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Abstract 

 Accurately estimating the prospective probability distribution arising from repeated 

events with known probabilities, such as the number of heads in ten coin flips, represents a 

simple aptitude necessary for explicit Bayesian updating and useful in optimal decisions in the 

face of future uncertainty.  Across elicitation methods and decision scenarios, people express 

beliefs that are systematically biased relative to the actual distribution.  Participant beliefs reflect 

a “wizard-hat” shaped distribution, over-estimating the tails and under-estimating the shoulders 

of the distribution, relative to the actual bell-curve shape.  While experts are relatively more 

accurate than novices, both show significant bias. The bias is not explained by regression to the 

mean, random error or participant heterogeneity, and is exacerbated by increasing the number of 

repeated events. The findings caution against assuming Bayesian belief formation in models of 

statistical reasoning about explicit prospective beliefs based on repeated events with known 

probabilities. 

 

Keywords: Bayesian models, heuristics, inference, judgment, risk and uncertainty, statistical 

reasoning.  

 



 

  

 

1. Introduction 

Statistical reasoning provides the foundation for making future predictions and managing risk. 

A large literature (e.g., Tversky & Kahneman, 1974) has argued that people’s statistical reasoning 

is often biased by using heuristics. In particular, beliefs about non-linear processes (e.g., 

mathematical judgment, Van Dooren, De Bock, Janssens & Verschaffel, 2008; exponential 

growth, Wagenaar & Sagaria, 1975; compounding interest, Stango & Zinman, 2009) are subject to 

linearity biases. 

In contrast, an emerging literature in cognitive psychology argues that decision-making is 

well-represented by Bayesian models.  In this view, people’s decision processes are based on near-

optimally representing and combining probability distribution information (Griffiths & 

Tenenbaum, 2006), perhaps spontaneously at the neural level (Knill & Pouget, 2004; Ma, Beck, 

Latham, & Pouget, 2006).  Systematic errors in higher-order cognition tasks are attributed to 

uncertainty about the inputs or to the computational cost of highly complex probabilistic inferences 

(Lieder, Griffiths & Goodman, 2012; Pouget, Beck, Ma & Latham, 2013), rather than limitations 

in the basic component processes of simple probabilistic reasoning. Recent papers (Jones & Love, 

2011; Griffiths, Chater, Norris, & Pouget, 2012; Bowers & Davis, 2012) have debated the degree 

to which Bayesian processes can plausibly explain performance in complex decision tasks.  

In contrast, this paper directly investigates the kind of simple prospective statistical inferences 

that are a prerequisite for more complex Bayesian reasoning. Three experiments test how well 

people generate the probability distribution of known-probability repeated events, which has been 

characterized as a fundamental building block in statistical reasoning (e.g., the Plinko game; 

Goodman & Tenenbaum, 2015; Vul, 2010) and should be simple for a Bayesian decision-maker. 



 

Across elicitation methods and decision scenarios, both novices and experts estimate a biased 

“wizard-hat” shaped subjective binomial distribution. They over-estimated the tails and under-

estimated the shoulders of the distribution relative to the “gendarme-hat” shaped (Edgeworth’s 

characterization, per Stigler 1999) normative distribution.  

The bias in estimates is broadly consistent with prior findings documenting errors people 

make in generating “sampling distributions” (Kahneman & Tversky, 1972; Peterson, DuCharme 

and Edwards 1968; Wheeler and Beach 1968).  However, unlike prior findings, these results 

cannot be explained by high error variance and regression to the mean, heterogeneity, 

misunderstanding of general distribution characteristics, or elicitation-specific biases. The findings 

challenge the emerging view that the human brain is adept at optimal statistical processing for 

sufficiently simple tasks, with broad implications for people’s ability to accurately assess and 

manage risk. 

2.       Study 1 

2.1  Method 

Adult participants were recruited from Amazon MTurk to complete an online survey. A 

target of 900 participants were requested, yielding 867 completed surveys.  Records with duplicate 

IP addresses, or who failed a basic attention check were removed prior to analysis, yielding 821 

valid completes. The participants constituted a novice population, with less than half holding a 

Bachelor’s degree and only 5% identifying themselves as knowledgeable in statistics.  

Participants read a hypothetical scenario, either about one of three equal-probability events 

which would be repeated for 10 independent trials (coin-flips, survey sampling or soccer kicks), or 

about the distribution of height (a control task that could be estimated based on memory rather than 

probabilistic inferences).  To test the accuracy of beliefs about the full probability distribution 



 

resulting from the repeated binary outcome, participants were asked to make estimates using one of 

three different elicitation methods, and were paid a linear accuracy incentive of up to $1.   

In two coin-flipping scenarios, participants read that they would flip a coin 10 times, 

winning $1 each time that it came up heads, and getting $0 whenever it came up tails.  

Participants either estimated the probability of earning each of the possible amounts (from $0 to 

$10), or made a frequentist estimate of the number of people out of 100 earning each amount. In a 

separate pre-test, most participants correctly estimated the 50% chance of a single coin flip coming 

up heads or tails based on the same cover story and elicitation method (45/49, or 92%), confirming 

comprehensibility of the scenario. 

In the survey-sampling scenario, participants estimated the likelihood of different numbers 

of Coke drinkers among 10 people randomly selected from a population with equal numbers of 

Coke and Pepsi drinkers.  The soccer scenario involved estimating the number of goals for 10 

kicks of a soccer ball into a goal, from a distance that gives the kicker a 50% chance of a goal on 

each kick.  As an additional control, all participants who were assigned an equal-probability 

scenario then also estimated the proportion of adult men in the U.S. in each of 11 height ranges. 

