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Abstract

This paper develops a dynamic model of mismatch. Workers and jobs are randomly

assigned to labor markets. Each labor market clears at each instant but some have

more workers than jobs, hence unemployment, and some have more jobs than workers,

hence vacancies. As workers and jobs move between labor markets, some unemployed

workers find vacant jobs and some employed workers lose or leave their job and become

unemployed. The model is quantitatively consistent with the business cycle frequency

correlation between unemployment, job vacancies, and the rate at which unemployed

workers find jobs and explains much of the cyclical volatility of these variables. The

model can also address a variety of labor market phenomena, including cyclicality in

the separation rate into unemployment and the job-to-job transition rate and duration

dependence in the job finding rate. The results are robust to having some non-random

mobility.

Keywords: Unemployment, Vacancies, Beveridge Curve, Matching Function
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1. Introduction

Why do unemployed workers and job vacancies coexist? What determines the rate at which

unemployed workers find jobs? This paper advances the proposition that at any point in

time, the skills and geographical location of unemployed workers are poorly matched with the

skill requirements and location of job openings. The rate at which unemployed workers find

jobs depends on the rate at which they retrain or move to locations with available jobs, the

rate at which jobs open in locations with available workers, and the rate at which employed

workers vacate jobs in locations with suitable unemployed workers.

My main finding is that such a model of mismatch is quantitatively consistent with

two robust features of labor markets: the negative correlation between unemployment and

vacancies at business cycle frequencies (the Beveridge curve) and the positive correlation

between the rate at which unemployed workers find jobs and the vacancy-unemployment

(v-u) ratio (the reduced-form matching function). The model-generated Beveridge curve has

a slope of approximately −1, quantitatively consistent with evidence from the United States.

The model predicts that a ten percent increase in the v-u ratio should be associated with

a two percent increase in the job finding rate. In particular, the elasticity of the model-

generated reduced-form matching function is virtually constant. Empirically the elasticity

is constant but closer to 0.3. I also use the model to explore employment-to-unemployment
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and job-to-job transitions and duration dependence in the job finding rate.

The view of unemployment and vacancies that I advance in this paper is conceptually

distinct from the one that search theory has advocated since the pioneering work of McCall

(1970), Mortensen (1970), and Lucas and Prescott (1974). According to search theory,

unemployed workers have left their old job and are actively searching for a new employer.

In contrast, this paper emphasizes that unemployed workers are attached to an occupation

and a geographic location in which jobs are currently scarce. Mismatch is a theory of former

steel workers remaining near a closed plant in the hope that it reopens. Search, particularly

as articulated in Lucas and Prescott (1974),1 is a theory of former steel workers moving to

a new city to look for positions as nurses. These two theories are complementary and it is

a priori reasonable to think that mismatch may be as important as search in understanding

equilibrium unemployment.

Indeed, the mismatch view of unemployment and vacancies is not new.2 Tobin (1972, p.

9) advances a theory of a “stochastic macro-equilibrium” in which “excess supplies in labor

1A potential drawback to Lucas and Prescott (1974) is that they do not have a notion of job vacancies;
however, Rocheteau and Wright (2005) have introduced vacancies into a monetary search model based on
the Lucas-Prescott framework.

2Padoa-Schioppa (1991) argues that there are four distinct meanings to the term mismatch. The notion
of mismatch in this paper is closest to the second approach that he discusses.
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markets take the form of unemployment, and excess demands the form of unfilled vacancies.

At any moment, markets vary widely in excess demand or supply, and the economy as a

whole shows both vacancies and unemployment.”3 Drèze and Bean (1990) discuss important

subsequent developments, including conditions on the joint distribution of workers and jobs

across labor markets which ensure that the aggregation of many small markets yields a

constant elasticity of substitution Beveridge curve. But both of these papers link mismatch

with disequilibrium, where the wage does not clear each labor market. This paper shows that

a mismatch model is quantitatively consistent with macro-labor facts even in an environment

where the welfare theorems hold. Section 2 discusses other related papers.

Section 3 develops a dynamic stochastic model of mismatch. There are many local

labor markets, each of which represents a particular geographic location and a particular

occupation. The wage clears each market at each instant, but there may be unemployed

workers in one market and job vacancies in another. Workers and jobs randomly enter

and exit markets, causing unemployed workers to find jobs and employed workers to lose

jobs, sometimes moving directly to another job. There is one key economic decision, firms’

option to create more jobs. I prove that the equilibrium is unique and maximizes the present

3Tobin (1972) cites a number of previous authors in developing these ideas including Lipsey (1960) and
Holt (1970). Hansen (1970) proposes a similar model of mismatch.
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discounted value of output net of job creation costs given the constraints imposed by market

segmentation.

Section 4 considers the impact of aggregate productivity shocks on unemployment and

vacancies. An increase in aggregate productivity induces firms to create more jobs, which

raises the vacancy rate and reduces the unemployment rate, moving the economy along a

downward-sloping Beveridge curve. I compare the theoretical relationship with evidence

from the Job Openings and Labor Turnover Survey (JOLTS) and show that the theoretical

and empirical Beveridge curves are nearly indistinguishable. Moreover, fluctuations in many

other variables, including the turnover rate of jobs, induce movements along a downward

sloping Beveridge curve in the mismatch model. In contrast, in Pissarides’s (1985) matching

model, fluctuations in the turnover rate induce a counterfactual positive co-movement of

unemployment and vacancies (Abraham and Katz, 1986; Shimer, 2005a).

Section 5 performs comparative statics with respect to aggregate productivity. I find that

the v-u ratio responds more than 4 times as much to productivity shocks in the mismatch

model as in the matching model. Shimer (2005a) argues that the matching model only

explains about ten percent of the volatility in vacancies and unemployment, so this helps to

reconcile the theory and the data. I also examine the source of this additional volatility.

I then turn to the comparative static relationship between the rate at which unemployed

http://www.bls.gov/jlt/
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workers find jobs and the v-u ratio. I show that the reduced-form matching function is nearly

indistinguishable from a Cobb-Douglas. An increase in productivity that raises the v-u ratio

by 10 percent raises the job finding rate by about 2 percent. This is roughly consistent with

U.S. data, where it is impossible to reject the hypothesis of a constant elasticity, although

the elasticity is closer to 0.3. This last fact is usually interpreted by search theorists as

evidence in favor of a Cobb-Douglas matching function (Petrongolo and Pissarides, 2001);

this paper provides the first structural explanation for why the matching function appears

to be Cobb-Douglas.

The comparative statics also show that higher productivity is associated with a lower

separation rate into unemployment and a higher job-to-job transition rate, even though the

total separation rate is acyclic. Conditional on an employment relationship ending, a worker

is more likely to be able to switch employers immediately when jobs are more plentiful.

Section 6 calibrates the model parameters to match some steady state facts from the U.S.

and then simulates the impact of aggregate productivity shocks. The simulations confirm

the comparative statics. The mismatch model explains more than a quarter of the volatility

in the job finding rate, more than a third of the volatility in the v-u ratio, and almost half

the volatility in the separation rate into unemployment in response to small productivity

shocks. It is consistent with evidence on the Beveridge curve and reduced-form matching
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function

A careful examination of the job finding rate requires me to account for heterogeneity

in the exit rate from unemployment, which I do in Section 7. The long-term unemployed

are typically located in labor markets where jobs are particularly scarce, which makes their

prospects for exiting unemployment unusually bleak. This dynamic sorting explains much of

the empirical duration dependence in the job finding rate. The remainder presumably reflects

unmodeled worker heterogeneity. I also find that accounting for duration dependence lowers

the measured level of the job finding rate and slightly lowers the elasticity of the reduced-form

matching function.

Section 8 takes a step towards relaxing the paper’s strongest assumption, that all workers

and jobs are equally likely to move. I introduce a parameter δ and assume that a worker

never enters a labor market with more than δ excess workers and never exits one with more

than δ excess jobs. Similarly firms never create jobs in a labor market with more than δ

excess jobs and never destroy jobs in a market with more than δ excess workers. I find

that my characterization of the Beveridge curve and the reduced-form matching function are

qualitatively robust to any positive value of δ, although the quantitative fit of the model is

slightly better when δ is large.

I conclude in Section 9.
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2. Related Literature

2.1. Mismatch Models

A number of previous authors have developed formal models of mismatch as a source of un-

employment. Many use an urn-ball structure, where workers (balls) are randomly assigned to

jobs (urns); see Butters (1977) and Hall (1977) for early examples. The random assignment

ensures that some jobs are unfilled, yielding vacancies, and some jobs are assigned multiple

workers, only one of whom can be hired, yielding unemployment. Hall (2000) supposes that

workers are randomly assigned to locations and then matched in pairs. One worker is nec-

essarily unemployed in any location with an odd number of workers, linking the importance

of matching (the number of workers per location) and the unemployment rate. Den Haan,

Ramey, and Watson (2000) offer an alternative model of matching frictions based on workers

and firms searching in different “channels;” however, they simply assume that the number

of channels is a constant elasticity function of unemployment and vacancies.

Stock-flow matching models offer another sensible theory of mismatch (Taylor, 1995;

Coles and Muthoo, 1998; Coles and Smith, 1998; Coles and Petrongolo, 2003). According

to these models, only a small proportion of worker-job matches are feasible. When a worker

loses her job, she looks among the available stock of vacancies to see if her skills are suitable
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for any of them. If so, she is immediately paired with a suitable vacancy, while otherwise

she remains unemployed. Symmetrically, entering job vacancies search for a match within

the stock of unemployed workers.

Perhaps the most similar models of mismatch are Lagos’s (2000) model of the taxicab

market and Sattinger’s (2005) model of queuing. According to Lagos (2000), there are

a fixed set of locations and two types of economic agents, drivers and passengers. The

short side of the market is served within each location and drivers optimally relocate to

the best possible location. Nevertheless, Lagos finds that empty taxis and unserved riders

can coexist in equilibrium if prices are fixed exogenously, yielding an aggregate Beveridge

curve. Sattinger (2005) assumes workers are randomly assigned to job queues and wait to

be “served.” A worker on a long queue experiences a longer unemployment spell. He shows

that a combination of queuing and search is consistent with a downward sloping Beveridge

curve. To generate mismatch, one must take one of the approaches adopted in these papers,

either prices that do not clear markets or limited mobility of workers and jobs.

There are many small differences between these earlier approaches to mismatch and the

model that I propose in this paper. For example, by making the notion of a labor market

explicit, it is sensible to think about wages being determined by competition for labor within

markets. The literature on urn-ball and stock-flow matching models has typically assumed
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that wages are either posted by firms as a recruiting device or bargained ex post by workers

and firms. But the most important difference between this paper and the urn-ball and stock-

flow literatures is one of emphasis. No previous paper has shown that a mismatch model is

quantitatively consistent with the empirical comovement of unemployment, vacancies, and

the job finding rate. Instead, the literature has focused on the theoretical shortcomings of the

reduced-form matching function approach by arguing that mismatch models do not deliver

a structural matching function. Indeed, this seems to be merely a matter of emphasis. The

quantitative behavior of the model in this paper almost indistinguishable from a stock-flow

matching model (Ebrahimy and Shimer, 2006).

