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Abstract 

The decision of whether to control for covariates, and how to select which covariates to 

include, is ubiquitous in psychological research. Failing to control for valid covariates can yield 

biased parameter estimates in correlational analyses or in imperfectly randomized experiments 

and contributes to underpowered analyses even in effectively randomized experiments. We 

introduce double-lasso regression as a principle method for variable selection. The double lasso 

method is calibrated to not over-select potentially spurious covariates, and simulations 

demonstrate that using this method reduces error and increases statistical power. This method 

can be used to identify which covariates have sufficient empirical support for inclusion in 

analyses of correlations, moderation, mediation and experimental interventions, as well as to test 

for the effectiveness of randomization. We illustrate both the method’s usefulness and how to 

implement it in practice by applying it to four analyses from the prior literature, using both 

correlational and experimental data. 

Keywords: research methods, covariate, regression, variable selection, confound, omitted 

variable bias 
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Although people’s behavior is shaped by many factors, psychological research typically attempts 

to isolate the effects of one construct of interest (or sometimes a small number of constructs). In 

focusing on a key predictor, it is not always clear how to best account for the possibility that 

other factors may also affect the outcome variable. While statistically controlling for valid 

covariates in correlational or experimental analyses can yield more accurate estimates and 

significance tests of focal effects, including unnecessary covariates can also be problematic, and 

can even be misused.  

In this paper, we present a two-step method using lasso regression (Belloni, 

Chernozhukov, & Hansen 2014) as a practical solution to the problem of principled variable 

selection for covariates, drawing on recent advances in statistics and econometrics. We apply this 

method to four datasets drawn from recent literature to illustrate the usefulness of double-lasso 

variable selection in both correlational analyses and experimental designs. 

The Covariate Selection Problem 

Analyses that fail to take into account valid predictors of the dependent variable can 

suffer from multiple problems. In correlational analyses, omitted variables that predict the 

dependent variable and are correlated with the focal independent variable(s) can cause bias in 

estimated parameters (Darlington, 1990; Mauro, 1990). When valid covariates are excluded, the 

estimated coefficient of interest may either be artificially strong (when the covariate is a 

confound), or may be artificially weak (a suppression effect; MacKinnon, Krull, & Lockwood, 

2000; Thompson, 2006).  

A common way of avoiding this problem is to use experimental manipulations as 

independent variables. When randomization is successful, the experimental independent variable 
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should be uncorrelated with any omitted variables, precluding bias in estimating the effect of the 

independent experimental variable. However, in practice, attempted random assignment may not 

always yield the desired independence (Darlington, 1990; Zhou & Fishbach, 2016), and formal 

tests are rarely conducted to confirm randomization (Wilkinson, 1999). Even when 

randomization is successful, failure to statistically control for valid predictors of the dependent 

variable reduces the statistical power of the experiment (Darlington, 1990; Judd, McClelland, & 

Ryan, 2011), exacerbating the already typically low likelihood of detecting a true effect of the 

independent variable (Rossi, 1990). 

Given these benefits of controlling for covariates, it may seem surprising that the practice 

is not widely promoted and is not prevalent in the literature. The common absence of covariates 

is likely attributable to several factors. As a practical concern, researchers may rely on rules of 

thumb (e.g., Green, 1991) and conclude that their sample size is too small to support including 

more predictors. In the extreme case, in datasets with more potential covariates than participants, 

including all the variables in a linear regression is not even possible. 

Furthermore, it is not always clear how to go about selecting covariates and discussions 

of best practices in psychological research provide little guidance on this issue (Cumming, 2014; 

Wilkinson, 1999). Automatically controlling for a standard set of variables, such as 

demographics, is not recommended (Meehl, 1971). Automated methods, particularly stepwise 

regression, are widely recognized to perform poorly (i.e., over-fitting the data, selecting non-

optimal models, inflating R
2
; Freedman, 1983; Thompson, 1995; Thompson, 2006) and are 

rarely used.     
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In fact, recent work on research integrity has cautioned that the decision of whether or not 

to control for covariates can contribute to the problem of researcher degrees of freedom and false 

positives. Simmons, Nelson, and Simonsohn (2011) provide an elegant example of how selective 

reporting of only those analyses including controls that contribute to a significant focal result can 

lead to spurious findings. In fact, Simonsohn, Nelson, and Simmons (2014) use presence of 

covariate controls as a suspicious characteristic to distinguish between studies more or less likely 

to have been “p-hacked”, and report evidence supporting this suspicion. Thus, researchers may 

feel that it is simpler and more conservative to report main effects without covariates. Even when 

controlling for covariates could be beneficial, the lack of established principled methods for 

doing so may discourage researchers from doing such analyses. 

Double-Lasso Variable Selection 

 We propose that recently developed methods based on lasso regression (e.g. Tibshirani, 

1996) provide a useful solution to these problems. We describe a “double-lasso” approach 

(Belloni et al., 2014) that can help researchers select variables for inclusion in analyses in a 

principled manner that avoids inflated Type I errors. The goal is to identify covariates for 

inclusion in two steps, finding those that predict the dependent variable and those that predict the 

independent variable. The second step is important, because exclusion of a covariate that is a 

modest predictor of the dependent variable but a strong predictor of the independent variable can 

create a substantial omitted variable bias. In experimental data, the second step also serves as a 

test of randomization. While we recommend using lasso regression, calibrated to avoid over-

fitting, in these variable selection steps, we also discuss similarly-performing alternative 

methods. The variables selected in either step are then included in the regression of interest.  
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 Without loss of generality, we focus on the case with a single focal independent variable 

of interest, Xi, and we want to know how it relates to dependent variable Yi. The focal variable Xi 

could be either a measured variable or an experimental condition code. In addition, we have 

multiple potential covariates, Wi1 to WiK. We could estimate a linear regression model, finding 

s that minimize the sum of squared errors in the regression equation: 

 Yi=0+1Xi+2Wi1+…+K+1WiK+i 

A lasso regression instead finds s that minimize the sum of squared errors in the regression 

equation with an additional penalty term: 

 Min[i(Yi0+1Xi+2Wi1+…+K+1WiK)
2
+kk] 

The penalty term results in the lasso regression shrinking the estimated regression 

coefficients towards zero and potentially setting coefficients on some variables exactly to zero, 

both of which help reduce over-fitting. The lasso, by setting some coefficients to zero, also 

performs variable selection. These shrinkage properties allow Lasso regression to be used even 

when the number of observations is small relative to the number of predictors (e.g. discussion in 

James, Witten, Hastie, & Tibshirani, 2013).  

However, directly using lasso regression can be problematic. Those lasso-estimated 

coefficients that are actually non-zero are typically underestimated, and lasso may mistakenly 

exclude variables with non-zero coefficients, particularly variables with moderate effects. Each 

of these phenomena generally causes significant regularization bias that adversely affects 

estimation and inference about 1. The omission of covariates with moderate but non-zero 

coefficients is especially problematic and results in omitted variable bias when these covariates 
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are relevant predictors of the focal variable. In order to overcome such biases, we recommend 

using the “double-lasso” variable selection procedure (Belloni, et al., 2014), which was explicitly 

designed to alleviate both sources of bias, as follows: 

Step 1: Fit a lasso regression predicting the dependent variable, and keeping track of the 

variables with non-zero estimated coefficients:  

Yi=α0+ α1Wi1+…+ αKWiK+i  

Step 2: Fit a lasso regression predicting the focal independent variable, keeping track of the 

variables with non-zero estimated coefficients: 

Xi=δ0+ δ1Wi1+…+ δKWiK+i  

If Xi is an effectively randomized treatment, no covariates should be selected in this step. 

Step 3: Fit a linear regression of the dependent variable on the focal independent variable, 

including the covariates (Wik) selected in either of the first two steps:  

Yi=0+1Xi+k Ak+1Wik+i,  

In the equation, A is the union of the variables estimated to have non-zero coefficients in Steps 1 

and 2. This regression could also include a small set of additional covariates identified a priori as 

necessary. Interpret and report the coefficient estimates and significance tests on the focal 

variable(s) as the final results. 

 While implementation is fairly straightforward and extends easily to multiple focal 

variables by repeating Step 2 for each, the choice of the tuning parameter  is very important for 

successfully avoiding over-fitting (see SOM-R). Dedicated code for this procedure is available 
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for use with STATA. We also provide details and examples in the SOM-U for how to apply this 

method in both STATA and in the R statistical package, and how to closely approximate the 

results using modified forward-selection in SPSS (Kozbur, 2015).   

We note that other approaches are available in the statistics literature (as reviewed, e.g., 

in Chernozhukov, Hansen & Spindler, 2015) including approaches, such as Athey & Imbens 

(2015), that accommodate inferring treatment effects in settings with fully heterogeneous 

treatment effects where the linear model may be inappropriate (Imbens & Rubin, 2015). 

Simulation Results 

 We ran a simple simulation to illustrate the practical benefits of double-lasso variable 

selection. We generated 10,000 datasets from eight known sets of parameters, varying the 

number of available covariates and the sample size (full details in the SOM-R). We compare the 

double-lasso procedure to five alternatives: regression including no covariates (“none”), 

including all the covariates when possible (“all”), including all covariates selected in a step-wise 

regression (“stepwise”), choosing covariates to maximize the chances of the independent 

variable being significant (“p-hacking”) and, as a baseline, using the correct variables (“true”). 

 On average (see Table 1), the double-lasso selected close to the right number of 

covariates (2.6 vs. 2 actual), and far fewer than stepwise (5.5) or p-hacking (4.9). The average 

error in estimating the coefficient of the dependent variable in the double-lasso was very close to 

the true baseline (RMSE=.261 vs. .246), lower than including no covariates (RMSE=.356) or all 

covariates (RMSE=.383) and much lower than p-hacking (RMSE=.496). The significance test 

for the focal independent variable was well calibrated in the double lasso, rejecting the null 

hypothesis 5.4% of the time, similar to “none” and “all” (5.3% and 5.6%, respectively) and much 
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better than “stepwise” (11.8%) or p-hacking (29.8%). Perhaps most importantly, using the 

double-lasso yielded substantial benefits in statistical power compared to those other methods 

that also did not over-reject (.579 vs. .626 for the “true” baseline, compared to .323 for “none” 

and .396 for “all”).   

 We also tested two procedures that roughly approximate the double-lasso. Two-step 

multiple regression (including all potential covariates, and then re-running the regression 

removing non-significant covariates) provides reasonable solutions, but underperforms the 

double-lasso and is infeasible in settings with more available covariates than observations. 

Double-forward regression (using forward regression to do both steps, with modified p-value 

cutoffs, see the SOM-R) yields results quite similar to the double lasso. 

Table 1.  

 

Comparison of double-lasso with alternative analysis methods, averaging across simulated 

datasets.  

Method 

Variables 

Selected Bias RMSE Size Power 

 True  model (baseline) 2 0.001 0.246 0.050 0.626 

 No covariates 0 0.001 0.356 0.053 0.323 

 All covariates 40 0.001 0.383 0.056 0.396 

 P-hacking 4.9 0.279 0.496 0.298 0.911 

 Stepwise regression 5.5 -0.092 0.268 0.118 0.511 

 Two-step multiple regression 3.8 0.003 0.274 0.066 0.596 

 Double-forward-regression 1.6 -0.007 0.261 0.053 0.587 

 Double-Lasso 2.6 -0.015 0.261 0.054 0.579 

 

Notably, the double-lasso performs well even in demanding situations. For example, with 

a sample size of 60, it is impossible to include 120 covariates in a standard regression, and 

researchers in this situation might therefore not include any covariates. However, double-lasso 

variable selection identifies covariates and improves on the no-covariate model in this situation, 

with both lower error (RMSE=.276 vs. .390) and higher statistical power (.422 vs. .261). Next, 
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we illustrate the proposed variable selection method by using it to analyze four datasets 

discussed in the literature.  

Analysis 1: Correlational Analysis of Parents’ Life Satisfaction 

Nelson, Kushlev, English, Dunn, and Lyubormirsky (2013) concluded, based on analyses 

of three datasets, that parents report relatively higher levels of life satisfaction, happiness, and 

meaning in life than do nonparents, contrary to some prior research. Their analyses were based 

on mean comparisons (t-tests) and correlations, without including any covariates as statistical 

controls. These conclusions were criticized by Bhargava, Kassam, and Loewenstein (2014), who 

re-analyzed the data and found that the satisfaction and happiness were not higher for parents, 

controlling for demographics. 

In Study 1, Bhargava et al. (2014) reported a significant positive relationship between 

parental status and life satisfaction in the World Values Survey data without any controls 

(=0.224, p<.001), similar to Nelson et al. (2013). This suggests that parents are more satisfied 

with their lives than non-parents, on average. However, they also find that the relationship is 

instead negative when controlling for marital status, age and gender (=-0.144, p=.04), and is 

non-significant when controlling for income as well (=-0.065, p=.34).  

Thus, whether the relationship between life satisfaction and parenthood was significantly 

positive, non-significant or significantly negative depended on whether and which covariates 

were included. One important consideration is whether the potential covariates should be 

considered controls, on theoretical and logical grounds (e.g, as opposed to being analyzed as 

potential mediators). Assuming that the variables are valid potential controls, it is not clear which 

covariates should be included and what conclusion should be drawn. In fact, the lack of 
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difference found by Bhargava et al. (2014) could potentially even be spurious, a result of 

multiple testing of many potential covariates. The double-lasso addresses this concern by 

identifying whether there is sufficient empirical justification for including the published 

covariates and potentially identifying other covariates.  

To be comprehensive and test the ability of the method to handle many potential 

covariates, we began with 9 demographic variables, created dummy codes from the categorical 

variables and computed powers of the variables and interactions, yielding a total of 524 potential 

covariates. Using the procedure described above, we then identified a subset of 17 covariates for 

which there was sufficient empirical support to be included in the final test. These were 

covariates that were either strong predictors of life satisfaction or of being a parent. 