Participants were randomly assigned to one of three different elicitation methods: editing 

an adjustable histogram (with 11 bars, one for each outcome, starting with a uniform distribution; 

see Orhun & Urminsky 2013), entering the probabilities as 11 numeric values that were required to 

sum to 100, or choosing among 6 predefined histograms (see Figure 3 ), with the order of response 

options counterbalanced.  Full stimuli are provided in the online appendix.  Thus, the full study 

used a 5 (first task: coin flipping probability, coin flipping frequentist, survey, soccer, or height) x 

3 (elicitation: adjustable histogram, numeric entry, or histogram choice) design. 



 

2.2 Results 

2.2.1 Accuracy of beliefs for elicited distributions.   

Combining the open-ended elicitation methods (adjustable histogram and numeric) in the three 

test scenarios, participants’ estimates diverged substantially from the true binomial distribution 

(Figure 1, left panel).  Participants significantly overestimated both the tails (0, 1, 2, 8, 9 and 10) 

and peak (5) of the distribution, and underestimated the shoulders (3, 4, 6 and 7) of the distribution 

(all ps<.001). As a result, the estimates reflected a “wizard-hat” distribution shape, rather than the 

correct and familiar bell-curve-like binomial, inconsistent with over-representation of extreme 

events (Lieder, Hsu and Griffiths 2017). While the mean of the average estimated distribution was 

not significantly biased (5.04 vs. 5.00, t(418)=0.72, p=.47, d=.04), the estimates reflected 

significantly higher variance (4.94 vs. 2.5, t(418)=14.4, p<.001, d=0.70) and more kurtosis (.09 vs. 

-.20, t(399)=3.51, p<.001, d=0.18) than the true binomial distribution.  

 
 



 

Figure 1: Participant estimates (dashed line) exhibit the “wizard hat” shape, significantly diverging 

from the true binomial probabilities (histogram) in Study 1 for all participants (left), as well as for 

the subset of participants who made estimates that monotonically decreased from 5 (right). Error 

bars represent 95% confidence intervals. 
 

This bias is not due to the elicitation procedure, as the estimated height distributions were 

closer to the correct bell-curve shape.  Error for the height estimates were significantly lower than 

for the binomial distribution scenario estimates (RMSE=22.4 vs. 29.6 within-subjects, t(418)=7.22, 

p<.001, d=0.35, Figure 2).  This was driven primarily by differences in the average variance of the 

distributions (4.21 vs. 4.94, t(418)=4.54, p<.001, d=0.22) as well as the average kurtosis (.29 vs. 

.09, t(399)=2.04, p=.042, d=0.10).  

 
 

Figure 2: Binomial distribution estimates (black dashed line) significantly diverged from the true 

binomial probabilities (black solid line) more than height estimates (grey dashed line) diverged 

from the distribution of height (gray solid line). Error bars represent 95% confidence intervals. 
 



 

2.2.2 Testing potential rationalizations.   

These findings suggest a systematic bias in participants’ beliefs about how individual 

binary probabilities aggregate, rather than general mistakes in estimating distributions.  However, 

incorrect average estimates could arise from a mix of accurate and highly inaccurate estimates, or 

from accurate estimates distorted by high-variance errors (Erev, Wallsten, & Budescu, 1994).   

Contrary to this interpretation, the bias was widespread. Some participants (44.9%) gave 

estimates that were clearly the wrong shape (15.5% of participants near-uniform, 4.5% put all the 

mass on one outcome, and 24.8% gave other distributions that did not monotonically decrease on 

both sides from a maximum at 5). Eliminating these distributions yielded 231 responses, 55.1% of 

the sample. Even these higher-quality estimated distributions, pre-screened for the plausibility of 

their shape, significantly diverged from true binomial values, overestimating the tails and the peak 

of the distribution, and underestimating the shoulders (all ps<.01, Figure 1, right panel; Average 

variance = 3.55 vs. 2.5, t(230)=9.2, p<.001, d=0.60; Average kurtosis = .42 vs. -.20, t(230)=7.0, 

p<.001, d=0.46).   

In a k-means cluster analysis with one of the cluster centers constrained to the true 

binomial values, the near-accurate cluster was small, accounting for less than 9% of participants.  

All the larger clusters displayed different variations of the same basic pattern, over-estimating the 

tails and under-estimating the shoulders of the distribution. These analyses demonstrate that near-

accurate estimates were rare, and that the findings are not an artifact of diluting a large set of 

accurate estimates with implausible estimates. 

Alternatively, persistent over-estimation of the low probabilities in the tails could occur due 

to regression to the mean, particularly because of truncation of noisy but unbiased estimates at zero 

probability.  However, such an “accurate plus error” account would not explain the fact that the 



 

shoulders of the distribution were underestimated relative to the most likely outcome (5). To more 

formally test for this possibility, log-normal error models with a common error variance and with 

separate error variances for each true probability level were estimated. Inconsistent with the 

“accurate plus error” interpretation, average estimates from simulations of unbiased beliefs subject 

to the estimated error variances were significantly different from participants’ actual estimates 

(Appendix A). 

2.2.3 Accuracy when choosing between distributions.   

To test whether the bias extended to recognition tasks, a total of 239 participants were 

instead shown charts representing six distributions and asked to choose which was the most 

accurate, second most accurate and least accurate. The majority of participants (74%) did not 

identify the most probable distribution (Chart D in Figure 3), although it was chosen 

significantly more often than expected by chance (25.5% vs. 16.7%, Z=3.14, p=.002). In 

contrast, the same participants were more likely to correctly identify the most accurate 

distribution among the same six distribution in the control height task (39.3% vs. 25.5%, 

χ
2
=12.6, p<.001). People also failed to identify the second most accurate histogram (Graph F, 

11.3%) and the least accurate histogram (Graph B, 8.4%) for the binomial tasks, both chosen 

significantly below chance levels (Z=2.38, p=.02 and Z=4.63, p<.001, respectively).  

