 and 2.291 percent, respectively, in the limiting economy, close to the

recent average values in the U.S. economy.5

To obtain some intuition for Proposition 5, we can work with a version of the matching

algorithm in an economy with a continuum of agents. Order the workers i ∈ [0, 1] according

to the amount of time since they last lost a job, so worker 1 just lost her job. Similarly

order the jobs according to the amount of time since they entered, with job 0 the oldest.

Then match jobs to workers sequentially, giving job 0 the opportunity to match first. Since

there are 1 ≡ u(0) workers available, job 0 has a match with probability 1 − exp(−αu(0)).

In this event, it hires the lowest-named worker. Proceeding sequentially, when job m has

the opportunity to match, there are u(m) available workers and so she has a match with

probability 1 − exp(−αu(m)). With an abuse of the law of large numbers, this suggests

u′(m) = −1 + exp(−αu(m)). The solution to this differential equation gives equation (9).

Although this ignores all the microeconomic randomness in who matches with whom, it

obtains the correct solution.

5We discuss the unemployment and vacancy data in Section 5.
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4.2. Worker Flows

We also obtain simple limits for the probability that the entry of a job leads to an unemployed

worker finding work and that the exit of a job leads to an employed worker losing her job.

Proposition 6. Fix α = L(1 − x). For given m = M/L, consider the limit as the number

of workers L converges to infinity. The probability that the entry of a new job leads to an

unemployed worker finding a job and the probability that the exit of an old job leads to an

employed worker becoming unemployed both converge in mean square to

π(m) =
exp α − 1

exp α + exp(αm) − 1
. (11)

The proof is in Appendix A. The last two rows of Table 1 shows the rapid convergence of

ΠEU and ΠUE to π.

Note that in a large economy, the probability that an entrant hires a worker equals the

increase in employment rate from the entry of a single job, π(m) = e′(m); we can confirm

this equality directly by differentiating equation (8). Symmetrically, this must also equal the

probability that a job exiting leads to a worker becoming unemployed.
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4.3. Job Creation Decision

Firms’ job creation decision is slightly simpler in a large economy. The equilibrium is char-

acterized by a sequence of targets m∗
p. If m(t) < m∗

p when productivity is p, firms instan-

taneously create enough jobs to raise the job-worker ratio to m∗
p. If m(t) = m∗

p, gross job

creation and destruction are equal. If m(t) > m∗
p, no jobs are created.

To describe these targets, we write a Hamilton-Jacobi-Bellman equation for the value of

a job. First, if m > m∗
p, no new jobs are created so

rJp(m) = (p − z)π(m) − lJp(m) − lmJ ′
p(m) + λ

(

EpJp′(m) − Jp(m)
)

. (12)

Similar to equation (5), the first term describes the profit from employing a worker with no

other job opportunities, the second gives the risk of the job ending, the third gives the capital

gain as other jobs end, and the fourth gives the capital gain following a shock. Second, if

m = m∗
p, job creation and destruction balance and the value of a job exactly equals the cost:

rk = (p − z)π(m∗
p) − lk + λ

(

EpJp′(m
∗
p) − k

)

. (13)

Finally, if m < m∗
p, entry immediately drives m up to m∗

p so Jp(m) = k as well.
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We now provide a constructive existence and uniqueness proof. This also provides a

computational algorithm for the targets m∗
p.

Proposition 7. There is a unique equilibrium. In it, the targets m∗
p are increasing.

The proof is in Appendix A; it is essentially the same as the proof in Shimer (2006).

Lower current productivity, which presages lower future productivity, reduces the revenue

from creating a job. Equilibrium is restored because the reduction in jobs raises the share

jobs filled by a worker who cannot match with a vacancy, π(m), lowering expected wages

and raising the profit from creating a job back to zero.

4.4. Efficiency

Finally we prove that the decentralized equilibrium maximizes the expected present value

of net output per worker. This is a version of the Mortensen (1982) rule: firms have the

proper incentive to create jobs if they receive the full marginal product of a filled job when

the worker would otherwise be unemployed and nothing otherwise.

Proposition 8. Consider a hypothetical social planner who wishes to maximize the ex-

pected present value of net output by choosing how many jobs to create at each instant as
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a function of current productivity. The solution to the planner’s problem coincides with the

decentralized equilibrium.

The proof is in Appendix A.

5. Quantitative Evaluation

We now calibrate the large economy model to quantify the cyclical behavior of unemploy-

ment, vacancies, and worker flows. We first discuss our choice of the parameter α which

governs the level of unemployment and vacancies. We then to the choice of the other param-

eters and simulate a stochastic version of the model economy. Our approach follows Shimer

(2006) closely.

5.1. Beveridge Curve

We start by examining the model-generated unemployment and vacancy rates, given by

equations (9) and (10). For a given value of α, these equation implicitly defines the vacancy

rate as a function of the unemployment rate. We compare this with U.S. data on unemploy-

ment and job vacancies. The Bureau of Labor Statistics (BLS) uses the Current Population

http://www.bls.gov/


Section 5: Quantitative Evaluation Back 30

Survey (CPS) to measure the unemployment rate each month. The ratio of unemployment

to the sum of unemployment and employment is the unemployment rate.