In particular, our analysis using double-lasso variable selection confirms that there is 

sufficient evidence to include the variables identified by Bhargava et al. (2014) (age, gender, 

marital status and income) as covariates, as well as several other variables and interactions 

(Table 2). In the resulting model, we find a significant negative relationship between parental 

status and life satisfaction (=-0.196, p=.006), controlling for the identified covariates. Note that 

it is important for the results to conduct both variable selection steps. If we only use covariates 

identified as predictors of the dependent variable (life satisfaction) and leave out those identified 

as predictors of being a parent, we instead find a weaker negative relationship between parental 

status and life satisfaction (=-0.127, p=.051).  

 While this analysis tells us which potential covariates have empirical support for 

inclusion, it cannot determine which variables make logical sense or are theoretically justified to 

include. As an example, one potential concern with this analysis is that parenthood might 
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causally impact some of the variables, particularly income and employment status. When we re-

run the regression excluding these variables as potential covariates, we still find a significant 

negative relationship between parental status and satisfaction (=-.221, p=.002), controlling only 

for marital status, age, gender and interactions of those covariates (see SOM-U).  

Table 2. 

 

Regression of parenthood on life satisfaction, with double-lasso selected covariates. 

Variable  SE t p Low CI High CI 

Primary variables: 

      

 
Constant 6.750 0.128 52.57 .000 6.498 7.001 

  Parent -0.196 0.071 -2.75 .006 -0.336 -0.056 

Main effect covariates: 
      

  

Married  

(including living together as married) 0.513 0.157 3.27 .001 0.206 0.821 

 Income (3 point scale) 0.582 0.119 4.90 .000 0.349 0.815 

 

Age 0.912 0.235 3.88 .000 0.451 1.373 

 
Age=18 0.300 0.213 1.41 .159 -0.117 0.717 

 

Age=19 0.129 0.213 0.61 .544 -0.288 0.547 

 
Age=20 0.521 0.191 2.73 .006 0.147 0.896 

 

Age=21 0.175 0.175 1.00 .319 -0.169 0.518 

 
Age=22 0.545 0.169 3.23 .001 0.214 0.876 

 

Age=23 0.187 0.171 1.09 .274 -0.148 0.523 

 
Gender (Male) -0.142 0.063 -2.24 .025 -0.267 -0.018 

 

Employment: Housewife 0.066 0.123 0.54 .590 -0.175 0.308 

 
Chief wage earner 0.144 0.070 2.07 .038 0.008 0.281 

Interaction covariates: 

      

 
Married x Age 0.143 0.352 0.41 .685 -0.547 0.833 

 Married x Age to fourth power 0.491 0.608 0.81 .419 -0.701 1.684 

 
Married x Income rating (3 point) -0.106 0.181 -0.59 .557 -0.461 0.248 

 

Married x Income rating (11 point) 0.303 0.221 1.37 .170 -0.130 0.737 

  Employment: Student x Male 0.344 0.269 1.28 .202 -0.184 0.871 

 

Nelson et al. (2013) and Bhargava et al. (2014) also debated whether demographics 

moderated the effect of parenthood on life satisfaction, with the latter paper arguing that 

evidence of such moderation was weak. In separate analyses, we find that marital status (=.362, 
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p=.015) and age (age=3.281, p=.009; age-squared=-3.107, p=.045) moderates the effect of being a 

parent, controlling for selected covariates, but gender does not.   

Overall, our findings parallel those of Bhargava et al. (2014). The higher self-reported 

life satisfaction of parents may be explained primarily by the differing demographic 

characteristics of parents vs. nonparents, disguising lower life-satisfaction among parents, all else 

equal. Controlling for covariates, we also find a significant relationship between parenthood and 

lower happiness (=-.050, p=.034). In contrast, we find a significant positive relationship 

between parenthood and more thoughts about meaning in life (=.094, p=.002, see SOM-U). 

Analysis 2: Mediation Analysis of Conservative Happiness 

Next, we look at how double-lasso regression can be used to inform variable selection 

when conducting a mediation analysis. Napier and Jost (2008) report that conservatives 

demonstrate higher levels of subjective well-being than liberals do. Using large secondary data 

sets, they identify rationalization of inequality as a mediator of this difference, in accordance 

with system-justification theory. However, a potential concern is that the mediation result may 

be spurious, if the mediator is merely a proxy for other factors that relate to political orientation 

and subjective well-being. While the paper reports mediations including selected demographic 

controls, we can use lasso regression to test whether inclusion of the covariates is supported by 

the data.  

We reanalyzed the 1,192 participants in the 2000 American National Election Survey 

who had completed the measures analyzed in Study 1 of Napier and Jost (2008).
1
 We confirmed 

                                                             
1
 Our sample size differs slightly from the original paper.  An additional analysis without excluding missing 

demographic variables is presented in the SOM. 
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that conservatives were happier (=.282, t(1190)=4.70, p<.001), and the difference was partially 

mediated by the rationalization of inequality scale (indirect =.062, bootstrap CI=[.0004,.1246], 

p=.049, Preacher & Hayes, 2004).  

The dataset also includes a large number of demographic variables that could be 

potentially confounding the mediation result. We chose 35 demographic variables, including all 

the variables used in the paper, and created dummy codes for all categorical variables. We 

conducted a double-lasso analysis to test the resulting 141 demographic variables for inclusion, 

and identified four covariates (church attendance and dummy codes for employment, being 

married and African-American ethnicity). Controlling for these covariates, the effect of political 

orientation on happiness is marginally significant (Model 1, Table 3). While the coefficient of 

political orientation does decrease when rationalization of inequality is included (Model 2, Table 

3), the mediation is not significant (indirect =.045, bootstrap CI=[-.011,.102], p=.116). These 

results suggest that the proposed mediation in the original study is sensitive to the inclusion of a 

more complete set of covariates, which are identifiable using the double-lasso procedure. 

Table 3  

 

Regressions of political orientation on happiness. 

  

Model 1 Model 2 

Variable  SE t P  SE T p 

Primary variables: 

 

  

  

  

 

 
Constant 2.048 .183 11.18 .000 1.803 .225 8.03 .000 

  Political Orientation 0.125 .067 1.87 .061 0.078 .073 1.06 .287 

Mediator: 

 
  

  
  

   Rationalization of inequality 

 

  

 

0.090 .053 1.69 .091 

Covariates: 

 

  

  

  

 
 

Church attendance 0.101 .030 3.34 .000 0.102 .030 3.36 .001 

 
Married 0.235 .074 3.16 .002 0.225 .074 3.03 .003 

 
Not unemployed or disabled 0.671 .162 4.13 .000 0.686 .161 4.25 .000 

  Black -0.270 .132 2.05 .041 -0.233 .132 1.77 .077 
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Analysis 3: Spurious Experiment on Chronological Rejuvenation 

While controlling for covariates can be helpful, as in the prior analyses, Simmons et al. 

(2011) have shown that opportunistically controlling for covariates can contribute to spurious 

findings. The potential for controls to distort the primary findings is a particular concern in 

experimental studies, where successful randomization addresses issues of confounding. We re-

analyzed the data from Study 2 of their paper to test whether using the double-lasso would 

reduce the likelihood of including spurious covariates. 

 In Study 2, Simmons et al. (2011) present an intentionally spurious finding, reporting that 

a randomized experimental intervention (having people listen to “When I’m Sixty Four” by the 

Beatles vs. a control song) had a significant effect on the participant’s age, controlling for 

father’s age (M=20.1 vs. 21.5 years old,  = -521.85, t(17)=2.22, p=.040). The covariate was 

also significant in the regression ( = 98.34, t(17)=3.86, p=.001). 

 We identified nine potential covariates in the dataset. Dummy-coding a categorical 

variable yielded 10 variables. The double-lasso takes into account not only the multiple 

comparisons, but also the small sample size (N=20), setting a higher bar for covariates to be 

included. As a result, the double-lasso analysis revealed insufficient empirical support to include 

any of the potential covariates in the regression. The resulting single-variable regression 

accurately revealed no significant effect of the experimental manipulation ( = -305.30, 

t(18)=1.00, p=.329). In this case, simply using a principled variable-selection method eliminated 

the spurious finding.   
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Analysis 4: Suggested Defaults Experiment in Donation 

In the last analysis, we demonstrate that the double-lasso method can be used to identify 

valid covariates in a randomized experiment, testing whether randomization was successful, and 

increasing the statistical power to detect a result. Goswami and Urminsky (2016) conducted a 

field experiment on the effect of recommended amounts in donation appeals. Each appeal letter 

included three donation amounts (low, medium and high) that were based on the recipient’s most 

recent donation amount. In the four focal conditions, appeal letters were randomly assigned to 

include a recommendation to give the low amount, medium amount, high amount or to not 

include any recommended amount.  

One of the hypotheses tested was a “scale-back” effect, in which donors would anchor on 

the recommended amount and give less when the low amount was recommended, compared to 

the control condition with no recommendation. People who chose to donate gave less in the low-

recommendation condition (vs. control), but the difference was not significant (M=$162 vs. 

$283, t(46)=1.38, p=.175). Ten potential covariates were available, to which we added non-linear 

transformations and interactions, for a total of 196 potential covariates. There was a strong a 

priori rationale for including one of the potential covariates, the prior amount donated, since the 

choice options in the appeal letter actually differed depending on the most recent donation. 

We used a double-lasso regression to identify which covariates had empirical support for 

inclusion. First, none of the covariates had a significant relationship with experimental condition. 

While this might be expected since the conditions were randomly generated in the stimuli, it can 

be problematic to simply assume effective random assignment in the data collected (Darlington, 
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1990). Thus, this step provides a valuable tool for validating the effectiveness of randomization, 

which is rarely tested in psychological research.   

Based on the relationship to amount donated, three covariates were identified (most 

recent donation amount and two interactions) in the lasso step predicting donation amount. As 

noted above, no covariates were selected in the step predicting experimental condition, revealing 

no evidence of failed randomization based on the covariates. A linear regression including the 

identified covariates (as well as orthogonal experimental conditions), confirmed that there was a 

significant effect of the low recommendation condition on log donation amount relative to 

control (= -.365, t(67)=3.03, p=.004, Table 4). This analysis demonstrates how double-lasso 

regression can be used to identify valid covariates, increasing the power of experimental tests. 

Table 4.  

 

Regression of randomized suggestion level on donation amount among donors, with double-lasso 

selected covariates. 

Variable  SE t p Low CI High CI 

Primary variables: 

      

 
Constant 1.064 0.303 3.51 .001 0.459 1.670 

  Low Amount Recommended -0.365 0.121 -3.03 .004 -0.605 -0.124 

 
Medium Amount Recommended -0.130 0.1365 -0.95 .344 -0.402 0.142 

 

High Amount Recommended 0.025 0.1465 0.17 .865 -0.267 0.316 

Other randomized manipulations: 
        Five earmarking options shown -0.202 0.104 -1.94 .057 -0.409 0.006 

 
Previous donation shown 0.011 0.098 0.11 .911 -0.185 0.207 

Selected covariates: 

      

 
Log of prior year donation  0.695 0.099 7 .000 0.497 0.8937 

  

Log of prior year donation x  

      Log of lifetime giving 0.016 0.008 2.06 .043 0.0005 0.032 

 

Consecutive years of giving squared     

       x Prospect status 0.0002 0.0006 0.34 .739 -0.0009 0.001 
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Concluding Remarks 

The simulation and re-analyses demonstrate the potential benefits of using a principled 

variable selection method, such as the double-lasso, for better identifying which covariates to 

include and not include in analyses across a range of situations. It is important to emphasize that 

the analytic method presented here cannot determine either the role that selected variables should 

play, or how their effects on the relationship of interest should be interpreted. A confound, a 

manipulation check and a mediator may all have similar statistical relationships in the data 

(MacKinnon, Krull, & Lockwood, 2000; Zhao, Lynch, & Chen, 2010), and these distinctions 

should typically be made on theoretical grounds.  

However, either including all covariates or ignoring covariates entirely, either because of 

the conceptual difficulty of identifying the theoretical role of the variable or because of the 

potential for covariates to be used improperly (i.e., in p-hacking), is no solution. Failing to 

control for valid covariates can yield biased parameter estimates in correlational analyses or in 

imperfectly randomized experiments and contributes to underpowered analyses even in 

effectively randomized experiments. As demonstrated in the analyses, double lasso variable 

selection can be useful as a principled method to identify covariates in analyses of correlations, 

moderation, mediation and experimental interventions, as well as to test for the effectiveness of 

randomization. While variable selection methods are no substitute for thinking about what the 

variables mean, the approach presented here can provide an empirical basis for determining 

which variables to think hard about.  
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Supplemental Online Materials - Reviewed 

Implementation of the double-lasso procedure 

A key issue in implementation is how to set the tuning parameter .  By construction, a 

sufficiently low value would result in all covariates being included, while a very high value 

would result in no covariates being included. Based on prior work (e.g. Belloni, Chen, 

Chernozhukov and Hansen (2012) and Belloni, Chernozhukov and Hansen (2014)), we suggest 

using  

12.2 1
2 ln( )

R N
K N


    
   

 
. 

In this expression, N is the sample size, K is the number of potential covariates being tested, Φ
-1

 

is the standard normal distribution inverse CDF, and σR is the standard deviation of the residuals.  

In practice, the standard deviation of the residuals needs to be estimated.  Estimation may 

proceed by first fitting a simple model, such as a model with just an intercept, and using the 

residuals to form an initial guess for the standard deviation.  This initial guess may then be used 

to form λ for use in the lasso regression.  One can then use the residuals from the lasso regression 

to update the guess for the standard deviation and repeat for a small number of iterations. Details 

are provided in Belloni, Chen, Chernozhukov and Hansen (2012) who also provide an 

appropriate generalization for heteroskedastic data.  The basic procedure can also be modified to 

obtain estimates of average treatment effects (Belloni, Chernozhukov and Hansen 2014) and 

more general treatment effects (Belloni, Chernozhukov, Fernández-Val and Hansen 2015) 

suitable for general heterogeneous treatment effect settings as well. 
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This choice of  ensures that, in the limit (i.e. as N gets very large), a model with good 

statistical properties and approximately the right number of covariates is chosen. In our analyses, 

we set =.10. Heuristically, we note that if one were considering a Bonferroni correction for 

testing K hypotheses using two-sided t-tests maintaining an error rate of α, one would use a 

cutoff of 
1 1

2K

  
  

 
, which is closely related to the choice above.  The additional terms, 

especially the ln(N), can be viewed as additional factors that aid in making sure the procedure 

screens out all variables that are not highly relevant.  In general, the method will require “more 

evidence” for inclusion of a covariate as the sample size increases and as the number of potential 

predictors increases, all else equal. 