The average of the binomial distributions selected as most accurate significantly 

overestimated the probability of the tails, and significantly underestimated the probability of the 

shoulders, although the most likely outcome (5) was unbiased. The average variance was 

significantly higher than in the true distribution (4.21 vs. 2.5, t=12.12, p<.001, d=0.78). The 

average kurtosis, however, was lower than in the true distribution (-0.33 vs. -0.2, t=8.15, p<.001, 

d=0.53), unlike for elicited distributions. 
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Figure 3: Percent of participants identifying each chart as the most accurate or as the least accurate 

in Study 1.  Most participants did not identify Chart D as the most accurate (only 26%) or Chart B 

as the least accurate (9%).  In order from most to least accurate: Charts D, F, A, E, C, B. 

 

 

2.2.4 Robustness across scenarios and elicitations.   

A regression analysis (Table 1) tested whether differences across scenarios and elicitation 

tasks affected the accuracy of the estimated distribution.  Error (RMSE) was significantly lower in 

the recognition task (choosing a chart), than in the two production methods (generating a histogram 

or providing numerical estimates).  Participant accuracy in the coin-flip scenario did not vary 



 

depending on whether people estimated probabilities or frequencies (b=-0.07, p=.97), contrary to 

the view that frequentist framing increases accuracy (Gigerenzer, 1991; Cosmides & Tooby, 1996).  

Table 1 
 

Regression analysis predicting error (RMSE) in participant estimates based on task characteristics 

(N=658).  The baseline categories for the regression were choosing among the six graphs in the 

coin probability task. 

 

 
b SE T p 

Constant 10.01 1.51 6.67 .000 

Elicitation Method: 

   Adjustable Histogram 17.81 1.60 11.14 .000 

   Numeric Entry 18.97 1.58 12.05 .000 

Scenario: 

   Coin: Probability vs. frequentist -0.07 1.78 0.04 .969 

   Soccer 2.20 1.78 1.23 .219 

   Survey 2.67 1.87 1.43 .153 
 

The observed over-estimation of the distribution’s tails is consistent with over-estimating 

the likelihood of long sequences of identical outcomes.  While such positive-recency beliefs have 

been identified in skill-based contexts, the opposite negative recency beliefs have typically been 

found instead in luck-based contexts (Oskarsson, Van Boven, McClelland & Hastie, 2009). 

However, accuracy did not differ between the coin-flip (luck-based) and soccer (skill-based) 

scenarios (b=2.20, p=.22), suggesting that recency beliefs in general, and the representativeness 

heuristic in particular (Tversky & Kahneman, 1971), were not significantly incorporated into 

people’s predictions of the distributions.  

These results can be contrasted with prior research on inaccuracy of estimated distributions.  

In the course of studying conservativism in Bayesian probability revision (i.e., inferences about 

which distribution samples had come from, Edwards 1967), researchers elicited prior distributions. 

These distributions, usually for unequal probabilities, were characterized as “too flat,” over-



 

estimating the tails and underestimating the center of the distribution (Peterson, DuCharme & 

Edwards 1968; Wheeler & Beach 1968; see Benjamin, Rabin and Raymond 2015 for a related 

model).  

This result has been explained as an artifact of the elicitation technique (Teigen 1974a), and 

therefore generalized to other estimated distributions, such as height (Teigen 1974b, Vlek 1973).  

Furthermore, these findings could have also been due to people avoiding low probabilities in 

general (DuCharme 1970), making noisy estimates leading to regressive averages (Costello & 

Watts 2014), or a subset of people misunderstanding the task and making flat (equal probability) 

estimates.  

In contrast, the results of Study 1, using the simplest odds (50-50), finds inaccurate 

distributions that are not merely “too flat,” as in the prior literature.  Instead, participants 

overestimated the tails specifically relative to the shoulders (but not the center) of the distribution. 

Furthermore, these results involve specifically probabilistic reasoning, as they did so for the 

binomial probability distribution significantly more than when estimating height distributions. 

Because these finding are robust to elicitation method and persist when eliminating flat estimates 

and controlling for heterogeneity and error variance, Study 1 provides novel evidence of a 

systematic bias in beliefs about prospective probability distributions that cannot be explained as an 

artifact of elicitation. 

 

3.       Study 2 

 

The next study tested whether education, particularly formal training in statistics, enables 

unbiased estimates. 

3.1 Method 



 

Two versions of a paper-and-pencil survey presented the single-player coin flip scenario 

from Study 1 to an expert sample and a novice sample.  Experts were recruited at the 2012 Society 

for Judgment and Decision Making conference, to complete a survey in exchange for a large To-

blerone candy bar. Recruitment during all breaks between talks yielded a total of 96 completed 

surveys.  Novices were recruited from a community sample, at the University of Chicago’s down-

town lab, to complete the same paper and pencil survey in exchange for $2, with a target of ap-

proximately 130 participants, yielding 132 surveys.     

In the survey, participants were either asked to shade in the distribution on a pre-printed 

histogram template with an unlabeled y-axis or to make judgments among the same six histograms 

as in Study 1. After excluding participants who did not complete the target task, the sample 

consisted of 92 experts (62 drawing, 30 histogram choice) and 127 novices (64 drawing, 63 

histogram choice).  

3.2 Results 

In the histogram-shading version, both the novice and expert samples provided estimates 

that diverged significantly from the correct distribution (Figure 4), over-estimating the tails and 

under-estimating the shoulders and center of the distribution.  While novices’ and experts’ mean 

estimates were unbiased (4.73 and 4.96 vs. 5.0), the estimated variance was higher than actual for 

both (novices: 5.82 vs. 2.5, t=8.53, p<.001, d=1.07; experts: 5.30 vs. 2.5, t=9.8, p<.001, d=1.24).  

The experts’ estimated distributions, while biased, were significantly more accurate than the 

novices’ estimated distributions (RMSE=17.0 vs. 33.3, t=5.18, p<.001, d=0.93).   

