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A model of decisions under uncertainty is characterized by: 
a set of alternative choices C, a set of possible states of the world S,  
a utility function u:CHS 6 ú, and a probability distribution p in Δ(S). 
Suppose that C and S are nonempty finite sets. 
Here we use the notation  Δ(S) = {q0úS* q(s)$0 œs,  3θ0S q(θ) = 1}. 
The expected utility hypothesis says that an optimal decision should  
maximize expected utility  Eu(c) = Eu(c*p) = 3θ0S p(θ)u(c,θ)  over all c in C,  
for some utility function u that is appropriate for the decision maker. 
 
Example 1.  Consider an example with choices C = {T,M,B}, state S = {L,R}, and 
u(c,s):  L R 

T 7 2 
M 2 7 
B 5 6  

To describe the probability distribution parametrically, let r be the probability of state R. 
So  Eu(T) = 7(1!r)+2r,  Eu(M) = 2(1!r)+7r,  Eu(B) = 5(1!r)+6r. 
Then B is optimal when  5(1!r)+6r $ 7(1!r)+2r  and  5(1!r)+6r $ 2(1!r)+7r, 
which are satisfied when  1/3 # r # 3/4.   
T is optimal when r # 1/3.  M is optimal when r $ 3/4. 
 
Fact:  Given the utility function u:CHS6ú and some choice option d0C, the set of probability 
distributions that make d optimal is a closed convex (possibly empty) subset of Δ(S).  
This set (of probabilities in Δ(S) that make d optimal) is empty if and only if there exists some 
randomized strategy σ in Δ(C) such that  u(d,s) < 3c0C σ(c)u(c,s)  œs0S. 
When these inequalities hold, we say that d is strongly dominated by σ. 
[Proof:  {x0úS* ›σ0Δ(C) s.t. xs # 3c0C σ(c)u(c,s) œs}  is a convex subset of úS.  d is strongly 
dominated iff (u(d,s))s0S is in its interior.  Use supporting-hyperplane thm, MWG p. 949.] 
 
Example 2: As above, C = {T,M,B}, S = {L,R}, and u is same except  u(B,R) = 3. 
u(c,s):  L R 

T 7 2 
M 2 7 
B 5 3 

As before, B would be the second-best choice in either state (if the state were known). 
B would be an optimal decision under uncertainty when  
5(1!r)+3r $ 7(1!r)+2r  and  5(1!r)+3r $ 2(1!r)+7r, 
which are satisfied when  r $ 2/3  and  3/7 $ r,  which is impossible!  So B cannot be optimal. 
T is optimal when r#1/2.  M is optimal when r$1/2. 
Now consider a randomized strategy that chooses T with some probability σ(T)  
and chooses M otherwise, with probability σ(M) = 1!σ(T).   
B would be strongly dominated by this randomized strategy σ if 
5 < σ(T)7 + (1!σ(T))2   (B worse than σ in state L), and 
3 < σ(T)2 + (1!σ(T))7   (B worse than σ in state R). 
These inequalities are satisfied when 3'5 < σ(T) < 4'5.  For example, σ(T) = 0.7 works.  That is, 
B is strongly dominated by 0.7[T]+0.3[M], as 5 < 0.7H7+0.3H2 = 5.5 and 3 < 0.7H2+0.3H7 = 3.5. 
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Computing randomized Nash equilibria for games that are larger than 2H2 can be difficult, 
but working a few examples can help you better understand Nash's subtle concept of equilibrium. 
At the top of page 138, Osborne describes a general procedure for finding randomized Nash equilibria for 
any finite game, based on the characterization in Proposition 116.2. 
Here, we describe this procedure in somewhat different terms, with an illustrative application. 
 
We are given some game, including a given set of players N and, for each i in N, a given set of feasible 
actions Ai for player i and a given payoff function ui:A1H...HAn6ú for player i. 
The support of a randomized equilibrium is, for each player, the set of actions that have positive 
probability of being chosen in this equilibrium. 
To find a Nash equilibrium, we can apply the following 4-step method: 
 
(1) Guess a support for all players.  That is, for each player i, let Si be a subset of i's actions Ai,  
and let us guess that Si is the set of actions that player i will use with positive probability. 
 
(2)  Consider the smaller game where the action set for each player i is reduced to Si, and try to find an 
equilibrium where all of these actions get positive probability. 
To do this, we need to solve a system of equations for some unknown quantities. 
The unknowns:  For each player i in N and each action si in i's support Si, let σi(si) denote i's probability of 
choosing si, and let wi denote player i's expected payoff in the equilibrium. 
The equations:  For each player i, the sum of these probabilities σi(si) must equal 1. 
For each player i and each action si in Si, player i's expected payoff when he chooses si but all other players 
randomize independently according to their σj probabilities must be equal to wi. 
Let Eui(ai*σ!i) denote player i's expected payoff when he chooses action ai and all other players are 
expected to randomize independently according to their σj probabilities.  
Then the equations can be written:  3si0Si σi(si) = 1  œi0N;  and  Eui(si*σ!i) = wi  œi0N  œsi0Si. 
(Here œ means "for all", 0 means "in".)  We have as many equations as unknowns (wi, σi(si)). 
(For any action ai that is not in player i's support Si, we have  σi(ai) = 0.) 
If the equations in step 2 have no solution, then we guessed the wrong support,  
and so we must return to step 1 and guess a new support. 
Assuming that we have a solution from step (2), continue to (3) and (4) 
 
(3) The solution from (2) would be nonsense if any of the "probabilities" were negative. 
That is, for every player i in N and every action si in i's support Si, we need  σi(si) $ 0. 
If these nonnegativity conditions are not satisfied by a solution, then we have not found an equilibrium 
with the guessed support, and so we must return to step 1 and guess a new support. 
If we have a solution that satisfies all these nonnegativity conditions, then it is a randomized equilibrium of 
the reduced game where each player must can only choose actions in Si. 
 
(4)  A solution from (2) that satisfies the condition in (3) would still not be an equilibrium of the original 
game, however, if any player would prefer an action outside the guessed support. 
So next we must ask, for each player i and for each action ai that is in Ai but is not in the guessed support 
Si, could player i do better than wi by choosing ai when all other players randomize independently 
according to their σj probabilities?   Recall Eui(si*σ!i) = wi for all si in Si. 
So now, for every action ai that is in Ai but is not in Si, we need  Eui(ai*σ!i) # wi. 
If our solution satisfies all these inequalities then it is an equilibrium of the given game. 
But if any of these inequalities is violated (some Eui(ai*σ!i) > wi), then we have not found an equilibrium 
with the guessed support, and so we must return to step 1 and guess a new support. 
In a finite game, there are only a finite number of possible supports to consider. 
 
Thus in equilibrium, wi (∀i∈N) and σi(ai) (∀i∈N, ∀ai∈Ai) must satisfy: ∑ai σi(ai) = 1 ∀i∈N, and 
σi(ai) ≥ 0 and Eui(ai|σ−i) ≤ wi with at least one equality ∀i∈N ∀ai∈Ai (complementary slackness).
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Example.  Find all Nash equilibria (pure and mixed) of the following 2H3 game: 
        Player 2 

Player 1      L    M    R  
     T    7, 2  2, 7  3, 6 
     B    2, 7  7, 2  4, 5 