Since December 2000, the BLS has measured job vacancies using the JOLTS. This is the

most reliable time series for vacancies in the U.S.. According to the BLS, “A job opening

requires that 1) a specific position exists, 2) work could start within 30 days, and 3) the em-

ployer is actively recruiting from outside of the establishment to fill the position. Included

are full-time, part-time, permanent, temporary, and short-term openings. Active recruiting

means that the establishment is engaged in current efforts to fill the opening, such as adver-

tising in newspapers or on the Internet, posting help-wanted signs, accepting applications,

or using similar methods.”6 We measure the vacancy rate as the ratio of vacancies to vacan-

cies plus employment. The dots in Figure 1 show the strong negative correlation between

unemployment and vacancies over this time period, the empirical Beveridge curve.

From December 2000 to April 2006, the unemployment and vacancy rates averaged 5.4

percent and 2.3 percent, respectively. Inverting equations (9) and (10), this is consistent

with α = 19.4 and m = 0.968. Now hold α fixed and consider how variation in m, implicitly

in response to productivity shocks, affects unemployment and vacancies; this is the line in

Figure 1. The fit of the model to the data is excellent. The fact that the level of the model-

6See BLS news release, July 30, 2002, available at http://www.bls.gov/jlt/jlt_nr1.pdf

http://www.bls.gov/cps/
http://www.bls.gov/
http://www.bls.gov/jlt/
http://www.bls.gov/
http://www.bls.gov/
http://www.bls.gov/jlt/jlt_nr1.pdf
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generated Beveridge curve fits the data reflects the choice of α. But the fact that the slope

and curvature of the model-generated Beveridge curve also fits the data comes from the

structure of the model.

Figure 1 is virtually indistinguishable from Figure 1 in Shimer (2006). That the results

are so similar in the mismatch and stock-flow matching models suggests to us that the

Beveridge curve may simply be an aggregation phenomenon.

5.2. Calibration

This model is parameterized by 9 numbers: the average number of matches per job α, the

job termination rate l, the discount rate r, the value of leisure z, the cost of creating a job

k, and the four parameters of the stochastic process for productivity: the lower bound p, the

number of steps ν, the arrival rate of shocks λ, and the step size ∆. We keep α fixed at 19.4

and calibrate the remaining parameters of the model to match salient facts about the U.S.

economy.

The model is in continuous time and so we normalize a time period to represent a quarter.

We set the quarterly discount rate to r = 0.012 and let the job termination rate be l = 0.158.

We choose this latter value to ensure a quarterly separation rate to unemployment of 0.105
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in the deterministic steady state with m = 0.968 jobs per worker, consistent with average

value reported in Shimer (2005).

The productivity process in equation (1) is centered around 1, a normalization. We set

the value of leisure to z = 0.4. As in the search model, this is a critical parameter for the

volatility of aggregate productivity (Hagedorn and Manovskii, 2005). The lower bound on

productivity is p = z + (r+l)k
1−exp(−α)

, the lowest value which ensures that, even in the worst

possible state, the unemployment rate stays between 0 and 1; see equation (19), which then

implies π(m∗
−∞) = 1 − exp(−α) and hence m∗

−∞ = 0 by equation (11). We let ν = 1000,

λ = 86.6, and ∆ = 0.00591022. This implies a mean reversion parameter of γ = 0.0866 and

a standard deviation of σ = 0.055 for the latent variable y. We choose these values to match

the standard deviation and autocorrelation of detrended productivity in U.S. data. If we

change ν, λ, and ∆ without altering γ and σ, the results are scarcely affected. Finally, we

fix k = 2.29137, which implies a 5.4 percent unemployment rate in the deterministic steady

state; this matches the mean unemployment rate during the post-war period.

To characterize the equilibrium, we first compute the targets m∗
p for each of the 2ν + 1

states following the procedure in the proof of Proposition 7. We then choose an initial value

for p(0) and m(0) and select the timing of the first shock t, an exponentially-distributed

random variable with mean 1/λ. We compute the number of unemployed workers who finds
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jobs and the number of employed workers who lose jobs during the interval [0, t]. These

are slightly complicated because if m(0) > m∗
p(0), there is a time interval when no new

jobs are created. Similarly, if m(0) < m∗
p(0), m∗

p(0) − m(0) jobs immediately enter and

u(m(0)) − u(m∗
p(0)) workers find work. We next compute the number of jobs at time t: if

m(0) ≤ exp(lt)m∗
p(0), m(t) = m∗

p(0); otherwise, m(t) = exp(−lt)m(0) as the number of jobs

decays with exits. Finally, we choose the next value of p(t) as described in Section 2.4 and

repeat.

At the end of each month (1/3 of a period), we record unemployment, vacancies, cumu-

lative matches and separations, and productivity. We measure the job finding rate f for

unemployed workers as the ratio of the number of matches during a month to the number

of unemployed workers at the start of the month; if the number of jobs were constant at

m during the month, this would equal lmπ(m)/u(m). We similarly measure the separation

rate s as the number of workers who separate to unemployment divided by the number of

employed workers at the start of the month; if the number of jobs were constant at m during

the month, this would equal lmπ(m)/e(m). We throw away the first 25,000 years of data to

remove the effect of initial conditions. Every subsequent 53 years of model-generated data

gives one sample. We take quarterly averages of monthly data and express all variables as

log deviation from an HP filter with parameter 105, the same low frequency filter that we use
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on U.S. data. We create 20,000 samples and report model moments and the cross-sample

standard deviation of those moments. We compare these results with the U.S. data reported

in Shimer (2005, Table 1) and repeated here in Table 2 for convenience.