In the histogram-choice version, both novices and experts were significantly more likely 

than chance to identify the correct graph (novice: 27% vs. 17%, Z=1.86, p=.04, d=0.52; expert 

43% vs. 17%, Z=3.78, p<.001, d=1.08).  However, in both samples the chosen distributions 



 

overestimated the variance (novice: 4.56 and experts: 3.98 vs. 2.5, both ps<.001). The experts were 

non-significantly more likely than novices to select the correct histogram (χ
2
=2.49, p=.16). 

A separate study with MBA students trained in statistics (N=87) similarly found estimates 

in the survey-sampling scenario that were significantly biased but more accurate than the Study 1 

novices (see Study A5 in the online appendix).  

 
Figure 4: Expert participants (black dashed line) significantly diverged from the true binomial 

probabilities (solid line), but were more accurate than non-expert participants (grey dashed line). 

Error bars represent 95% confidence intervals. 

 

4. Study 3 

The next study tested the robustness of the findings to the number of repeated outcomes in 

the scenario, among both lay respondents and experts. 

4.1  Method 



 

A target of 180 participants were requested from Amazon Mturk. From 175 completed 

surveys, records with duplicate IP addresses, or who failed a basic attention check were removed 

prior to analysis, as well as 45 participants from a separate test (reported in the appendix), yielding 

127 valid completes. In addition, 71 MBA students trained in statistics completed a one-page 

survey.  Of these, 11 were excluded due to totals not adding to 100%, yielding 187 completes 

overall. 

Participants read one of three versions of the coin-flip game, involving either 10 flips 

which could each earn a dollar (as in Study 1), 21 flips which could each earn 50 cents (online 

sample only), or 109 flips which could each earn 10 cents. Participants then estimated the 

probability distribution of 11 ranges of potential winnings (each representing 9% of the outcomes) 

either by estimating quantities or via the adjustable histogram.  The outcomes were comparable in 

terms of potential winnings across the three versions, with the lowest range including all outcomes 

of less than $1, and the highest range including all outcomes of $10 or more.  

4.2      Results 

In all three conditions, the tails of the distribution (winning less than $3, winning $8 or 

more) were significantly over-estimated (10 flips: 29.1% estimated vs. 10.9% actual, t(71)=7.2, 

p<.001, d=.85; 21 flips: 40.1% estimated vs. 2.7% actual, t(41)=8.9, p<.001, d=1.4; 109 flips: 

34.3% estimated vs. under .01% actual, t(72)=12.5, p<.001, d=1.5).   Likewise, while the actual 

probability of the most likely outcome (winning between $5 and under $6) increased substantially 

with the number of coin flips (from 24.6%, to 33.6% to 66.2%), the estimated probability did not 

vary with the number of flips (24.7% vs. 20.8% vs. 22.3%).  As a result, the average error was 

significantly higher for estimates of 21 flips than for 10 flips (RMSE = 37.2 vs. 22.5, t(112)=4.11, 



 

p<.001, d=.75) and for 109 flips than for 21 flips (RMSE = 51.9 vs. 37.2, t(113)=3.88, p<.001, 

d=.71). 

Comparing the MBA experts with the Mturk lay sample (for the 10 and 109 flip 

conditions), the expert sample was slightly more accurate (RMSE = 33.7 vs. 39.9; in regression 

controlling for scenario t(142)=1.85, p=.066, d=.28).  However, the expert sample was biased, 

significantly over-estimating the tails of the distribution (10 flips: 24.9% estimated vs. 10.9% 

actual, t(30)=3.3, p=.002, d=.59; 109 flips: 24.5% estimated vs. under .01% actual, t(28)=7.1, 

p<.001, d=1.3).  The experts’ estimated probability for the median outcome range also did not 

reflect higher probability for more flips (28.0% vs. 25.1%), yielding significantly higher average 

error for estimates of 109 flips than for 10 flips (RMSE = 46.3 vs. 21.9, t(58)=5.66, p<.001, 

d=1.18). 

These results are very similar to the “law of small numbers” findings of Kahneman and 

Tversky (1972) for elicited distributions of number of boys born on a day when either 10, 100 or 

1000 children were born. However, their findings were also subject to the alternative explanations 

discussed in Study 1. Their results could be explained by noisy estimates (Costello & Watts 2014), 

uncertainty about the underlying probability (Benjamin, Rabin and Raymond 2015), or 

heterogeneity, with some people making flat estimates, particularly if the prevalence of noisy or 

flat estimates increased with task complexity (e.g., with the sample size in the scenario). 

In contrast, the results of Study 3 cannot be explained by these factors. The results persist 

excluding the non-monotonic and near-flat estimates (N=104 remaining; see Appendix C). 

Likewise, as in Study 1, average estimates from simulations of unbiased beliefs subject to the 

estimated error variances were different from participants’ actual estimates, and moreso for the 

large sample sizes, inconsistent with an “accurate plus error” explanation (Appendix A). These 



 

results suggest that the bias in beliefs about probability distributions may be be exacerbated rather 

than improved by increasing the sample size, even among experts. 

 

5. General Discussion 

The ability to aggregate repeated events into accurate probability distributions has been 

proposed as a basic building block of near-optimal human cognition. These findings demonstrate a 

robust and problematic bias in making explicit estimates of such distributions, not explained by 

heterogeneity or random error.  The resulting “wizard-hat” subjective distributions overestimate 

the least likely outcomes and underestimate moderately likely outcomes, relative to the actual 

binomial distribution for repeated independent events. This bias is very robust, but does vary in 

degree with elicitation methods, number of repeated events and level of expertise. 

There are multiple ways in which the bias could occur.  People may note that there is only 

one way to get no heads in ten flips, but that the other outcomes are increasingly more possible.  