It is easy to see that this game has no pure-strategy equilibria (2's best response to T is M, but T is not 1's best 
response to M; and 2's best response to B is L, but B is not 1's best response to L). 
This eliminates the six cases where each player's support is just one action. 
Furthermore, when either player is restricted to just one action, the other player always has a unique best 
response, and so there are no equilibria where only one player randomizes. 
That is, both players must have at least two actions in the support of any equilibrium. 
Thus, we must search for equilibria where the support of player 1's randomized strategy is {T,B}, and the 
support of player 2's randomized strategy is {L,M,R} or {M,R} or {L,M} or {L,R}. 
We consider these alternative supports in this order. 
Guess support is {T,B} for 1 and {L,M,R} for 2? 
We may denote 1's strategy by p[T]+(1-p)[B] and 2's strategy by q[L]+(1!q!r)[M]+r[R],  
that is p = σ1(T), 1!p = σ1(B), q = σ2(L), r = σ2(R), 1!q!r = σ2(M). 
Player 1 randomizing over {T,B} requires  w1 = Eu1(T*σ2) = Eu1(B*σ2),  
and so  w1 = 7q+2(1!q!r)+3r = 2q+7(1!q!r)+4r. 
Player 2 randomizing over {L,M,R} requires  w2 = Eu2(L*σ1) = Eu2(M*σ1) = Eu2(R*σ1),   
and so  w2 = 2p+7(1!p) = 7p+2(1!p) = 6p+5(1!p). 
We have three equations for three unknowns (p,q,r), but they have no solution (as the two indifference 
equations for player 2 imply both p=1/2 and p = 3/4, which is impossible). 
Thus there is no equilibrium with this support. 
Guess support is {T,B} for 1 and {M,R} for 2? 
We may denote 1's strategy by p[T]+(1-p)[B] and 2's strategy by (1!r)[M]+r[R].  (q=0) 
Player 1 randomizing over {T,B} requires  w1 = Eu1(T*σ2) = Eu1(B*σ2),  so  w1 = 2(1!r)+3r = 7(1!r)+4r. 
Player 2 randomizing over {M,R} requires  w2 = Eu2(M*σ1) = Eu2(R*σ1),  so  w2 = 7p+2(1!p) = 6p+5(1!p). 
These solution for these two equations in two unknowns is  p = 3/4  and  r = 5/4. 
But this solution would yield σ2(M) = 1!r = !1/4 < 0, and so there is no equilibrium with this support.  
(Notice: if player 2 never chose L then T would be dominated by B for player 1.) 
Guess support is {T,B} for 1 and {L,M} for 2? 
We may denote 1's strategy by p[T]+(1-p)[B] and 2's strategy by q[L]+(1!q)[M].  (r=0) 
Player 1 randomizing over {T,B} requires  w1 = Eu1(T*σ2) = Eu1(B*σ2),  so  w1 = 7q+2(1!q) = 2q+7(1!q). 
Player 2 randomizing over {L,M} requires  w2 = Eu2(L*σ1) = Eu2(M*σ1)),  so  w2 = 2p+7(1!p) = 7p+2(1!p). 
These solution for these two equations in two unknowns is  p = 1/2  and  q = 1/2,  with  w1 = 4.5 = w2. 
This solution yields nonnegative probabilities for all actions. 
But we also need to check that player 2 would not prefer deviating outside her support to R. 
However  Eu2(R*σ1) = 6p+5(1!p) = 6H1/2+5H1/2 = 5.5 > w2 = Eu2(L*σ1) = 2H1/2+7H1/2 = 4.5. 
So there is no equilibrium with this support. 
Guess support is {T,B} for 1 and {L,R} for 2? 
We may denote 1's strategy by p[T]+(1-p)[B] and 2's strategy by q[L]+(1!q)[R].  (r=1!q) 
Player 1 randomizing over {T,B} requires  w1 = Eu1(T*σ2) = Eu1(B*σ2),  so  w1 = 7q+3(1!q) = 2q+4(1!q). 
Player 2 randomizing over {L,R} requires  w2 = Eu2(L*σ1) = Eu2(R*σ1),  so  w2 = 2p+7(1!p) = 6p+5(1!p). 
These solution for these two equations in two unknowns is   p = 1/3  and  q = 1/6. 
This solution yields nonnegative probabilities for all actions. 
We also need to check that player 2 would not prefer deviating outside her support to M; 
Eu2(M*σ1) = 7p+2(1!p) = 7H1/3+2H2/3 = 11/3 < w2 = Eu2(L*σ1) = 2H1/3+7H2/3 = 16/3. 
Thus, we have an equilibrium with this support:  ((1/3)[T]+(2/3)[B], (1/6)[L]+(5/6)[R]). 
The expected payoffs in this equilibrium are  w1 = Eu1 = 7H1/6+3H5/6 = 2H1/6+4H5/6 = 11/3 = 3.667 
and  w2 = Eu2 = 2H1/3+7H2/3 = 6H1/3+5H2/3 = 16/3 = 5.333. 
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Analysis of the general War of Attrition game. 
The game has two given parameters, T and K, where T is the largest number of days that the two 
players can fight, and K is the value of the prize.  (The example in assignment 1 had T=2, K=9.) 
There are two players numbered 1 and 2.   
Each player i must choose a number ai in the set {0,1,...,T}.   
Here i's decision ai represents the number of days that player i is prepared to fight for the prize. 
A player wins the prize only if he is prepared to fight strictly longer than the other player. 
They will fight for as many days as both are prepared to fight. 
Each day of fighting costs each player one dollar, and the prize is worth K dollars. 
Assume utility is money, and so the utility payoffs for players 1 and 2 are as follows: 
Player 1's payoff is  u1(a1,a2) = K!a2  if  a1 > a2,  but  u1(a1,a2) = !a1  if a1 # a2.   
Player 2's payoff is  u2(a1,a2) = K!a1  if  a2 > a1,  but  u2(a1,a2) = !a2  if a2 # a1.  

Let us look for a symmetric randomized equilibrium where each player uses a randomized 
strategy σ = (σ(0),σ(1),...,σ(T)) that assigns positive probability σ(c)>0 to every c in {0,1,...,T}. 
So player 1 must get the same expected payoff Eu1(c,ã2) from choosing any pure strategy a1=c 
when player 2 uses the randomized strategy σ to randomly determine ã2. 
Notice first that  Eu1(0,ã2) = 0.  
More generally,  
Eu1(c,ã2) = (K!0) σ(0) + (K!1) σ(1) + ...+ (K!(c!1)) σ(c!1) ! c (σ(c) + ...+ σ(T)). 
Compare the results for player 1 of preparing to fight an additional day: 
Eu1(c+1,ã2)= (K!0) σ(0) + (K!1) σ(1) + ...+ (K!c) σ(c) ! (c+1) (σ(c+1) + ...+ σ(T)). 
Thus,  Eu1(c+1,ã2) = Eu1(c,ã2) + Kσ(c) ! (σ(c+1) + ...+ σ(T)) = Eu1(c,ã2) + Kσ(c) ! ∑a>c σ(a). 
That is, being prepared to fight c+1 days instead of c could increase 1's payoff by K with 
probability σ(c) but could also decrease 1's payoff by 1 with probability ∑a>c σ(a). 
It will be helpful to rewrite this equation as by adding and subtracting σ(c), to get 
Eu1(c+1,ã2) = Eu1(c,ã2) + (K+1)σ(c) ! ∑a≥c σ(a). 

To make player 1 indifferent among all pure strategies, we must have 
Eu1(c+1,ã2) = Eu1(c,ã2) = Eu1(0,ã2) = 0  for all c in {0, 1, 2, ..., T!1}. 
So for all c in {0,1,...,T−1}, we must have 
0 = Eu1(c+1,ã2) − Eu1(c,ã2) = (K+1)σ(c) ! (∑a≥c σ(a)). 
That is,  σ(c) = ∑a≥c σ(a)/(K+1)  for all c ∈{0,1,...,T−1}. 
But  ∑a≥0 σ(a) = σ(0)+σ(1)+...+σ(T) = 1,  and so  ∑a≥c σ(a) = 1 − ∑a<c σ(a). 
Thus, for all c in {0,1,...,T−1},  we have  σ(c) = (1 − ∑a<c σ(a))/(K+1). 

This equation can be used to compute σ(0), σ(1),..., σ(T−1), σ(T): 
At c=0, we have  ∑a<0 σ(a) = 0,  and so  σ(0) = 1/(K+1). 
Then  σ(1) = (1−σ(0))/(K+1),  σ(2) = (1−σ(0)−σ(1))/(K+1), ...  
and so on, up to  σ(T!1) =  (1!σ(0)!σ(1)...!σ(T!2))'(K+1), 
Finally the last probability must be  σ(T) = 1!σ(0)!...!σ(T!1). 
It can be shown that these formulas yield the general solution: 
σ(c) = Kc'(K+1)c+1  for c = 0,1,...,T!1,  and  σ(T) = (K'(K+1))T. 
As T goes to infinity, this terminal probability σ(T) goes to 0.
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A finitely repeated game.  Consider a game where, in each period, the players play the 
following game in which each must decide whether to "Fight" or "NotFight," and payoffs are 

    f2   n2 
f1  !1, !1  9, 0 
n1    0, 9  0, 0 

If played only once, this game has three equilibria:  (f1,n2) yielding (9,0), (n1,f2) yielding (0, 9), 
and (0.9[f1]+0.1[n1], 0.9[f2]+0.1[n2]) yielding expected payoffs (0,0). 
 