5.3. Results

Table 3 summarizes the model generated data. The last column shows the driving force,

labor productivity. By construction, we match the standard deviation and quarterly auto-

correlation in U.S. data. The remaining numbers are driven by the structure of the model.

The first two columns show unemployment and vacancies. Both of these variables only

depend on the contemporaneous number of jobs. Thus the model generates a nearly-perfect

negative correlation between them, stronger than the empirical correlation of −0.89. The

model also explains 38 percent of the observed volatility in vacancies and 31 percent of the

observed volatility in unemployment. The theoretical autocorrelations of the two variables

are about equal, consistent with the empirical evidence.

The third column shows the v-u ratio, which Shimer (2005) identifies as a key cyclical

variable. The model generates 35 percent of its observed volatility. Mortensen and Nagypal

(2005) argue that productivity shocks in fact should not explain all of the observed fluc-
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tuations in the v-u ratio since the empirical correlation between productivity and the v-u

ratio is only 0.4; by their metric, the stock-flow matching model explains nearly all of the

productivity-induced fluctuations in the v-u ratio.

The fourth column shows that the model produces 26 percent of the observed volatility in

the job finding rate; however, the model fails to generate a sufficiently strong autocorrelation

in this variable. The empirical autocorrelation is 0.91, while the theoretical correlation is

significantly lower at 0.74. This low autocorrelation is intrinsic to the structure of the model:

the job finding probability fluctuates with the inflow rate of new jobs, i.e. in response to

changes in the number of jobs. In contrast, vacancies and unemployment depend on the

stock of jobs. This leads to a correlation between the job finding probability and both the

level and change in the v-u ratio. Coles and Petrongolo (2003) argue that this offers a way

to test the stock-flow matching model; however, in U.S. data the correlation in levels is

remarkably strong. One possible way to reconcile model and data would be to make the

marginal cost of job creation increasing in gross job creation; this should dampen the sharp

transitory fluctuations in the job finding probability.

Despite this, the model generates a “reduced-form matching function”—a relationship

between the job finding probability and the v-u ratio—that is similar to the one in U.S.

data. Empirically, a one percent increase in the v-u ratio is associated with a 0.28 percent
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increase in the job finding probability. The corresponding theoretical elasticity is about 0.21.

Moreover, one can test the constant elasticity assumption both in the theory and the data by

regressing the log job finding probability on the log v-u ratio and its square. The quadratic

term is insignificant at conventional confidence levels in the data and significant only three

times in 20,000 simulations of the model.

The fifth column shows that the model generates 41 percent of the observed volatility

in the separation rate into unemployment even though there are no fluctuations in the job

termination rate l. The flip side of this is that the model produces a strongly procyclical job-

to-job transition rate, consistent with the facts reported in Fallick and Fleischman (2004).7

Because the model has only one shock, most of the correlations are close to one in

absolute value. Moreover, a one shock model probably should not be able to explain all the

volatility in vacancies and unemployment; there must be other shocks in the data, e.g. to the

cost of investment goods k (Fisher, 2006). Hall (2005), Mortensen and Nagypal (2005), and

Rudanko (2006) propose evaluating one shock models by examining the standard deviation

of the projection of the detrended v-u ratio on detrended productivity. By this metric, the

projection in the data is 0.151 and in the model it is only slightly smaller, 0.134. Similarly,

7We do not report the job-to-job transition rate here because data limitations allow us to construct the
series only after 1994.
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the target for the separation rate should be just 0.039, compared to 0.031 in the model. By

these metrics, the stock-flow matching model explains almost all of the volatility in these

variables.

6. Conclusion

This paper describes the equilibrium of a stock-flow matching model, where frictions arise

because only a few worker-job matches are productive. We derive explicit expressions for

the distribution of the unemployment rate, for the probability that a job entering the la-

bor market causes an unemployed worker to find a job, and for the probability that a job

exiting the labor market causes an employed worker to become unemployed. These have a

simple limit in a large economy, which we use to quantify the implications of the stock-flow

matching model for cyclical fluctuations in unemployment, vacancies, and worker flows. The

quantitative results are similar to those in Shimer (2006), which suggests that the possibility

of a more general approximate aggregation result.

The stock-flow matching model can also be used to examine other labor market issues.

For example, suppose match productivity is not simply a binary variable, so workers and jobs

must choose a productivity threshold for accepting a partner. In such an environment, labor
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market policies like unemployment benefits may raise the threshold, reducing the average

number of acceptable workers per job, analogous to the parameter α in this paper, and shift-

ing the Beveridge curve away from the origin. This is consistent with evidence in some Eu-

ropean countries since 1960 (see, for example, Nickell, Nunziata, Ochel, and Quintini, 2003).

The stock-flow approach also pertains to other other markets. Coles and Muthoo (1998)

label the agents in their model “buyers” and “sellers” and discuss the real estate market.

Lagos (2003) examines the taxicab market in a related model. Idiosyncratic heterogeneity

is likely also important in the marriage market. The stock-flow matching model can also

capture other markets where idiosyncratic heterogeneity is less important; the appropriate

value of α is simply larger and the equilibrium unmatched rates smaller. Our hope is that

our analysis provides a set of tools that will prove useful in studying these problems as well.
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A. Omitted Proofs

Proof of Proposition 1. Suppose that for some a ∈ {1, . . . , M(t)}, we have proved that

assignment of workers to jobs {j1, . . . , ja−1} is identical in the decentralized equilibrium and

the matching algorithm at time t. This is trivially true for a = 1. We prove that the

assignment of a worker or a vacancy to job ja is identical in the decentralized equilibrium

and the matching algorithm at time t as well, and so establish the result by induction.