The next issue is how to easily implement the procedure.  A macro is available for use 

with STATA, and the glmnet procedure in R can also be used (with some minor modifications, 

including using N as the regularization parameter). While the double lasso is not available in 

SPSS, a “double forward regression” approach can be used in SPSS (and most other statistical 

software programs) that closely approximates the double-lasso, by setting the p-value for entry to 

.1/[ln(N)*K] . This choice roughly corresponds to the analysis in Kozbur (2015) but does not 

include additional adjustments that are needed in the theory but are difficult to implement in 

SPSS. Without these additional corrections, formal validity of the procedure is theoretically 

questionable except under restrictive conditions. However, in our simulations and data analyses, 

the “double forward regression” performs well and yields similar results to the double lasso.  

Analyses of the examples using all three programs, including executable scripts, can be found in 

the unreviewed appendix. 

Simulations 



DOUBLE LASSO VARIABLE SELECTION       25 

 

 For our simulations, we generate data from a model representing a randomized trial given 

by  

Yi=0+1Xi+2Wi1+…+K+1WiK+i. 

The treatment variable Xi is set equal to one for half of the observations and 0 for the remaining 

observations, and we set 1 = .5.  We generate controls Wi1, …, WiK by drawing initial variables 

Zi1, …, ZiK from a multivariate normal distribution with the mean and variance of each 

component equal to 0 and one, respectively, and correlation between Zik and Zil equal to .7
|k-l|

.  

We then set Wik = Zik for k ≤ K/2 and Wik = 1(Zik > 0) for k > K/2 where 1(∙) denotes the 

indicator function that returns one when the expression inside the parentheses is true and 0 

otherwise.  We then set the coefficient on Wi1 and the coefficient on Wi,K/2+1 equal to one.  We 

consider n = 60 with K = 15, 30, 45, 60, and 120 and n = 100 with K = 25, 50, 75, 100, and 200.  

The error terms, i, are drawn as iid mean 0 normal random variables.   

We consider a homoskedastic case where the variance of i is equal to one, and a 

heteroskedastic case where Var(i) = [.15exp{0+1Xi+2Wi1+…+K+1WiK}]
2
.  We report bias 

and RMSE for estimating 1, rejection frequency for 5% level t-tests of the null hypothesis that 

1 is equal to the true value of .5 (size), and power of 5% level t-tests against the alternative that 

1 is equal to 0.  All results are based on 10,000 simulation replications.  The full set of 

simulation results are available in the unreviewed appendix. 
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Supplemental Online Materials - Unreviewed 

Appendix 1: Detailed Simulation Results 

Column Definitions:  

True: actual properties of simulated data  

No Covariates: none included   

All Included: included all covariates (when K<N) 

p-hacking: Forward stepwise procedure that adds the variable that maximally decreases the p-

value of the focal coefficient at each step until either no inclusion will improve the p-value or a 

maximum of five variables have been added. 

Stepwise (FS): forward-selection (i.e. stepwise regression without the removal step) using p<.05 

Two-step regression: Included covariates that had p<.05 in an initial multiple regression 

Double Forward Regression: Approximation of double-lasso using forward regression 

Double Lasso: Procedure described in the paper 

 

Covariate 
Selection Method  True    

No 
Covariates 

 All 
Included 

p-
hacking 

Stepwise 
(FS) 

Two-step 
regression 

Double 
forward 

regression 
Double 
Lasso 

                                                1. N = 60, K = 15, homoskedastic      

N Selected:  2.000 0.000 15.000 4.290 2.471 2.426 1.674 2.738 

Bias:      0.001 0.001 0.003 0.255 -0.024 0.001 -0.015 -0.015 

Std. Dev:  0.262 0.389 0.298 0.405 0.258 0.277 0.266 0.264 

RMSE:      0.262 0.389 0.298 0.479 0.260 0.277 0.267 0.264 

Size:      0.056 0.053 0.054 0.208 0.057 0.067 0.056 0.055 

Power (H0):  0.479 0.252 0.398 0.757 0.455 0.482 0.447 0.454 

Power Size Adj: 0.346 0.161 0.272 0.285 0.315 0.313 0.313 0.323 

                                                2. N = 60, K = 30, homoskedastic  

N Selected:  2.000 0.000 30.000 4.955 3.136 3.145 1.590 2.566 

Bias:      -0.004 -0.005 -0.005 0.326 -0.054 -0.003 -0.019 -0.026 

Std. Dev:  0.264 0.390 0.380 0.473 0.259 0.295 0.271 0.269 

RMSE:      0.264 0.390 0.380 0.574 0.264 0.295 0.272 0.270 

Size:      0.056 0.057 0.064 0.303 0.064 0.077 0.056 0.057 

Power (H0):  0.472 0.257 0.284 0.837 0.421 0.458 0.437 0.436 

Power Size Adj: 0.354 0.165 0.175 0.262 0.267 0.277 0.319 0.308 

                                                3. N = 60, K = 45, homoskedastic  

N Selected:  2.000 0.000 45.000 4.998 3.841 4.159 1.541 2.545 

Bias:      -0.001 -0.003 -0.002 0.380 -0.076 -0.001 -0.017 -0.028 

Std. Dev:  0.263 0.389 0.563 0.509 0.255 0.330 0.270 0.267 

RMSE:      0.263 0.389 0.563 0.635 0.266 0.330 0.271 0.268 

Size:      0.053 0.056 0.072 0.370 0.075 0.076 0.055 0.057 

Power (H0):  0.481 0.256 0.191 0.890 0.406 0.409 0.439 0.438 

Power Size Adj: 0.371 0.160 0.088 0.240 0.227 0.225 0.319 0.315 
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Covariate 
Selection Method  True    

No 
Covariates 

 All 
Included 

p-
hacking 

Stepwise 
(FS) 

Two-step 
regression 

Double 

forward 
regression 

Double 
Lasso 

                                                4. N = 60, K = 60, homoskedastic  

N Selected:  2.000 0.000 N/A 5.000 4.594 N/A 1.512 2.581 

Bias:      -0.001 0.001 N/A 0.417 -0.101 N/A -0.020 -0.032 

Std. Dev:  0.266 0.390 N/A 0.544 0.253 N/A 0.274 0.270 

RMSE:      0.266 0.390 N/A 0.686 0.272 N/A 0.274 0.272 

Size:      0.059 0.059 N/A 0.437 0.090 N/A 0.059 0.062 

Power (H0):  0.485 0.262 N/A 0.918 0.384 N/A 0.437 0.429 

Power Size Adj: 0.343 0.150 N/A 0.238 0.174 N/A 0.297 0.283 

                                                5. N = 60, K = 120, homoskedastic  

N Selected:  2.000 0.000 N/A 5.000 9.018 N/A 1.420 2.676 

Bias:      0.002 0.000 N/A 0.518 -0.223 N/A -0.016 -0.039 

Std. Dev:  0.266 0.390 N/A 0.613 0.237 N/A 0.279 0.274 

RMSE:      0.266 0.390 N/A 0.802 0.325 N/A 0.279 0.276 

Size:      0.058 0.058 N/A 0.577 0.262 N/A 0.060 0.064 

Power (H0):  0.489 0.261 N/A 0.980 0.271 N/A 0.437 0.422 

Power Size Adj: 0.342 0.158 N/A 0.239 0.006 N/A 0.286 0.266 

                                                6. N = 100, K = 25, homoskedastic  

N Selected:  2.000 0.000 25.000 4.920 2.961 3.138 1.934 2.653 

Bias:      0.002 0.004 0.000 0.221 -0.022 0.001 -0.003 -0.008 

Std. Dev:  0.202 0.302 0.231 0.280 0.200 0.209 0.203 0.202 

RMSE:      0.202 0.302 0.231 0.356 0.202 0.209 0.203 0.202 

Size:      0.052 0.054 0.050 0.187 0.054 0.061 0.052 0.052 

Power (H0):  0.702 0.391 0.581 0.899 0.671 0.697 0.692 0.685 

Power Size Adj: 0.573 0.272 0.447 0.508 0.521 0.538 0.569 0.548 

                                                7. N = 100, K = 50, homoskedastic  

N Selected:  2.000 0.000 50.000 5.000 4.056 4.412 1.893 2.549 

Bias:      0.003 0.003 0.001 0.272 -0.044 0.003 -0.003 -0.009 

Std. Dev:  0.201 0.300 0.286 0.299 0.198 0.215 0.202 0.203 

RMSE:      0.201 0.300 0.286 0.404 0.203 0.215 0.202 0.203 

Size:      0.051 0.052 0.053 0.257 0.063 0.066 0.051 0.053 

Power (H0):  0.708 0.392 0.427 0.936 0.647 0.689 0.695 0.684 

Power Size Adj: 0.601 0.280 0.298 0.483 0.494 0.518 0.581 0.558 
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Covariate 
Selection Method  True    

No 
Covariates 

 All 
Included 

p-
hacking 

Stepwise 
(FS) 

Two-step 
regression 

Double 

forward 
regression 

Double 
Lasso 

                                                8. N = 100, K = 75, homoskedastic  

N Selected:  2.000 0.000 75.000 5.000 5.238 5.896 1.869 2.529 

Bias:      0.000 0.001 -0.006 0.305 -0.072 0.001 -0.007 -0.014 

Std. Dev:  0.203 0.305 0.423 0.326 0.198 0.237 0.205 0.205 

RMSE:      0.203 0.305 0.423 0.446 0.210 0.237 0.205 0.205 

Size:      0.054 0.058 0.065 0.309 0.081 0.073 0.055 0.057 

Power (H0):  0.696 0.392 0.246 0.947 0.604 0.632 0.680 0.674 

Power Size Adj: 0.575 0.265 0.133 0.452 0.388 0.442 0.556 0.541 

                                                9. N = 100, K = 100, homoskedastic  

N Selected:  2.000 0.000 N/A 5.000 6.611 N/A 1.854 2.527 

Bias:      0.000 0.000 N/A 0.330 -0.099 N/A -0.007 -0.015 

Std. Dev:  0.202 0.299 N/A 0.328 0.193 N/A 0.203 0.204 

RMSE:      0.202 0.299 N/A 0.466 0.217 N/A 0.203 0.204 

Size:      0.051 0.051 N/A 0.344 0.097 N/A 0.053 0.055 

Power (H0):  0.699 0.390 N/A 0.964 0.575 N/A 0.680 0.677 

Power Size Adj: 0.598 0.273 N/A 0.459 0.290 N/A 0.570 0.546 

                                                10. N = 100, K = 200, homoskedastic  

N Selected:  2.000 0.000 N/A 5.000 14.754 N/A 1.798 2.549 

Bias:      0.002 0.000 N/A 0.395 -0.229 N/A -0.006 -0.018 

Std. Dev:  0.199 0.298 N/A 0.351 0.180 N/A 0.201 0.201 

RMSE:      0.199 0.298 N/A 0.529 0.291 N/A 0.202 0.202 

Size:      0.048 0.051 N/A 0.444 0.353 N/A 0.049 0.052 

Power (H0):  0.700 0.388 N/A 0.984 0.391 N/A 0.676 0.664 

Power Size Adj: 0.595 0.276 N/A 0.461 0.006 N/A 0.571 0.549 

                                                11. N = 60, K = 15, heteroskedastic 

N Selected:  2.000 0.000 15.000 4.590 2.455 2.253 1.568 2.725 

Bias:      0.003 0.003 0.005 0.168 -0.020 0.008 -0.004 -0.006 

Std. Dev:  0.303 0.430 0.345 0.427 0.310 0.323 0.333 0.327 

RMSE:      0.303 0.430 0.345 0.459 0.311 0.323 0.333 0.327 

Size:      0.049 0.052 0.046 0.165 0.055 0.058 0.054 0.053 

Power (H0):  0.580 0.253 0.508 0.782 0.546 0.574 0.533 0.539 

Power Size Adj: 0.509 0.166 0.438 0.475 0.448 0.470 0.438 0.452 
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Covariate 
Selection Method  True    

No 
Covariates 

 All 
Included 

p-
hacking 

Stepwise 
(FS) 

Two-step 
regression 

Double 

forward 
regression 

Double 
Lasso 

                                                12. N = 60, K = 30, heteroskedastic      

N Selected:  2.000 0.000 30.000 4.984 3.031 3.029 1.495 2.533 

Bias:      -0.001 -0.005 0.002 0.201 -0.048 0.002 -0.006 -0.013 

Std. Dev:  0.289 0.414 0.404 0.460 0.296 0.317 0.317 0.315 

RMSE:      0.289 0.414 0.404 0.502 0.300 0.317 0.317 0.315 

Size:      0.047 0.055 0.052 0.232 0.060 0.065 0.053 0.050 

Power (H0):  0.605 0.261 0.406 0.866 0.535 0.580 0.551 0.549 

Power Size Adj: 0.533 0.173 0.320 0.487 0.440 0.470 0.473 0.466 

                                               13. N = 60, K = 45, heteroskedastic 

N Selected:  2.000 0.000 45.000 4.999 3.660 4.376 1.430 2.443 

Bias:      0.002 0.008 -0.002 0.245 -0.070 0.010 -0.004 -0.013 

Std. Dev:  0.293 0.410 0.620 0.480 0.300 0.351 0.321 0.328 

RMSE:      0.293 0.410 0.620 0.539 0.307 0.351 0.321 0.328 

Size:      0.049 0.048 0.076 0.287 0.073 0.073 0.053 0.055 

Power (H0):  0.607 0.266 0.250 0.901 0.513 0.530 0.544 0.534 

Power Size Adj: 0.539 0.186 0.121 0.496 0.372 0.392 0.459 0.450 

                                                14. N = 60, K = 60, heteroskedastic 

N Selected:  2.000 0.000 N/A 4.999 4.357 N/A 1.392 2.377 

Bias:      -0.003 -0.005 N/A 0.257 -0.100 N/A -0.009 -0.019 

Std. Dev:  0.287 0.411 N/A 0.504 0.292 N/A 0.322 0.329 

RMSE:      0.287 0.411 N/A 0.566 0.308 N/A 0.322 0.330 

Size:      0.044 0.051 N/A 0.314 0.092 N/A 0.050 0.052 

Power (H0):  0.598 0.254 N/A 0.919 0.471 N/A 0.531 0.511 

Power Size Adj: 0.529 0.169 N/A 0.475 0.298 N/A 0.454 0.416 

                                                15. N = 60, K = 120, heteroskedastic 

N Selected:  2.000 0.000 N/A 5.000 8.691 N/A 1.302 2.318 

Bias:      -0.001 -0.007 N/A 0.323 -0.215 N/A -0.008 -0.023 

Std. Dev:  0.289 0.407 N/A 0.567 0.293 N/A 0.325 0.334 

RMSE:      0.289 0.407 N/A 0.652 0.364 N/A 0.325 0.335 

Size:      0.048 0.048 N/A 0.443 0.279 N/A 0.051 0.053 

Power (H0):  0.599 0.254 N/A 0.963 0.340 N/A 0.525 0.494 

Power Size Adj: 0.536 0.171 N/A 0.432 0.007 N/A 0.446 0.411 
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Covariate 
Selection Method  True    