Suppose this is played twice, and period-2 behavior can depend on the outcome in period 1.   
The overall goal of each player i is to maximize ui(1)+δui(2), where ui(t) is i's payoff in period t. 
In a subgame perfect equilibrium of the overall two-period game, the players' anticipated 
behavior in the final period 2 must look like an equilibrium of the one-period game, given 
whatever happened in period 1.  But the players' understanding of which equilibrium they will 
play in the second period may depend on the outcome of their play in the first period. 
We may say that the state of the players' shared understanding in period 2 will be "state 1" if they 
expect to play the (f1,n2) equilibrium in period 2, "state 2" if they expect to play the (n1,f2) 
equilibrium in period 2, and "state 0" if they expect the randomized equilibrium in period 2. 
Consider a subgame-perfect eqm where period-2 depends on period-1 play as follows:  
if (f1, n2) is played in period 1 then they anticipate state 1 ((f1, n2) again) in period 2; 
if (n1, f2) is played in period 1 then they anticipate state 2 ((n1, f2) again) in period 2; 
and otherwise they anticipate state 0 (the randomized equilibrium) in period 2. 
When the first-period influences second-period behavior in this way, total discounted payoffs for 
the two players depend on the first-period moves as follows: 

           f2         n2 
f1  !1+0δ,!1+0δ   9+9δ, 0+0δ 
n1    0+0δ, 9+9δ  0+0δ, 0+0δ 

(For discounted average value over two periods, we would divide all these payoffs by 1+δ.) 
So there are three possible equilibria in the first period: (f1,n2) yielding total expected payoffs 
(9+9δ, 0),  (n1, f2) yielding total expected payoffs (0, 9+9δ),  and a symmetric randomized 
equilibrium where each player fights with probability p = (9+9δ)'(10+9δ) and each player's 
expected total payoff is just 0. 
But there are also other subgame-perfect equilibria.  For example, the anticipated second-period 
equilibrium might depend on first-period play as follows: 
if (f1, n2) is played in period 1 then they anticipate state 2 (switch to (n1, f2)) in period 2; 
if (n1, f2) is played in period 1 then they anticipate state 1 (switch to (f1, n2)) in period 2; 
and otherwise they anticipate state 0 (the randomized equilibrium) in period 2. 
Then  total discounted payoffs for the two players depend on the first-period moves as follows: 

           f2         n2 
f1  !1+0δ,!1+0δ   9+0δ, 0+9δ 
n1    0+9δ, 9+0δ  0+0δ, 0+0δ 

So there are three possible equilibria in period 1:  (f1,n2) yielding total expected payoffs (9, 9δ),  
(n1, f2) yielding total expected payoffs (9δ, 9),  and a symmetric randomized equilibrium where 
each player fights with probability p = 9'(10 + 9δ) and each player's expected total payoff is 
81δ'(10 + 9δ), which is about 4.26 when δ is close to 1. 
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Introduction to repeated games   Players 1 and 2 will meet on τ+1 days, numbered 0,1,2,...,τ.  
On each day, each player i must choose to be generous (gi) or selfish (fi). 
On each day k, they get payoffs (u1k,u2k) that depend on their actions (c1k,c2k) as follows: 
 Player 1: \  Player 2:   g2   f2 

      g1   3, 3  0, 5    (Prisoners' dilemma) 
      f1   5, 0  2, 2 
except on the last day τ their payoffs will be: 
 Player 1: \  Player 2:   g2   f2 

      g1   5, 5  0, 4    (Trust game) 
      f1   4, 0  2, 2 
On each day, each player knows what both players did on all previous days. 
Each player wants to maximize the expected discounted sum of his payoffs  Vi = ui0+δui1+δ2ui2+...+δτuiτ  
for some given discount factor δ between 0 and 1. 

If the Prisoners' Dilemma were played once, (f1,f2) would be the only equilibrium, yielding the Pareto-
dominated payoffs (2,2).  And for this multi-period game, both players doing fi always is one equilibrium. 
But in multi-period games, opportunities to respond later can enlarge the set of equilibria.  
Consider the strategy for each player i to choose gi until f1 or f2 is chosen, but thereafter choose fi. 
We can show that, if δ$2/3, it is a subgame-perfect equilibrium for both players to choose this strategy. 

Consider first the case of τ=1, where the prisoners' dilemma is played once, followed by one play of the 
trust game at the end.  Under the strategies described here, on the last day,  
they will play the good (g1,g2) equilibrium of the "trust game" if both were previously generous,  
but they will play the bad (f1,f2) equilibrium if either player was previously selfish. 
So the overall payoffs will depend on their first-day choices as follows: 
 Player 1: \  Player 2:         g2          f2 
      g1   3+δ5, 3+δ5  0+δ2, 5+δ2 
      f1   5+δ2, 0+δ2  2+δ2, 2+δ2 
Then (g1g2) is an equilibrium at the first day if  3+5δ $ 5+2δ,  that is, if  δ $ 2/3. 

A similar calculation can be made for any number τ≥1 of repetitions of the prisoners' dilemma. 
Let G(τ) be the discounted sum of payoffs from (g1,g2)-always, and let F(τ) be the discounted sum of 
payoffs from (f1,f2) always, in τ repetitions of the prisoners' dilemma followed by one trust game. 
So  G(0) = 5  and  F(0) = 2  and, for any τ≥1,  G(τ) = 3+δG(τ−1)  and  F(τ) = 2+δF(τ−1). 

Fact:  w+wδ+wδ2+...+wδs!1 = w(1!δs)/(1!δ).  So G(τ) = 3(1−δτ)/(1−δ)+5δτ,  F(τ) = 2(1−δτ+1)/(1−δ). 
Lemma:  If  1>δ≥2/3  then  G(τ)−F(τ) ≥ 3  for all τ.  (Proof by induction:  G(0)−F(0) = 5−2 = 3,  and then  
for any τ≥1 we get inductively  G(τ)−F(τ) = 3−2 + δ(G(τ−1)−F(τ−1)) ≥ 1 + (2/3)(3) = 3.) 

Now assuming that the strategies described above will be played after the first stage, the players' overall 
payoffs will depend on their first-day choices as follows: 
 Player 1: \  Player 2:      g2       f2 
   g1    3+δG(τ−1), 3+δG(τ−1)    0+δF(τ−1), 5+δF(τ−1) 
   f1    5+δF(τ−1), 0+δF(τ−1)    2+δF(τ−1), 2+δF(τ−1)    
With 1>δ≥2/3, for any τ, it is an equilibrium for both to start doing gi, as these strategies specify, because 
3+δG(τ−1) ≥ 5+δF(τ−1).  (Proof:  3+δG(τ−1) − (5+δF(τ−1)) = −2+δ(G(τ−1)−F(τ−1)) ≥ −2+(2/3)(3) = 0.) 

As τ64, G(τ)→3/(1−δ), F(τ)→2/(1−δ), and overall payoffs here depend on first-day actions as follows: 
 Player 1: \  Player 2:        g2           f2 
      g1   3+δ3/(1!δ), 3+δ3/(1!δ)  0+δ2/(1!δ), 5+δ2/(1!δ) 
      f1   5+δ2/(1!δ), 0+δ2/(1!δ) 2+δ2/(1!δ), 2+δ2/(1!δ) 
The equilibrium condition  3+δ3/(1−δ) ≥ 5+2δ/(1−δ)  is satisfied when  1>δ≥2/3.
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Repeated games  Infinitely repeated games are useful models of long-term relationships. 
The game will be played at an infinite sequence of time periods numbered 1,2,3,... 
Suppose that the set of players is {1,2}.  In each period k, each player i must choose an action aik 
in some set Ai.   In period k, each player i's payoff uik will depend on both players' actions 
according to some utility function Ui:A1HA26ú; that is uik = Ui(a1k,a2k). 
We assume here that the actions at each period are publicly observable, and so each player's 
action in each period may depend on the history of actions by both players at all past periods. 
Given any discount factor δ such that 0 # δ < 1, the δ-discounted average value of player i's 
payoffs is  DAV(ui1,ui2,ui3,...) = (1!δ)(ui1 + δui2 + δ2ui3 + ... + δk!1uik + ...). 
(For any x,  DAV(x,x,x,...) = x.  If δ is slightly less than 1 then the players are very patient.) 
The objective of each player i in the repeated game is to maximize the expected discounted 
average value of his payoffs, with respect to some discount factor δ, where  0 < δ < 1. 
 
Fact. (Recursion formula)  DAV(ui1,ui2,ui3,...) = (1!δ)ui1 + δDAV(ui2,ui3,ui4,...) . 
 
We may describe equilibria of repeated games in terms of a various social states. 
At each period of the game, the players will understand that their current relationship is described 
by one of these social states, and their expectations about each others' behavior will be 
determined by this state.  This state may be called the state of play in the game at this period. 
(These social states are an attribute of the equilibrium, not of the game, as they describe the 
different kinds of expectations that the players may have about each others' future behavior.) 
To describe an equilibrium or scenario in terms of social states, we must specify the following: 
(1)  Social states  We must list the set of social states in this equilibrium.  (States may denoted by 
numbers or may be named for the kinds of interpersonal relationships that they represent.) 
(2)  State-dependent strategies.  For each state θ, we must specify a profile of  (possibly 
randomized) actions (s̃1(θ),s̃2(θ)) describing the predicted behavior of the players in any period 
when this θ is the state of play. 
(3)  Transitions.  For each social state θ, we must specify the profiles of players' actions that 
would cause the state of play in the next period to change from this state to another state.  We 
may let Θ(a1,a2;θ) denote the state of play in the next period after a period when the state of play 
was θ and the players chose actions (a1,a2) (possibly deviating from the prediction (s̃1(θ),s̃2(θ))). 
(4)  Initial state.  We must specify which social state is initial state of play in the first period of 
the game.  Here we will generally let state "0" denote this initial state. 
 