Suppose that in the decentralized equilibrium, job ja is filled by worker i. By construction,

this is a productive match. Now consider any other worker i′. It is impossible that i′ has a

productive match with ja and was unemployed for more time than i when i and ja matched,

for then ja would have matched with i′. The remaining possibilities are that i′ does not have a

productive match with ja, or that i′ has a productive match but was already matched to some

ja′ when worker i and job ja matched, or that i′ has a productive match but was unemployed

for less time than i when i and ja matched. We consider each of these possibilities in turn

and show that in each case, the matching algorithm does not assign i′ to ja.

First, suppose i′ does not have a productive match with ja. Then the matching algorithm

trivially does not assign i′ to ja.

Second, suppose i′ has a productive match with ja but was matched with some job j′

when i and ja matched. This implies that job j′ is older than job ja, for otherwise i′ would
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have matched with ja in the decentralized equilibrium. If job j′ is still open at time t, the

induction step implies that the matching algorithm also assigns i′ to j′ and hence does not

assign i′ to ja. If job j′ is closed by time t, the time since displacement is shorter for i′

than for i, and hence again the algorithm does not assign i′ to ja. Third, suppose i′ has a

productive match with ja but was unemployed for less time than i when i and ja matched.

Then at time t, the elapsed time since displacement is again shorter for i′ than for i and so

the algorithm does not assign i′ to ja.

Finally, the matching algorithm assigns workers to jobs {j1, . . . , ja−1} exactly as in the

decentralized equilibrium, and in particular leaves worker i unmatched. Since job ja has a

productive match with i, the algorithm must assign some worker to job ja; and since it does

not assign any other worker i′, it must assign worker i.

Alternatively, suppose job ja is vacant at time t. Then any worker i′ either does not have

a productive match with ja or has a productive match but was already matched to some

ja′ when job ja entered. Repeating the same arguments shows that the matching algorithm

does not assign i′ to ja, and hence leaves ja vacant. This completes the induction step and

hence the proof.
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Proof of Proposition 2. We can trivially prove that φ(0|0) = 1 and φ(E|0) = 0 for any

E > 0, consistent with equation (2). Moreover, φ(0|M) = xLM for any M , since there are

no employed workers only if all worker-job pairs are unproductive. Again this is consistent

with equation (2).

We now proceed by induction. Suppose that we have proved equation (2) for some

M − 1 ≥ 0 and all E ≥ 0 and want to establish it for M and some E ≥ 1. Using the

matching algorithm and the induction step, the probability that there are E − 1 matches

among the M −1 oldest jobs is φ(E −1|M −1). Conditional on E −1 matches among those

jobs, the probability the newest job is matched is 1 − xL−E+1, leaving us with E matches

among the M jobs. The other way to attain E matches among the M jobs is if there are E

matches among the M − 1 oldest jobs, with probability φ(E|M − 1), and the newest job is

unmatched, with probability xL−E . Putting this together,

φ(E|M) = (1 − xL−E+1)φ(E − 1|M − 1) + xL−Eφ(E|M − 1).

Expanding φ(E − 1|M − 1) and φ(E|M − 1) using the induction step and simplifying yields

equation (2).
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Proof of Proposition 4. It is trivial that ΠEU
j (0, M) = 0 for all j and M , since there are

no employed workers. We can also directly characterize the probability that the exit of the

newest job, call it job M , causes a worker to become unemployed; this happens if and only

if the job is filled:

ΠEU
M (E, M) =

(1 − xL−E+1)φ(E − 1|M − 1)

(1 − xL−E+1)φ(E − 1|M − 1) + xL−Eφ(E|M − 1)
(14)

To understand this, partition the configurations with E employed workers and M jobs in two.

First, job M is filled, so without the newest job there would be E−1 employed workers, with

probability φ(E−1|M −1). Conditional on this, job M is filled with probability 1−xL−E+1.

Second, job M is vacant, so without the newest job there would be E employed workers,

with probability φ(E|M − 1). Conditional on this, job M is vacant with probability xL−E .

The relatively likelihood of the former configuration gives us the probability the newest job

is filled, explaining equation (14). Next, we can verify directly using equation (2) that for
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all M ≥ 1 and 1 ≤ E ≤ min{M, L},

(1 − xL−E+1)φ(E − 1|M − 1) =
x−E − 1

x−M − 1
φ(E|M)

and xL−Eφ(E|M − 1) =
x−M − x−E

x−M − 1
φ(E|M)

Substituting these into equation (14) and simplifying verifies equation (4) for j = M .

Now use induction to complete the proof. Suppose we have proved equation (4) for

arbitrary M − 1 ≥ 1 and all E ∈ {0, 1, . . . , M − 1} and j ∈ {0, 1, . . . , M − 1}. We extend it

to M and all E ∈ {0, 1, . . . , M} and j ∈ {0, 1, . . . , M − 1} and hence establish the result by

induction. We start with the following recursive equation:

ΠEU
j (E, M) = ΠEU

j (E − 1, M − 1)ΠEU
M (E, M) + ΠEU

j (E, M − 1)x
(

1 − ΠEU
M (E, M)

)

. (15)

To see this, again partition the configurations with E employed workers and M jobs in

two. First, job M is filled, with probability ΠEU
M (E, M). According to the matching

algorithm—which matches workers and jobs identically to the decentralized equilibrium by

Proposition 1—the exit of job j when there are E employed workers, M jobs, and job M is

filled causes a worker to become employed exactly it when would have with E − 1 employed
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workers and M − 1 jobs, with probability ΠEU
j (E − 1, M − 1). In the second configuration,

job M is vacant, with probability 1 − ΠEU
M (E, M). Proposition 1 implies that conditional

on this, the exit of job j leads to a worker becoming unemployed if it would have led to a

worker becoming unemployed with E employed workers and M − 1 jobs, with probability

ΠEU
j (E, M − 1), and the unemployed worker cannot match with job M , with probability x.