2.2. Search and Matching Models

The issues this paper examines have traditionally been the realm of search models, espe-

cially Pissarides’s (1985) matching model and its variants. Under appropriate restrictions

on the reduced-form matching function and on the nature of shocks, the matching model is

quantitatively capable of describing the Beveridge curve (Abraham and Katz, 1986; Blan-

chard and Diamond, 1989) and the relationship between the v-u ratio and the rate at which

unemployed workers find jobs (Pissarides, 1986; Blanchard and Diamond, 1989).
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Despite these successes, the matching model has two significant shortcomings. The first

is the matching function itself. It is intended to represent “heterogeneities, frictions, and

information imperfections” and to capture “the implications of the costly trading process

without the need to make the heterogeneities and other features that give rise to it explicit”

(Pissarides, 2000, pp. 3–4). But Lagos (2000) emphasizes that if the matching function is a

reduced-form relationship, one should be concerned about whether it is invariant to policy

changes. Addressing this issue requires an explicit model of heterogeneity that gives rise to

an empirically successful reduced-form matching function.

The second is wage determination. In the matching model, workers and firms are typically

in a bilateral monopoly situation, and so competitive theories of wage determination are

inapplicable. Wages are instead set via bargaining. Some recent research has emphasized

that the details of the bargaining protocol are quantitatively critical to the ability of the

model to replicate business cycle fluctuations in unemployment and vacancies (Shimer, 2005a;

Hall, 2005; Hall and Milgrom, 2005). The model I develop in this paper circumvents both

of these issues. There is no matching function and wages are set competitively.
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3. A Model of Mismatch

3.1. Economic Agents

There are a M workers and a large number of firms. All agents are risk-neutral, infinitely-

lived, and discount future income at rate r. Time is continuous.

3.2. Stocks

I start by looking at the state of the economy at any moment in time t. Section 3.3 describes

the flow of workers and jobs and explains why this is consistent with the stocks described here.

At any point in time, each worker is assigned to one of L labor markets. These assignments

are independent across workers, so the distribution of workers across labor markets is a

multinomial random variable. Each firm may have zero, one, or more jobs. Let N(t) denote

the total number of jobs; later this will be determined endogenously. Each job is assigned

to one labor market. Again, these assignments are independent across jobs and independent

of the number of workers assigned to the labor market. Thus the distribution of jobs across

labor markets is an independent multinomial random variable.

Let M ≡ M/L and N(t) ≡ N(t)/L. In the remainder of this paper, I focus on the limit



Section 3: A Model of Mismatch Back 12

as L → ∞ with M > 0 an exogenous parameter and N(t) ≥ 0 an endogenous variable. In a

standard abuse of the law of large numbers, I assume that the fraction of labor markets with

i ∈ {0, 1, 2, . . .} workers, π̃(i; M), and the fraction of labor markets with j ∈ {0, 1, 2, . . .}
jobs, π̃(j; N(t)), are the deterministic Poisson limits:

π̃(i; M) ≡ e−MM i

i!
and π̃(j; N(t)) ≡ e−N(t)N(t)j

j!
. (1)

Since these are independent, the fraction of labor markets with i workers and j jobs is

π(i, j; N(t)) ≡ π̃(i; M)π̃(j; N(t)) =
e−(M+N(t))M iN(t)j

i!j!
(2)

if (i, j) ∈ {0, 1, 2, . . .}2 and π(i, j; N(t)) = 0 otherwise. To conserve on notation, I suppress

the dependence of π on the parameter M .

The cross-sectional distribution of workers and jobs is critical for what follows. It will

prove useful to describe how changes in M and N affect this probability:

Lemma 1
∂π(i, j; N)

∂M
= π(i−1, j; N)−π(i, j; N) and

∂π(i, j; N)

∂N
= π(i, j−1; N)−π(i, j; N).

Proof. The results follow directly from differentiating π in equation (2).
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Workers and jobs must match in pairs in order to produce market output. One worker and

one job in the same labor market can jointly produce p(t) units of the numeraire homogeneous

consumption good. A single worker (an unemployed worker) produces z < p(t) units of the

same good at home, while a single job (a vacancy) produces nothing. Workers and jobs are

indivisible. These stark assumptions give a concrete notion of unemployment and vacancies.

There is perfect competition within each labor market so unemployed workers and vacant

jobs cannot coexist in the same market. Let i denote the number of workers in some labor

market and j denote the number of jobs. If i > j, i − j workers are unemployed but all

workers are indifferent about being unemployed; the wage is driven down to the value of

home production, z. If i < j, j − i jobs are vacant but all firms are indifferent about their

jobs being vacant; the wage is driven up to the marginal product of labor, p(t). If i = j,

there is neither unemployment nor vacancies in the market and the wage is not determined.

I assume that if i = j, the wage is equal to workers’ reservation wage, z. The quantitative

results are scarcely affected if I instead assume the wage is p(t) when i = j.

The number of unemployed workers per labor market is equal to the difference between

the number of workers i and the number of jobs j, summed across labor markets with more
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workers than jobs, and similarly for the number of vacancies per labor market:

U(N) =
∞

∑

i=1

i
∑

j=0

(i − j)π(i, j; N) and V (N) =
∞

∑

j=1

j
∑

i=0

(j − i)π(i, j; N). (3)

The v-u ratio is V (N)/U(N) and the unemployment and vacancy rates are

u(N) ≡ U(N)/M and v(N) ≡ V (N)/N. (4)

It is also useful to define the share of markets with unemployed workers,

S(N) =

∞
∑

i=1

i−1
∑

j=0

π(i, j; N). (5)

I again suppress these variables’ dependence on the parameter M . I stress that equations (3)–

(5) hold at each instant, regardless of how the number of jobs evolves over time.

Perfect competition within labor markets is a stark assumption and implies that wages

only taking on two possible values at any point in time. However, the movement of workers

and jobs across markets, which I discuss next, ensures that the expected present value
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of wages differs continuously across markets depending on the current value of i and j. If

workers and firms can commit to long-term contracts, wage payments may be much smoother

than is suggested by this spot-market model of wages.

3.3. Flows

Each worker’s human capital is shocked according to a Poisson process with arrival rate

q. The arrival of this shock is exogenous, independent of the worker’s current employment

status or wage. When the “quit” shock hits, the worker must leave her labor market and

move to a random new one, independent of conditions in the new labor market. This means

that the arrival rate of workers into a labor market is qM . Thus the share of markets with

i workers evolves according to

˙̃π(i; M) = q
(

(i + 1)π̃(i + 1; M) + Mπ̃(i − 1; M) − (i + M)π̃(i; M)
)

.

It increases either when a worker exits a market with i+1 workers, at rate q(i+1)π̃(i+1; M),

or enters a market with with i − 1 workers, at rate qMπ̃(i − 1; M). It falls when a worker

either exits or enters a market with i workers, at rate (qi + qM)π̃(i; M). Eliminating π̃

using equation (1) implies ˙̃π(i; M) = 0, and so this birth-death process maintains a Poisson
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distribution of workers across labor markets at each instant. Indeed, one can prove that this

is the unique long-run distribution for this stochastic process.

Symmetrically, each job is destroyed according to a Poisson process with arrival rate l.

When this “layoff” shock occurs, the job leaves the labor market and disappears. Conversely,

a firm may create a new job by paying a fixed cost k > 0. When it does so, the job is

randomly assigned to a labor market. Again, both the entry and exit of jobs is independent

of conditions in the local labor market, although the decision to create a job depends on

aggregate labor market conditions.

This birth-death process maintains a Poisson distribution of jobs across labor markets.

To see this, suppose that at time t there are N(t) jobs distributed as in equation (1). If new

jobs are created at rate n(t), the stock of jobs evolves according to Ṅ(t) = n(t)− lN(t) and

the share of markets with j jobs satisfies

˙̃π(j; N(t)) = l(j + 1)π̃(j + 1; N(t)) + n(t)π̃(j − 1; N(t)) − (lj + n(t))π̃(j; N(t))

=

(

j

N(t)
− 1

)

π̃(j; N(t))Ṅ(t),

where the second line is obtained from the first by eliminating π̃ using equation (1). This

evolution of π̃(j; N(t)) is exactly what we would obtain by differentiating equation (1) di-
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rectly, i.e. by imposing that there is a Poisson distribution at each instant. Alternatively,

suppose a positive measure of jobs enters at time t, as may happen after a positive aggregate

shock. The distribution of these new jobs, like the old jobs, is Poisson. Since the sum of ran-

dom variables with Poisson distributions is also a Poisson random variable, the distribution

of jobs remains Poisson after the shock.

In summary, the two independent birth-death processes ensure that the number of workers

and jobs in a labor market are independent Poisson random variables at each instant, so

equation (2) always holds.

Finally, I assume a pair remains matched until either a quit or layoff hits the match, at

rate q + l, consistent with a small unmodeled turnover cost.

3.4. Aggregate Shock

I focus on a single type of aggregate shock, fluctuations in aggregate productivity p(t), but

indicate throughout the paper where the results extend to fluctuations in other parameters.

Assume p(t) = py(t) = ey(t) + (1 − ey(t))(z + (r + l)k), where y(t) is a jump variable lying on

a discrete grid:

y ∈ Y ≡ {−ν∆,−(ν − 1)∆, . . . , 0, . . . , (ν − 1)∆, ν∆}.
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∆ > 0 is the step size and 2ν + 1 ≥ 3 is the number of grid points. A shock hits y according

to a Poisson process with arrival rate λ. The new value y′ is either one grid point above or

below y:

y′ =







y + ∆

y − ∆
with probability







1
2

(

1 − y
ν∆

)

1
2

(

1 + y
ν∆

)

.

Note that although the step size is constant, the probability that y′ = y +∆ is smaller when

y is larger, falling from 1 at y = −ν∆ to 0 at y = ν∆. Shimer (2005a) shows that one can

represent the stochastic process for y as

dy = −γydt + σdx,

where γ ≡ λ/ν measures the speed of mean reversion and σ ≡
√

λ∆ is the instantaneous

standard deviation. This is similar to an Ornstein-Uhlenbeck process, except that the inno-

vations in y are not Gaussian, since y is constrained to lie on a discrete grid.4

Note that by construction py > z + (r + l)k, so output exceeds the sum of the value

4Suppose one changes the three parameters of the stochastic process, the step size, arrival rate of shocks,
and number of steps, from (∆, λ, ν) to

(

∆
√

ε, λ
ε
, ν

ε

)

for any ε > 0. This does not change either γ or σ, but
as ε → 0, y converges to an Ornstein-Uhlenbeck process.
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of leisure and the “user cost of capital,” the price of capital multiplied by the sum of the

interest and depreciation rates. This ensures that the economy never shuts down. To save

on notation, let EpXp′ denote the expected value of an arbitrary state-contingent variable X

following the next aggregate shock, conditional on the current state p.