Given any scenario as in (1)-(3) above, and given any discount factor δ, let Vi(θ) denote the 
expected δ-discounted average value of player i's payoffs in this scenario when (ignoring (4)) the 
state of play begins in state θ.  Given δ < 1, these numbers Vi(θ) can be computed (with algebra) 
from the equations:  Vi(θ) = E[(1!δ)Ui(s̃1(θ),s̃2(θ))) + δ Vi(Θ(s̃1(θ),s̃2(θ);θ))]. 
 
Fact.  A scenario as in (1)-(3) above is a subgame-perfect equilibrium if, for every player i and 
every state θ, player i could not expect to gain by unilaterally deviating from the prediction s̃i(θ) 
in a period when the state of play is θ.  That is, we have an equilibrium if, for every state θ, 
V1(θ) $ E[(1!δ)Ui(a1,s̃2(θ))) + δ Vi(Θ(a1,s̃2(θ);θ))],  for all a1 in A1, 
V2(θ) $ E[(1!δ)Ui(s̃1(θ),a2)) + δ Vi(Θ(s̃1(θ),a2;θ))],  for all a2 in A2. 
(This is the "one-deviation property" of Osborne p 438.)
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Example 1.  Consider a repeated game where, in each period, the players play the following "Prisoners' 
dilemma" game in which each must decide whether to "cooperate" or "defect". 

  c2   d2 
 c1  3, 3  0, 5 
 d1  5, 0  2, 2 

We first consider a version of the "grim trigger" equilibrium: 
The states are {0, 1}.  (State 0 represents "trust" or "friendship"; state 1 represents "distrust".) 
The predicted behavior in state 0 is (c1,c2).  The predicted behavior in state 1 is (d1,d2). 
In any period when the current state of play is 0, if the players' action profile is (c1,d2) or (d1,c2) then the 
state of play next period will switch to state 1, otherwise it will remain state 0. 
When the state of play is 1, the future state of play always remains state 1. 

The expected discounted average values for the players in the states satisfy the equations: 
V1(0) = (1!δ)U1(c1,c2) + δV1(0),  V1(1) = (1!δ)U1(d1,d2) + δV1(1),  
V2(0) = (1!δ)U2(c1,c2) + δV2(0),  V2(1) = (1!δ)U2(d1,d2) + δV2(1). 
So V1(0) = (1!δ)3 + δV1(0),  V1(1) = (1!δ)2 + δV1(1),  and so  V1(0) = 3,  V1(1) = 2. 
Similarly,  V2(0) = 3,  V2(1) = 2. 
For this scenario to be an equilibrium, we need: 
V1(0) $ (1!δ)U1(d1,c2) + δV1(1),  V1(1) $ (1!δ)U1(c1,d2) + δV1(1),  
V2(0) $ (1!δ)U2(c1,d2) + δV2(1),  V2(1) $ (1!δ)U2(d1,c2) + δV2(1). 
That is, we need: 3 $ (1!δ)5 + δ2  and  2 $ (1!δ)0 + δ2,  which are satisfied when  1 $ δ $ 2/3. 

Now let's consider another (more forgiving) equilibrium: 
The states are {0, 1, 2}.  (state 0 is "friendship"; state 1 is "punishing 1"; state 2 is "punishing 2".) 
The predicted behavior in state 0 is (c1,c2).  The predicted behavior in state 1 is (c1,d2).   
The predicted behavior in state 2 is (d1,c2). 
When the state of play is 0, if the players choose (d1,c2) then the next state of play will be 1, if the players 
choose (c1,d2) then the state of play next period will be 2, otherwise it will remain 0. 
When the state of play is 1, if the players choose (c1,d2) then the next state of play will be 0, otherwise it 
will remain 1.  When the state of play is 2, if the players choose (d1,c2) then the next state of play will be 0, 
otherwise it will remain 2. 

The expected discounted average values V1(θ) for player 1 in each state θ satisfy the equations: 
V1(0) = (1!δ)U1(c1,c2) + δV1(0),  V1(1) = (1!δ)U1(c1,d2) + δV1(0),  
V1(2) = (1!δ)U1(d1,c2) + δV1(0). 
So  V1(0) = (1!δ)3 + δV1(0),   and  V1(0) = 3.  So  V1(1) = (1!δ)0 + δ3 = 3δ,   
and  V1(2) = (1!δ)5 + δ3 = 5!2δ. 
For a subgame-perfect equilibrium, the values for player 1 must satisfy:   
V1(0) $ (1!δ)U1(d1,c2) + δV1(1),  V1(1) $ (1!δ)U1(d1,d2) + δV1(1),  
V1(2) $ (1!δ)U1(c1,c2) + δV1(2). 
These inequalities become respectively:  3 $ (1!δ)5 + δ3δ,  3δ $ (1!δ)2 + δ3δ,   
5!2δ $ (1!δ)3 + δ(5!2δ);  and these are all satisfied when  1$δ$2/3.   
(Algebraic fact used here:  (1!δ2) = (1!δ)(1+δ).) 

The values equations for player 2 are similarly:  V2(0) = (1!δ)U2(c1,c2) + δV2(0),   
V2(1) = (1!δ)U2(c1,d2) + δV2(0),  V2(2) = (1!δ)U2(d1,c2) + δV2(0);   
and these equations imply  V2(0) = 3,  V2(1) = 5!2δ,  V2(2) = 3δ.  
Then the equilibrium inequalities for player 2 are:  V2(0) $ (1!δ)U2(c1,d2)+δV2(2),  
V2(1) $ (1!δ)U2(c1,c2)+δV2(1),  V2(2) $ (1!δ)U2(d1,d2)+δV2(2).   
These inequalities respectively become  3 $ (1!δ)5 + δ3δ,  5!2δ $ (1!δ)3 + δ(5!2δ),  3δ $ (1!δ)2 + δ3δ; 
and these are also satisfied when  1$δ$2/3.
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Example 2  Consider a repeated game where players 1 and 2 repeated play the game below 
infinitely often.  In each round, each player i must decide whether to fight (fi) or not (ni). 
The players want to maximize their δ-discount average value of payoffs, for some 0<δ<1. 

     f2   n2 
 f1  !1, !1  9, 0 
 n1    0, 9  0, 0 
 
A subgame-perfect equilibrium:   
States: there are three states, numbered 0,1,2.  The initial state in period 1 is state 0. 
(State 1 may be interpreted as "1 has ownership", state 2 may be interpreted as "2 has ownership" 
and state 0 may be interpreted as "fighting for ownership" or war of attrition.) 
Strategies: Let si(θ) denote the move that player i would choose in state θ. 
Player 1's strategy is  s1(1) = f1,  s1(2) = n1,  s1(0) = q[f1]+(1!q)[n1] for some q between 0 and 1. 
Player 2's strategy is  s2(1) = n1,  s2(2) = f1,  s2(0) = q[f2]+(1!q)[n2] for the same q. 
We will need to find what q makes this an equilibrium. 
Transitions: When the current state is state 0, the state next period would be:  
state 1 if (f1, n2) is played now, state 2 if (n1, f2) is played now, and state 0 if (f1,f2) or (n1,n2) is 
played now.  Once the game is in state 1 or 2, it stays in the same state forever. 
 
Values: Let Vi(θ) denote the expected discounted average value of payoffs for player i in state θ. 
The recursion equations for states 1 and 2 are 
Vi(1) = (1!δ)Ui(f1,n2) + δVi(1),  for i=1,2, and so V1(1) = 9 and V2(1) = 0; 
Vi(2) = (1!δ)Ui(n1,f2) + δVi(2),  for i=1,2, and so V1(2) = 0 and V2(2) = 9. 
To check the equilibrium condition in state 1, notice that  
9 = V1(1) $ (1!δ)U1(n1,n2) + δV1(1) = (1!δ)(0) + δ(9) = δ9, 
0 = V2(1) $ (1!δ)U2(f1, f2) + δV2(1) = (1!δ)(!1) + δ(0) = !(1!δ). 
The equilibrium conditions in state 2 are similar. 
In state 0, for player 1 to be willing to randomize between f1 and n1, he must expect the same 
discounted average value V1(0) from choosing f1 or n1 this period, and so we must have 
V1(0) = q((1!δ)U1(f1,f2) + δV1(0)) + (1!q)((1!δ)U1(f1,n2)) + δV1(1)),  and 
V1(0) = q((1!δ)U1(n1,f2) + δV1(2)) + (1!q)((1!δ)U1(n1,n2)) + δV1(0)). 
The latter is V1(0) = q(1!δ)0 + qδ0 + (1!q)(1!δ)0 + (1!q)δV1(0),  implying  V1(0) = 0. 
Then  V1(0) = q(1!δ)(!1) + qδV1(0) + (1!q)(1!δ)9 + (1!q)δ9,  implies  q = 9'(10!δ). 
Similarly, V2(0) = 0. 
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Another subgame-perfect equilibrium for this repeated game, with δ-discounting. 
     f2   n2 