No 
Covariates 

 All 
Included 

p-
hacking 

Stepwise 
(FS) 

Two-step 
regression 

Double 

forward 
regression 

Double 
Lasso 

                                                16. N = 100, K = 25, heteroskedastic 

N Selected:  2.000 0.000 25.000 4.976 2.884 2.773 1.745 2.762 

Bias:      0.005 0.004 0.004 0.142 -0.018 0.006 0.003 -0.001 

Std. Dev:  0.226 0.322 0.259 0.280 0.227 0.234 0.240 0.237 

RMSE:      0.226 0.322 0.259 0.314 0.228 0.234 0.240 0.237 

Size:      0.047 0.052 0.045 0.133 0.052 0.057 0.051 0.048 

Power (H0):  0.722 0.387 0.644 0.885 0.690 0.713 0.694 0.694 

Power Size Adj: 0.664 0.282 0.585 0.685 0.616 0.635 0.622 0.632 

                                                17. N = 100, K = 50, heteroskedastic 

N Selected:  2.000 0.000 50.000 5.000 3.846 3.933 1.681 2.555 

Bias:      0.002 0.004 0.004 0.177 -0.042 0.003 0.000 -0.006 

Std. Dev:  0.228 0.322 0.325 0.294 0.230 0.242 0.245 0.245 

RMSE:      0.228 0.322 0.325 0.343 0.234 0.242 0.245 0.246 

Size:      0.047 0.047 0.043 0.178 0.060 0.059 0.052 0.051 

Power (H0):  0.723 0.389 0.504 0.925 0.663 0.711 0.692 0.685 

Power Size Adj: 0.668 0.306 0.441 0.716 0.567 0.623 0.618 0.607 

                                                18. N = 100, K = 75, heteroskedastic 

N Selected:  2.000 0.000 75.000 5.000 4.951 5.788 1.645 2.571 

Bias:      0.002 0.003 0.007 0.196 -0.069 0.007 -0.001 -0.006 

Std. Dev:  0.227 0.320 0.466 0.309 0.229 0.258 0.244 0.244 

RMSE:      0.227 0.320 0.466 0.366 0.240 0.258 0.244 0.244 

Size:      0.046 0.053 0.056 0.211 0.072 0.060 0.051 0.051 

Power (H0):  0.726 0.385 0.309 0.945 0.627 0.677 0.684 0.676 

Power Size Adj: 0.669 0.274 0.200 0.707 0.502 0.578 0.614 0.604 

                                                19. N = 100, K = 100, heteroskedastic 

N Selected:  2.000 0.000 N/A 5.000 6.183 N/A 1.616 2.510 

Bias:      0.003 0.005 N/A 0.213 -0.097 N/A 0.000 -0.007 

Std. Dev:  0.226 0.318 N/A 0.316 0.226 N/A 0.242 0.244 

RMSE:      0.226 0.318 N/A 0.380 0.246 N/A 0.242 0.244 

Size:      0.046 0.053 N/A 0.238 0.095 N/A 0.049 0.050 

Power (H0):  0.726 0.393 N/A 0.952 0.594 N/A 0.686 0.676 

Power Size Adj: 0.671 0.276 N/A 0.696 0.406 N/A 0.611 0.599 
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Covariate 
Selection Method  True    

No 
Covariates 

 All 
Included 

p-
hacking 

Stepwise 
(FS) 

Two-step 
regression 

Double 

forward 
regression 

Double 
Lasso 

                                                20. N = 100, K = 200, heteroskedastic 

N Selected:  2.000 0.000 N/A 5.000 13.563 N/A 1.540 2.441 

Bias:      0.000 -0.001 N/A 0.246 -0.223 N/A 0.000 -0.009 

Std. Dev:  0.226 0.323 N/A 0.354 0.229 N/A 0.247 0.251 

RMSE:      0.226 0.323 N/A 0.431 0.320 N/A 0.247 0.251 

Size:      0.047 0.054 N/A 0.315 0.334 N/A 0.051 0.052 

Power (H0):  0.725 0.385 N/A 0.975 0.420 N/A 0.679 0.664 

Power Size Adj: 0.667 0.260 N/A 0.685 0.007 N/A 0.606 0.590 
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Appendix 2: Additional Details for Analyses in STATA 

Analysis 1: Correlational Analysis of Parents’ Life Satisfaction 

We use a slightly different sample size, because we exclude cases with missing values on 

the additional covariates. The results reported in Table 1 of Bhargava et al (2014) were largely 

the same after these exclusions. 

Table A1: Replication of Table 1 in Bhargava et al (2014). 

Model and predictor Satisfaction Happiness Meaning  

 

N=5213 N=5178 N=5195 

No controls 
      Parenthood  = .195, p < .001  = .053, p = .005  = .089, p < .001 

Controls: marital status 
      Parenthood  = -.113, p = .071  = -.040, p = .058  = .123, p < .001 

Controls: marital status & age 
      Parenthood  = -.191, p = .007  = -.043, p = .068  = .103, p = .001 

Controls: marital status, age & 

gender 
      Parenthood  = -.197, p = .006  = -.049, p = .038  = .079, p = .009 

Controls: marital status, age, gender 

& income 

      Parenthood  = -.118, p = .098  = -.027, p = .253  = .084, p = .006 

 

In the paper, we report the results of the double-lasso analysis for life satisfaction, and we 

note that only using covariates identified as predictors of the dependent variable yields different 

results, shown in Table A2.  We also re-ran the original analysis excluding income and 

employment variables most likely to be impacted by parenthood, and replicate our findings 

(Table A3). 
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Table A2: Regression of parenthood on life satisfaction, with DV-predictor covariates only. 

Variable  SE t p Low CI High CI 

Primary variables: 

      

 

Constant 7.193 0.068 106.27 .000 7.061 7.326 

  Parent -0.127 0.065 -1.95 .051 -0.255 0.000 

Main effect covariates: 
       Income (3 point scale) 0.398 0.105 3.78 .000 0.191 0.605 

Interaction covariates: 
      

 

Married x Age 1.164 0.139 8.38 .000 0.891 1.436 

 
Married x Income rating (3 point) -0.005 0.177 -0.03 .975 -0.352 0.341 

  Married x Income rating (11 point) 0.412 0.191 2.15 .031 0.037 0.787 

 

Table A3: Regression of parenthood on life satisfaction, with non-employment demographic 

covariates only. 

Variable  SE t p Low CI High CI 

Primary variables: 

      

 
Constant 7.095 0.103 68.95 .000 6.893 7.296 

  Parent -0.221 0.071 -3.09 .002 -0.361 -0.081 

Main effect covariates: 
      

  

Married  

(including living together as 

married) 0.617 0.120 5.15 .000 0.382 0.852 

 

Age 0.773 0.231 3.35 .001 0.321 1.226 

 
Age=18 0.294 0.207 1.42 .156 -0.112 0.700 

 

Age=19 0.077 0.209 0.37 .713 -0.333 0.487 

 
Age=20 0.463 0.189 2.46 .014 0.093 0.833 

 

Age=21 0.094 0.172 0.55 .582 -0.242 0.431 

 
Age=22 0.462 0.167 2.77 .006 0.135 0.79 

 

Age=23 0.125 0.174 0.72 .473 -0.216 0.466 

 
Gender (Male) -0.047 0.052 -0.91 .364 -0.148 0.054 

Interaction covariates: 

      

 

Married x Age 0.553 0.344 1.61 .108 -0.121 1.226 

  Married x Age to fourth power -0.489 0.589 -0.83 .406 -1.643 0.665 

 

Using double-lasso selected covariates, we find that marital status and age moderates the 

effect of being a parent on life satisfaction, but gender does not (Table A4).  
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Table A4: Regression effect of parenthood on happiness, with double-lasso selected covariates. 

Variable  SE t p Low CI High CI 

Primary variables: 

      

 

Constant 4.832 0.673 7.18 .000 3.512 6.152 

  Parent -0.897 0.23 -3.89 .000 -1.348 -0.445 

Interactions with parenthood: 
        Married x Parent 0.362 0.148 2.44 .015 0.071 0.653 

 Age x Parent 3.281 1.265 2.59 .009 0.802 5.76 

 

Age Squared x Parent -3.107 1.549 -2.01 .045 -6.144 -0.069 

 
Male x Parent 0.000 0.141 0.00 .998 -0.276 0.277 

Analysis controls for 47 additional covariates (not shown) 

 

 Lastly, we conducted the same analyses for the effect of parenthood on happiness (Table 

A5) and on meaning in life (Table A6). 

Table A5: Regression effect of parenthood on happiness, with double-lasso selected covariates. 

Variable  SE t p Low CI High CI 

Primary variables: 

      

 
Constant 3.178 0.034 93.66 .000 3.111 3.244 

  Parent -0.050 0.024 -2.12 .034 -0.096 -0.004 

Main effect covariates: 
      

  

Married  

(including living together as married) 0.043 0.048 0.89 .373 -0.052 0.138 

 
Age 0.082 0.073 1.13 .259 -0.061 0.225 

 

Age=18 0.091 0.068 1.34 .182 -0.043 0.224 

 
Age=19 0.076 0.067 1.12 .261 -0.056 0.208 

 

Age=20 0.128 0.057 2.23 .026 0.016 0.240 

 
Age=21 -0.018 0.061 -0.30 .764 -0.138 0.101 

 

Age=22 0.101 0.060 1.67 .095 -0.018 0.220 

 
Age=23 0.048 0.059 0.81 .418 -0.068 0.163 

 

Gender (Male) -0.049 0.021 -2.38 .017 -0.089 -0.009 

 
Employment: Housewife 0.031 0.041 0.75 .454 -0.050 0.112 

 

Chief wage earner 0.006 0.023 0.24 .807 -0.039 0.050 

Interaction covariates: 
 

     

 

Married x Age 0.122 0.119 1.03 .304 -0.111 0.355 

 Married x Age to fourth power 0.200 0.214 0.94 .349 -0.219 0.620 

 

Married x Income rating (3 point) 0.010 0.051 0.19 .846 -0.090 0.109 

 
Married x Income rating (11 point) 0.254 0.082 3.11 .002 0.094 0.414 

  Employment: Student x Male 0.132 0.095 1.40 .162 -0.053 0.318 
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Table A6: Regression effect of parenthood on meaning in life, with double-lasso selected 

covariates. 

Variable  SE t p Low CI High CI 

Primary variables: 

      

 

Constant 3.417 0.041 82.36 .000 3.336 3.498 

  Parent 0.094 0.030 3.08 .002 0.034 0.154 

Main effect covariates: 

      
  

Married  
(including living together as married) -0.032 0.038 -0.83 .407 -0.107 0.043 

 

Age 0.010 0.081 0.13 .898 -0.149 0.170 

 

Age=18 -0.116 0.080 -1.45 .147 -0.273 0.041 

 

Age=19 -0.018 0.084 -0.22 .829 -0.183 0.147 

 

Age=20 -0.002 0.078 -0.02 .983 -0.155 0.152 

 

Age=21 -0.073 0.078 -0.93 .350 -0.226 0.080 

 

Age=22 -0.172 0.086 -2.02 .044 -0.340 -0.005 

 

Age=23 -0.077 0.078 -0.99 .322 -0.230 0.076 

 

Gender (Male) -0.153 0.026 -5.86 .000 -0.204 -0.102 

 

Employment: Housewife -0.105 0.051 -2.04 .041 -0.205 -0.004 

 

Chief wage earner -0.043 0.029 -1.49 .135 -0.099 0.013 

Interaction covariates: 

       Married x Age to fourth power -0.080 0.224 -0.36 .721 -0.519 0.359 

 

Married x Income rating (3 point) -0.066 0.039 -1.71 .088 -0.142 0.010 

  Employment: Student x Male 0.068 0.120 0.57 .569 -0.167 0.304 

 

Analysis 2: Mediation Analysis of Conservative Happiness  

 In the paper, we approximated the analyses in Napier and Jost (2008), by excluding cases 

with missing values on the variables used in their paper, and setting missing values for other 

variables to the median value (for ordinal variables) or to the mean value (for continuous 

variables). This results in 1192 cases (similar to the 1142 reported in their paper). As a result, 

when we re-run the analyses for the table in their paper, we find results that are similar but not 

exactly the same. 
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Table A7: Replicating analysis from Napier and Jost (2008). 