They may then (incorrectly) reason that there are k times more ways to have exactly one coin come 

up heads, and k times more than that to get two heads, all the way up to the most likely outcome.  

A doubling sequence of this type (k=2) yields results similar to the average monotonic estimates in 

Figure 2.  Future research should investigate this and other heuristics that could cause the bias. 

Prior work has identified over-weighting of rare events when probabilities are explicit 

and underweighting of rare events when probabilities are learned from experience (Hertwig, 

Barron, Weber & Erev, 2004; Hertwig & Erev, 2009).  Prospective decisions, such as betting on 

the outcome of a sports game, represent a common, distinct and understudied third type of 

probabilistic decisions. In such cases, as in these studies, people need to infer net outcome 

probabilities for future events from their beliefs about the component events (i.e., likelihood of 



 

scoring), often without experience. The systematic bias identified in this paper may therefore 

represent an additional and distinct cause of over-weighting small probabilities, when the 

outcome probabilities are not known and are inferred from repeated events. This is in contrast 

with the popularly-accepted view that unlikely future events arising from a confluence of factors 

(e.g. “black swans”; Taleb, 2010), are generally under-estimated.   

In fact, these findings suggest that forecasts involving similar prospective judgments 

(e.g., inflation forecasts; Goldstein & Rothschild, 2014; retirement preferences; Delavande & 

Rohwedder, 2008) may likewise over-estimate the likelihood of rare outcomes arising from low-

probability independent joint events, impeding effective risk management.  For example, the 

probabilities of never having a car accident or of getting all the numbers correct when playing 

the lottery are likely to be over-estimated, relative to more likely outcomes, even when people 

are well-calibrated about the likelihood of each component event.  

The ability to combine and update probabilities into accurate distributions of outcomes 

underlies the normative Bayesian standard of inference and is central to people’s performance in a 

broad range of higher-order cognition tasks. These findings pose a challenge for those economic 

(eg., Erdem & Keane, 1996; Grossman, Kihlstrom & Mirman, 1977) and psychological (Dawes, 

1989; McGuire & Kable, 2013; Viscusi, 1985) theories which explain behavior by assuming that 

people are able to make near-optimal decisions by efficiently integrating information into 

accurate explicit probability beliefs. The systematic bias in people’s subjective distributions of 

outcomes, estimated from simple repeated events with full information about the underlying 

probability, represents a reason for doubt that people generally do so efficiently. 
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Appendix A: Comparison of Alternative Explanations 

 

 

Heterogeneity. 

To investigate the role of heterogeneity in the biased estimates, a cluster analysis was 

conducted, with one cluster center fixed at the true distribution values.  K-means cluster analyses 

were conducted on the eleven estimates comprising the estimated distribution for different num-

bers of segments, with the six segment solution providing the best fit (Calinski and Harabasz 

1974). The cluster centers for the six segment solution were then supplemented with an addition-

al cluster, setting this cluster’s center equal to the true binomial distribution values.  The k-means 

algorithm was then re-run as classification only, yielding a seven cluster solution, with one clus-

ter representing near-accurate estimates. 

The four largest segments (plotted in Figure 1) accounted for 93% of participants. The 

accurate-by-definition segment (Segment 4) was small, accounting for less than 9% of partici-

pants.  All the other large segments displayed the same basic pattern, over-estimating the tails of 

the distribution and under-estimating the shoulders of the distribution. The remaining small seg-

ments (totalling 7% of the sample) were characterized by very high tail estimates. 
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Figure 1: Average estimates in accurate segment (S4, dark line) vs. larger segments. 

 

This analysis demonstrates that near-accurate estimates were rare, and that the bias is 

consistent across individuals, rather than being an artifact of combining very different types of 

misestimates. 

 

Random-error alternative explanations. 

Could the results arise from accurate probabilities estimated with unbiased random errors 

(Costello and Watts, 2014)? Such a “regression to the mean” explanation is unlikely, given that 

the highest-probability outcome (e.g, 5 out of 10) was not under-estimated. However, to test this 

possibility more formally, two such models were defined and calibrated (full details of the esti-

mation are provided in Appendix B). 

Let ski=pk+eki, where pk is the true probability of outcome k, and eki~N(0,s
2
) is the ran-

dom error for person i estimating outcome k (out of the m possible outcomes). Assume that the 

estimate yki has the form: 
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 This constrains the estimates to be between 0 and 1 (non-inclusive), and represents a 

“true plus error” homogeneous-error model, with one parameter, the variance s
2
.   

For the first model (Err1), the error variance is assumed to be the same for all partici-

pants, and for all outcomes being estimated. To estimate s
2
, randomly assign six of the outcomes 

to set O1 and the other five outcomes to set O2 for each person, and calculate an index: 

M=SkϵO1 –(1/6) ln(yki) + S kϵO2 (1/5) ln(yki) 

Under the model assumptions, Var(M)≈.3667s
2
. Based on the estimated error variance, 

the average yk each outcome can be simulated, and compared to the actual estimates. 

In the second model (Err6), the assumption that the error variance is the same for all out-

comes is loosened to symmetric errors: eki~N(0,sk
2
) for k≤m/2 and eki~N(0,sm-k

2
) for k>m/2. 

Separate indices Mki=ln(yki)–ln(yhi) are computed for each person i and outcome k≤m/2 (setting 

h=10-k). Each variance parameter sk
2
 can then be estimated as .5*Var(Mki), for k≤m/2. If m is 

even, for k=m/2 a different index Mki=ln(yki)–(1/10)Sj≠kln(yji) is also computed.  The error vari-

ance sk is estimated from Var(Mki)=sk
2
–.01Sj≠5sj

2
.  

For both models, the estimated error variance and the true outcome probabilities were 

used to simulate estimates for 10,000 participants.  The averages of these simulated estimates are 

plotted below, along with the actual probabilities and the mean estimates from Study 1.  