Now plug the known formulae for ΠEU
j (E − 1, M − 1), ΠEU

M (E, M) and ΠEU
j (E, M − 1) into

equation (15) and simplify to establish equation (4). This completes the induction step and

the proof.

Proof of Proposition 5. We break the proof into three steps to improve readability.

Step 1. Kemp (1998, equation 13) proves that for any L, M , and x, the expected number

of employed workers solves

∞
∑

E=0

Eφ(E|M) =

∞
∑

E=1

∏E−1
i=0 (1 − xL−i)(1 − xM−i)

1 − xE
. (16)
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Using x = 1 − α/L and M = mL, the employment rate is e(m) ≡ limL→∞

∑∞

E=1 BE(L),

where

BE(L) ≡
∏E−1

i=0

(

1 − (1 − α/L)L−i
)(

1 − (1 − α/L)mL−i
)

L
(

1 − (1 − α/L)E
) . (17)

Define

B̄E ≡ lim
L→∞

BE(L) =

∏E−1
i=0 lim

L→∞

(

1 − (1 − α/L)L−i
)

lim
L→∞

(

1 − (1 − α/L)mL−i
)

α lim
L→∞

1 − (1 − α/L)E

1 − (1 − α/L)

=

(

(1 − exp(−α))(1 − exp(−αm))
)E

αE
,

where the last equation uses the fact that for fixed i, limL→∞(1 − α/L)L−i = exp(−α) and

limL→∞(1 − α/L)mL−i = exp(−αm); and for fixed E, limL→∞
1−(1−α/L)E

1−(1−α/L)
= E. This implies

∞
∑

E=1

B̄E = − 1

α
log
(

1 − (1 − exp(−α))(1 − exp(−αm))
)

= 1 + m − 1

α
log
(

exp α + exp(αm) − 1
)

,
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since
∑∞

E=1
aE

E
= − log(1− a) for any a < 1. Equation (8) follows if limL→∞

∑∞

E=1 BE(L) =
∑∞

E=1 limL→∞ BE(L), that is, if we can switch the order of limits.

Step 2. To prove that we can, note that for all n ≥ 0,

∣

∣

∣

∣

∣

∞
∑

E=1

B̄E −
∞
∑

E=1

BE(L)

∣

∣

∣

∣

∣

≤
∞
∑

E=n+1

B̄E +
∞
∑

E=n+1

BE(L) +

∣

∣

∣

∣

∣

n
∑

E=1

BE(L) −
n
∑

E=1

B̄E

∣

∣

∣

∣

∣

. (18)

We prove that for any ε > 0, there exists an n and an L̄ such that each of the terms on the

right hand side is smaller than ε/3 for all L > L̄.

Start with the first term. Since B̄E ≥ 0 and
∑∞

E=1 B̄E is finite, there exists an n̄1 such

that
∑∞

E=n+1 B̄E < ε/3 for all n ≥ n1.

Next look at the second term. For any i ≥ 0, E ≥ 1, and L > α, (1 − α/L)L−i ≥
(1−α/L)L, (1− α/L)mL−i ≥ (1−α/L)mL, and (1− α/L)E ≤ 1−α/L. Then equation (17)

implies BE(L) ≤ zE/α, where z ≡
(

1 − (1 − α/L)L
)(

1 − (1 − α/L)mL
)

∈ (0, 1). It follows

that
∑∞

E=n+1 BE(L) ≤ zn+1/α(1 − z). In particular, for fixed n,

lim
L→∞

∞
∑

E=n+1

BE(L) ≤ lim
L→∞

zn+1

α(1 − z)
=

(

(1 − exp(−α))(1 − exp(−αm))
)n+1

α
(

1 − (1 − exp(−α))(1 − exp(−αm))
) .
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The last expression is smaller than ε/6 for all n ≥ n2. Fix any n ≥ max{n1, n2} in the rest

of the proof; there exists an L̄2 such that for all L ≥ L̄2, the second term in equation (18) is

smaller than ε/3.

Now turn to the last term in equation (18). For the given value of n, the last term is

smaller than ε/3 for all L > L̄3 since BE(L) → B̄E for all E. Let L̄ = max{L̄2, L̄3} to

complete this step and prove that the expected employment rate is e(m) in a large economy.

Step 3. We finally prove that the variance of E/L converges to zero. Kemp (1998, equation

14) also proves that for any L, M , and x,

∞
∑

E=0

E(E − 1)φ(E|M) = 2

∞
∑

E=1

(

E−1
∑

i=1

1

1 − xi

)(

∏E−1
i=0 (1 − xL−i)(1 − xM−i)

1 − xE

)

.