Predictor Step 1 Step 2 Step 3 Step 4 Step 5 
Political 

conservativism 0.263 (.064)**** 0.191 (0.064)*** 0.161 (0.064)** 0.161 (0.064)** 0.114 (0.074) 

Income 

(household) 

 

0.011 (0.011) 0.013 (0.011) 0.013 (0.011) 0.013 (0.011) 

Education 

 

0.085 (0.025)*** 0.078 (0.025)*** 0.074 (0.026)*** 0.076 (0.025)*** 

Sex 

 

0.046 (0.073) 0.026 (0.073) 0.033 (0.075) 0.035 (0.075) 

Age 

 

0.059 (0.041) 0.045 (0.041) 0.047 (0.042) 0.038 (0.042) 

Age squared 

 

0.188 (0.041)**** 0.185 (0.041)**** 0.185 (0.041)**** 0.182 (0.041)**** 

Marital status 

 

0.361 (0.081)**** 0.350 (0.081)**** 0.351 (0.081)**** 0.341 (0.081)**** 

Employment 

status 

 

-0.006 (0.091) -0.014 (0.091) -0.011 (0.091) -0.010 (0.091) 

Church attendance 

  

0.074 (0.03)** 0.074 (0.03)** 0.077 (0.031)** 

Need for 

cognition 
   

0.068 (0.119) 0.066 (0.118) 
Rationalization of 

inequality         0.080 (0.054) 

 

 In an additional analysis, we only excluded respondents who were missing values for the 

dependent variable (life satisfaction), independent variable (political orientation) or the proposed 

mediator (rationalization of inequality scale), yielding 1364 cases.  In this analysis, the evidence 

for mediation is a bit weaker. Conservatives were happier (=.277, t(1362)=4.66, p<.001), and 

the difference was partially mediated by the rationalization of inequality scale (indirect =.058, 

bootstrap CI=[.000,.016], p=.0497). 

We conducted a second double-lasso analysis, and identified seven covariates, the same 

four as in the prior analysis (church attendance and dummy codes for employment, being 

married and African-American race), as well as three others (being multiracial, not attending 

denominational church services, and attending Protestant services). Controlling for these 

covariates, the effect of political orientation on happiness was marginally significant. While the 

coefficient of political orientation was reduced and not significant when rationalization of 
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inequality is included, the mediation is not significant (indirect =.038, bootstrap CI=[-

.014,.090], p=.148).     

Table A8: Replicating analysis from Napier and Jost (2008), full sample. 

Predictor Step 1 Step 2 Step 3 Step 4 Step 5 
Political 

conservativism 

0.277 (.059)**** 0.208 (0.059)**** 0.179 (0.059)*** 0.18 (0.059)*** 0.137 (0.068)** 

Income 

(household) 

 0.012 (0.011) 0.013 (0.01) 0.013 (0.01) 0.013 (0.01) 

Education  0.079 (0.023)*** 0.073 (0.023)*** 0.07 (0.023)*** 0.071 (0.023)*** 

Sex  0.059 (0.068) 0.039 (0.068) 0.045 (0.069) 0.047 (0.069) 

Age  0.072 (0.038)* 0.057 (0.038) 0.059 (0.039) 0.05 (0.039) 

Age squared  0.163 (0.037)**** 0.159 (0.037)**** 0.159 (0.037)**** 0.157 (0.037)**** 

Marital status  0.359 (0.074)**** 0.346 (0.074)**** 0.347 (0.074)**** 0.338 (0.074)**** 

Employment status  0.055 (0.086) 0.048 (0.085) 0.05 (0.086) 0.053 (0.086) 

Church attendance   0.074 (0.028)*** 0.074 (0.028)*** 0.077 (0.028)*** 

Need for cognition    0.051 (0.111) 0.05 (0.11) 

Rationalization of 

inequality 

    0.073 (0.051) 

 

Table A9: Regressions of political orientation on happiness (full sample). 

  
Model 2a Model 2b 

Variable  p  p 

Primary variables: 

    

 

Constant 2.834 .000 2.649 .000 

  Political Orientation 0.107 .085 0.069 .311 

Mediator: 

      Rationalization of inequality     0.072 .142 

 
Church attendance 0.072 .017 0.073 .016 

 

Married 0.239 .000 0.231 .001 

 

Not unemployed or disabled -0.660 .000 -0.670 .000 

  Black -0.297 .021 -0.269 .036 

 

Multiracial -0.122 .059 -0.095 .150 

 

No denominational church 

services -0.148 .071 -0.148 .071 

 

Attends Protestant services 0.176 .033 0.166 .045 
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Appendix 3: Replication Analyses in R 

Analysis 1: Correlational Analysis of Parents’ Life Satisfaction 

We redid our analysis using double lasso via a modification of the glmnet package in R, 

testing the effect of parenthood on life satisfaction (Table A10), happiness (Table A11) and 

meaning in life (Table A12). 

Table A10: Regression effect of parenthood on life satisfaction, with double-lasso selected 

covariates. 

Variable  SE t p 

Primary variables: 
    

 

Constant 6.809 0.118 57.71 .000 

  Parent -0.172 0.069 -2.49 .013 

Main effect covariates: 

    

  

Married  

(including living together as married) 0.452 0.146 3.09 .002 

 Income rating (3 point scale) 0.493 0.114 4.34 .000 

 
Age 0.927 0.211 4.40 .000 

 

Age=18 0.375 0.194 1.94 .053 

 
Age=19 0.200 0.194 1.03 .303 

 

Age=20 0.568 0.188 3.03 .002 

 
Age=21 0.214 0.176 1.21 .225 

 

Age=22 0.611 0.179 3.41 .001 

 
Age=23 0.225 0.180 1.25 .212 

 Age=24 0.443 0.179 2.47 .013 

 
Gender (Male) -0.123 0.061 -2.03 .042 

 Employment: Housewife 0.021 0.115 0.18 .857 

 
Employment: Student 0.054 0.199 0.27 .785 

  Employment: Unemployed -0.546 0.109 -5.02 .000 

 

Chief wage earner 0.106 0.067 1.58 .114 

Interaction covariates: 

 

   

 

Married x Age 0.260 0.352 0.74 .460 

 Married x Age to fourth power 0.227 0.652 0.35 .728 

 

Married x Income rating (3 point) -0.041 0.187 -0.22 .826 

 

Married x Income rating (11 point) 0.283 0.239 1.18 .236 
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Table A11: Regression effect of parenthood on happiness, with double-lasso selected covariates. 

Variable  SE t p 

Primary variables: 

    

 

Constant 3.171 0.035 91.52 .000 

  Parent -0.049 0.023 -2.10 .036 

Main effect covariates: 
    

  

Married  

(including living together as married) 0.038 0.046 0.84 .401 

 

Age 0.094 0.071 1.32 .187 

 

Age=18 0.115 0.066 1.75 .080 

 

Age=19 0.093 0.066 1.41 .160 

 

Age=20 0.139 0.064 2.18 .029 

 

Age=21 -0.010 0.060 -0.17 .866 

 

Age=22 0.107 0.061 1.75 .080 

 

Age=23 0.053 0.061 0.87 .385 

 Age=24 0.066 0.061 1.08 .280 

 

Gender (Male) -0.046 0.020 -2.29 .022 

 Employment: Housewife 0.031 0.039 0.79 .428 

 

Employment: Student -0.011 0.068 -0.16 .874 

 

Chief wage earner 0.004 0.022 0.19 .846 

Interaction covariates: 
 

   

 

Married x Age 0.134 0.119 1.13 .259 

 Married x Age to fourth power 0.166 0.222 0.75 .454 

  Married x Income rating (11 point) 0.268 0.047 5.67 .000 
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Table A12: Regression effect of parenthood on meaning in life, with double-lasso selected 

covariates. 

Variable  SE t p 

Primary variables: 

    

 

Constant 3.417 0.043 78.81 .000 

  Parent 0.094 0.030 3.10 .002 

Main effect covariates: 

    
  

Married  
(including living together as married) -0.072 0.030 -2.42 .015 

 

Age -0.001 0.083 -0.01 .991 

 

Age=18 -0.137 0.085 -1.61 .107 

 

Age=19 -0.031 0.085 -0.36 .718 

 

Age=20 -0.019 0.082 -0.24 .812 

 

Age=21 -0.080 0.077 -1.04 .297 

 

Age=22 -0.173 0.079 -2.20 .028 

 

Age=23 -0.078 0.078 -0.99 .322 

 Age=24 -0.039 0.078 -0.50 .616 

 

Gender (Male) -0.153 0.026 -5.91 .000 

 

Employment: Housewife -0.093 0.050 -1.87 .062 

 

Employment: Student 0.164 0.087 1.89 .058 

 

Chief wage earner -0.039 0.028 -1.37 .171 

Interaction covariates: 

      Married x Age to fourth power -0.013 0.203 -0.06 .949 

 

Analysis 2: Mediation Analysis of Conservative Happiness  

The double lasso using modified glmnet in R also revealed no significant mediation, after 

controlling for selected covariates.  We identified five covariates, the same four as in the STATA 

analysis (church attendance and dummy codes for employment, being married and African-

American race), as well as being retired. Controlling for these covariates, the effect of political 

orientation on happiness is significant. While the coefficient of political orientation is reduced 

and no longer significant when rationalization of inequality is included, the mediation is not 

significant (indirect =.034, bootstrap CI=[-.022,.091], p=.236).   
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Table A13: Regressions of political orientation on happiness. 

  
Model 2a Model 2b 

Variable  p  p 

Primary variables: 

    

 

Constant 2.090 .000 1.891 .000 

  Political Orientation 0.131 .042 0.093 .176 

Mediator: 

    
  

Rationalization of 

inequality     0.072 .110 

Covariates: 

    

 

Church attendance 0.087 .001 0.089 .001 

 
Married 0.233 .000 0.225 .001 

 

Retired 0.279 .001 0.260 .003 

 

Not unemployed or disabled 0.627 .000 0.641 .000 

 

Black -0.253 .023 -0.225 .000 

 

 

 

Analysis 3: Spurious Experiment on Chronological Rejuvenation in R 

As in the STATA analysis, the double lasso using modified glmnet in R revealed 

insufficient empirical support to include any of the potential covariates in the regression.  The 

resulting single-variable regression revealed no significant effect of the experimental 

manipulation ( = -305.3, t(18)=1.00, p=.329).  

Analysis 4: Experiment on Suggested Defaults in Donation in R 

The double-lasso regression using modified glmnet in R yielded similar results to the 

STATA analysis. Two covariates were identified (prior donation amount and interaction between 

prior amount and lifetime giving) in the lasso step predicting donation amount. No covariates 

were selected in the step predicting experimental condition, revealing no evidence of failed 

randomization based on the covariates. A linear regression including the identified covariates 

and orthogonal experimental conditions, confirmed a significant difference between the low 
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recommendation condition and control condition in log donation amount (= -.365, t(67)=3.03, 

p=.004, Table A14).  

Table A14: Regression effect of randomized suggestion level on donation amount among donors, 

with double-lasso selected covariates. 

Variable  SE t p 

Primary variables: 
    

 

Constant 1.055 0.300 3.517 .001 

  Low Amount Recommended -0.369 0.119 -3.094 .003 

 

Medium Amount Recommended -0.128 0.135 -0.946 .347 

 
High Amount Recommended 0.032 0.143 0.226 .822 

Other randomized manipulations: 

      Five earmarking options shown -0.192 0.100 -1.931 .058 

 

Previous donation shown 0.006 0.096 0.058 .954 

Selected covariates: 
    

 

Log of prior year donation  0.690 0.097 7.079 .000 

 

Log of prior year donation x  

      Log of lifetime giving 0.018 0.007 2.419 .018 
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Appendix 4: Replication Analysis in SPSS 

Analysis 1: Correlational Analysis of Parents’ Life Satisfaction 

We redid our analysis in SPSS, using the double forward regression approach to 

approximating the double lasso, testing the effect of parenthood on life satisfaction (Table A15), 

happiness (Table A16) and meaning in life (Table A17). 

Table A15: Regression effect of parenthood on life satisfaction, with double-lasso selected 

covariates. 

Variable  SE t p 

Primary variables: 
    

 

Constant 7.497 0.140 53.72 .000 

  Parent -0.143 0.070 -2.05 .040 

Main effect covariates: 

    

  

Married  

(including living together as married) 0.331 0.186 1.78 .075 

 Income rating (3 point scale) 0.424 0.123 3.45 .001 

 Income rating (11 point scale) 0.157 0.225 0.70 .485 

 

Age -4.859 1.073 -4.53 .000 

 
Age squared 13.313 2.868 4.64 .000 

 

Age cubed -8.575 2.220 -3.86 .000 

 
Gender (Male) -0.222 0.084 -2.66 .008 

 Employment: Housewife 0.016 0.115 0.14 .887 

  Employment: Unemployed -0.550 0.107 -5.12 .000 

Interaction covariates: 

 

   

 

Married x Age 0.803 0.889 0.90 .366 

 Married x Age squared -0.884 1.080 -0.82 .413 

 

Married x Income rating (11 point) 0.180 0.215 0.84 .401 

 

Married x Male 0.235 0.107 2.21 .027 
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Table A16: Regression effect of parenthood on happiness, with double-lasso selected covariates.  

Variable  SE t p 

Primary variables: 

    

 

Constant 3.342 0.050 66.18 .000 

  Parent -0.036 0.024 -1.51 .130 

Main effect covariates: 
    

  

Married  

(including living together as married) 0.054 0.063 0.86 .391 

 Income  (8 point scale) 0.000 0.000 -5.01 .000 

 Income rating (11 point scale) 0.144 0.055 2.61 .009 

 

Age -1.057 0.363 -2.91 .004 

 

Age squared 2.140 0.971 2.20 .028 

 

Age cubed -1.053 0.752 -1.40 .162 

 

Gender (Male) -0.069 0.028 -2.43 .015 

 Employment: Housewife 0.016 0.039 0.40 .688 

Interaction covariates: 

 

   

 
Married x Age 0.531 0.301 1.77 .078 

 Married x Age squared -0.469 0.366 -1.28 .200 

 
Married x Income rating (11 point) 0.081 0.073 1.11 .267 

 

Married x Male 0.030 0.036 0.84 .403 
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Table A17: Regression effect of parenthood on meaning in life, with double-lasso selected 

covariates.  