 



 

 

Figure 2: Estimated (solid gray line) vs. best fit error-model predictions (constant variance, 

dotted line; heterogeneous variance, dashed line) vs. actual values (solid black line) for 10 flips.  

 

 

Simulated data from both the single-parameter homogenous-variance model (Err1) and 

the less parsimonious heterogenous-variance model (Err6) both differ from the true values, sug-

gesting that random error can induce bias.  However, both models also diverge substantially from 

the participants’ estimates.  In particular, participants gave higher estimates for the tails (i.e. 0, 1, 

9, 10) and lower estimates for the shoulders of the distribution (3, 4, 6, 7) than in the estimated 

error-models. These results strongly suggest that error variance alone cannot explain the results.  

The same analysis yielded similar results in Study 3, as illustrated in Figures C1-C3 below. 

  

Constant-Ratio Sequential Inference 

A relatively simple constant-ratio heuristic can generate the observed “wizard-hat” 

shaped distribution.  In the 10 coin-flip task, people may assume that the number of ways of get-

ting each outcome is double the less likely adjacent outcome.  Thus, in the histogram, the middle 

bar for the 5-heads outcome would be estimated as roughly double the height of the 4 and 6 

0     1      2     3      4     5      6     7      8     9    10  



 

heads bars; those bars would in turn be roughly double the height of the 3 and 7 heads bars, and 

so on.   

More formally, let m be the number of flips and r be the constant ratio. The count Ck of 

ways to get each outcome k would then be r
k
 left-hand side of the distribution (k≤m/2) and sym-

metrically r
(m-k)

 for the right-hand side (k>m/2). The estimated probability for each outcome 

would then be the share of possible outcomes pk=Ck/SjCj. 

In fact, applying this heuristic to the 10 coin-flip task using r=2 (doubling), yields heuris-

tic-based estimates that are strikingly similar to the actual estimates made by the people in Study 

1 who gave monotonically decreasing estimates from 5. 

 

Figure 3: Average of monotonic estimates in Study 1 (N=231, solid gray line) vs. doubling 

constant ratio heuristic (dotted line) vs. actual values (solid black line). 

 

 

Thus, this intuitive and easily implemented (but incorrect) heuristic could generate the 

observed results for monotonic estimated distributions. However, other heuristics might also be 

able to generate these results. Furthermore, the other participants (who gave non-monotonic dis-

tributions) are most likely using other, even cruder and less accurate, heuristics. 



 

The constant-ratio heuristic alone would also not explain the insufficient sensitivity of es-

timates in Study 3 to the number of coin flips.  People might have made ratio-based inferences 

on the number of categories tested (which was constant across the conditions with 10 or more 

flips), rather than the number of outcomes.  Alternatively, the subjective ratio r could vary with 

the number of outcomes.  It would be useful for future research to investigate the viability of dif-

ferent heuristics to explain variation in estimated distributions in scenarios varying the key pa-

rameters. 
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Appendix B: Details of Error Models 

 

This appendix provides derivations for the model-based tests reported in Appendix A.  

The goal is to provide a baseline model of a decision maker who has unbiased (i.e. accurate) be-

liefs about the binomial distribution that are then reported with random error.  The model takes 

into account the subsequent constraints imposed by the elicitation procedure: all values need to 

be between 0 and 100 and need to sum to 100.  Two forms of the model were derived.  Model 1 

will assume that the pre-constraints error variance is the same for all outcomes, while Model 2 

loosens that assumption, allowing the error variance to differ for outcomes with different true 

values. 

Let p0 – p10 be the true binomial probabilities that are then estimated for outcomes $0 to 

$10.  The estimates of each person i are written as y0i to y10i. 

Homogeneity of Variance (one parameter) Model 

For each estimated outcome k made by each person i, a latent variable is defined as 

exp(ski) = exp(pk + eki), where eki ~ N(0,s
2
) iid is the random error that occurs in the estimation 

process.  Note that this assumes that there is a single error variance, not only across people, but 

also across estimated outcomes (i.e. for the probability of winning zero in the game or the proba-

bility of winning $5 in the game).  We will loosen this assumption in the next section. 

Next, each person’s estimates are assumed to be of the form yki = 100* exp(ski) / Sk 

exp(ski). This constrains the estimates yki to be positive and to sum to 100. 

In the studies reported in the paper, k=0 to 10.  The 11 estimates are assigned either to set 

S1 (6 elements) or set S2 (five estimate) at random.  Once this is done, an index Mi can be com-

puted: 

Mi = Sk in S1 –(1/6) ln(yki) + S k in S2 (1/5) ln(yki)  



 

Thus: 

Mi = Sk in S1 –(1/6)ski + S k in S2 (1/5)ski + (6/6) ln [Sk exp(ski)] – (5/5) ln [Sk 

exp(ski)]  

Mi = Sk in S1–(1/6) (pk + eki) + S k in S2 (1/5) (pk + eki)  

Defining a constant Ci = Sk in S1 –(1/6) pk + S k in S2 (1/5) pk for each person i,  Mi can be rewrit-

ten as: 

Mi = Ci + Sk in S1 –(1/6) eki + S k in S2 (1/5) eki,  

Since the eki are iid and eki ~ N(0,s
2
), Var(Mi) = (6 (1/6)

2
 + 5 (1/5)2) s

2
 = .3667 s

2 

Based on this result, the estimation strategy is to compute the index Mi for each person 

using different randomizations of estimates into S1 and S2.  The sample variance of the indices is 

then computed, and the model variance parameter is estimated as s
2
 = Var (Mi)/.3667. 

Using this method, the error variance in the model for Study 1 was estimated as s
2
 = 

1.384.  Then, 10,000 observations were simulated using the accurate values of pki and the esti-

mated s
2
.  These simulated results can then be compared to the empirical data, with any remain-

ing differences in mean estimates unattributable to the one-parameter “true plus error” model. 