3.5. Equilibrium

Firms create jobs whenever doing so is profitable. Let Jp(N) denote the expected value of a

job when productivity is p and there are N jobs in the average market. If the sample paths

of N were differentiable, we could express this using a standard Hamilton-Jacobi-Bellman

(HJB) equation:

rJp(N) = (p − z)S(N) − lJp(N) + J ′
p(N)Ṅ + λ(EpJp′(N) − Jp(N)). (6)

The left hand side is the flow value of a job. The current payoff is the difference between

output and home production income multiplied by the probability that the job is in a market

without vacancies.5 If the job is located in a market with vacancies, either it is vacant and

5Knowing my job is located in a particular market, the probability there are i workers and j jobs in that
market is π(i, j − 1; N). For this reason, the relevant probability is S(N), the share of markets with j < i.
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produces nothing or it is filled and pays a wage equal to labor productivity and so again

yields no profit. The second term on the right hand side accounts for the chance the job

exits. The final two terms deal with aggregate changes. The number of jobs increases at

rate Ṅ and the shock can change productivity from p to p′ at any time.

Free entry implies that no new jobs are created, Ṅ = −lN , whenever Jp(N) is smaller

than the cost of creating a job k. Conversely, if ever Jp(N) exceeded k, the number of jobs

would jump up instantaneously until the point where Jp(N) is driven down to k; for this

reason, the sample paths of N are typically not continuous. The process stops because an

increase in N reduces the share of markets with excess workers, S(N), which in turn reduces

the expected value of a job. This ensures that Jp(N) ≤ k for all p and N .

To be precise, the equilibrium is characterized by a sequence of targets N∗
p . If N(t) < N∗

p ,

firms instantaneously create N∗
p −N(t) jobs. If N(t) = N∗

p , gross job creation and destruction

are equal. If N(t) > N∗
p , no jobs are created. We can write the HJB equation (6) as

rJp(N) =







(p − z)S(N) − lJp(N) − J ′
p(N)lN + λ(EpJp′(N) − Jp(N)) if N ≥ N∗

p

rk if N < N∗
p

. (7)

In addition, evaluating the HJB at N = N∗
p , where Ṅ = 0, gives value matching and smooth
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pasting conditions,

Jp(N
∗
p ) = k and J ′

p(N
∗
p ) = 0. (8)

This is a standard irreversible investment problem (see, for example , Pindyck, 1988), which

yields the following characterization of equilibrium:

Proposition 1 There is a unique equilibrium. In it, the targets N∗
p are increasing.

Proof. See Appendix A.

The proof is constructive and so also provides a computational algorithm for N∗
p .

3.6. Social Planner’s Solution

We can alternatively imagine a social planner who decides on gross job creation in order to

maximize the presented discounted value of output net of job creation costs. A version of

the first and second welfare theorems holds in this model:

Proposition 2 The equilibrium maximizes the present value of net output.

Proof. See Appendix A.
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Intuitively, there is only one margin to get correct in this economy, the amount of entry.

A job is valuable whenever it employs a worker who would otherwise be unemployed, i.e.

whenever it is located in a market without vacancies. In this event, the job needs to recoup

its full marginal product. Otherwise it should get nothing. Competition in the labor market

ensures this happens. Note that the tie-breaking assumption that the wage is equal to z

when the number of workers and jobs are equal is important for this result.

3.7. Discussion

This model is deliberately parsimonious. The only economic decision is one by firms, which

must decide at each instant whether to create new jobs.6 In particular, the movement

between labor markets is exogenous and random. While the reader may be accustomed to

models in which mobility is endogenous, there are advantages to the approach I adopt here.

On a theoretical level, it introduces relatively few free parameters and stresses that the main

results are a consequence of limited mobility and aggregation.

There is also empirical evidence that mobility at business cycle frequencies is primarily

for idiosyncratic reasons. Kambourov and Manovskii (2004) show that gross occupational

6This is also the only economic decision in Chapter 1 of Pissarides (2000) and in Shimer (2005a).
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mobility is 10 to 15 percent per year at the one digit level while net mobility is only 1 to

3 percent. Blanchard and Katz (1992) argue that for 5 to 7 years after an adverse shock

to regional employment, the impact is primarily on local unemployment rather than on

net migration. More recently, and seemingly in contrast to random mobility assumption in

this paper, Kennan and Walker (2006, p. 15) “find that differences in expected income are a

significant determinant of migration decisions” in their study of interstate migration for white

male high school graduates in the United States. Using Census data, they find substantial

differences in average annual earnings in different states, which their model attributes to a

state fixed effect. But although this induces people to move to high wage states, Kennan

and Walker (2006) also observe that most individuals do not move in most years and that

many individuals move from high to low wage states. Their model explains the former

observation through a very large mobility cost. It explains the latter observation through

a variety of individual- and state-specific shocks. They estimate an individual- and state-

specific component to earnings with about twice the standard deviation of the common

state fixed effect. They also estimate an idiosyncratic shock that is independent across

individuals, states, and over time, which they interpret either as a shock to preferences or to

the cost of moving to a particular state in a particular year. The standard deviation of this

shock is more than ten times that of the state fixed effect. Finally, they note that return
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migration, particularly to an individual’s home state, is empirically important. In summary,

Kennan and Walker (2006) find that, although individuals choose optimally when to move,

idiosyncratic forces substantially affect the probability that an individual moves and the

decision about where to move. My model captures this through the extreme assumption

that mobility is random.

Similar questions arise about firms’ location decision. Blanchard and Katz (1992) find

that ten years after an adverse regional shock to employment, higher job creation offsets only

about a third of the decrease in employment; most of the long-run adjustment occurs via

worker emigration. Although I am unaware of studies of firms’ location decision comparable

to Kennan and Walker (2006), it seems likely that idiosyncratic shocks, in addition to wages

and unemployment rates, are important determinants of entry and exit decisions. The l

shocks in the model capture this in a simple manner.

In the numerical work that follows, no worker could increase her lifetime income by

more than 5 percent if she moved to a random new location. If mobility is endogenous but

mobility costs, including retraining costs, the loss of human capital, etc., exceed this amount,

the analysis in this paper is applicable. Finally, I evaluate the robustness of my results to

alternate worker and firm mobility assumptions in Section 8.
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4. The Beveridge Curve

This section evaluates the ability of the model to explain the comovement of unemployment

and vacancies, the Beveridge curve.

4.1. Theory

Recall from equation (4) that the unemployment and vacancy rates depend only on the

exogenous number of workers per market M and the contemporaneous endogenous number

of jobs per market N . Productivity shocks therefore affect unemployment and vacancies

through their impact on the number of jobs per market. The following proposition shows

how:

Proposition 3 The unemployment rate u is increasing in the number of workers per labor

market M and decreasing in the number of jobs per labor market N :

∂u

∂ log M
=

N

M

∞
∑

i=2

i−2
∑

j=0

π(i, j; N) and
∂u

∂ log N
= −N

M

∞
∑

i=1

i−1
∑

j=0

π(i, j; N). (9)
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The vacancy rate v is decreasing in M and increasing in N :

∂v

∂ log M
= −M

N

∞
∑

j=1

j−1
∑

i=0

π(i, j; N) and
∂v

∂ log N
=

M

N

∞
∑

j=2

j−2
∑

i=0

π(i, j; N). (10)

Proof. See Appendix A.

This has a number of implications. First, productivity shocks cause movements along a

downward-sloping v-u locus. Higher productivity raises the number of jobs per labor market

N and thus reduces the unemployment rate and raises the vacancy rate.

Second, a proportional increase in both M and N reduces both the unemployment and

vacancy rates.7 Doubling M and N is equivalent to merging randomly selected pairs of labor

markets. If both markets have unemployment, this merger does not affect the unemployment

or vacancy rates, and similarly if both markets have vacancies. But merging a market with

unemployment and a market with vacancies reduces the unemployment and vacancy rate

in both. This comparative static suggests that the mismatch construction may be useful in

other markets where the coexistence of unemployment and vacancies is more or less common.

If matching is a more severe problem, as might be the case in marriage or housing markets,

7A proportional increase in M and N raises u by ∂u
∂ log M

+ ∂u
∂ log N

= − N
M

∑

∞

i=1 π(i, i − 1; N) times the
percentage change in M and N , and similarly for v.
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M and N should be modeled as relatively small numbers. If it is a less severe problem, as

in commodity markets, M and N may be thought of as very large numbers.

Finally, Proposition 3 implies that data on the unemployment and vacancy rates pin

down the number of workers and jobs per labor market:

Proposition 4 For any u ∈ (0, 1) and v ∈ (0, 1), there is a unique M ∈ (0,∞) and

N ∈ (0,∞) solving equation (4).

Proof. See Appendix A.

4.2. Measurement

Since December 2000, the Bureau of Labor Statistics (BLS) has measured job vacancies

using the JOLTS. This is the most reliable time series for vacancies in the U.S.. According

to the BLS, “A job opening requires that 1) a specific position exists, 2) work could start

within 30 days, and 3) the employer is actively recruiting from outside of the establishment

to fill the position. Included are full-time, part-time, permanent, temporary, and short-term

openings. Active recruiting means that the establishment is engaged in current efforts to

fill the opening, such as advertising in newspapers or on the Internet, posting help-wanted

http://www.bls.gov/
http://www.bls.gov/jlt/
http://www.bls.gov/
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signs, accepting applications, or using similar methods.”8 I measure the vacancy rate as the

ratio of vacancies to vacancies plus employment.

The Bureau of Labor Statistics (BLS) uses the Current Population Survey (CPS) to

measure the unemployment rate each month. The CPS measures employment and unem-

ployment using a household questionnaire designed to determine whether an individual is

working or, if she is not working, available for and actively seeking work. The ratio of un-

employment to the sum of unemployment and employment is the unemployment rate. The

brown dots in Figure 1 show the strong negative correlation between unemployment and

vacancies over this time period, the empirical Beveridge curve.

From December 2000 to April 2006, the unemployment and vacancy rates averaged 5.4

percent and 2.3 percent, respectively. Using Proposition 4, these two numbers uniquely

determine M = 244.2 and N = 236.3.9 Productivity shocks affect the unemployment and

8See BLS news release, July 30, 2002, available at http://www.bls.gov/jlt/jlt_nr1.pdf
9To get a sense of whether these magnitudes are reasonable, observe that there are about 134 million

workers in the U.S. according to the Current Employment Statistics (CES). Dividing by 244.2 gives about
550,000 labor markets. The Occupational Employment Statistics (OES) counts about 800 occupations,
while there are 362 metropolitan statistical areas (regions with at least one urbanized area of 50,000 or
more inhabitants) and 560 micropolitan statistical areas (regions with an urban area of 10,000 to 50,000
inhabitants). Together this gives a total of about 740,000 occupations and geographic areas. Although the
sharp theoretical distinction between labor markets is less obvious in the data, this back-of-the-envelope

http://www.bls.gov/
http://www.bls.gov/cps/
http://www.bls.gov/cps/
http://www.bls.gov/
http://www.bls.gov/jlt/jlt_nr1.pdf
http://www.bls.gov/ces/
http://www.bls.gov/oes/
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vacancy rates by changing the number of jobs per market. As N varies between 233 and

243, the unemployment and vacancy rates in equation (4) trace out the blue line in Figure 1.