Variable  SE t p 

Primary variables: 

    

 

Constant 3.360 0.048 69.29 .000 

  Parent 0.081 0.031 2.66 .008 

Main effect covariates: 

    
  

Married  
(including living together as married) -0.170 0.052 -3.29 .001 

 Income rating (11 point scale) -0.027 0.046 -0.59 .554 

 

Age 0.840 0.442 1.90 .058 

 

Age squared -2.043 1.245 -1.64 .101 

 

Age cubed 1.176 0.974 1.21 .227 

 

Gender (Male) -0.203 0.037 -5.55 .000 

 Employment: Housewife -0.074 0.050 -1.46 .144 

Interaction covariates: 

 

   

 
Married x Age 0.246 0.111 2.22 .027 

 

Married x Male 0.047 0.047 1.01 .314 

 

Analysis 2: Mediation Analysis of Conservative Happiness  

The double forward regression in SPSS also revealed no significant mediation, after 

controlling for selected covariates.  We identified six covariates, the same four as in the STATA 

analysis (church attendance and dummy codes for employment, being married and African-

American race), as well as age squared and household union membership. Controlling for these 

covariates, the effect of political orientation on happiness is significant (Model 1, Table 3). 

While the coefficient of political orientation is reduced and no longer significant when 

rationalization of inequality is included, the mediation is not significant (indirect =.034, 

bootstrap CI=[-.023,.091], p=.241).   
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Table A18: Regressions of political orientation on happiness. 

  
Model 1 Model 2 

Variable  p  p 

Primary variables: 

    

 

Constant 1.938 .000 1.741 .000 

  Political Orientation 0.135 .037 0.097 .160 

Mediator: 

    
  

Rationalization of 

inequality     0.073 .099 

Covariates: 

    

 

Church attendance 0.090 .001 0.091 .001 

 
Married 0.330 .000 0.318 .000 

 

Age squared 0.141 .000 0.137 .000 

 

Union household 0.004 .964 0.006 .944 

 

Not unemployed or disabled 0.607 .000 0.621 .000 

 

Black -0.248 .025 -0.219 .050 

 
 

Analysis 3: Spurious Experiment on Chronological Rejuvenation 

As in the STATA analysis, the double forward regression in SPSS revealed insufficient empirical 

support to include any of the potential covariates in the regression.  The resulting single-variable 

regression revealed no significant effect of the experimental manipulation ( = -305.3, 

t(18)=1.00, p=.329).  

Analysis 4: Experiment on Suggested Defaults in Donation in SPSS 

The double-lasso regression using double forward regression in SPSS yielded similar 

results to the STATA analysis. One covariate was identified (prior donation amount) in the lasso 

step predicting donation amount. No covariates were selected in the step predicting experimental 

condition, revealing no evidence of failed randomization based on the covariates. A linear 

regression including the identified covariate and orthogonal experimental conditions, confirmed 
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a significant difference between the low recommendation condition and control condition in log 

donation amount (= -.338, t(66)=2.76, p=.007, Table Azz).  

Table A19: Regression effect of randomized suggestion level on donation amount among donors, 

with double-lasso selected covariates. 

Variable  SE t p 

Primary variables: 
    

 

Constant .642 .255 2.516 .014 

  Low Amount Recommended -.338 .123 -2.760 .007 

 

Medium Amount Recommended -.144 .140 -1.029 .307 

 
High Amount Recommended .016 .148 .109 .913 

Other randomized manipulations: 

      Five earmarking options shown -.178 .103 -1.734 .087 

 

Previous donation shown .013 .099 .131 .896 

Selected covariates: 
    

 

Log of prior year donation  .903 .043 21.196 .000 
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Appendix 5: Sample Code 

Analysis 1: STATA 

** Replication of results in Kassam et al. 2013 Table 1 Column 1 

** Open data file ‘wvssatisfy.txt’ 

 

************************************* 

*      ANALYSIS 1 -- satisfaction    * 

************************************* 

 

** REPLICATE RESULTS from table in BKL (N=5213 because of missing values) 

** Results will differ slightly because of different sample size 

* Row 2 

reg satisfy kid, robust 

 

* Row 3 

reg satisfy ms_marry2 kid, robust 

 

* Row 4 

reg satisfy ms_marry2 kid age*, robust 

 

* Row 5 

reg satisfy ms_marry2 kid age* male, robust 

 

* Row 6 

reg satisfy ms_marry2 kid age* i.inc1 male, robust 

 

* VARIABLE SELECTION FOR MAIN EFFECT COVARIATES 

* Select variables that predict the outcome  

lassoShooting satisfy male ms_marry2 malexmarry ages ages2 ages3 ages4 inc2 

inc22 inc3 inc32 malexage* malexinc* marryx* inc2x* inc22x* _i* , 

lasiter(100) verbose(0) fdisplay(0)  

local satisfySel `r(selected)' 

di "`satisfySel'" 

 

* Select variables that predict the treatment 

lassoShooting kid male ms_marry2 malexmarry ages ages2 ages3 ages4 inc2 inc22 

inc3 inc32 malexage* malexinc* marryx* inc2x* inc22x* _i* , lasiter(100) 

verbose(0) fdisplay(0)  

local kidSel `r(selected)'  

di "`kidSel'"  

 

* Get union of selected instruments 

local satisfyDS: list satisfySel | kidSel 

 

* Regress outcome on treatment(s) and relevant controls - baseline 

reg satisfy kid `satisfyDS' , robust 

 

* regression without X predictors 

reg satisfy kid `satisfySel' , robust 

 

* regression without income and employment covariates. 

reg satisfy kid marryxage male ms_marry2 ages marryxage4 _iage_18 _iage_19 

_iage_20 _iage_21 _iage_22 _iage_23 , robust 
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* VARIABLE SELECTION FOR PRE-SPECIFIED MODERATORS 

lassoShooting ki_marry male ms_marry2 malexmarry ages ages2 ages3 ages4 inc2 

inc22 inc3 inc32 malexage* malexinc* marryx* inc2x* inc22x* _i* , 

lasiter(100) verbose(0) fdisplay(0)  

local ki_marrySel `r(selected)'  

di "`ki_marrySel'"  

lassoShooting ki_age male ms_marry2 malexmarry ages ages2 ages3 ages4 inc2 

inc22 inc3 inc32 malexage* malexinc* marryx* inc2x* inc22x* _i* , 

lasiter(100) verbose(0) fdisplay(0)  

local ki_ageSel `r(selected)'  

di "`ki_ageSel'"  

lassoShooting ki_age2 male ms_marry2 malexmarry ages ages2 ages3 ages4 inc2 

inc22 inc3 inc32 malexage* malexinc* marryx* inc2x* inc22x* _i* , 

lasiter(100) verbose(0) fdisplay(0)  

local ki_age2Sel `r(selected)'  

di "`ki_age2Sel'"  

lassoShooting ki_male male ms_marry2 malexmarry ages ages2 ages3 ages4 inc2 

inc22 inc3 inc32 malexage* malexinc* marryx* inc2x* inc22x* _i* , 

lasiter(100) verbose(0) fdisplay(0)  

local ki_maleSel `r(selected)'  

di "`ki_maleSel'"  

 

local satisfyDSm : list satisfyDS | ki_marrySel 

local satisfyDSm : list satisfyDSm | ki_ageSel 

local satisfyDSm : list satisfyDSm | ki_age2Sel 

local satisfyDSm : list satisfyDSm | ki_maleSel 

 

* Regress outcome on treatment(s) and relevant controls - moderation 

reg satisfy kid ki_marry ki_age ki_age2 ki_male `satisfyDSm' , robust 
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Analysis 1: R 

library(glmnet) 

 

##################################### 

#      ANALYSIS 1 -- SATISFACTION   # 

##################################### 

rm(list=ls()) 

study1 = read.csv("wvssatisfy.txt")  # read csv file 

 

## REPLICATE RESULTS from table in BKL (N=5213 because of missing values) 

# Row 2 

fitr <- lm(satisfy ~ kid, data=study1) 

summary(fitr) # show results 

 

# Row 3 

regvar <- as.matrix(subset(study1,select = c(kid, ms_marry2))) 

fitr <- lm(satisfy ~ regvar, data=study1) 

summary(fitr) # show results 

 

# Row 4 

regvar <- as.matrix(subset(study1,select = c(kid, ms_marry2, ages, ages2, 

ages3, ages4))) 

fitr <- lm(satisfy ~ regvar, data=study1) 

summary(fitr) # show results 

 

# Row 5 

regvar <- as.matrix(subset(study1,select = c(kid, ms_marry2, ages, ages2, 

ages3, ages4, male))) 

fitr <- lm(satisfy ~ regvar, data=study1) 

summary(fitr) # show results 

 

# Row 6 

reg1 <- as.matrix(subset(study1,select = c(kid, ms_marry2, ages, ages2, 

ages3, ages4, male))) 

reg2 <-as.matrix(subset(study1[,115:154])) 

regvar <- cbind(reg1,reg2) 

fitr <- lm(satisfy ~ regvar, data=study1) 

summary(fitr) # show results 

 

 

# VARIABLE SELECTION FOR MAIN EFFECT COVARIATES 

testvar <-as.matrix(subset(study1[,3:526])) 

satisfy <- as.matrix(study1$satisfy) 

kid <- as.matrix(study1$kid) 

kidXmarry <- as.matrix(study1$ki_marry) 

kidXage <- as.matrix(study1$ki_age) 

kidXage2 <- as.matrix(study1$ki_age2) 

kidXmale <- as.matrix(study1$ki_male) 

 

# STEP 1: select variables that predict outcomes 

n=nrow(testvar) 

p=ncol(testvar) 

sda = sd(residuals(lm(satisfy ~ kid, data=study1))) 

lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 
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k = 1 

while(k < 15){ 

  fitY = glmnet(testvar, satisfy, lambda=lambda1) 

  ba = coef(fitY, s = lambda1) 

  ea = satisfy-predict(fitY,testvar) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 

ba 

 

# STEP 2: select variables that predict treatment 

n=nrow(testvar) 

p=ncol(testvar) 

sd1=sd(kid) 

lambda1 = sd1*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 

k = 1 

while(k < 15){ 

  fitT1 = glmnet(testvar, kid, lambda=lambda1) 

  ba = coef(fitT1, s = lambda1) 

  ea = kid-predict(fitT1,testvar) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 

ba 

 

 

# STEP 3: linear regression with both sets of variables 

use1 = union(which(abs(fitY$beta)>.0001),which(abs(fitT1$beta) > .0001)) 

X = cbind(kid,testvar) 

use = c(1,use1+1) 

fitr <- lm(satisfy ~ X[,use], data=study1) 

summary(fitr) # show results 

 

# Regression without X predictors 

use1 = which(abs(fitY$beta)>.0001) 

X = cbind(kid,testvar) 

use = c(1,use1+1) 

fitr <- lm(satisfy ~ X[,use], data=study1) 

summary(fitr) # show results 

 

# VARIABLE SELECTION FOR PRE-SPECIFIED MODERATORS 

# STEP 4: select variables that predict moderators 

n=nrow(testvar) 

p=ncol(testvar) 

sd1=sd(kidXmarry) 

lambda1 = sd1*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 

k = 1 

while(k < 15){ 

  fitT2 = glmnet(testvar, kidXmarry, lambda=lambda1) 

  ba = coef(fitT2, s = lambda1) 

  ea = kidXmarry-predict(fitT2,testvar) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 
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  k = k+1 

} 

ba 

 

sd1=sd(kidXage) 

lambda1 = sd1*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 

k = 1 

while(k < 15){ 

  fitT3 = glmnet(testvar, kidXage, lambda=lambda1) 

  ba = coef(fitT3, s = lambda1) 

  ea = kidXage-predict(fitT3,testvar) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 

ba 

 

sd1=sd(kidXage2) 

lambda1 = sd1*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 

k = 1 

while(k < 15){ 

  fitT4 = glmnet(testvar, kidXage2, lambda=lambda1) 

  ba = coef(fitT4, s = lambda1) 

  ea = kidXmarry-predict(fitT4,testvar) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 

ba 

 

sd1=sd(kidXmale) 

lambda1 = sd1*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 

k = 1 

while(k < 15){ 

  fitT5 = glmnet(testvar, kidXmale, lambda=lambda1) 

  ba = coef(fitT5, s = lambda1) 

  ea = kidXmale-predict(fitT5,testvar) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 

ba 

use2 = union(which(abs(fitT2$beta)>.0001),which(abs(fitT3$beta) > .0001)) 

use3 = union(which(abs(fitT4$beta)>.0001),which(abs(fitT5$beta) > .0001)) 

use12 = union (use1, use2) 

use = union (use12, use3) 

X = cbind(kid,kidXmarry, kidXage, kidXage2, kidXmale, testvar) 

use = c(1,2,3,4,5,use+5) 

summary(use) 

 

fitr <- lm(satisfy ~ X[,use], data=study1) 

summary(fitr) # show results 

  



DOUBLE LASSO VARIABLE SELECTION       54 

 

Analysis 1: SPSS 

* Import data file: ‘Satisfy.sav' 

 

*----------------------------------------------------------------------------  

*      ANALYSIS 1 – life satisfaction    * 

*----------------------------------------------------------------------------  

 

** REPLICATE RESULTS from table in BKL (N=5213 because of missing values) 

** Results will differ slightly because of different sample size 

 

* Row 2. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT satisfy  /METHOD=ENTER kid. 

 

* Row 3. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT satisfy  /METHOD=ENTER kid ms_marry2. 

 

* Row 4. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT satisfy  /METHOD=ENTER kid ms_marry2 kid ages ages2 ages3 ages4. 

 

* Row 5. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT satisfy  /METHOD=ENTER kid ms_marry2 kid ages ages2 ages3 ages4 

male. 

 

* Row 6. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT satisfy  /METHOD=ENTER kid ms_marry2 kid ages ages2 ages3 ages4 

male Int_Iinc1_2 to Int_Iinc1_840031. 

 

* VARIABLE SELECTION FOR MAIN EFFECT COVARIATES. 

* APPROXIMATES DOUBLE LASSO USING FORWARD REGRESSION 

*---------------------------------------------------------------------------- 

* Select variables that predict the outcome  

* p=524 and n=5213. 

* cutoff = .1 / [log(n) * 2p] = .000011. 

 

* Select variables that predict the outcome. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.000011) POUT(.00002)  /NOORIGIN  

  /DEPENDENT satisfy 

  /METHOD=FORWARD male to Int_IincXms__840031 . 