Also note that

lim
L→∞

∞
∑

E=0

(

E

L

)2

φ(E|M) = lim
L→∞

∞
∑

E=0

E(E − 1)

L2
φ(E|M),
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since Step 1 implies limL→∞

∑∞

E=0
E
L2 φ(E|M) = 0. Thus

lim
L→∞

∞
∑

E=0

(

E

L

)2

φ(E|M) = lim
L→∞

2

α2

∞
∑

E=1

(

E−1
∑

i=1

1 − x

1 − xi

)(

∏E−1
i=0 (1 − xL−i)(1 − xmL−i)

(1 − xE)/(1 − x)

)

.

Again replacing x = 1 − α/L, switching the order of limits using an argument analogous to

Step 2, and taking the same limits as before, we get

lim
L→∞

∞
∑

E=0

(

E

L

)2

φ(E|M) =
2

α2

∞
∑

E=1

(

E−1
∑

i=1

1

i

)(

(

(1 − exp(−α))(1 − exp(−αm))
)E

E

)

=
1

α2
log
(

1 − (1 − exp(−α))(1 − exp(−αm))
)2

= e(m)2,

where the second line uses
∑∞

E=1

(

∑E−1
i=1

1
i

)(

aE

E

)

= 1
2
log(1 − a)2 for any a < 1. We have

proved that

lim
L→∞

∞
∑

E=0

(

E

L

)2

φ(E|M) =

(

lim
L→∞

∞
∑

E=0

E

L
φ(E|M)

)2

,

and hence the limiting variance of E/L is zero.

Finally, convergence of the expected value of E/L to e(m) and of the variance of E/L to
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zero implies mean square convergence of E/L to e(m).

Proof of Proposition 6. Consider a sequence of economies indexed by the number of

workers L with L converging to infinity. In an economy with L workers, there are M = mL

jobs, x = 1 − α/L probability of a pair being unproductive, and a random number E(L)

employed workers, with distribution given by equation (2). Then equation (3) implies

ΠUE(E(L)) = 1 −
(

(

1 − α

L

)L
)1−E(L)/L

→ 1 − exp(−α(1 − e(m))),

since Proposition 5 proves E(L)/L converges to e(m) in mean square. Replace e(m) using

equation (8) and simplify to get equation (11).

Similarly, equation (4) implies

ΠEU(E(L), mL) =

(

(

1 − α
L

)−L
)E(L)/L

− 1
(

1 − α
L

)−mL − 1
→ exp(αe(m)) − 1

exp(αm) − 1
.

Algebraic simplification again yields equation (11).
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Proof of Proposition 7. We start by constructing the unique equilibrium with increasing

targets. The last paragraph proves that there is no other equilibrium. Start with the smallest

value p = p−ν∆ with associated target m∗
p−ν∆

. Following an aggregate shock, productivity

increases by one step with certainty and so the target number of job increases to m∗
p
−(ν−1)∆

>

m∗
p−ν∆

. If m = m∗
p−ν∆

, the value of a job is k both before and after the shock, Jp−ν∆
(m∗

p−ν∆
) =

Jp
−(ν−1)∆

(m∗
p−ν∆

) = k. Then evaluating equation (13) at p = p−ν∆ and m = m∗
p−ν∆

gives

rk = (p−ν∆ − z)π(m∗
p−ν∆

) − lk. (19)

This uniquely defines m∗
p−ν∆

since π is a decreasing function, as can be confirmed directly

from equation (11).

We now proceed by induction. Suppose that for some y > −ν∆, y ∈ Y , we have shown

that the targets m∗
py′

are increasing and we have computed Jpy′
(m∗

py−∆
) for all y′ < y, y′ ∈ Y .

For m ∈ [m∗
py−∆

, m∗
py

] and y′ < y, equation (12) implies

rJpy′
(m) = (py′ − z)π(m) − lJpy′

(m) − lmJ ′
py′

(m)

+
λ

2

(

1 +
y′

ν∆

)

(

Jpy′−∆
(m) − Jpy′

(m)
)

+
λ

2

(

1 − y′

ν∆

)

(

Jpy′+∆
(m) − Jpy′

(m)
)

. (20)



Section A: Omitted Proofs Back 51

In addition, Jpy
(m) = k for m ∈ [m∗

py−∆
, m∗

py
]. This is a system of ν + y/∆ differential

equations in m with the same number of terminal conditions from the previous induction

steps and so we can compute Jpy′
(m), m ∈ [m∗

py−∆
, m∗

py
] for all y′ < y, y′ ∈ Y . The only

catch is that we do not yet know m∗
py

. To compute it, evaluate equation (13) at py and

m = m∗
py

:

rk = (py − z)π(m∗
py

) − lk +
λ

2

(

1 +
y

ν∆

)

(

Jpy−∆
(m∗

py
) − k

)

, (21)

where we use Jpy+∆
(m∗

py
) = k to eliminate the term coming from a positive shock. This

uniquely defines m∗
py

since both π and Jpy−∆
are decreasing.

To complete the induction argument, suppose equation (21) defines m∗
py

≤ m∗
py−∆

. Then

(py − z)π(m∗
py

) = (r + l)k < (py−∆ − z)π(m∗
py−∆

). (22)

The equality uses Jpy−∆
(m∗

py
) = k whenever m∗

py
≤ m∗

py−∆
. The inequality uses equation (20)

evaluated at y′ = y − ∆ and m = m∗
py−∆

, but drops the capital gain terms; those are all

negative-valued since m∗
py

≤ m∗
py−∆

(by assumption in this paragraph) and m∗
py−2∆

< m∗
py−∆

(from the induction assumption). Since py > py−∆, equation (22) implies π(m∗
py

) < π(m∗
py−∆

)

or equivalently m∗
py

> m∗
py−∆

, a contradiction.