 f1  !1, !1  9, 0 
 n1    0, 9  0, 0 
 
States: there are three states, numbered 0,1,2.  The initial state in period 1 is state 0. 
(In this equilibrium, state 1 may be interpreted as "1's turn", state 2 may be interpreted as 
"2's turn" and state 0 may be interpreted as "confused about whose turn it is".) 
Strategies: Let si(θ) denote the move that player i would choose in state θ. 
Player 1's strategy is  s1(1) = f1,  s1(2) = n1,  s1(0) = q[f1]+(1!q)[n1] for some q between 0 and 1. 
Player 2's strategy is  s2(1) = n2,  s2(2) = f2,  s2(0) = q[f2]+(1!q)[n2] for the same q as player 1. 
We will need to find what q makes this an equilibrium. 
Transitions: When the current state is state 0, the state next period would be:  state 2 if (f1, n2) is 
played now, state 1 if (n1, f2) is played now, and state 0 if (f1,f2) or (n1,n2) is played now.   
When the current state is 1, the next state is always 2.  When the current state is 2, the next state 
is always 1.  (So from state 1 or 2, the state of play alternates between states 1 and 2 forever.) 
 
Values  Let Vi(θ) denote the expected discounted average value of payoffs for player i in state θ. 
The recursion equations for states 1 and 2 are 
Vi(1) = (1!δ)Ui(f1,n2) + δVi(2) and Vi(2) = (1!δ)Ui(n1,f2) + δVi(1) for i=1,2. 
So V1(1) = (1!δ)9 + δ[(1!δ)0+δV1(1)], and so V1(1) = 9(1!δ)'(1!δ2) = 9'(1+δ) 
and V1(2) = (1!δ)0+δV1(1) = δ9'(1+δ). 
Similarly, V2(2) = 9'(1+δ)  and  V2(1) = δ9'(1+δ). 
To check the equilibrium condition in state 1, notice that  
9'(1+δ) = V1(1) $ (1!δ)U1(n1,n2) + δV1(2) = δ2 9'(1+δ), 
δ9'(1+δ) = V2(1) $ (1!δ)U2(f1, f2) + δV2(2) = (1!δ)(!1) + δ9'(1+δ). 
The equilibrium conditions in state 2 are similar. 
In state 0, for player 1 to be willing to randomize between f1 and n1, he must expect the same 
discounted average value V1(0) from choosing f1 or n1 this period, and so we must have 
V1(0) = q((1!δ)U1(f1,f2) + δV1(0)) + (1!q)((1!δ)U1(f1,n2)) + δV1(2)),  and 
V1(0) = q((1!δ)U1(n1,f2) + δV1(1)) + (1!q)((1!δ)U1(n1,n2)) + δV1(0)). 
So  V1(0) =  q(1!δ)(!1) + qδV1(0) + (1!q)(1!δ)9 + (1!q)δ2 9'(1+δ), 
and V1(0) = q(1!δ)0 + qδ9'(1+δ) + (1!q)(1!δ)0 + (1!q)δV1(0). 
These two equations can be solved for the two unknowns V1(0) and q.   
The explicit formula is hard to derive, but the equations can be solved numerically on a 
computer.  The second equation implies V1(0) = [qδ9'(1+δ)]'[1!δ(1!q)], and substituting this 
into the first equation yields a nonlinear equation in one unknown q, which can be solved with 
Excel's Goal-Seek tool.  The results with δ = 0.99 are V1(0) = 4.446 and q = 0.585 
The value for player 2 in state 0 is of course the same, V2(0) = V1(0), because everything is 
symmetric as long as they are in state 0. 
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A First Bayesian Game  Bayesian games are models of one-stage games where players choose 
actions simultaneously, but where each player may have private information, called his type. 
Let us consider an example where player 2 is uncertain about one of player 1's payoffs. 
Each player must independently decide whether to act with friendship (fi) or aggression (gi).  
Player 1 might be the kind of person who would be contented (type 1c) or envious (type 1e) if they 
chose to be friendly.  Player 2 thinks that each of 1's possible types has probability 0.5.  
The players' payoffs (u1,u2) depend on their actions and 1's type as follows: 
 
 If 1's type is 1c:  f2   g2       p(1c) = 0.5 

 f1 8,8   0,6 
 g1 6,0   3,3 

 
 If 1's type is 1e:   f2   g2       p(1e) = 0.5 

 f1 5,8   0,6 
 g1 6,0   3,3 

 
How shall we analyze about this game?  Let me first sketch a common mistake.  To deal with the 
uncertainty about 1's payoff from (f1,f2), some students try to analyze the game where player 1's 
payoff from (f1,f2) is the expected utility 0.5(8)+0.5(5)=6.5.  So these students consider a 2H2 
payoff matrix that differs from the second (1e) case only in that the payoff 5 would be replaced by 
6.5, and then they find an "equilibrium" at (f1,f2) (as 6.5>6 for player 1 and 8>6 for player 2).  
Such analysis would be nonsense, however.  This "equilibrium" would correspond to a theory that 
each player is sure to choose friendship.  But player 2 knows that if player 1 is type 1e then he will 
not choose f1, because f1 would be dominated by g1 for player 1 when his type is 1e.  Thus, player 
2 must believe that there is at least a probability 0.5 of player 1 being the envious type 1e and thus 
choosing aggression g1.  A correct analysis must recognize this fact. 
 
To find a correct approach, we may consider the situation before the players learns any private 
information, but when they know that each will learn his private type information before he acts in 
the game.  A strategy for a player is a complete plan that specifies a feasible action for the player in 
every possible contingency that the player could find.  Before player 1 learned his type, he would 
have 4 strategies {fcfe, fcge, gcfe, gcge} because he will learn his type before acting.  (For example, 
fcge denotes the strategy "be friendly if type 1c, be aggressive if type 1e.")  Player 2 would have 
only two strategies {f2, g2}, because she must act without learning 1's type.  For each pair of 
strategies, we can compute the expected payoffs to each player, given that each of 1's types has 
probability 1/2.  So the normal representation in strategic form of this Bayesian game is 
 

   f2     g2 
fcfe   6.5, 8    0, 6 
fcge     7, 4  1.5, 4.5 
gcfe   5.5, 4  1.5, 4.5 
gcge     6, 0    3, 3 

 
This strategic game has one equilibrium: (gcge, g2), where both are aggressive and get payoffs 
(3,3).  In this strategic game, fcfe and gcfe are strictly dominated for 1 (by fcge and gcge 
respectively).  When we eliminate these dominated strategies, then f2 becomes dominated for 2, 
and gcge is the unique best response for 1 against 2's remaining strategy g2.  
(The students' mistake above was to consider only the strategies fcfe and gcge here.) 
 
A Bayesian game is defined by a set of players N; a set of actions Ai, a set of types Ti, and a utility 
function ui:(Hj0N Aj)H(Hj0T Tj)6ú, for each i in N; and a probability distribution p0Δ(Hj0N Tj). 
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Increasing differences and increasing strategies in Bayesian games 
We may consider Bayesian games where each player i first learns his type tĩ, and then each player i 
chooses his action ai.  We assume here that each player i's type is drawn from some probability 
distribution pi, independently of all other players' types, and so the joint probability distribution of 
the players' types can be written  p((ti)i0N) = Ji0N pi(ti),  where  pi(ti) = Prob(tĩ = ti). 
The payoffs of each player i in N = {1,2,...,n} may depend on all players' types and actions 
according to some utility payoff function ui(c1,...,cn,t1̃,...,tñ). 
A function f:ú6ú is increasing (in the weak sense) iff, for all x and x̂,  x̂ $ x  implies  f(x̂) $ f(x). 
A function f:ú6ú is strictly increasing iff, for all x and x̂,  x̂ > x  implies  f(x̂) > f(x). 
 