*Selected: marryXinc3 marryXage2 Int_Iemp_7 inc2. 

 

* Select variables that predict the treatment. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.000011) POUT(.00002)  /NOORIGIN  

  /DEPENDENT kid 
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  /METHOD=FORWARD male to Int_IincXms__840031 . 

* Selected ages ms_marry2 ages2 marryXage male maleXmarry inc3 ages3 

Int_Iemp_5. 

 

* Regress outcome on treatment(s) and relevant controls - baseline. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT satisfy  /METHOD=ENTER kid ms_marry2 ages ages2 ages3 inc2 inc3 

male  Int_Iemp_5 Int_Iemp_7 marryXinc3 marryXage2 marryXage maleXmarry . 

 

* VARIABLE SELECTION FOR PRE-SPECIFIED MODERATORS. 

* Select variables that predict the moderators. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.000011) POUT(.00002)  /NOORIGIN  

  /DEPENDENT ki_marry 

  /METHOD=FORWARD  male to Int_IincXms__840031 . 

* Selected ages ms_marry2 marryXage marryXage2 marryXage3 Int_Iemp_5 

Int_IempXages_5. 

 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.000011) POUT(.00002)  /NOORIGIN  

  /DEPENDENT ki_age 

  /METHOD=FORWARD  male to Int_IincXms__840031 . 

* Selected ages marryXage Int_Iage_93 Int_IincXagesd7 Int_IincXagec840022 

Int_IincXagea3 male maleXmarry . 

 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.000011) POUT(.00002)  /NOORIGIN  

  /DEPENDENT ki_age2 

  /METHOD=FORWARD  male to Int_IincXms__840031 . 

* Selected ages2 Int_Iage_93 marryXage Int_IincXagec840017 Int_Iage_94 

Int_IincXagec840022 Int_IincXageb840017 Int_IincXagec840027 

Int_IincXagec840013 Int_Iage_80 Int_Iage_78 Int_IincXage_3 . 

 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.000011) POUT(.00002)  /NOORIGIN  

  /DEPENDENT ki_male 

  /METHOD=FORWARD  male to Int_IincXms__840031 . 

* Selected maleXmarry maleXage maleXage2 maleXage4 Int_IchiXmale_1 . 

 

* Regress outcome on treatment(s) and relevant controls - moderation. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT satisfy  /METHOD=ENTER kid ki_marry ki_age ki_age2 ki_male 

ms_marry2 ages ages2 ages3 inc2 inc3 male  Int_Iemp_5 Int_Iemp_7 marryXinc3 

marryXage2 marryXage maleXmarry marryXage3  Int_IempXages_5 Int_Iage_93 

Int_IincXagesd7 Int_IincXagec840022 Int_IincXagea3 Int_IincXagec840017 

Int_Iage_94  Int_IincXageb840017 Int_IincXagec840027 Int_IincXagec840013 

Int_Iage_80 Int_Iage_78 Int_IincXage_3  maleXage maleXage2 maleXage4 

Int_IchiXmale_1. 
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Analysis 2: STATA 

clear  

* Data file created in 'Study 2 ANES Create Variables.do' 

use anes_2000Final.dta 

 

* demographics list 

global demoNJlist incomeHH educ sex Zage Zage_sq marital notemployed  

global demoused income incomeHH educ sex Zage Zage_sq marital notemployed 

unemployed  

 

log using Analysis.txt , replace text  

 

*----------------------------------------------------------------------------   

* REPLICATE TABLE 1 - using only nonmissing cases in paper (MissNJVar) 

*----------------------------------------------------------------------------   

 

* STEP 1: main relationship 

reg DV_life_sat Orientation if MissNJVar==0 [pweight=V000002a] 

 

* STEP 2: main relationship with controls 

reg DV_life_sat Orientation $demoNJlist if MissNJVar==0 [pweight=V000002a] 

 

* STEP 3: main relationship with controls + church 

reg DV_life_sat Orientation $demoNJlist church2 if MissNJVar==0 

[pweight=V000002a] 

 

* STEP 4: main relationship with controls + church + NFC 

reg DV_life_sat Orientation $demoNJlist church2 a_NFC if MissNJVar==0 

[pweight=V000002a] 

 

* STEP 5: mediator test 

reg DV_life_sat Orientation $demoNJlist church2 a_NFC ration_ineq if 

MissNJVar==0 [pweight=V000002a] 

 

 

*----------------------------------------------------------------------------

* REPLICATE TABLE 1 - including all usable cases (MissKeyVar) 

*---------------------------------------------------------------------------- 

* STEP 1: main relationship 

reg DV_life_sat Orientation if MissKeyVar==0 [pweight=V000002a] 

 

* STEP 2: main relationship with controls 

reg DV_life_sat Orientation $demoNJlist if MissKeyVar==0 [pweight=V000002a] 

 

* STEP 3: main relationship with controls + church 

reg DV_life_sat Orientation $demoNJlist church2 if MissKeyVar==0 

[pweight=V000002a] 

 

* STEP 4: main relationship with controls + church + NFC 

reg DV_life_sat Orientation $demoNJlist church2 a_NFC if MissKeyVar==0 

[pweight=V000002a] 

 

* STEP 5: mediator test 

reg DV_life_sat Orientation $demoNJlist church2 a_NFC ration_ineq if 

MissKeyVar==0 [pweight=V000002a] 
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*--------------------------------------------------------------------------- 

* DOUBLE LASSO ANALYSIS A - using only nonmissing cases in paper (MissNJVar) 

*--------------------------------------------------------------------------- 

gen tempRI=ration_ineq 

 

 * Select variables that predict the outcome ; 

lassoShooting DV_life_sat $demoused church2 d_*  ration_ineq if MissNJVar==0 

, lasiter(100) verbose(0) fdisplay(0)  

global yvSel `r(selected)'  

di "$yvSel"  

reg DV_life_sat $yvSel if (MissNJVar==0)  

 

* Select variables that predict the treatment ; 

lassoShooting Orientation $demoused church2 d_* ration_ineq if 

(MissNJVar==0), lasiter(100) verbose(0) fdisplay(0)  

global x1vSel `r(selected)'  

di "$x1vSel"  

reg Orientation $x1vSel if (MissNJVar==0)  

 

* Get union of selected instruments ; 

global vDSA2="$yvSel " + "$x1vSel "  

di "$vDSA2"  

 

replace ration_ineq=0 

* Mediation Equation with selected controls excluding ration_ineq ; 

reg DV_life_sat Orientation $vDSA2 ration_ineq if MissNJVar==0 

[pweight=V000002a] 

replace ration_ineq=tempRI  

 

* Mediation Equation with selected controls + ration_ineq ; 

reg DV_life_sat Orientation $vDSA2 ration_ineq if MissNJVar==0 

[pweight=V000002a] 

 

 

*----------------------------------------------------------------------------

* DOUBLE LASSO ANALYSIS B - including all usable cases (MissKeyVar) 

*---------------------------------------------------------------------------- 

 

* Select variables that predict the outcome ; 

lassoShooting DV_life_sat $demoused church2 d_* ration_ineq if MissKeyVar==0 

, lasiter(100) verbose(0) fdisplay(0)  

global yvSel `r(selected)'  

di "$yvSel"  

reg DV_life_sat $yvSel if (MissKeyVar==0)  

 

* Select variables that predict the treatment ; 

lassoShooting Orientation $demoused church2 d_* ration_ineq if 

(MissKeyVar==0), lasiter(100) verbose(0) fdisplay(0)  

global x1vSel `r(selected)'  

di "$x1vSel"  

reg Orientation $x1vSel if (MissKeyVar==0)  

 

* Get union of selected instruments ; 

global vDSB2="$yvSel " + "$x1vSel "  

di "$vDSB2"  
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replace ration_ineq=0 

* Mediation Equation with selected controls excluding ration_ineq ; 

reg DV_life_sat Orientation $vDSB2 ration_ineq if MissKeyVar==0 

[pweight=V000002a] 

replace ration_ineq=tempRI  

 

* Mediation Equation with selected controls + ration_ineq ; 

reg DV_life_sat Orientation $vDSB2 ration_ineq if MissKeyVar==0 

[pweight=V000002a] 

 

log close 
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Analysis 2: R 

library(glmnet) 

study3 = read.csv("dataanes.csv")  # read csv file 

fixwt <- V000002a/.987761 

 

# REPLICATE REGRESSION ANALYSES 

 

# STEP 1: main relationship. 

fitr <- lm(DV_life_sat ~ Orientation, data=study3, weights=fixwt) 

summary(fitr) # show results 

 

# STEP 2: main relationship with controls. 

regvar <- as.matrix(subset(study3,select = c(Orientation, incomeHH, educ, 

sex, Zage, Zage_sq, marital, notemployed))) 

fitr <- lm(DV_life_sat ~ regvar, data=study3, weights=fixwt) 

summary(fitr) # show results 

 

# STEP 3: main relationship with controls + church. 

regvar <- as.matrix(subset(study3,select = c(Orientation, incomeHH, educ, 

sex, Zage, Zage_sq, marital, notemployed, church2))) 

fitr <- lm(DV_life_sat ~ regvar, data=study3, weights=fixwt) 

summary(fitr) # show results 

 

# STEP 4: main relationship with controls + church + NFC. 

regvar <- as.matrix(subset(study3,select = c(Orientation, incomeHH, educ, 

sex, Zage, Zage_sq, marital, notemployed, church2, a_NFC))) 

fitr <- lm(DV_life_sat ~ regvar, data=study3, weights=fixwt) 

summary(fitr) # show results 

 

# STEP 5: mediator test. 

regvar <- as.matrix(subset(study3,select = c(Orientation, incomeHH, educ, 

sex, Zage, Zage_sq, marital, notemployed, church2, a_NFC, ration_ineq))) 

fitr <- lm(DV_life_sat ~ regvar, data=study3, weights=fixwt) 

summary(fitr) # show results 

 

# DOUBLE LASSSO ANALYSIS -- ALL DEMOGRAPHIC COVARIATES 

 

testvar2 <- as.matrix(study3[,4:187]) 

 

 

# STEP 1: select variables that predict outcomes 

n=nrow(testvar2) 

p=ncol(testvar2) 

sda = sd(residuals(lm(DV_life_sat ~ Orientation, data=study3))) 

lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 

k = 1 

while(k < 15){ 

  fitY = glmnet(testvar2, DV_life_sat, weights=fixwt, lambda=lambda1) 

  ba = coef(fitY, s = lambda1) 

  ea = DV_life_sat-predict(fitY,testvar2) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 
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ba 

 

 

# STEP 2: select variables that predict treatment 

sd1=sd(Orientation) 

lambda1 = sd1*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 

k = 1 

while(k < 15){ 

  fitT1 = glmnet(testvar2, Orientation, weights=fixwt, lambda=lambda1) 

  ba = coef(fitT1, s = lambda1) 

  ea = Orientation-predict(fitT1,testvar2) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 

ba 

 

 

# STEP 3: linear regression with both sets of variables, no mediator 

use = union(which(abs(fitY$beta)>.0001),which(abs(fitT1$beta) > .0001)) 

summary(use) 

X = cbind(Orientation,testvar2) 

use1 = c(1,use+1) 

fitr <- lm(DV_life_sat ~ X[,use1], data=study3, weights=fixwt) 

summary(fitr) # show results 

 

# STEP 4: linear regression with both sets of variables, include mediator 

X = cbind(Orientation, ration_ineq, testvar2) 

use2 = c(1,2,use+2) 

fitr <- lm(DV_life_sat ~ X[,use2], data=study3, weights=fixwt) 

summary(fitr) # show results 

 

 

# STEP 5: linear regression with both sets of variables, include mediator but 

not IV 

X = cbind(ration_ineq, testvar2) 

use3 = c(1,use+1) 

fitr <- lm(DV_life_sat ~ X[,use3], data=study3, weights=fixwt) 

summary(fitr) # show results 
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Analysis 2: SPSS 

* Import data file: ‘dataanes.csv' 

* weight  data. 

compute fixwt=V000002a/.987761. 

execute. 

WEIGHT BY fixwt. 

 

*---------------------------------------------------------------------------.  

* REPLICATE TABLE 1  

*---------------------------------------------------------------------------.   

 

* STEP 1: main relationship. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT DV_life_sat  /METHOD=ENTER Orientation. 

 

* STEP 2: main relationship with controls. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT DV_life_sat  /METHOD=ENTER Orientation incomeHH educ sex Zage 

Zage_sq marital notemployed . 

 

* STEP 3: main relationship with controls + church. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT DV_life_sat  /METHOD=ENTER Orientation  incomeHH educ sex Zage 

Zage_sq marital notemployed church2. 

 

* STEP 4: main relationship with controls + church + NFC. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT DV_life_sat  /METHOD=ENTER Orientation incomeHH educ sex Zage 

Zage_sq marital notemployed  church2 a_NFC. 

 

* STEP 5: mediator test. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT DV_life_sat  /METHOD=ENTER Orientation  incomeHH educ sex Zage 

Zage_sq marital notemployed  church2 a_NFC ration_ineq. 

 

*---------------------------------------------------------------------------.   

* VARIABLE SELECTION ANALYSIS  

*---------------------------------------------------------------------------.   

* p=141 and n=1192. 

* cutoff = .1 / [log(n) * 2p] = .00005. 

 

 * Select variables that predict the outcome . 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.00005) POUT(0.00006)  /NOORIGIN  

  /DEPENDENT DV_life_sat 

  /METHOD=FORWARD income incomeHH educ sex Zage Zage_sq marital notemployed 

unemployed church2 a_NFC d_employ1 to d_Internet. 

* three variable selected: d_workedforpay1 marital Zage_sq. 

 

* Select variables that predict the treatment. 
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REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.00005) POUT(0.00006)  /NOORIGIN  

  /DEPENDENT Orientation 

  /METHOD=FORWARD income incomeHH educ sex Zage Zage_sq marital notemployed 

unemployed church2 a_NFC d_employ1 to d_Internet. 

* four variables selected: d_Race2 church2 d_marital2 d_UnionHH2. 