Finally, suppose there were an equilibrium with m∗
py

≤ m∗
py−∆

for some y ∈ Y . Focus on
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the largest such y, so either m∗
py

< m∗
py+∆

or y = ν∆, in which case productivity can only

decline from py. Analogous to the reasoning behind equation (22), we find

(py − z)π(m∗
py

) = (r + l)k ≤ (py−∆ − z)π(m∗
py−∆

),

since a productivity shock when p = py and m = m∗
py

does not affect the value of a job (the

target goes up), while a productivity shock when p = py−∆ and m = m∗
py−∆

may reduce the

value of a job. The inequalities imply m∗
py

> m∗
py−∆

, a contradiction.

Proof of Proposition 8. Let Wp(m) denote the expected present value of net output

per worker when current productivity is p and the current job-worker ratio is m. We can

represent the planner’s problem recursively as

rWp(m) = max
g≥0

pe(m)+ z(1− e(m))− kg +W ′
p(m)(g− lm)+λEp

(

Wp′(m)−Wp(m)
)

. (23)

Here g is the gross increase in the number of jobs per worker and e(m) is the employment

rate given in equation (8). The flow value of the planner, rWp(m), can be divided into three

terms. First is current net output, p for each of the e(m) employed workers, z for each of the

1 − e(m) unemployed workers, and −k for each job created. Second is the future increases
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in Wp(m) coming from any net increase in the number of jobs, the difference between gross

job creation and deprecation, g − lm. Third is the possibility of an aggregate shock, with

arrival rate λ, at which point the planner anticipates a capital gain Ep

(

Wp′(m) − Wp(m)
)

.

The first order condition for the gross amount of job creation conditional on the current

state (p, m) is

gp(m) ≥ 0, W ′
p(m) ≤ k, and gp(m)(W ′

p(m) − k) = 0. (24)

That is, whenever the marginal value of a job is smaller than k, gross job creation is zero

and conversely, if some jobs are being created, the marginal value of a job must equal its

cost. The envelope condition is

rW ′
p(m) = (p − z)π(m) − lW ′

p(m) + W ′′
p (m)(gp(m) − sN) + λEp

(

W ′
p′(m) − W ′

p(m)
)

, (25)

where we use e′(m) = π(m).

Combining the first order and envelope conditions, we can define the targets m∗
p as follows.

First, if m > m∗
p, no new jobs are created, gp(m) = 0, so

rW ′
p(m) = (p − z)π(m) − lW ′

p(m) − W ′′
p (m)sN + λ

(

EpW
′
p′(m) − W ′

p(m)
)

. (26)
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Second, if m = m∗
p, gp(m) = lm and W ′

p(m) = k, so the envelope condition reduces to

rk = (p − z)π(m∗
p) − rk + λ

(

EpW
′
p′(m

∗
p) − k

)

. (27)

Finally, if m < m∗
p, entry immediately drives m up to m∗

p so W ′
p(m) = k. Comparing with

equations (12) and (13) establishes that the equivalence of the decentralized and centralized

economies, with Jp(m) = W ′
p(m) for all p and m.



References Back 55

References

Coles, Melvyn G., and Abhinay Muthoo (1998): “Strategic Bargaining and Compet-

itive Bidding in a Dynamic Market Equilibrium,” The Review of Economic Studies, 65(2),

235–260. 1, 3, 7, 38

Coles, Melvyn G., and Barbara Petrongolo (2003): “A Test Between Unemploy-

ment Theories Using Matching Data,” Mimeo, July. 3, 35

Coles, Melvyn G., and Eric Smith (1998): “Marketplaces and Matching,” International

Economic Review, 39(1), 239–254. 1, 3, 7

Fallick, Bruce, and Charles Fleischman (2004): “Employer-to-Employer Flows in

the U.S. Labor Market: The Complete Picture of Gross Worker Flows,” Federal Reserve

Board, Finance and Economics Discussion Series Working Paper 2004-34. 36

Fisher, Jonas D. M. (2006): “The Dynamic Effects of Neutral and Investment-Specific

Technology Shocks,” Journal of Political Economy, 114(3), 413–451. 36

Hagedorn, Marcus, and Iourii Manovskii (2005): “The Cyclical Behavior of Equilib-

rium Unemployment and Vacancies Revisited,” Mimeo, April 2. 32



References Back 56

Hall, Robert E. (2005): “Employment Fluctuations with Equilibrium Wage Stickiness,”

American Economic Review, 95(1), 50–65. 4, 36

Kemp, Adrienne W. (1998): “Absorption Sampling and the Absorption Distribution,”

Journal of Applied Probability, 35(2), 489–494. 17, 44, 47

Lagos, Ricardo (2000): “An Alternative Approach to Search Frictions,” The Journal of

Political Economy, 108(5), 851–873. 3

(2003): “An Analysis of the Market for Taxicab Rides in New York City*,” Inter-

national Economic Review, 44(2), 423–434. 38

Lucas, Robert E. Jr., and Edward C. Prescott (1974): “Equilibrium Search and

Unemployment,” Journal of Economic Theory, 7, 188–209. 4, 5

Mortensen, Dale, and Eva Nagypal (2005): “More on Unemployment and Vacancy

Fluctuations,” NBER Working Paper 11692. 34, 36

Mortensen, Dale, and Christopher Pissarides (1994): “Job Creation and Job De-

struction in the Theory of Unemployment,” Review of Economic Studies, 61, 397–415.