Consider a two-player Bayesian game where player 1 has two possible actions, T̂ and B.   
Player 1 has several possible types, and each possible type is represented by a number t1.   
Player 2 may have many possible actions c2 and many possible types t2. 
Suppose that player 2's type t2 is independent of player 1's type t1. 
The difference in player 1's payoff in switching from B to T is  u1(T̂,c2,t1,t2) ! u1(B,c2,t1,t2). 
This difference depends on player 1's type t1, player 2's action c2, and player 2's type t2. 
We say that player 1's payoffs satisfy (weakly or strictly) increasing differences if this difference  
u1(T̂, c2, t1, t2) ! u1(B, c2, t1, t2) is a (weakly or strictly) increasing function of t1,  
no matter what player 2's action c2 and type t2 may be. 
That is, increasing differences (in the weak sense) means that, for every r1, t1, c2, and t2: 
if  r1 $ t1  then  u1(T̂, c2, r1, t2) ! u1(B, c2, r1, t2) $ u1(T̂, c2, t1, t2) ! u1(B, c2, t1, t2). 
Strictly increasing differences means that, for every r1, t1, c2, and t2: 
 if  r1 > t1 then  u1(T̂, c2, r1, t2) ! u1(B, c2, r1, t2) > u1(T̂, c2, t1, t2) ! u1(B, c2, t1, t2). 
With increasing differences, 1's higher types find T relatively more attractive than lower types do. 
Player 1 is using a cutoff strategy if there is some number θ (the cutoff) such that, for each possible 
type t1 of player 1:  if  t1 > θ  then type t1 would choose [T] for sure in this strategy, 
if  t1 < θ  then type t1 would choose [B] for sure in this strategy, 
if  t1 = θ  then type t1 may choose T or B or may randomize in this strategy. 
Comparing cutoff strategies, the probability of 1 choosing T decreases as the cutoff θ increases. 
Fact. If player 1's payoffs satisfy increasing differences then, no matter what strategy player 2 may 
use, player 1 will always want to use a cutoff strategy.  Thus, when we are looking for equilibria, the 
increasing-differences property assures us that player 1 must be using a cutoff strategy. 
 
More generally, in games where player 1's action can be any number in some range, we say that 
player 1's payoffs satisfy (weakly or strictly) increasing differences if, for every pair of possible 
actions c1 and d1 such that c1>d1, the difference  u1(c1, c2, t1, t2)!u1(d1, c2, t1, t2)  is a (weakly or 
strictly) increasing function of player 1's type t1, no matter what player 2's action c2 and type t2 may 
be.  (If u1 is differentiable then  M2u1'Mc1Mt1 $ 0.) 
Fact.  If 1's payoffs satisfy increasing differences, then, against any strategy σ2 of player 2, player 1 
will have some best-response strategy s1:T16A1 that is weakly increasing (r1$t1 => s1(r1)$s1(t1)). 
When 1's payoffs have strictly increasing differences then all player 1's best-response strategies must 
be weakly increasing:  if  r1 > t1  and, against some strategy σ2 for player 2, action c1 is optimal for 
type t1 and action d1 is optimal for type r1,  then  d1 $ c1. 
(By optimality,  Eu1(c1,σ2,t1,t2̃)!Eu1(d1,σ2,t1,t2̃) $ 0  but  0 $ Eu1(c1,σ2,r1,t2̃)!Eu1(d1,σ2,r1,t2̃),  which 
would contradict strictly increasing differences if we had c1 > d1.) 
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Example:  Player 1's types possible are {0, .1, .2, .3}, each with probability 1/4.   
Player 2 has no private information.  1's actions are {T̂,B}, 2's actions are {L,R}. 
Given 1's type t1, the payoffs (u1,u2) are: 

   L    R 
 T̂  t1, 0  t1, !1   (we use "T̂" for top here because "T" denotes types) 
 B  1, 0 !1, 3 
So 1's utility difference in switching from B to T depends on 2's action and 1's type as follows: 
u1(T̂,L,t1)!u1(B,L,t1) = t1!1,  u1(T̂,R,t1)!u1(B,R,t1) = t1+1.  Notice that these differences increase in t1.   
So higher types t1 always find T̂ relatively more attractive than lower types, and player 1 will use a cutoff 
strategy of the form: "do T̂ if t1>θ, do B if t1<θ, may randomize if t1=θ," for some given cutoff value θ. 
Thus, although player 1 has 24=16 pure strategies in this Bayesian game (and 216 − 1 = 65535),  
we only need to consider 1's cutoff strategies with the following 9 possible supports: 
C   (θ>.3):  every type would choose [B], so 2 thinks the probability of T̂ is P(T̂)=0; 
C   (θ=.3):  {0,.1,.2} would choose [B], but .3 would randomize in some way, so 2 thinks 0 ≤ P(T̂) ≤ 1/4; 
C   (.2<θ<.3):  {0,.1,.2} would choose [B], but .3 would choose [T̂], so 2 thinks P(T̂) = 1/4; 
C   (θ=.2):  {0,.1} would choose [B], .2 could randomize, .3 would choose [T̂], so 2 thinks 1/4≤P(T̂)≤1/2; 
C   (.1<θ<.2):  {0,.1} would choose [B], {.2,.3} would choose [T̂], so 2 thinks P(T̂) = 1/2; 
C   (θ=.1):  0 would choose [B], .1 could randomize, {.2,.3} would choose [T̂], so 2 thinks 1/2≤P(T̂)≤ 3/4; 
C   (0<θ<.1):  0 would choose [B], {.1,.2,.3} would choose [T̂], so 2 thinks P(T̂) = 3/4; 
C   (θ=0):  0 could randomize, {.1, .2,.3} would choose [T̂], so 2 thinks 3/4 ≤ P(T̂) ≤ 1; 
C   (θ<0):  every type would choose [T̂], so 2 thinks P(T̂) = 1.  
If player 2 uses  σ2 = q[L]+(1!q)[R],  then player 1's optimal cutoff θ would have the property: 
t1 ≥ θ <=> qt1+(1!q)t1 = U1(T,σ2,t1) ≥ U1(B,σ2,t1) = q(1)+(1!q)(!1). 
This implies  qθ+(1!q)θ = q(1)+(1!q)(!1).  So the cutoff θ is optimal for 1 when  q = (θ+1)/2. 
 
There is obviously no equilibrium in which player 2 chooses L for sure or R for sure. (check!) 
To make player 2 willing to randomize, we must have EU2(L) = EU2(R), that is,  
P(T̂)(0) + (1!P(T̂))(0) = P(T̂)(!1) + (1!P(T̂))(3),  and so P(T̂) = 3/4. 
Here P(T̂) denotes the (unconditional) probability of player 1 choosing T̂ as assessed by player 2, who does 
not know 1's type t1.  But 1's equilibrium strategy σ1 must specify, for each possible type t1 in {0,.1,.2,.3}, the 
conditional probability σ1(T|t1) of player 1 doing T̂ when his type is t1.  
These unconditional and conditional probabilities of T̂ must satisfy the equation:  P(T̂) = ∑t1 p1(t1)σ1(T̂|t1). 
For a cutoff strategy with σ1(T̂|t1)=1 for t1>θ and σ1(T̂|t1)=0 for t1<θ, this is  P(T̂) = p1(θ)σ1(T̂|θ) + ∑t1>θ p1(t1). 
So to get P(T̂)=3/4, the cutoff θ must be between 0 and .1 (0 would choose [B], {.1,.2,.3} would choose [T̂]). 
Now let q denote the probability of 2 choosing L.  To make 1's cutoff strategy optimal for him, 2's randomized 
strategy q[L]+(1!q)[R] must make player 1 prefer B when t1=0, but must make player 1 prefer T̂ when t1 = .1. 
EU1(T̂*t1=0) # EU1(B*t1=0)  implies  (q)(0)+(1!q)(0) # (q)(1)+(1!q)(!1),  and so  1/2 # q. 
EU1(T̂*t1=.1) $ EU1(B*t1=.1)  implies  (q)(.1)+(1!q)(.1) $ (q)(1)+(1!q)(!1),  and so  q # 11/20. 
That is, to get a cutoff θ such that 0 ≤ θ ≤ .1, we must have 1/2 ≤ q = (θ+1)/2 ≤ 11/20. 
So in equilibrium, 1 chooses B if t1=0, 1 chooses T̂ if t1$.1, and 2 randomizes, choosing L with some 
probability q that is between 1/2 and 11/20. 

Now suppose instead player 1 has five possible types {0, .1, .2, .3, .4}, each with probability p1(t1)=1/5. 
To make player 2 willing to randomize, player 1 must use a strategy such that P(T̂) =  3/4. 
For that to occur in an increasing cutoff strategy, the cutoff must be at θ=.1. 
So t1=0 chooses B; and when t1>.1 (which has probability 3/5) player 1 chooses T̂. 
The remaining 3/4!3/5 = 0.15 probability of T must come from player 1 choosing T̂ with probability   
σ1(T|.1) = 0.15/p1(.1) = 0.15/0.2 = 0.75  when t1=.1 . 
To make type t1=θ =.1 willing to randomize, 2's probability of choosing L must be q = (.1+1)/2 =11/20. 