 

* Main Equation with selected controls, excluding mediator. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT DV_life_sat  /METHOD=ENTER Orientation d_workedforpay1 marital 

Zage_sq d_Race2 church2 d_marital2 d_UnionHH2 . 

 

* Main Equation with selected controls, including mediator. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT DV_life_sat  /METHOD=ENTER Orientation d_workedforpay1 marital 

Zage_sq d_Race2 church2 d_marital2 d_UnionHH2 ration_ineq. 
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Analysis 3: STATA 

# delimit ; 

set more off; 

clear ; 

 

capture log close ; 

log using SimmonsFinalStata.txt , replace text ; 

 

* Import and code data ; 

import excel using "Study 2.xls" , first ; 

keep if cond != "potato" ; 

replace olddays = olddays - 10 ; 

xi i.quarterback ; 

 

 * REPLICATE ANALYSES ; 

 * Replicate regression with controls ; 

regress aged when64 if cond != "potato" ;  

 

 * Replicate regression with controls ; 

regress aged when64 dad if cond != "potato" ;  

 

 

 * VARIABLE SELECTION ; 

 

 * Select variables that predict the outcome ; 

lassoShooting aged dad mom female bird political olddays computer diner _I* 

if cond != "potato" , lasiter(100) verbose(0) fdisplay(0);  

local yvSel `r(selected)' ; 

di "`yvSel'" ; 

 

 * Select variables that predict the treatment ; 

lassoShooting when64 dad mom female bird political olddays computer diner _I* 

if cond != "potato" , lasiter(100) verbose(0) fdisplay(0); 

local xvSel `r(selected)' ; 

di "`xvSel'" ; 

 

 * Get union of selected instruments ; 

local vDS : list yvSel | xvSel ; 

 

 * Equation with selected controls ; 

reg aged when64 `vDS' if cond != "potato" ;  

 

clear ; 

log close ; 
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Analysis 3: R 

library(glmnet) 

study2 = read.csv("study2.csv")  # read csv file 

 

# REPLICATE REGRESSION ANALYSES 

# Linear Regression 

fitr <- lm(aged ~ when64, data=study2) 

summary(fitr) # show results 

 

# Linear Regression with covariate 

fitr <- lm(aged ~ when64 + dad, data=study2) 

summary(fitr) # show results 

 

summary(study2$quarterback) 

quarterback.f=factor(study2$quarterback) 

qm = model.matrix(~quarterback.f) 

summary(qm) 

 

# DOUBLE LASSSO ANALYSIS 

xall <- as.matrix(subset(study2,select = -c(aged, root, quarterback, potato, 

when64, kaimba, feelold, cond, aged365))) 

summary(xall) 

xall1 <- cbind(xall,qm[,2:4]) 

summary(xall1) 

aged <- as.matrix(study2$aged) 

summary(aged) 

when64 <- as.matrix(study2$when64) 

summary(when64) 

 

# STEP 1: select variables that predict outcomes 

 

n=nrow(xall1) 

p=ncol(xall1) 

sd1=sd(aged) 

lambda1 = .5*sd1*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 

 

k = 1 

while(k < 15){ 

  fitY = glmnet(xall1, aged, lambda=lambda1) 

  ba = coef(fitY, s = lambda1) 

  ea = aged-predict(fitY,xall1) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 

ba 

 

# STEP 2: select variables that predict treatment 

 

n=nrow(xall1) 

p=ncol(xall1) 

sd1=sd(when64) 

lambda1 = .5*sd1*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 
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k = 1 

while(k < 15){ 

  fitT = glmnet(xall1, when64, lambda=lambda1) 

  ba = coef(fitT, s = lambda1) 

  ea = aged-predict(fitT,xall1) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 

ba 

 

# STEP 3: linear regression with both sets of variables 

use = union(which(abs(fitY$beta)>0),which(abs(fitT$beta) > 0)) 

 

X = cbind(when64,xall1) 

use = c(1,use+1) 

 

fitr <- lm(aged ~ X[,use], data=study2) 

summary(fitr) # show results 
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Analysis 3: SPSS 

* Import data file: Study 2.xls' 

  

* select 'when I'm 64' and control conditions. 

USE ALL. 

COMPUTE filter_$=(cond<>"potato"). 

FILTER BY filter_$. 

EXECUTE. 

 

compute QB1=0. 

compute QB2=0. 

compute QB3=0. 

if (quarterback eq 1) QB1=1. 

if (quarterback eq 2) QB2=1. 

if (quarterback eq 3) QB3=1. 

execute. 

 

* replicate basic regression. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT aged 

  /METHOD=ENTER when64 dad. 

 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT aged 

  /METHOD=ENTER when64 dad mom female bird political olddays computer diner 

QB1 QB2 QB3. 

 

* VARIABLE SELECTION. 

* p=11 and n=20. 

* cutoff = .1 / [log(n) * 2p] = .0015. 

 

* predict dependent variable. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.0015) POUT(.002)  /NOORIGIN  

  /DEPENDENT aged 

  /METHOD=FORWARD when64 dad mom female bird political olddays computer 

diner. 

 

* predict treatment. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.0015) POUT(.002)  /NOORIGIN  

  /DEPENDENT when64 

  /METHOD=FORWARD dad mom female bird political olddays computer diner. 

 

* no variables selected for inclusion. 

 

* final model. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT aged 

  /METHOD=ENTER when64. 
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Analysis 4: STATA 

# delimit ; 

set more off; 

clear all; 

log using RunDonations.txt , replace text ; 

 

* note: new variables were coded in 'donations data prep.do'; 

import delimited Study3Data.csv; 

 

* Define variable lists; 

global maniplist manip_deflvl_low manip_deflvl_med manip_deflvl_high 

manip_numopt5 manip_prevremind; 

display "$maniplist"; 

global demolist white asian ethnicity_missing gender_male prospect zage 

age_missing zyrsofassos yrsassocmissing zafconsyog zboothaflifetimegiving 

zboothlifetimegiving lybunt sybunt otherseg; 

display "$demolist"; 

 

* Basic Regressions; 

reg dvln_donamt manip_deflvl_low if (manip_deflvl_med==0 & 

manip_deflvl_high== 0); 

reg dvln_donamt $maniplist ; 

 

* Variable Selection; 

* Select variables that predict the outcome ; 

lassoShooting dvln_donamt  $demolist sq_* ln_* int* , lasiter(100) verbose(0) 

fdisplay(0) ; 

global yvSel `r(selected)' ; 

di "$yvSel" ; 

 

* Select variables that predict the treatments ; 

lassoShooting manip_deflvl_low $demolist sq_* ln_* int* , lasiter(100) 

verbose(0) fdisplay(0) ; 

global x1vSel `r(selected)' ; 

di "$x1vSel" ; 

 

lassoShooting manip_deflvl_med $demolist sq_* ln_* int* , lasiter(100) 

verbose(0) fdisplay(0) ; 

global x2vSel `r(selected)' ; 

di "$x2vSel" ; 

 

lassoShooting manip_deflvl_high $demolist sq_* ln_* int* , lasiter(100) 

verbose(0) fdisplay(0) ; 

global x3vSel `r(selected)' ; 

di "$x3vSel" ; 

 

* Get union of selected instruments ; 

global vDS="$yvSel " + "$x1vSel " + "$x2vSel " + "$x3vSel "; 

di "$vDS" ; 

 

* Regression with selected controls ; 

reg dvln_donamt $maniplist $vDS  ; 

 

clear ; 

log close ; 
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Analysis 4: R 

library(glmnet) 

study3 = read.csv("Study3Data.csv")  # read csv file 

 

# REPLICATE REGRESSION ANALYSES 

# Linear Regression 

manip <- as.matrix(subset(study3,select = c(Manip_defLvl_Low, 

Manip_defLvl_Med, Manip_defLvl_High, Manip_numOpt5, Manip_prevRemind))) 

summary(manip) 

 

fitr <- lm(DVln_DonAmt ~ Manip_defLvl_Low, data=study3) 

summary(fitr) # show results 

 

fitr <- lm(DVln_DonAmt ~ manip, data=study3) 

summary(fitr) # show results 

 

 

# DOUBLE LASSSO ANALYSIS 

test1 <- as.matrix(subset(study3,select = c(White, Asian, Ethnicity_Missing, 

Gender_Male, Prospect, Age_missing, LYBUNT, SYBUNT, OtherSeg))) 

test2 <-as.matrix(subset(study3[,28:217],select= -c(int43, int63, int73))) 

testvar <- cbind(test1,test2) 

DVln_DonAmt <- as.matrix(study3$DVln_DonAmt) 

Manip_defLvl_Low <- as.matrix(study3$Manip_defLvl_Low) 

Manip_defLvl_Med <- as.matrix(study3$Manip_defLvl_Med) 

Manip_defLvl_High <- as.matrix(study3$Manip_defLvl_High) 

summary(DVln_DonAmt) 

 

 

# STEP 1: select variables that predict outcomes 

n=nrow(testvar) 

p=ncol(testvar) 

sda = sd(residuals(lm(DVln_DonAmt ~ manip, data=study3))) 

lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 

 

 

k = 1 

while(k < 15){ 

  fitY = glmnet(testvar, DVln_DonAmt, lambda=lambda1) 

  ba = coef(fitY, s = lambda1) 

  ea = DVln_DonAmt-predict(fitY,testvar) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 

ba 

 

# STEP 2: select variables that predict treatment 

n=nrow(testvar) 

p=ncol(testvar) 

sd1=sd(Manip_defLvl_Low) 

lambda1 = sd1*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 

 



DOUBLE LASSO VARIABLE SELECTION       69 

 

k = 1 

while(k < 15){ 

  fitT1 = glmnet(testvar, Manip_defLvl_Low, lambda=lambda1) 

  ba = coef(fitT1, s = lambda1) 

  ea = Manip_defLvl_Low-predict(fitT1,testvar) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 

ba 

 

n=nrow(testvar) 

p=ncol(testvar) 

sd1=sd(Manip_defLvl_Med) 

lambda1 = sd1*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 

k = 1 

while(k < 15){ 

  fitT2 = glmnet(testvar, Manip_defLvl_Med, lambda=lambda1) 

  ba = coef(fitT2, s = lambda1) 

  ea = Manip_defLvl_Med-predict(fitT2,testvar) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 

ba 

 

n=nrow(testvar) 

p=ncol(testvar) 

sd1=sd(Manip_defLvl_High) 

lambda1 = sd1*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p))   

summary(lambda1) 

 

k = 1 

while(k < 15){ 

  fitT3 = glmnet(testvar, Manip_defLvl_High, lambda=lambda1) 

  ba = coef(fitT3, s = lambda1) 

  ea = Manip_defLvl_High-predict(fitT3,testvar) 

  sda = sd(ea) 

  lambda1 = sda*(1.1/sqrt(n))* qnorm(1 - (.1/log(n))/(2*p)) 

  k = k+1 

} 

ba 

 

# STEP 3: linear regression with both sets of variables 

use1 = union(which(abs(fitY$beta)>.0001),which(abs(fitT1$beta) > .0001)) 

use2 = union(which(abs(fitT2$beta) > .0001),which(abs(fitT3$beta) > .0001)) 

use = union (use1, use2) 

summary(use) 

 

X = cbind(manip,testvar) 

use = c(1,2,3,4,5,use+5) 

 

#final regression model 

fitr <- lm(DVln_DonAmt ~ X[,use], data=study3) 

summary(fitr) # show results 
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Analysis 4: SPSS 

* Import data file: Study 3Data.csv. 

* delete variables that are constants. 

delete variables YrsAssocMissing int43 int63 int73. 

* note that missing age was coded to average. 

 

* Basic effect. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT DVln_DonAmt 

  /METHOD=ENTER Manip_defLvl_Low Manip_defLvl_Med Manip_defLvl_High 

Manip_numOpt5 Manip_prevRemind. 

 

* VARIABLE SELECTION. 

* p=196 and n=76. 

* cutoff = .1 / [log(n) * 2p] = .0006. 

 

* Select variables that predict the outcome. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.000059) POUT(.00007)  /NOORIGIN  

  /DEPENDENT DVln_DonAmt 

  /METHOD=FORWARD White Asian Ethnicity_Missing Gender_Male Prospect ZAge 

Age_missing ZYrsOfAssos  ZAFConsYoG ZBoothAFLifetimeGiving  

ZBoothLifetimeGiving LYBUNT SYBUNT OtherSeg ln_Age to int98. 

* variable ln_Menu2Num selected. 

 

* Select variables that predict the treatment. 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.000059) POUT(.00007)  /NOORIGIN  

  /DEPENDENT Manip_defLvl_Low 

  /METHOD=FORWARD White Asian Ethnicity_Missing Gender_Male Prospect ZAge 

Age_missing ZYrsOfAssos  ZAFConsYoG ZBoothAFLifetimeGiving  

ZBoothLifetimeGiving LYBUNT SYBUNT OtherSeg ln_Age to int98. 

 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.000059) POUT(.00007)  /NOORIGIN  

  /DEPENDENT Manip_defLvl_Med 

  /METHOD=FORWARD White Asian Ethnicity_Missing Gender_Male Prospect ZAge 

Age_missing ZYrsOfAssos ZAFConsYoG ZBoothAFLifetimeGiving  

ZBoothLifetimeGiving LYBUNT SYBUNT OtherSeg ln_Age to int98. 

 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.000059) POUT(.00007)  /NOORIGIN  

  /DEPENDENT Manip_defLvl_High 

  /METHOD=FORWARD White Asian Ethnicity_Missing Gender_Male Prospect ZAge 

Age_missing ZYrsOfAssos  ZAFConsYoG ZBoothAFLifetimeGiving  

ZBoothLifetimeGiving LYBUNT SYBUNT OtherSeg ln_Age to int98. 

* no variables selected. 

 

* Final model with selected controls . 

REGRESSION  /MISSING LISTWISE  /STATISTICS COEFF OUTS R ANOVA  

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN  

  /DEPENDENT DVln_DonAmt 

  /METHOD=ENTER Manip_defLvl_Low Manip_defLvl_Med Manip_defLvl_High 

Manip_numOpt5 Manip_prevRemind ln_Menu2Num. 