Heterogenous Variance (six parameter) Model 

Alternatively, it is possible that each separate point on the binomial distribution has its 

own error variance.  For example, perhaps there is less error variance when estimating the prob-

ability of an even split (5 head out of 10 tosses) than either extreme outcome (10 heads, or 10 

tails). Formally, the model would then be extended to include outcome-specific error variances: 

exp(ski) = exp(pk + eki) where eki ~ N(0,sk
2
).   



 

This can be simplified somewhat by making a reasonable assumption of symmetry in the error 

variances of corresponding outcomes.  In the eleven-outcome case, with k = 0…10, this would 

be written as: sk
2
 = s10-k

2
.  

Using a similar strategy as the prior model, five indices are computed: 

Mki = ln(yki) - ln(yhi), for k = 0 to 4, where h =10-k. 

Mki = ski – shi – ln [Sk exp(ski)] + ln [Sk exp(ski)]  

Mki = (pk + eki) – (ph + ehi) = eki – ehi , since pk = ph 

Since Var(ek)= Var(eh) = sk
2
, the model variance for outcome k < 5 can be estimated as .5 Var 

(Mki). 

For k = 5, it will be necessary to construct the index differently:  

M5i = ln(y5i) – (1/10) Sk≠5 ln(yki) 

By a similar argument, this will reduce to: 

M5i = e5i – (1/10) Sk≠5 eki 

Since the errors eki ~ N(0,sk
2
) are assumed to be iid: 

Var(M5i) = s5
2
 -.01 Sk≠5 sk

2
  

Thus, an estimated of the error variance s5
2
 can be computed as:  

Var(M5i) -.01 Sk≠5 sk
2
, based on the previously computed estimated sk

2
 for k≠5.  

Using this approach for the Study 1 data yielded estimates of: 

s0
2
 = s10

2
 = 10.325, s1

2
 = s9

2
 = 4.442, s2

2
 = s8

2
 = 3.568,  

s3
2
 = s7

2
 = 3.084, s4

2
 = s6

2
 = 1.842, s5

2
 = 11.510.  

Simulating 10,000 cases based on a “true + error” model using these error variance esti-

mates yielded average estimates that significantly differed from the empirical data in Study 1, as 

shown in Appendix A.  



 

Appendix C: Additional Methods Details and Analyses 

Study 1 

Method Details 

Participants from Amazon Mechanical Turk were recruited, with the goal of having approximately 

900 participants.  From a total of 867 completed surveys, records with duplicate IP addresses, or 

who failed a basic attention check were removed (prior to any analysis), yielding 821 valid com-

pletes.  After completing an unrelated survey, participants read the scenario and were asked to 

make the estimates. 

 Height data was compiled from the National Health and Nutrition Examination Surveys
1
 

(NHANES) conducted from 1999-2012.  Data was screened for respondents who had a valid 

height in cm, were male and were 18 years old or older, yielding 18,628 records.  These were con-

verted to inches, and coded into the two-inch intervals used in the survey. 

 The study used a 5 (first task: coin flipping probability, coin flipping frequentist, survey, 

soccer, or height) x 3 (elicitation method: adjustable histogram, numeric entry  or choice among 6 

histogram graphs).  In the numeric entry and adjustable histogram versions, the order of the out-

comes (e.g., 0 first or 10 first) was counterbalanced.  In the choice among graphs version, the order 

of the six graphs was rotated, yielding four different displays (i.e. counterbalancing top vs. bottom 

and left column vs. right column).
2
 

 

                                                           
1 http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm 
2 In the graph choice version of the survey scenario, one of the four displays was not asked due to a programming error.  



 

Additional Analyses 

Table C1: Estimates for each outcome compared to actual values, for elicited binomial outcomes. 

  Correct All Data (N=419) Monotonic Distributions (N=231) 

    Avg. Estimate T p Avg. Estimate T p 

Outcome=0 0.10 4.47 8.52 <.001 1.46 12.15 <.001 

Outcome=1 0.98 5.32 13.21 <.001 3.12 13.11 <.001 

Outcome=2 4.39 6.08 7.49 <.001 5.09 3.97 <.001 

Outcome=3 11.72 7.63 19.68 <.001 8.37 15.51 <.001 

Outcome=4 20.51 11.63 26.02 <.001 14.69 16.90 <.001 

Outcome=5 24.61 28.37 3.39 <.001 34.88 10.75 <.001 

Outcome=6 20.51 11.95 25.35 <.001 14.67 16.65 <.001 

Outcome=7 11.72 8.01 17.62 <.001 8.30 16.60 <.001 

Outcome=8 4.39 6.16 7.64 <.001 4.87 2.99 .003 

Outcome=9 0.98 5.93 11.63 <.001 2.98 14.16 <.001 

Outcome=10 0.10 4.44 9.69 <.001 1.57 12.57 <.001 

 

Table C2: Comparison of estimates to actual values separately in each scenario. 

  Correct Coin flip probability (N=106) Coin flip frequentist (N=98) 

    Avg. Estimate t p Avg. Estimate T p 

Outcome=0 0.10 4.66 5.09 <.001 5.86 4.09 <.001 

Outcome=1 0.98 5.50 6.77 <.001 5.42 6.07 <.001 

Outcome=2 4.39 5.94 4.51 <.001 6.00 3.96 <.001 

Outcome=3 11.72 7.78 11.20 <.001 7.80 10.40 <.001 

Outcome=4 20.51 11.96 14.49 <.001 11.84 11.44 <.001 

Outcome=5 24.61 24.50 0.07 .948 26.86 1.16 .249 

Outcome=6 20.51 12.51 13.92 <.001 11.71 12.71 <.001 

Outcome=7 11.72 8.56 8.70 <.001 8.44 7.90 <.001 

Outcome=8 4.39 6.59 5.41 <.001 6.44 4.38 <.001 

Outcome=9 0.98 6.52 6.76 <.001 5.47 6.47 <.001 

Outcome=10 0.10 5.49 5.08 <.001 4.17 6.56 <.001 

Mean Outcome 5.00 5.12 1.31 .192 4.94 0.56 .575 

Variance 2.50 5.55 7.95 <.001 5.24 7.91 <.001 

Kurtosis -0.20 -0.14 0.59 .558 0.09 1.64 .105 

RMSE -- 26.52     28.02     

 