The fit of the model to the data is remarkable.

A shortcoming of JOLTS is that it only covers one recession and subsequent expansion.

Moreover, the recovery was unusual in that employment growth proceeded much slower

than normal. While unfortunately no ideal measure of job vacancies exists over a longer

time period, the Conference Board Help Wanted Index provides a crude one since 1951 (see

Abraham, 1987, for a discussion of this dataset). The business cycle frequency correlation

between unemployment and the Help Wanted Index is about −0.9 and the two variables are

equally volatile (Abraham and Katz, 1986; Blanchard and Diamond, 1989; Shimer, 2005a).

In Section 6 I show that the model is consistent with this.

The fact that the level of the model-generated Beveridge curve fits the JOLTS data

reflects how I chose the number of workers per labor market M . But the fact that the slope

and curvature of the model-generated Beveridge curve also fits the data comes from the

structure of the model. The model cannot generate a different Beveridge curve in response

to fluctuations in productivity p. Indeed, aggregate fluctuations in any parameter except M

would also affect unemployment and vacancies only through the number of jobs per market

calculation suggests that 244.2 workers per labor market is plausible.

http://www.bls.gov/jlt/
http://research.stlouisfed.org/fred2/series/HELPWANT/
http://research.stlouisfed.org/fred2/series/HELPWANT/
http://www.bls.gov/jlt/
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N and therefore would lead to the same comovement of unemployment and vacancies. In

other words, the shape of the Beveridge curve does not depend on the source of shocks.

In contrast, while the matching model is able to produce a negative correlation between

unemployment and vacancies, doing so is not trivial. For example, Mortensen and Pissarides

(1994) report a theoretical correlation between unemployment and vacancies of −0.26. Merz

(1995) reports the correlation is −0.15 if search intensity is exogenous and 0.32 if it moves

endogenously over the business cycle. Shimer (2005a) finds that shocks to aggregate pro-

ductivity induce a strong negative correlation between unemployment and vacancies and a

judicious choice of the matching function yields the correct slope of the Beveridge curve as

well. But even then, adding realistic fluctuations in the separation rate into unemployment

to the model induces a positive correlation between unemployment and vacancies.

5. Comparative Statics

This section performs comparative statics in a deterministic version of the model. In the

absence of aggregate shocks, λ = 0, the HJB equation (7) reduces to

(r + l)k = (p − z)S(N ∗
p ). (11)
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The user cost of capital must equal the profit from having a job in a market with unemployed

workers times the share of markets with unemployed workers. Throughout this section, I

assume this equation holds at every point in time and examine the effect of the level of

productivity on unemployment, vacancies, the job finding rate for unemployed workers, and

the separation rate into unemployment for employed workers. The results are useful because

they are simple but also accurately foreshadow the simulations of the stochastic model which

I report in Section 6.

5.1. Volatility of the v-u Ratio

I start by examining how a permanent productivity shock affects the v-u ratio:

Proposition 5 The responsiveness of the v-u ratio to productivity is

∂ log(V (N ∗
p )/U(N ∗

p ))

∂ log p
= −

(

V ′(N ∗
p )

V (N ∗
p )

− U ′(N ∗
p )

U(N ∗
p )

)

U ′(N ∗
p )

U ′′(N ∗
p )

p

p − z
> 0. (12)

Proof. See Appendix A.

Equation (24) implies U ′(N) = −S(N); since N − V (N) = M − U(N), V ′(N) = 1 −
S(N); and equation (19) provides the formula for S ′(N) = −U ′′(N). Thus we can compute
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equation (12) analytically. The equation shows that the responsiveness of the v-u ratio

to a permanent productivity shock depends on the number of workers and jobs per labor

market and on p
p−z

but not on other details of the model. Let M = 244.2 and N = 236.3,

values consistent with the mean unemployment and vacancy rates in recent years. Then

equation (12) implies that a one percent increase in productivity will raise the v-u ratio

by 4.25 p
p−z

. By contrast, Shimer (2005a, p. 36) argues that in a matching model with

wages determined by Nash bargaining, the elasticity of the v-u ratio with respect to labor

productivity is less than one-fourth as large, about 1.03 p
p−z

, although the exact value depends

on some other parameters, especially workers’ bargaining power.

Why is the v-u ratio so much more responsive in the mismatch model than in a matching

model? Part of the reason has to do with the nature of job creation costs. Shimer (2005a)

assumes that firms must pay a flow cost to maintain a vacancy, while here the cost is

sunk. This irreversibility is qualitatively important for the coexistence of unemployment

and vacancies, since otherwise firms would close vacancies in labor markets without enough

workers. If I make vacancy creation irreversible in a simple matching model, the elasticity

of the v-u ratio with respect to labor productivity rises to 1.9 p
p−z

.10 This explains almost

10This is isomorphic to introducing a capital cost (r+l)k into the simple matching model, which Mortensen
and Nagypal (2005) argue significantly raises the responsiveness of the v-u ratio. To be precise, I introduce
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half of the difference between models.

The other half of the explanation is more intimately tied to the structure of mismatch. For

expositional simplicity, I focus in this paragraph on the case when home production income,

z, is zero. Shimer (2005a) argues that in the matching model, a one percent increase in

labor productivity leads to an almost one percent increase in wages in all jobs with little

change in profitability and hence in job creation. In the mismatch model, a one percent

increase in labor productivity raises the wage by one percent in markets with vacancies but

does not affect the wage in markets with unemployment, where it is fixed at z. In addition,

some markets shift from having excess workers to having excess jobs, with an associated

large wage increase. The responsiveness of the number of jobs to productivity is determined

by this last channel. At the benchmark values of M and N , a one percent increase in the

a sunk cost of creating a job and set the flow cost of a vacancy to zero. The elasticity of the v-u ratio with
respect to net labor productivity p − z is

r + l +
(

1−β
θ

+ β
)

f(θ)

(r + l)(1 − η(θ)) + βf(θ)
,

where r = 0.012 is the quarterly interest rate, l = 0.102 is the separation rate, β = 0.72 is worker’s bargaining
power, θ is the v-u ratio, f(θ) = 1.35 is workers’ job finding rate, and η(θ) = 0.28 is the elasticity of f , as
in Shimer (2005a). I also set θ = 0.412, consistent with a 5.4 percent unemployment rate and a 2.3 percent
vacancy rate. This gives an elasticity 1.90 p

p−z
.
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number of jobs reduces the share of markets with vacancies by 6.5 percent. Equivalently, to

offset a one percent increase in productivity in the mismatch model, we require roughly a

0.15 = 1/6.5 percent increase in the number of jobs, significantly more than in the matching

model. Part of the greater volatility of the mismatch model therefore comes directly from

its central feature, the distinction between markets with unemployment and markets with

vacancies.

5.2. Job Finding and Separation Rates

Next I examine the determinants of the transition rates from unemployment to employment,

the job finding rate, and from employment to unemployment, the separation rate into un-

employment. If an employed worker quits her labor market, an unemployed worker may

take her old job (an unemployment-to-employment or UE transition) and she may fail to

find a job in her new labor market (an employment-to-unemployment or EU transition). If

an unemployed worker quits his labor market, he may find a job in his new labor market

(UE transition). If a filled job leaves the labor market, its old employee may be left jobless

(EU transition). But whenever a new job enters a labor market, it may hire a worker (UE

transition). These events may also lead an employed worker to switch employers.
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Let ρUE
q (N) denote the probability that a quit leads to a UE transition. This occurs if

either the quitting worker is employed in a labor market with unemployed workers or if the

worker is unemployed and moves to a labor market with vacant jobs:

ρUE
q (N) ≡ 1

M

∞
∑

i=1

i−1
∑

j=0

jπ(i, j; N) + u(N)
∞

∑

i=0

∞
∑

j=i+1

π(i, j; N). (13)

The first term is the fraction of workers who are employed in labor markets with unemployed

workers. This is equal to j workers in every labor market with i > j. The second term is

the product of the fraction of workers who are unemployed and the fraction of labor markets

with vacancies, j > i.

Equation (27) in Appendix A implies
∑∞

i=0

∑i
j=0 π(i, j; N)− 1

M

∑∞
i=1

∑i−1
j=0 iπ(i, j; N) = 0.

Add this to the right hand side of equation (13) and simplify using equation (4):

ρUE
q (N) = (1 − u(N))

∞
∑

i=0

i
∑

j=0

π(i, j; N). (14)

This is the product of the employment rate and the fraction of labor markets without va-

cancies. Equivalently, the probability a q shock leads to a UE transition is the same as the
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probability that it leads to an EU transition: ρUE
q (N) = ρEU

q (N). This makes sense, since

the quit rate does not affect the unemployment rate.

I similarly let ρUE
n (N) denote the probability that a job entering a labor market causes

a UE transition. This occurs whenever the job enters a market with unemployed workers,

so ρUE
n (N) = S(N). Conversely, the probability that a job leaving a market causes an EU

transition is equal to fraction of jobs in markets without excess jobs i ≥ j:

ρEU
l (N) =

1

N

∞
∑

j=1

∞
∑

i=j

jπ(i, j; N) =

∞
∑

j=0

∞
∑

i=j+1

π(i, j; N) = ρUE
n (N). (15)

The second equation uses the same logic as going from equation (13) to equation (14) while

the third equation reorders the sum to prove that ρEU
l (N) = ρUE

n (N) = S(N).

Putting these together, we get the instantaneous transition rate from unemployment to

employment in steady state, i.e. the job finding rate for unemployed workers:

f(N) =
qMρUE

q (N) + lNρUE
n (N)

U(N)
. (16)

There are qM quit shocks per labor market, each leading to a UE transition with probability
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ρUE
q (N). Similarly, jobs enter to offset exits, at rate lN , leading to a UE transition with

probability ρUE
n (N). This gives the total rate at which unemployed workers find jobs in an

average labor market. Dividing by the total number of unemployed workers per labor market

gives the instantaneous job finding rate for unemployed workers.

We can similarly define the separation rate into unemployment as

s(N) =
qMρEU

q (N) + lNρEU
l (N)

M − U(N)
. (17)

The fact that s(N)(M − U(N)) = f(N)U(N) is again consistent with steady state. Note

that a proportional increase in q and l causes a proportional increase in the job finding and

separation rates but does not affect the curvature of either function. Finally, a q or l shock

that does not cause a separation must cause a job-to-job transition and so the job-to-job

transition rate is q + l − s(N).

I start by exploring the behavior of a “reduced-form matching function,” the comovement

of f(N) with the v-u ratio V (N)/U(N). Fix M = 244.2 and q = l = 0.081 (per quarter)

and let N vary between 233 and 243; if N = 236.3, the unemployment and vacancy rates are

5.4 percent and 2.3 percent, respectively, and the separation rate into unemployment s(N)

is 0.105 per quarter, consistent with average values reported in Shimer (2005a). The solid
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blue line in Figure 2 shows the resulting relationship between the job finding rate f and the

v-u ratio as N varies. When jobs are plentiful, vacancies are high, unemployment is low, and

unemployed workers are likely to move rapidly into jobs. In addition, Figure 2 shows that

the relationship is insensitive to the composition of the total separation rate q + l between

quits and layoffs. The dashed lines with q = 0.162 and l = 0 or with q = 0 and l = 0.162 are

distinguishable from the solid line. I conclude that the ratio of the job finding rate to q + l

essentially depends only on the number of workers and jobs per labor market.