4



References Back 57

Mortensen, Dale T (1982): “Property Rights and Efficiency in Mating, Racing, and

Related Games,” American Economic Review, 72(5), 968–79. 4, 28

Nickell, Stephen, Luca Nunziata, Wolfgang Ochel, and Glenda Quintini

(2003): “The Beveridge Curve, Unemployment and Wages in the OECD from the 1960s

to the 1990s,” in Knowledge, Information and Expectations in Modern Macroeconomics:

In Honor of Edmund S. Phelps, ed. by Phillipe Aghion, Roman Frydman, Joseph Stiglitz,

and Michael Woodford. Princeton University Press. 38

Pissarides, Christopher A. (1985): “Short-Run Equilibrium Dynamics of Unemploy-

ment, Vacancies, and Real Wages,” The American Economic Review, 75(4), 676–690. 3,

4

(2000): Equilibrium Unemployment Theory. MIT Press, Cambridge, MA, second

edn. 4

Rudanko, Leena (2006): “Labor Market Dynamics under Long Term Wage Contracting

and Incomplete Markets,” Mimeo, April. 36

Shimer, Robert (2005): “The Cyclical Behavior of Equilibrium Unemployment and Va-

cancies,” The American Economic Review, 95(1), 25–49. 3, 4, 11, 32, 34, 60



References Back 58

(2006): “Mismatch,” NBER Working Paper 11888. 2, 4, 5, 28, 29, 31, 37

Smith, Eric, and Mienyun Kuo (2006): “Marketplace Matching in Britain: Evidence

from Individual Unemployment Duration Analysis,” Mimeo. 3

Taylor, Curtis R. (1995): “The Long Side of the Market and the Short End of the Stick:

Bargaining Power and Price Formation in Buyers’, Sellers’, and Balanced Markets,” The

Quarterly Journal of Economics, 110(3), 837–855. 1, 3, 7



Tables and Figures Back 59

L 1000 10,000 100,000 ∞
U/L

5.374%
(0.341)

5.413%
(0.108)

5.417%
(0.034)

5.417%
(0)

V/L
2.245%
(0.352)

2.287%
(0.112)

2.291%
(0.035)

2.291%
(0)

ΠEU 0.6547
(0.0436)

0.6508
(0.0137)

0.6504
(0.0043)

0.6504
(0)

ΠUE 0.6502
(0.0233)

0.6504
(0.0073)

0.6504
(0.0023)

0.6504
(0)

Table 1: Unemployment rate, vacancy rate, probability exit causes unemployment, and
probability entry causes employment (standard deviations in parenthesis) with M = 0.968L
and x = 1 − 19.4/L and various values of L.
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Summary Statistics, quarterly U.S. data, 1951 to 2003

U V V/U f s p
Standard Deviation 0.190 0.202 0.382 0.118 0.075 0.020

Quarterly Autocorrelation 0.936 0.940 0.941 0.908 0.733 0.878
U 1 −0.894 −0.971 −0.949 0.709 −0.408
V — 1 0.975 0.897 −0.684 0.364

V/U — — 1 0.948 −0.715 0.396
Correlation Matrix

f — — — 1 −0.574 0.396
s — — — — 1 −0.524
p — — — — — 1

Table 2: Seasonally adjusted unemployment U is constructed by the BLS from the Cur-
rent Population Survey (CPS). The seasonally adjusted help-wanted advertising index V
is constructed by the Conference Board. The job finding rate f and separation rate s are
constructed from seasonally adjusted employment, unemployment, and short-term unem-
ployment, all computed by the BLS from the CPS. See Shimer (2005) for details. U , V , f ,
and s are quarterly averages of monthly series. Average labor productivity p is seasonally
adjusted real average output per person in the non-farm business sector, constructed by the
Bureau of Labor Statistics (BLS) from the National Income and Product Accounts and the
Current Employment Statistics. All variables are reported in logs as deviations from an HP
trend with smoothing parameter 105.
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Model Generated Data (and standard errors)

U V V/U f s p

Standard Deviation 0.058
(0.008)

0.076
(0.010)

0.134
(0.018)

0.033
(0.004)

0.031
(0.004)

0.020
(0.003)

Quarterly Autocorrelation 0.879
(0.030)

0.879
(0.030)

0.879
(0.030)

0.739
(0.060)

0.885
(0.029)

0.878
(0.031)

U 1 −0.999
(0.000)

−1.000
(0.000)

−0.873
(0.029)

0.994
(0.001)

−0.999
(0.001)

V — 1 1.000
(0.000)

0.874
(0.030)

−0.992
(0.002)

0.996
(0.002)

V/U — — 1 0.873
(0.030)

−0.993
(0.001)

0.997
(0.001)

Correlation Matrix
f — — — 1 −0.906

(0.021)
0.870

(0.029)

s — — — — 1 −0.995
(0.001)

p — — — — — 1

Table 3: Results from simulations of the benchmark model. See the text for details.
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Figure 1: The brown dots show U.S. monthly data from December 2000 to April 2006. The
unemployment rate is measured by the BLS from the CPS. The vacancy rate is measured
by the BLS from the JOLTS. The line shows the model generated Beveridge curve with
α = 19.4 and m varying from 0.952 to 0.998.

http://www.bls.gov/
http://www.bls.gov/cps/
http://www.bls.gov/jlt/
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