 
 14 

Example.  Player 1's type t1 is drawn from a Uniform distribution on the interval from 0 to 1, and payoffs 
(u1,u2) depend on 1's type as follows, where ε is a given number between 0 and 1 (say ε=0.1): 

     L      R 
 T̂  εt1, 0  εt1, !1 
 B    1, 0  !1, 3 
Player 1's payoffs satisfy increasing differences, so player 1 should use a cutoff strategy, 
doing T̂ if t1>θ1, doing B if t1<θ1, where θ1 is some number between 0 and 1. 
Then player 2 would think that the probability of 1 doing T̂ is  Prob(t1 > θ) = 1!θ. 
You can easily verify that there is no equilibrium where player 2 is sure to choose either L or R. 
For player 2 to be willing to randomize between L and R, both L and R must give her the same expected 
payoff, so  0 = (!1)(1!θ1) + (3)θ1,  and so θ1 = 0.25. 
So in equilibrium, player 1 must use the strategy: do T̂ if t1 > 0.25, do B if t1 < 0.25. 
For player 1 to be willing to implement this strategy, he must be indifferent between T and B when his type 
is exactly t1 = θ1 = 0.25.  Let q denote the probability of player 2 doing L. 
Then to make type θ1 indifferent between T̂ and B, q must satisfy  εθ1 = (1)q+ (!1)(1!q), 
which implies  q = (1 + εθ1)'2 = (1 + 0.25ε)'2.   (So as ε60, q approaches 0.5.) 

Now consider a game with two-sided incomplete information. 
Suppose player 1's type t1 is drawn from a Uniform distribution on the interval from 0 to 1,   
player 2's type t2 is drawn independently from a Uniform distribution on the interval from 0 to 1,  
and the payoffs depend on 1's type as follows, for some given number ε between 0 and 1: 

     L       R 
 T̂  εt1, εt2   εt1, !1 
 B    1, εt2    !1, 3 
With increasing differences, the action T̂ becomes more attractive to higher types of player 1. 
Similarly, the action L becomes more attractive to higher types of player 2.   
So we should look for an equilibrium where each uses a cutoff strategy of the form 
C player 1 does T̂ if t1 > θ1, player 1 does B if t1 < θ1, 
C player 2 does L if t2 > θ2, player 2 does R if t2 < θ2, 
for some pair of cutoffs θ1 and θ2.   
It is easy to check that neither player's action can be certain to the other, and so these cutoffs θ1 and θ2 must 
be strictly between 0 and 1. 
With t1 Uniform on 0 to 1, the probability of player 1 doing T̂ (t1>θ1) is 1!θ1. 
Similarly, the probability of player 2 doing L (t2>θ2) is 1!θ2. 
The cutoff types must be indifferent between the two actions.  So we have the equations 
εθ1 = (1)(1!θ2) + (!1)θ2,   εθ2 = (!1)(1!θ1) + (3)θ1. 
The unique solution to these equations is  θ1 = (2+ε)'(8+ε2),   θ2 = (4!ε)'(8+ε2). 
Unless a player's type exactly equals the cutoff (which has zero probability), he is not indifferent between his 
two actions, and he uses the action yielding a higher expected payoff given his type. 
As ε60, these equilibria approach the randomized strategies (.75[T̂]+.25[B], .5[L]+.5[R]). 

These examples show how randomized equilibria can become pure-strategy equilibria in Bayesian games 
where each player has minor private information that determines his optimal action in equilibrium. 
This is called purification of randomized equilibria by Bayesian games (John Harsanyi, IJGT, 1973.)
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Action-probabilites and Belief Probabilities  (from Osborne's Section 10.4) 
Suppose that we are given some extensive game with imperfect information. 
With imperfect information, each decision node now needs two labels, one indicating which player makes 
the decision here, and another indicating what is the state of the player's information at this node.  In a game 
tree, I indicate these by a label of the form "Player.InformationState", where a player cannot distinguish his 
nodes that have the same information state.  Nodes with the same player and information state form an 
information set, which is also commonly indicated by a dashed line or curve in the game tree.  Two nodes 
with the same player and information label must be followed by the same set of feasible moves. 

Given any randomized strategy for any player i, at any information set of player i that could occur with 
positive probability when he plays this strategy, we can compute a probability distribution over the set of 
possible actions for player i at this information set. 
These probabilities are called action probabilities or move probabilities.   
That is, the action-probability for any action c at any information state s of any player i, which we may 
denote by σi(c*s), denotes the conditional probability that player i will choose action c if information set s 
occurs in the game.  (I usually put action probabilities in parentheses "(C)".) 
A behavioral strategy for player i is a list of an action-probability distribution for each of player i's 
information sets. 
A behavioral-strategy profile σ is a list of a behavioral strategy for each player, specifying an action 
probability σi(c*s) for every possible action c at every possible information set s of every player i. 

Given a behavioral-strategy profile σ, the prior probability P(x|σ) of any node x in the game tree is the 
multiplicative product of all chance-probabilities and action-probabilities on the path that leads to this node 
from the starting node.  (The chance probabilities on all branches that follow chance nodes are part of the 
given structure of the extensive game, from Osborne's Section 7.6.) 

For any node x in any information set s of any player i, i's belief-probability of x at s, which we may denote 
by μi(x*s), is the conditional probability of node x being true that player i would believe if some node in the 
information set s occurred in the game.  (I put belief probabilities in angle brackets "<C>".) 
By Bayes's formula, when player i moves at his information set s, the belief probability that player i should 
assign to any node x in this information set s should be: 
 μi(x*s) = P(x|σ)'∑y∈s P(y|σ)   
whenever this formula is well-defined (not 0/0).  In the denominator of this formula, the sum is over all 
nodes y in the information set s, that is, over all nodes y that share the same "i.s" label as node x. 
These probabilities would all be strictly positive if the behavioral strategy profile σ had full support, that is, 
if we had σi(c*s)>0 for every possible action c at every information state s of every player i. 
A belief system μ is a list of such belief probability distributions over the nodes of each information set of 
each player in the game. 

A belief system μ is consistent (in the weak sense) with a behavioral-strategy profile σ if the beliefs satisfy 
all Bayes's formula, as above, whenever this formula is well-defined (not 0/0). 
So weak consistency, as defined here, does not restrict beliefs at information sets that have zero probability. 
A belief system μ is fully consistent with a behavioral strategy profile σ if μ is the limit of beliefs that would 
be consistent with a sequence of full-support strategy profiles that converge to σ. 

A behavioral-strategy profile σ is sequentially rational given a belief system μ if, at every information set, 
the player is assigning positive probability only to actions that maximize his expected payoff, given his 
beliefs about the current node in his information set and given what the behavioral-strategy profile specifies 
about players' behavior after this information set. 
A sequential equilibrium is a behavioral-strategy profile and a belief system such that the strategy profile is 
sequentially rational given the belief system, and the belief system is consistent with the strategy profile.  
Sequential rationality may determine beliefs in zero-probability events, even if weak consistency does not!
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Trading between a buyer and a seller, who knows more about the object being sold 

 

Facts about Uniform distributions.  Suppose that X̃ is a random variable drawn from a Uniform 

distribution on the interval from A to B, for some given numbers A and B such that  A < B. 

Then E(X̃) = (A+B)'2.  Furthermore, for any number θ between A and B: 

Pr(X̃<θ) = Pr(X̃#θ) = (θ!A)'(B!A), 

E(X̃*X̃#θ) = E(X̃*X̃<θ) = (A+θ)'2,   

E(X̃*X̃$θ) = E(X̃*X̃>θ) = (θ+B)'2. 

 

Example.  To illustrate the problems of trading between individuals who have different 

information, consider the following simple situation, involving two players. 

Player 1 is the seller of some unique object which he owns. 

Player 2 is the only possible buyer of this object. 

Depending on the object's quality, it may be worth as little as $40 to player 1 and $60 to player 2 

(if its quality is low) or as much as $100 to player 1 and $120 to player 2 (if its quality is high). 

Player 1 knows the quality of the object.  Let 1's type t1̃ denote his value of keeping the object. 

With any quality, the object would be worth $20 more to player 2 than to player 1.   

That is, given 1's type t1̃, the value of the object to player 2 would be V2(t1) = t1̃+20. 

Player 2's belief about t1̃ is described by a Uniform distribution on the interval $40 to $100. 

(So  E(t1̃) = (40+100)'2 = 70  and  E(V2(t1̃)) = E(t1̃+20) = 90.) 
 
Game where buyer bids  Suppose first that player 2 can offer to buy for any positive price r, and 

then player 1 will accept or reject the offer.  If the offer is rejected then they each get profit 0. 

If the offer is accepted then 1's profit is  r!t1̃  and 2's profit is V2(t1̃)!r. 
 
In a subgame-perfect equilibrium, player 1 will accept if  t1̃ < r, but player 1 will reject if  t1̃ > r. 

Player 2's expected profit from offering any price r is  Pr(t1̃<r) (E(V2(t1̃)* t1̃<r) ! r). 

For any number r between 40 and 100,  this expected profit is  

Pr(t1̃<r) (E(t1̃+20* t1̃<r) ! r) = Pr(t1̃<r) (E(t1̃* t1̃<r) + 20 ! r) =  

((r!40)'(100!40))((40+r)'2 + 20 ! r) = (r!40)(80!r)'120 = (!3200 +120r ! r2)'120. 