A striking feature of the relationship between f and V/U in Figure 2 is that it is nearly

isoelastic. Fix q = l = 0.081 and let N vary between 233 and 243. As the v-u ratio falls, the

elasticity of the job finding rate with respect to the v-u ratio declines slightly from 0.211 to

0.202. If q = 0 and l = 0.162, the decline is even smaller, from 0.212 to 0.205.11 Although

this decrease indicates that the relationship is not exactly a Cobb-Douglas, if the model were

the data generating process, it would be virtually impossible to reject the hypothesis of a

Cobb-Douglas empirically.

Petrongolo and Pissarides (2001) survey a large literature that explores the behavior of

empirical matching functions. Most papers find that the number of matches is a constant

returns to scale function of unemployment and vacancies, or equivalently that matches per

11As M = N → ∞, the elasticity converges to 1
2
− 1

π
≈ 0.18, where π ≈ 3.14, regardless of l and q.
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unemployed worker (the job finding rate) is a function of the v-u ratio. The literature

also typically cannot reject a Cobb-Douglas relationship between these variables. On page

393, Petrongolo and Pissarides (2001) conclude that “a plausible range for the empirical

elasticity” of the job finding rate with respect to the v-u ratio is 0.3 to 0.5, while this model

implies a slightly lower elasticity, around 0.2. The aggregation of distinct labor markets may

provide an explanation for the empirical evidence on matching functions.

The model also implies that when productivity is higher, the separation rate into un-

employment is lower. This is not because q or l shocks are less likely; by construction, the

incidence of these shocks is constant. Instead, when productivity is higher, there are more

jobs per labor market which implies that when an employed worker quits her labor market

or loses her job, she is more likely to find a new job immediately. This suggests that the

model will be able to explain some of the observed countercyclicality of the separation rate

into unemployment (Blanchard and Diamond, 1990). Conversely, the model also predicts

that the job-to-job transition rate is procyclical, qualitatively consistent with evidence in

Fallick and Fleischman (2004).
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6. Simulations of the Stochastic Model

I now move beyond comparative statics to explore the comovement of unemployment, va-

cancies, the job finding rate, the separation rate into unemployment, and labor productivity.

Table 1 shows the empirical behavior of these variables in the U.S. economy from 1951 to

2003. This simply replicates Table 1 in Shimer (2005a); I refer the reader to that paper for

details on the construction of the variables.

6.1. Calibration Procedure

This model is parameterized by 9 numbers: the number of workers per labor market M , the

quit and layoff rates q and l, the discount rate r, the value of leisure z, the cost of creating

a job k, and the three parameters of the stochastic process for productivity, the number of

steps ν, the arrival rate of shocks λ, and the step size ∆. I choose these parameters to match

certain facts and then explore the model’s behavior along other dimensions.

I fix M = 244.2 to match the location of the Beveridge curve in Figure 1 and set q = l =

0.081 to match the average quarterly separation rate into unemployment in a deterministic

steady state with N = 236.3. The comparative statics suggest that the decomposition of
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q + l is unimportant for the results and unreported results confirm this.12 I set the quarterly

interest rate to r = 0.012. I let ν = 1000, λ = 86.6, and ∆ = 0.00580276. This implies a

mean reversion parameter of γ = 0.0866 and a standard deviation of σ = 0.054 for the latent

variable y. I choose these values to match the standard deviation and autocorrelation of

detrended productivity, the first two numbers in the last column of Table 1. If I change ν, λ,

and ∆ without altering γ and σ, the results are again scarcely affected. I set the value of home

production at z = 0.4 for comparability with Shimer (2005a); like in a matching model, this

parameter is critical for the volatility of all the variables (Hagedorn and Manovskii, 2005).13

Finally, I fix k = 4.07848 so that in the deterministic steady state with p = 1, there are

indeed 236.3 jobs per labor market.

To characterize the equilibrium, I first compute the targets N∗
p for each of the 2ν + 1

states following the procedure in the proof of Proposition 1. I then choose an initial value for

p(0) and N(0) and select the timing of the first shock t, an exponentially-distributed random

variable with mean 1/λ. I compute the number of unemployed workers who find jobs and

12This breaks down if l is extremely close to zero. In that case the number of jobs decreases only very
slowly, exacerbating the irreversibility of investment.

13In the deterministic steady state with N = 236.3, about 64.7 percent of employed workers are in markets
with j ≤ i and hence are paid z. This implies the labor share is 0.647 · 0.4 + 0.353 · 1 = 0.61, a bit lower
than the usual value of 2/3. This suggests another method of choosing the parameter z.
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the number of employed workers who lose jobs during the interval [0, t]. These are slightly

more complicated than in steady state because if N(0) > N∗
p(0), there are time intervals when

no new jobs are created. Similarly, if N(0) < N∗
p(0), N∗

p(0) − N(0) jobs immediately enter

and U(N(0)) − U(N∗
p(0)) workers find work. I next compute the number of jobs at time t:

if N(0) ≤ eltN∗
p(0), N(t) = N∗

p(0); otherwise, N(t) = e−ltN(0) as the number of jobs decays

with exits. Finally, I choose the next value of p(t) as described in Section 3.4 and repeat.

At the end of each month (1/3 of a period), I record unemployment, vacancies, cumulative

matches and separations, and productivity. I measure the job finding rate f for unemployed

workers as the ratio of the number of matches during a month to the number of unemployed

workers at the start of the month. I similarly measure the separation rate into unemployment

s as the number of separations divided by the number of employed workers at the start of the

month. I throw away the first 25,000 years of data to remove the effect of initial conditions.

Every subsequent 53 years of model-generated data gives one sample. I take quarterly

averages of monthly data and express all variables as log deviation from an HP filter with

parameter 105, the same low frequency filter that I use on U.S. data. I create 20,000 samples

and report model moments and the cross-sample standard deviation of those moments.
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6.2. Results

Table 2 summarizes the model generated data. The last column shows the driving force, labor

productivity. By construction, I match the standard deviation and quarterly autocorrelation

in U.S. data. The remaining numbers are driven by the structure of the model.

The first two columns show unemployment and vacancies. As I stressed in Section 4,

both of these variables only depend on the contemporaneous number of jobs. Thus the

model generates a nearly-perfect negative correlation between them, stronger than the em-

pirical correlation of −0.89. The model also explains 42 percent of the observed volatility

in vacancies and 31 percent of the observed volatility in unemployment. The theoretical au-

tocorrelations of the two variables are about equal, consistent with the empirical evidence.

This last observation is notable since the equal persistence of unemployment and vacancies

is a puzzle for matching models where unemployment is a state variable and vacancies are a

jump variable (Shimer, 2005a; Fujita, 2003; Fujita and Ramey, 2005).

The third column shows that volatility of the v-u ratio is 7.03 times as large as the

volatility of labor productivity. Recall that Proposition 5 suggested that a one percent

increase in labor productivity would raise the v-u ratio by 4.25 p
p−z

. Evaluating at p = 1

and z = 0.4, the predicted elasticity was 7.08, indistinguishable from the results in the full
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stochastic model.

The fourth column shows that the model produces 26 percent of the observed volatility

in the job finding rate. The correlation between the detrended job finding rate and the

detrended v-u ratio is 0.93, only slightly lower than the 0.95 in the data. I also estimate

a Cobb-Douglas reduced-form matching function in the model-generated data, regressing

the detrended job finding rate on the detrended v-u ratio in each 212 quarter sample. The

resulting elasticity estimate averages 0.202 (standard error 0.005). When I add a quadratic

term in the v-u ratio, I rarely reject the null that the coefficient on the quadratic term is

zero; at the five percent level, I reject the null about 1.2 percent of the time. These findings

are all consistent with the comparative statics shown in Figure 2.

The fifth column shows that the model generates 43 percent of the observed volatility in

the separation rate into unemployment, even though both q and l are constant. The flip side

of this is that the model produces a strongly procyclical job-to-job transition rate, consistent

with the facts reported in Fallick and Fleischman (2004).14

Because the model has only one shock, most of the correlations are close to one in absolute

value. Moreover, a one shock model probably should not be able to explain all the volatility

14I do not report the job-to-job transition rate here because Fallick and Fleischman’s (2004) series is only
available since 1994, a relatively tranquil period.
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in vacancies and unemployment; there must be other shocks in the data, e.g. to the cost

of investment goods k (Fisher, 2006). Hall (2005), Mortensen and Nagypal (2005), and

Rudanko (2005) propose evaluating one shock models by examining the standard deviation

of the projection of the detrended v-u ratio on detrended productivity. By this metric, the

projection in the data is 0.151 and in the model it is barely smaller, 0.143. Similarly, the

target for the separation rate into unemployment should be just 0.039, compared to 0.032 in

the model. By this metric, the mismatch model explains almost all of the volatility in these

variables.

7. Duration Dependence

A distinctive feature of the mismatch model is that not all unemployed workers are equally

likely to find a job. Even in steady state, the job finding rate for any particular unemployed

worker may differ substantially from the average job finding rate in equation (16), since it

depends on the number of workers i and the number of jobs j in her labor market. This gives

rise to duration dependence in the job finding rate: if an econometrician observes a worker

who has been unemployed for a long time but cannot observe local labor market conditions,

he should infer that the worker is probably in a labor market in which jobs are scarce and
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workers plentiful. The worker’s job finding rate is correspondingly low. Conversely, a newly

unemployed worker’s job finding rate is higher than the average job finding rate f .

In addition to being empirically relevant, duration dependence affects the reduced-form

matching function depicted in Figure 2. At the start of the month, the average unemployed

worker finds a job at rate f ; however, conditional on staying unemployed, that worker’s job

finding probability falls by the end of the month. Equivalently, the full month probability

of finding a job is less than 1 − e−f , the probability of finding (at least) one job during

a month if jobs arrive at a Poisson rate f . Since empirically I measure the fraction of

unemployed workers who find a job during a month, this could represent an important

distinction between the model and data. This section therefore also explores the implications

of duration dependence for the measured job finding probability.

7.1. Cross Section

I start by examining duration dependence in unemployment rates in a deterministic steady

state. I simulate 200 million unemployment spells to recover the full month job finding

probabilities numerically. In half the spells, I start with a “job leaver,” a worker who quit

her labor market and moved to one in which there were more workers than jobs, i > j. In
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the other half of the spells, I start with a “job loser,” a worker whose job left a labor market

that previously had i workers and j ≤ i jobs. In both cases, I simulate the evolution of the

worker’s local labor market, stochastic changes in the number of workers and jobs coming

from entry and exit, until the worker finds a job either because a new job enters, an employed

worker leaves, or our unemployed worker quits for a labor market with vacancies.

I assume that whenever a job is available, each unemployed worker is equally likely to be

hired, independent of unemployment duration. For example, if at some point our unemployed

worker is in a labor market with i workers and j < i jobs and a new job enters, she gets the

job with probability 1/(i − j).15

I use the usual value for the number of workers per labor market, M = 244.2. I set the

quit and layoff rates at q = l = 0.027 and hence think of a time period as a month. For

now I fix N = 236.3, giving an unemployment rate of 5.4 percent. With these values, the

instantaneous job finding rate, f in equation (16), is 61.0 percent. If the job finding rate

were constant during a month, the full month probability of finding at least one job would be

15The results in this section are sensitive to this assumption. If the most recently unemployed worker is
always the first to get a job, the model generates significantly more duration dependence in the exit rate
from unemployment. Conversely, if the unemployed queue for a job (Sattinger, 2005), duration dependence is
inverted, with the long-term unemployed more likely to find a job than the short-term unemployed. Another
approach would be to model heterogeneous workers, eliminating this ambiguity.
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1− e−f = 45.6 percent, the horizontal line in Figure 4. The figure also shows the theoretical

monthly probability of finding a job—the fraction of workers who find a job during the next

month—as a function of unemployment duration and the reason for unemployment. The

job finding probability for job losers is slightly higher than for job leavers, reflecting slight

differences in initial conditions for the two groups.

I next compute the theoretical average job finding probability for an unemployed worker,

a weighted average of the job finding probability in Figure 4, with weights corresponding

to the fraction of spells that do not end before a particular duration. 39.8 percent of job

leavers and 40.2 percent of job losers find a job in given month. In U.S. data, I measure the

job finding probability as
∑Ut

i=1 F i
t

Ut
= 1 − Ut+1 − Us

t+1

Ut
,

where F i
t is the job finding probability for worker i, Ut is the number of unemployed in month

t, and Us
t is the number of short-term unemployed, workers unemployed 0 to 4 weeks; see

Shimer (2005b) for details. Since December 2000, this has averaged 39.7 percent. The model

matches this number because of my choice of q = l = 0.027. As in Figure 2, these results

are scarcely affected by changes in q and l leaving q + l constant.

Figure 4 shows that the job finding probability of both job losers and job leavers declines
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sharply during an unemployment spell. I summarize this decline in a single number by

looking at a weighted average of the job finding probability, where weights correspond to

unemployment duration. Shimer (2005b) shows that I can measure this empirically using

time series on unemployment Ut and mean unemployment duration d̄t:

∑Ut

i=1 di
tF

i
t

∑Ut

i=1 di
t

= 1 − (d̄t+1 − 1)Ut+1

d̄tUt

,

where di
t is worker i’s unemployment duration. This averaged 24.3 percent in the U.S. since

December 2000, while in the model it is 33.0 percent for job leavers and 33.2 percent for job

losers. In other words, the model explains a good fraction of observed duration dependence.

Presumably the rest is due to unmodeled heterogeneity among workers within labor markets.

7.2. Comparative Statics

I now explore how time aggregation and duration dependence affect the theoretical relation-

ship between the job finding rate and the v-u ratio. I let N vary from 233 to 243 with M , q,

and l fixed. At each value of N I compute the v-u ratio and simulate the fraction of unem-

ployed workers who find a job within a month, F (N). The solid blue dots in Figure 5 show
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the results. There is again an increasing relationship between the v-u ratio and the measured

job finding probability. The solid blue line depicts a Cobb-Douglas function through these

points. Again the fit is remarkable, although the elasticity is lower than before, just 0.13.

The hollow green circles in Figure 5 show the relationship between the v-u ratio and

1 − e−f(N), where f(N) is defined in equation (16). This is a full month measure of the

job finding probability but ignores duration dependence. This is systematically about 15

percent higher than F (N) but the quality of the Cobb-Douglas fit (dashed green line) and

the elasticity (0.15) are similar. I conclude that accounting for time aggregation lowers the

level of the theoretical job finding probability but does not affect the conclusion that the

model generates a Cobb-Douglas reduced-form matching function.

8. Mobility

In this section, I take a step towards relaxing the assumption that all workers and all jobs are

equally likely to leave their labor market. I focus throughout on steady states. Rather than

model such mobility costs explicitly, I consider an ad hoc structure that suggests how mobility

costs might affect my results. Recall that a worker’s payoff is monotonically increasing in the

number of jobs in her labor market and monotonically decreasing in the number of workers.
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Thus the workers who are most motivated to quit their labor market are those where i − j

is largest. Conversely, jobs are most profitable in those labor markets. With an explicit

cost of job mobility, workers will use a cutoff rule to decide when to exit a labor market.

Conversely, they may choose never to exit a labor market where i − j is sufficiently small.

Firms’ incentives are similar.

I capture this with a new parameter, δ ∈ {1, 2, . . .}, and assume that in every labor

market, the difference between the number of workers i and the number of jobs j is bounded

by δ, so |i − j| ≤ δ. In a market with |i − j| < δ, each worker quits at rate q, each job

leaves at rate l, new workers enter at rate m, and new jobs enter at rate n. But jobs never

leave and workers never enter a market with i − j = δ, although the exit rate of workers

and entry rate of jobs are unchanged. Similarly, workers never leave and jobs never enter a

market with j − i = δ. The benchmark model corresponds to δ → ∞, where m = qM and

n = lN . The primitives are the average number of workers and jobs per labor market, M

and N , and the quit and layoff rates, q and l. I consider comparative statics with respect to

N and determine the inflow rates m(N) and n(N) endogenously.

The steady state distribution of workers and jobs across labor markets is a modest gen-
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eralization of equation (2):

πδ(i, j; N) ≡ π̄(N)
(m(N)/q)i(n(N)/l)j

i!j!
if |i − j| ≤ δ, (18)

and πδ(i, j; N) = 0 otherwise, where the constant π̄(N) ensures that this is a proper density.

The derivation of equation (18) is similar to the logic in Section 3.3.16 In particular, note

that if −δ ≤ i − j < δ, the rate at which labor markets switch from state (i, j) to (i + 1, j)

and the rate at which they switch back are equal:

m(N)πδ(i, j; N) = q(i + 1)πδ(i + 1, j; N),

and similarly for other transition rates, consistent with steady state.

The inflow rates m(N) and n(N) ensure that we have the correct number of workers and

jobs per labor market:

M =
∞

∑

i=1

i+δ
∑

j=i−δ

iπδ(i, j; N) and N =
∞

∑

j=1

j+δ
∑

i=j−δ

jπδ(i, j; N)

16An important difference is that equation (2) holds for any value of N , while equation (18) only holds in
steady state.
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An increase in the number of jobs per labor market N raises the inflow rate of jobs, n′(N) > 0,

and reduces the inflow rate of workers, m′(N) < 0. Intuitively, there are fewer labor markets

where jobs can settle, with j − i < δ, and more labor markets where jobs can exit, with

i − j < δ. Therefore the rate at which jobs leave is higher and the few labor markets that

can absorb new jobs get them faster. The logic for how N affects m is similar.

I next examine how the Beveridge curve depends on δ. When δ = 1, we require M = 8.953

workers and N = 8.663 jobs to deliver the same unemployment and vacancy rates as in the

benchmark model with M = 244.2 and N = 236.3. The small value of δ mitigates frictions

and so implies that we need small labor markets to explain the average level of unemployment

and vacancies. As N varies between about 8.47 and 8.94, with M , q, and l fixed, we trace

out a downward-sloping Beveridge curve. I show this in Figure 6 as a dash-dot purple

line. At higher values of δ, the model-generated Beveridge curve is flatter. At δ = 20 and

M = 121.2, we get the dashed green line. With δ = 50 and M = 222.3, the Beveridge curve

is indistinguishable from the solid blue line, which represents the benchmark model.

There are two ways to interpret Figure 6. On the one hand, the Beveridge curve is quite

insensitive to the choice of δ and so seems to be a robust aggregation phenomenon. On the

other hand, the fit of the model to the JOLTS data shown in Figure 1 is better when δ is

larger. The root mean squared error in the vacancy rate falls from 0.14 percentage points

http://www.bls.gov/jlt/
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when δ = 1, to 0.11 when δ = 20, to 0.09 when δ is infinite. The fit is always good, but it is

better when mobility is more random.

I can also examine the reduced-form matching function in this version of the model. The

basic idea of how unemployed workers find jobs is unchanged. They can move to a labor

market with jobs, wait for an employed worker to exit their labor market, or wait for a job

to enter. For each value of δ, I fix q + l at a level which ensures a common job finding

rate across models when the unemployment rate is 5.4 percent and the vacancy rate is 2.3

percent. I then vary the number of jobs N and compute the v-u ratio and the job finding

rate.

Figure 7 shows the results. Again, the basic shape of the reduced-form matching function

is similar across models. When δ = 1, the average elasticity of the job finding rate with

respect to the v-u ratio is about 0.23, a better fit than with δ = ∞, although the function

is more convex than a Cobb-Douglas. For higher values of δ, the average elasticity falls but

the function is closer to a Cobb-Douglas. At δ = 20, for example, the elasticity is around

0.17. For still higher values of δ, the elasticity increases again, converging to 0.21 in the

limit. Again, there are two ways to interpret these findings. The reduced-form matching

function is fairly insensitive to the value of δ, but some of the desirable model properties, in

particular the constant elasticity, depend on δ being large.
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9. Conclusions

This paper develops a mismatch model of unemployment, vacancies, and labor market tran-

sitions. It provides a coherent framework for exploring a variety of facts, including the

comovement of unemployment, vacancies, the job finding rate, the separation rate into un-

employment, and the job-to-job transition rate. The model is deliberately simple in order

to highlight the major forces in a model of mismatch and stress that the findings are a con-

sequence of aggregation. They are robust to the exact pattern of mismatch across markets

and so I can allow workers to stay away from depressed labor markets without substan-

tially affecting the conclusions. It therefore seems likely that aggregating other models of

mismatch, e.g. the stock-flow matching model or the queuing model, would yield similar

results. Preliminary results in Ebrahimy and Shimer (2006) confirm this hypothesis for the

stock-flow model.

The matching model (Pissarides, 1985) is an important alternative explanation for these

facts. It seems plausible that mismatch and search frictions are complementary to each other

and both empirically relevant; however, there are some important differences between the two

frameworks. While the matching model can deliver a Beveridge curve with the right slope,

the mismatch model must deliver such a Beveridge curve. Moreover, the Beveridge curve in

the mismatch model is unaffected by cyclical fluctuations in the total separation rate q + l.
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Indeed, mismatch provides a natural explanation for countercyclicality in the separation rate

into unemployment and procyclicality in the job-to-job transition rate: when an employment

relationship ends, it is easier for a worker to move immediately into a new job when jobs

are more plentiful. I find that small productivity shocks can explain much of the observed

cyclicality in these variables. Similarly, the mismatch model explains much of the volatility

in vacancies and unemployment and suggests why the two variables have similar persistence.