This quadratic formula is maximized by letting  r = 60. 

(The buyer cannot gain by bidding less than 40 or more than 100, because a bid below 40 would be 

surely rejected, and a bid above 100 would be worse than the surely-accepted bid of 100.) 

So in the unique subgame-perfect equilibrium of this game, player 2 offers to buy for $60, and 

player 1 accepts if  t1̃ < 60.  The probability of trade is Pr(trade) = (60!40)'(100!40) = 1/3. 

(We could model 2 bidding as a game with perfect information where 1 learns t1̃ after 2 chooses r.) 



 
 17 

Game where seller bids  Suppose now that player 1 can offer to buy for any positive price r, and 

then player 2 will accept or reject the offer.  If the offer is rejected then they each get profit 0. 

If the offer is accepted, then 1's profit is  r!t1̃  and 2's profit is V2(t1̃)!r. 

In this game, the price is named by the player who has private information, and so signaling effects 

will give us many equilibria. 
 
Let's look first for an equilibrium where there is some price r such that player 2 would surely 

accept an offer to sell for r  but would surely reject an offer to sell for any price higher than r . 

In this equilibrium, player 1 will offer _r if  t1̃ < r . 

For player 2 to accept the offer r , 2's expected profit from accepting r  must not be negative, so 

0 # E(V2(t1̃)*t1̃<_r) ! _r = E(t1̃+20*t1̃< r ) ! r = (40+ r )'2 + 20 ! r ,  which implies  r  # 80. 

Player 2 can be expected to reject any offer to sell at a price greater than r , because such a trade 

would be unprofitable for player 2 if she made the worst inference about player 1, which is that his 

type is t1̃=40, in which case the object is worth only 40+20 = $60 to player 2.  

So we can construct such an equilibrium for any r  such that 60 # r  # 80. 

In such an equilibrium, types higher than r  may be expected to make some offer higher than 120, 

which player 2 could never profitably accept.   

An offer between r  and 120 may be rejected by player 2 because this surprise offer may lead 

player 2 to believe that 1's type is 40, in which case the object is only worth 60 to player 2. 

Among these almost-pooling equilibria, player 1 most prefers the equilibrium with r  = 80. 

In this equilibrium, the probability of trade is Pr(trade) = Pr(t1̃<80) = (80!40)'(100!40) = 2/3. 
 
There are many other equilibria where 1's types make more offers. 

Let's look for an equilibrium in which some types of player 1 would offer to sell for $70, but all 

higher types would offer to sell for $100, and player 2 would be sure to accept $70 but her 

probability of accepting $100 would be between 0 and 1. 

To find this equilibrium, there are unknowns that we must find: 

let q denote the probability that player 2 would accept an offer of $100,  

and let θ denote the highest type of player 1 that would offer $70. 

For player 2 to be willing to randomize between accepting and rejecting $100, her expected profit 

from accepting it must be 0, and so   

0 = E(V2(t1̃)*t1̃>θ) ! 100 = E( t1̃+20*t1̃>θ) ! 100 = (θ+100)'2 + 20 ! 100,  and so  θ = 60. 

For player 1 to offer $70 below when his type is below θ but $100 when his type is above θ, we 

need that  70!t1 $ q(100!t1)  when  t1<θ,  and  70!t1 # q(100!t1)  when  t1>θ. 

These inequalities imply  70!θ = q(100!θ),  and so  q = (70!60)'(100!60) =  1/4. 

In this equilibrium,  Pr(trade) = Pr(t1̃<θ) + Pr(t1̃>θ)q = (20/60) + (40/60)(1/4) = 1/2. 
 
(Advanced result: There is a separating equilibrium in which each possible type t1 of player 1 

would offer to sell for r(t1) = t1+20, and the probability q of player 2 accepting would depend on 

the offer r according to the formula  q(r) = e!(r!60)'20,  for any  r $ 60.)  
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The Holdup Problem  Player 1 can invest to improve an asset which he may later sell player 2. 
To give the asset any quality x$0, player 1 would have to make an investment that would cost him  c(x) = x2. 
With this quality, the asset will be worth  v1(x) = x  to player 1, but it will be worth  v2(x) = 2x  to player 2. 
We consider two different versions of this game, which differ in how they bargain over the price. 

Buyer-offer game  First player 1 chooses the quality x$0. Player 2 observes this quality x.   
Then player 2 chooses a price p$0 at which she offers to buy the asset from player 1. 
Player 1 observes this offer, and then can choose to accept or reject it.  Final payoffs are: 
u1(x, p, accept) = p!c(x) = p−x2,   u2(x, p, accept) = v2(x)!p = 2x−p,   
u1(x, p, reject) = v1(x)!c(x) = x−x2,   u2(x, p, reject) = 0. 

There is a unique subgame-perfect equilibrium. 
At the last stage, given p and x, player 1 accepts if p>v1(x) and rejects if p<v1(x). 
So player 2's optimal offer, given x, must be to offer  p = v1(x) = x,  which player 1 must accept. 

Note: In the case where p=v1(x), player 1 is actually indifferent between accepting and rejecting. 
But if player 1 had any chance of rejecting in this case of indifference, then player 2 would instead want 
to offer the smallest p satisfying p>v1(x), to get 1's sure acceptance, and such a minimal p cannot be 
found!  Thus, in a subgame-perfect equilibrium, player 1 must always accept when p=v1(x). 

So player 1 knows that his payoff from quality x will be  v1(x)!c(x) = x!x2,  which is maximized by x=0.5. 
So the equilibrium outcome is: player 1 chooses quality  x = 0.5,  player 2 offers price  p = x = 0.5,   
and the players' payoffs are  u1 = p−c(x) = 0.5!(0.5)2 = 0.25,  u2 = v2(x)−p = 2×0.5!0.5 = 1!0.5 = 0.5. 

Seller-offer game. First player 1 chooses the quality x$0.   
Then player 1 chooses the price p$0 at which he offers to sell the asset. 
Player 2 observes x and p, and then can choose to accept or reject 1's offer.  Payoffs are still 
u1(x, p, accept) = p!x2,  u2(x, p, accept) = 2x!p,  u1(x, p, reject) = x!x2,  u2(x, p, reject) = 0. 

In the unique subgame-perfect equilibrium, player 2 accepts if  p # v2(x)  but rejects if  p > v2(x), 
so given any x≥0, player 1 offers  p = v2(x) = 2x.  So player 1 chooses  x = 1  to maximize 2x!x2. 

Again, in the case when p=v2(x), player 2 would actually be indifferent between accepting and rejecting; 
but there would be no optimal p for player 1 if player 2 had any chance of rejecting in this case of 
indifference, as 1 would then want to offer the largest p such that p < v2(x), and no such number exists! 
Such situations often arise in extensive games with perfect information when a player i can choose a 
number ai in some interval with a continuum of possible values, and then another player j will make a 
decision next after observing i's choice of ai.  It may happen that player j's optimal decision would jump 
discontinuously from one alternative to another when player i choice is some critical value āi, and player 
j would be indifferent between these two alternatives when i's choice is exactly equal to this value āi.  In 
such cases, the only way to construct a subgame-perfect equilibrium may be to stipulate that, among the 
alternatives that are optimal for j when i has chosen āi , the alternative that player j would actually 
choose after āi must be the alternative that player i would prefer.  Otherwise, player i would want to 
deviate infinitesimally from āi in the direction that would induce this preferred response by player j.  

So the equilibrium outcome is: 1 chooses quality  x = 1  and offers price  p = 2x = 2,   
and the players' payoffs are  u1 = 2!(1)2 = 1,  u2 = 2(1)!2 = 0. 

Notice that the equilibrium sum of payoffs u1+u2 is greater in the seller-offer game  (1+0 > 0.25+0.5). 
That is, for an efficient outcome, the person who made the first-period investment should have more control 
in the process of bargaining over the price.  If they were about to play the buyer-offer game, the buyer would 
be willing to sell her right to set the price for any payment more than 0.5, and the seller would be willing to 
pay up to 0.75 for the right to set the price. 

Both of these games have many other Nash equilibria that are not subgame-perfect.  Consider any (x̂,p̂) such 
that  v2(x̂) $ p̂ $ c(x̂) + maxx≥0 (v1(x)!c(x)) = c(x̂) + 0.25  (such as x̂=1, p̂=1.625),  so that each does better 
than he or she could do alone.  With either player offering the price, there is a Nash equilibrium in which 1 
chooses this quality x̂, and then this price p̂ is offered and accepted, but rejection would follow any other 
quality x≠x̂ or any other price-offer p≠p̂.  These Nash equilibria violate sequential rationality, however, as 
threats to reject prices between v1(x) and v2(x) would not be credible.   