It also predicts that the job finding rate should decline with unemployment duration even if

workers are homogeneous, generating a good fraction of the observed duration dependence.

All of these findings are problematic in the matching model.

I also found that the mismatch model generates a systematic relationship between the

job finding rate and the v-u ratio. It predicts that a one percent increase in the v-u ratio

should raise the job finding rate by about 0.2 percent, about two-thirds of the empirically

relevant value. To my knowledge, this is the first theoretical explanation for the empirical

relationship between these variables. In contrast, whether the matching function is Cobb-

Douglas is exogenous in the matching model. However, in light of the previous paragraph,

the mismatch model does not provide a microfoundation for writing down an aggregate

matching function.

At a microeconomic level, some of the model’s predictions are stark. For example, at
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any point in time, two wages are paid, p(t) to workers in markets with vacancies and z to

all other workers. A small change in labor market conditions can cause a dramatic change

in wages. Note, however, that the continual reallocation of workers and jobs across labor

markets means that the expected value of a worker varies smoothly with the number of

workers and jobs in her labor market. If workers were risk averse and workers and firms

could commit to long term contracts, firms would insure workers against sharp fluctuations

in labor market conditions, making wages a much smoother function of the state.

Heterogeneity of workers within a market leads to a similar result. Suppose workers differ

in their productivity x, where a type x worker produces xp(t) units of output when employed

at time t. If there are excess workers in a market, competition within the labor market

ensures that the least productive workers are unemployed, the marginal employed worker

receives her value of leisure z, and the remaining workers are paid the difference between their

productivity and the productivity of the marginal worker, so firms are indifferent about whom

to hire among the employed workers. The entry of an additional job increases employment

by one, thereby reducing the productivity of the marginal worker. For firms to remain

indifferent about whom to hire, all workers must get a small wage increase, so wages respond

smoothly to local labor market conditions. This extension yields some other rich predictions.

For example, wage cuts help to forecast future job loss since they imply that a worker is
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falling closer to being the marginal worker in her labor market.

There are other predictions of the mismatch model that I have not explored here. The

mismatch model predicts procyclical real wages since more workers are in labor markets with

excess jobs during booms. It likewise predicts a stable link between local unemployment

rates and wages, Blanchflower and Oswald’s (1995) “wage curve.” The mismatch model also

provides a coherent theory of jobs and hence a model of job flows distinct from worker flows.

In principle this means that the model could simultaneously be used to address facts about

labor market flows and facts about job creation and job destruction (Davis, Haltiwanger,

and Schuh, 1996). Preliminary work suggests that a simple feature of the labor market, the

fact that the vacancy rate is less than the unemployment rate, may explain why job flows

are systematically smaller than workers flows: it is easier to find a worker than to find a job.

A. Omitted Proofs

Proof of Proposition 1. I start by constructing the unique equilibrium with increasing

thresholds. The last paragraph of the proof shows that there is no other equilibrium. Start

with the smallest value p = p−ν∆ with associated target N∗
p−ν∆

. Following an aggregate

shock, productivity increases by one step with certainty and so the target number of job
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increases to N∗
p
−(ν−1)∆

> N∗
p−ν∆

. If N = N∗
p−ν∆

, the value of a job is k both before and after

the shock, Jp−ν∆
(N∗

p−ν∆
) = Jp

−(ν−1)∆
(N∗

p−ν∆
) = k. In other words, evaluating equation (7) at

p = p−ν∆ and N = N∗
p−ν∆

and using the smooth pasting condition in equation (8) gives

rk = (p−ν∆ − z)S(N∗
p−ν∆

) − lk.

This uniquely defines N∗
p−ν∆

since S is a decreasing function:

S ′(N) =

∞
∑

i=1

i−1
∑

j=1

π(i, j − 1; N) −
∞

∑

i=1

i−1
∑

j=0

π(i, j; N) = −
∞

∑

i=1

π(i, i − 1; N). (19)

The first equality uses Lemma 1 and the second eliminates common terms.

I now proceed by induction. Suppose that for some y > −ν∆, y ∈ Y , I have shown that

the targets N∗
py′

are increasing and I have computed Jpy′
(N∗

py−∆
) for all y′ < y, y′ ∈ Y . For
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N ∈ [N∗
py−∆

, N∗
py

] and y′ < y, equation (7) implies

rJpy′
(N) = (py′ − z)S(N) − lJpy′

(N) − J ′
py′

(N)lN

+
λ

2

(

1 +
y′

ν∆

)

(

Jpy′−∆
(N) − Jpy′

(N)
)

+
λ

2

(

1 − y′

ν∆

)

(

Jpy′+∆
(N) − Jpy′

(N)
)

. (20)

In addition, Jpy
(N) = k for N ∈ [N∗

py−∆
, N∗

py
]. This is a system of ν + y/∆ differential

equations in N with the same number of terminal conditions from the previous induction

steps and so we can compute Jpy′
(N), N ∈ [N∗

py−∆
, N∗

py
] for all y′ < y, y′ ∈ Y . The only catch

is that we do not yet know N∗
py

. To compute it, evaluate equation (7) at py and N = N∗
py

and simplify with equation (8):

rk = (py − z)S(N∗
py

) − lk +
λ

2

(

1 +
y

ν∆

)

(

Jpy−∆
(N∗

py
) − k

)

, (21)

where I use Jpy+∆
(N∗

py
) = k to eliminate the term coming from a positive shock. This

uniquely defines N∗
py

since both S and Jpy−∆
are decreasing.

To complete the induction argument, suppose equation (21) defines N∗
py

≤ N∗
py−∆

. Then

(py − z)S(N∗
py

) = (r + l)k < (py−∆ − z)S(N∗
py−∆

). (22)
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The equality uses Jpy−∆
(N∗

py
) = k whenever N∗

py
≤ N∗

py−∆
. The inequality uses equation (20)

evaluated at y′ = y − ∆ and N = N∗
py−∆

, but drops the capital gain terms; those are all

negative-valued since N∗
py

≤ N∗
py−∆

(by assumption in this paragraph) and N∗
py−2∆

< N∗
py−∆

(from the induction assumption). Since py > py−∆, equation (22) implies S(N∗
py

) < S(N∗
py−∆

)

or equivalently N∗
py

> N∗
py−∆

, a contradiction.

Finally, suppose there were an equilibrium with N∗
py

≤ N∗
py−∆

for some y ∈ Y . Focus on

the largest such y, so either N∗
py

< N∗
py+∆

or y = ν∆, in which case productivity can only

decline from py. Analogous to the reasoning behind equation (22), we find

(py − z)S(N∗
py

) = (r + l)k ≤ (py−∆ − z)S(N∗
py−∆

),

since a productivity shock when p = py and N = N∗
py

does not affect the value of a job (the

threshold goes up), while a productivity shock when p = py−∆ and N = N∗
py−∆

may reduce

the value of a job. The inequalities imply N∗
py

> N∗
py−∆

, a contradiction.

Proof of Proposition 2. Let Wp(N) denote the present value of net output and express

it recursively:

rWp(N) = max
g≥0

p(M−U(N))+zU(N)−kg+W ′
p(N)(g−lN)+λ

(

EpWp′(N)−Wp(N)
)

. (23)
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Here g is the gross increase in the number of jobs per labor market and U(N) is the number

of unemployed workers per labor market, given by equation (4). The flow value of the

planner, rWp(N), can be divided into three terms. First is current net output, p for each of

the M − U(N) employed workers, z for each of the U(N) unemployed workers, and −k for

each job created. Second is the future increases in in Wp(N) coming from any net increase

in the number of jobs, the difference between gross job creation and deprecation, g − lN .

Third is the possibility of an aggregate shock, with arrival rate λ, at which point the planner

anticipates a capital gain Ep

(

Wp′(N) − Wp(N)
)

.

Next observe that

U ′(N) =
∞

∑

i=1

i
∑

j=1

(i − j)π(i, j − 1; N) −
∞

∑

i=1

i−1
∑

j=0

(i − j)π(i, j; N) = −S(N). (24)

The first equation follows from Lemma 1, while the the second eliminates common terms

from the double sum. Use this to write the envelope condition from equation (23) as

rW ′
p(N) = (p − z)S(N) − lW ′

p(N) + W ′′
p (N)(gp(N) − lN) + λ

(

EpW
′
p′(N) − W ′

p(N)
)

. (25)

The first order condition for the gross amount of job creation conditional on the current
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state (p, N) is

gp(N) ≥ 0, W ′
p(N) ≤ k, and gp(N)(W ′

p(N) − k) = 0.

Substituting this into equation (25) gives expressions analogous to equations (7) and (8)

with W ′
p(N) = Jp(N).

Proof of Proposition 3. I start with the response of u to M :

∂u

∂ log M
= M

∂(U/M)

∂M
=

1

M

(

M
∂U

∂M
− U

)

(26)

Observe that

∞
∑

i=0

i−1
∑

j=0

iπ(i, j; N) = M
∞

∑

i=1

i−1
∑

j=0

π(i − 1, j; N) = M
∞

∑

i′=0

i′
∑

j=0

π(i′, j; N) = M
∂U

∂M
. (27)

The first equality uses the definition of π(i, j; N) in equation (2), the second equality rein-

dexes using i′ = i − 1, and the third uses ∂U
∂M

=
∑∞

i=0

∑i
j=0 π(i, j; N), with proof analogous

to equation (24). Substituting this into equation (26) and replacing U using equation (4)
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gives

∂u

∂ log M
=

1

M

∞
∑

i=0

i−1
∑

j=0

jπ(i, j; N).

Next, a logic similar to equation (27) establishes

∞
∑

i=0

i−1
∑

j=0

jπ(i, j; N) = N
∞

∑

i=0

i−1
∑

j=1

π(i, j − 1; N) = N
∞

∑

i=0

i−2
∑

j=0

π(i, j′; N). (28)

Substitute this into the previous equation to get ∂u/∂ log M in equation (9).

To compute the response of u to N , plug equation (24) into ∂u
∂ log N

= N ∂(U/M)
∂N

= N
M

∂U
∂N

to

get the desired result. The partial derivatives of v are computed symmetrically.

Proof of Proposition 4. Consider the locus of pairs (M, N) that deliver a particular

unemployment rate u0. Equation (9) implies that this locus satisfies

∂ log N

∂ log M

∣

∣

∣

∣

u=u0

=

∑∞
i=2

∑i−2
j=0 π(i, j; N)

∑∞
i=1

∑i−1
j=0 π(i, j; N)

< 1 (29)

That is, if (M1, N1) and (M2, N2) with M1 < M2 both yield the same unemployment rate
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u0, M2/M1 > N2/N1. Similarly, equation (10) implies

∂ log N

∂ log M

∣

∣

∣

∣

v=v0

=

∑∞
j=1

∑j−1
i=0 π(i, j; N)

∑∞
j=2

∑j−2
i=0 π(i, j; N)

> 1,

so if (M1, N1) and (M2, N2) with M1 < M2 both yield the same vacancy rate v0, M2/M1 <

N2/N1. This proves that there is at most one pair (M, N) associated with each pair (u, v).

The proof of existence is standard.

Proof of Proposition 5. The chain rule implies

∂ log(V (N ∗
p )/U(N ∗

p ))

∂ log p
=

(

V ′(N ∗
p )

V (N ∗
p )

− U ′(N ∗
p )

U(N ∗
p )

)

∂N ∗
p

∂ log p
,

while implicit differentiation of equation (11) implies

S ′(N ∗
p )

S(N ∗
p )

∂N ∗
p

∂ log p
+

p

p − z
= 0.

Recall from equation (24) that U ′(N) = −S(N) and so combining equations gives the desired

expression for
∂ log(V (N ∗

p )/U(N ∗

p ))

∂ log p
. To see that this is positive, note that U(N) and V (N) are
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positive. Since the share of markets with unemployed workers S(N) ∈ (0, 1), U ′(N) < 0.

Also since V (N) = N − M + U(N), V ′(N) = 1 − S(N) > 0. Finally, equation (19) implies

U ′′(N) = −S ′(N) > 0. Combining inequalities yields the result.
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duction and Synthesis.” in Jacques H. Dreéze, and Charles R. Bean (ed.), European Un-

employment: Lessons from a Multi-Country Econometric Study MIT Press, Cambridge.

3

Ebrahimy, Ehsan, and Robert Shimer, 2006. “Stock Flow Matching.” Mimeo, December 4.

9, 55

Fallick, Bruce, and Charles Fleischman, 2004. “Employer-to-Employer Flows in the U.S.

Labor Market: The Complete Picture of Gross Worker Flows.” Federal Reserve Board,

Finance and Economics Discussion Series Working Paper 2004-34. 39, 44

Fisher, Jonas D. M., 2006. “The Dynamic Effects of Neutral and Investment-Specific Tech-

nology Shocks.” Journal of Political Economy. 114 (3): 413–451. 45

Fujita, Shigeru, 2003. “The Beveridge Curve, Job Creation and the Propagation of Shocks.”

Mimeo. 43

Fujita, Shigeru, and Garey Ramey, 2005. “The Dynamic Beveridge Curve.” Mimeo, August.

43



References Back 69

Hagedorn, Marcus, and Iourii Manovskii, 2005. “The Cyclical Behavior of Equilibrium Un-

employment and Vacancies Revisited.” Mimeo, April 2. 41

Hall, Robert E., 1977. “An Aspect of the Economic Role of Unemployment.” in G.C. Har-

court (ed.), Microeconomic Foundations of Macroeconomics Macmillan, London. 7

Hall, Robert E., 2000. “Reorganization.” Carnegie-Rochester Conference Series on Public

Policy. 52: 1–22. 7

Hall, Robert E., 2005. “Employment Fluctuations with Equilibrium Wage Stickiness.” Amer-

ican Economic Review. 95 (1): 50–65. 10, 45

Hall, Robert E., and Paul R. Milgrom, 2005. “The Limited Influence of Unemployment on

the Wage Bargain.” Mimeo, September 26. 10

Hansen, Bent, 1970. “Excess Demand, Unemployment, Vacancies, and Wages.” Quarterly

Journal of Economics. 84 (1): 1–23. 3

Holt, Charles C., 1970. “How Can the Phillips Curve Be Moved to Reduce Both Inflation and

Unemployment?.” in Edmund S. Phelps (ed.), Microeconomic Foundations of Employment

and Inflation Theory W.W. Norton, New York. 3



References Back 70

Kambourov, Gueorgui, and Iourii Manovskii, 2004. “Rising Occupational and Industry Mo-

bility in the United States: 1968-1997.” Mimeo, October 4. 22

Kennan, John, and James R. Walker, 2006. “The Effect of Expected Income on Individual

Migration Decisions.” Mimeo, May. 23, 24

Lagos, Ricardo, 2000. “An Alternative Approach to Search Frictions.” The Journal of Po-

litical Economy. 108 (5): 851–873. 8, 10

Lipsey, Richard G., 1960. “The Relation between Unemployment and the Rate of Change of

Money Wage Rates in the United Kingdom, 1862-1957: A Further Analysis.” Economica.

27 (105): 1–31. 3

Lucas, Robert E. Jr., and Edward C. Prescott, 1974. “Equilibrium Search and Unemploy-

ment.” Journal of Economic Theory. 7: 188–209. 2

McCall, John J., 1970. “Economics of Information and Job Search.” Quarterly Journal of

Economics. 84 (1): 113–126. 2

Merz, Monika, 1995. “Search in the Labor Market and the Real Business Cycle.” Journal of

Monetary Economics. 36: 269–300. 30



References Back 71

Mortensen, Dale, and Eva Nagypal, 2005. “More on Unemployment and Vacancy Fluctua-

tions.” NBER Working Paper 11692. 32, 45

Mortensen, Dale, and Christopher Pissarides, 1994. “Job Creation and Job Destruction in

the Theory of Unemployment.” Review of Economic Studies. 61: 397–415. 30

Mortensen, Dale T., 1970. “A Theory of Wage and Employment Dynamics.” in Edmund S.

Phelps (ed.), Microeconomic Foundations of Employment and Inflation Theory W.W.

Norton, New York. 2

Padoa-Schioppa, Fiorella, 1991. “A Cross-Country Comparison of Sectoral Mismatch in the

1980s.” in Fiorella Padoa-Schioppa (ed.), Mismatch and Labour Mobility chap. 1, pp. 1–43.

Cambridge University Press, Cambridge. 2

Petrongolo, Barbara, and Christopher A. Pissarides, 2001. “Looking into the Black Box: A

Survey of the Matching Function.” Journal of Economic Literature. 39 (2): 390–431. 5,

38, 39

Pindyck, Robert S., 1988. “Irreversible Investment, Capacity Choice, and the Value of the

Firm.” American Economic Review. 78 (5): 969–985. 21



References Back 72

Pissarides, Christopher A., 1985. “Short-Run Equilibrium Dynamics of Unemployment, Va-

cancies, and Real Wages.” The American Economic Review. 75 (4): 676–690. 4, 9, 55

Pissarides, Christopher A., 1986. “Unemployment and Vacancies in Britain.” Economic Pol-

icy. 3: 499–540. 9

Pissarides, Christopher A., 2000. Equilibrium Unemployment Theory, MIT Press, Cam-

bridge, MA, second edn. 10, 22

Rocheteau, Guillaume, and Randall Wright, 2005. “Money in Search Equilibrium, in Com-

petitive Equilibrium, and in Competitive Search Equilibrium.” Econometrica. 73 (1): 175–

202. 2

Rudanko, Leena, 2005. “Labor Market Dynamics under Long Term Wage Contracting and

Incomplete Markets.” Mimeo, October 27. 45

Sattinger, Michael, 2005. “Labor Queues.” Mimeo, September 7. 8, 47

Shimer, Robert, 2005a. “The Cyclical Behavior of Equilibrium Unemployment and Vacan-

cies.” The American Economic Review. 95 (1): 25–49. 4, 10, 18, 22, 29, 30, 32, 33, 37, 40,

41, 43, 74



References Back 73

Shimer, Robert, 2005b. “Reassessing the Ins and Outs of Unemployment.” Mimeo, June 21.

48, 49

Taylor, Curtis R., 1995. “The Long Side of the Market and the Short End of the Stick:

Bargaining Power and Price Formation in Buyers’, Sellers’, and Balanced Markets.” The

Quarterly Journal of Economics. 110 (3): 837–855. 7

Tobin, James, 1972. “Inflation and Unemployment.” American Economic Review. 62 (1/2):

1–18. 2, 3



Tables and Figures Back 74

Summary Statistics, quarterly U.S. data, 1951 to 2003

U V V/U f s p
Standard Deviation 0.190 0.202 0.382 0.118 0.075 0.020

Quarterly Autocorrelation 0.936 0.940 0.941 0.908 0.733 0.878
U 1 −0.894 −0.971 −0.949 0.709 −0.408
V — 1 0.975 0.897 −0.684 0.364

V/U — — 1 0.948 −0.715 0.396
Correlation Matrix

f — — — 1 −0.574 0.396
s — — — — 1 −0.524
p — — — — — 1

Table 1: Seasonally adjusted unemployment u is constructed by the BLS from the Cur-
rent Population Survey (CPS). The seasonally adjusted help-wanted advertising index v is
constructed by the Conference Board. The job finding rate f and separation rate s are
constructed from seasonally adjusted employment, unemployment, and short-term unem-
ployment, all computed by the BLS from the CPS. See Shimer (2005a) for details. u, v, f ,
and s are quarterly averages of monthly series. Average labor productivity p is seasonally
adjusted real average output per person in the non-farm business sector, constructed by the
Bureau of Labor Statistics (BLS) from the National Income and Product Accounts and the
Current Employment Statistics. All variables are reported in logs as deviations from an HP
trend with smoothing parameter 105.
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Model Generated Data (and standard errors)

U V V/U f s p

Standard Deviation 0.059
(0.008)

0.084
(0.011)

0.143
(0.019)

0.031
(0.004)

0.032
(0.004)

0.020
(0.003)

Quarterly Autocorrelation 0.878
(0.030)

0.878
(0.030)

0.878
(0.030)

0.791
(0.050)

0.884
(0.029)

0.878
(0.030)

U 1 −0.999
(0.001)

−1.000
(0.000)

−0.927
(0.019)

0.994
(0.001)

−0.999
(0.000)

V — 1 1.000
(0.000)

0.927
(0.019)

−0.992
(0.002)

0.996
(0.002)

V/U — — 1 0.927
(0.019)

−0.993
(0.001)

0.997
(0.001)

Correlation Matrix
f — — — 1 −0.939

(0.015)
0.925

(0.018)

s — — — — 1 −0.995
(0.001)

p — — — — — 1

Table 2: Results from simulations of the benchmark model. See the text for details.
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Figure 1: The brown dots show U.S. monthly data from December 2000 to April 2006. The
unemployment rate is measured by the BLS from the CPS. The vacancy rate is measured by
the BLS from the JOLTS. The solid blue line shows the model-generated Beveridge curve
with M = 244.2 and N ∈ [233, 243].

http://www.bls.gov/
http://www.bls.gov/cps/
http://www.bls.gov/jlt/
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Figure 2: Comparative statics of f and V/U with respect to changes in N ∈ [233, 243].
M = 244.2 throughout.
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Figure 3: Comparative statics of s and V/U with respect to changes in N ∈ [233, 243].
M = 244.2 throughout.
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Figure 4: Monthly job finding probability as a function of unemployment duration. The
number of workers per labor market is M = 244.2, the number of jobs per labor market is
N = 236.3. The quit and layoff rates are q = l = 0.027 per month.
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Figure 5: Theoretical monthly job finding probability as a function of the v-u ratio. The
number of workers per labor market is fixed at M = 244.2 and the quit and layoff rates at
q = l = 0.027. The entry rate of jobs varies so N takes values between 233 to 243.
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Figure 6: Model-generated Beveridge curve with different values of δ.
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Figure 7: Model-generated reduced-form matching function with different values of δ
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