 

Table C2: Comparison of estimates to actual values separately in each scenario. (Continued) 

  Correct Survey (N=114) Soccer (N=101) 

    Avg. Estimate t p Avg. Estimate T p 

Outcome=0 0.10 2.09 4.70 <.001 5.62 4.52 <.001 

Outcome=1 0.98 4.16 8.25 <.001 6.35 6.61 <.001 

Outcome=2 4.39 5.76 2.67 .009 6.66 4.49 <.001 

Outcome=3 11.72 6.89 10.68 <.001 8.14 7.83 <.001 

Outcome=4 20.51 11.85 11.62 <.001 10.84 15.75 <.001 

Outcome=5 24.61 37.36 4.86 <.001 23.76 0.40 .694 

Outcome=6 20.51 11.97 11.22 <.001 11.58 13.82 <.001 

Outcome=7 11.72 6.75 11.95 <.001 8.46 7.06 <.001 

Outcome=8 4.39 4.71 0.99 .322 7.08 4.38 <.001 

Outcome=9 0.98 4.06 7.17 <.001 7.85 5.39 <.001 

Outcome=10 0.10 4.38 4.31 <.001 3.67 4.60 <.001 

Mean Outcome 5.00 5.08 1.37 .173 4.99 0.08 .939 

Variance 2.50 4.29 5.65 <.001 4.75 7.76 <.001 

Kurtosis -0.20 0.27 2.53 .013 0.15 1.88 .064 

RMSE -- 32.46     31.01     

 

Table C3: Height distribution estimates, first tasks only. 

 

  Correct 
Height Estimates First 

(N=120) 

    Estimate t P 

Below 5' 1" 0.60 2.40 5.39 <.001 

 5' 1" to under 5' 3" 2.74 3.76 3.04 .003 

 5' 3" to under 5' 5" 8.50 6.46 5.31 <.001 

 5' 5" to under 5' 7" 17.53 10.78 12.88 <.001 

 5' 7" to under 5' 9" 24.98 16.54 12.44 <.001 

 5' 9" to under 5' 11" 23.58 21.69 2.09 .039 

 5' 11" to under 6' 1" 14.12 16.97 4.37 <.001 

 6' 1" to under 6' 3" 5.94 10.36 8.87 <.001 

 6' 3" to under 6' 5" 1.57 5.47 12.35 <.001 

 6' 5" to under 6' 7" 0.36 3.50 9.28 <.001 

 6' 7" and above 0.07 2.07 7.33 <.001 

 

 



 

Table C4: Within-subjects comparison of prediction error in binomial scenario  

and height distribution estimates (N=419). 

 

  Average Error     

  Binomial Height t p 

Outcome=0 +4.38 +2.04 4.16 <.001 

Outcome=1 +4.34 +1.19 9.38 <.001 

Outcome=2 +1.68 -2.36 14.14 <.001 

Outcome=3 -4.09 -7.10 8.11 <.001 

Outcome=4 -8.88 -7.02 2.84 <.001 

Outcome=5 +3.76 -1.84 4.89 <.001 

Outcome=6 -8.56 +1.59 21.29 <.001 

Outcome=7 -3.71 +3.87 20.76 <.001 

Outcome=8 +1.77 +4.22 8.38 <.001 

Outcome=9 +4.95 +3.20 3.97 <.001 

Outcome=10 +4.34 +2.21 4.54 <.001 

RMSE 29.57 22.35 7.21 <.001 

 

 

Table C5: Between-subjects comparison of binomial scenario and height distribution estimates,  

first tasks only. 

 

  Binomial (N=419) Height (N=120)     

  Mean SE Mean Mean SE Mean t p 

Mean Outcome 5.04 0.05 4.94 0.06 0.98 0.329 

Variance 4.94 0.17 4.07 0.16 2.67 0.008 

Kurtosis 0.09 0.08 0.22 0.08 0.84 0.402 

RMSE 29.57 1.00 20.87 0.88 4.52 <.001 

 

 

Table C6: RMSE regression estimates, using only monotonic elicited distributions  

(N=470) 
 

 
b SE T P 

Constant 10.92 .95 11.50 .000 

Elicitation Method: 

   Adjustable Histogram 7.18 1.10 6.52 .000 

   Numeric Entry 9.02 1.08 8.34 .000 

Scenario: 

   Coin: Probability vs. frequentist -0.78 1.20 0.65 .517 

   Soccer -0.10 1.22 0.08 .934 

   Survey 2.39 1.27 1.89 .060 



 

Table C7: Chosen histograms (from set of 6, all with mean of 5). 

 

  Correct 
Recoded Graph Choice 

(N=239) 

    Estimate t p 

Outcome=0 0.10 2.42 15.42 <.001 

Outcome=1 0.98 3.05 13.46 <.001 

Outcome=2 4.39 4.88 3.38 .001 

Outcome=3 11.72 9.90 19.06 <.001 

Outcome=4 20.51 17.76 10.01 <.001 

Outcome=5 24.61 23.98 1.42 .156 

Outcome=6 20.51 17.76 10.01 <.001 

Outcome=7 11.72 9.90 19.06 <.001 

Outcome=8 4.39 4.88 3.38 .001 

Outcome=9 0.98 3.05 13.46 <.001 

Outcome=10 0.10 2.42 15.42 <.001 

Variance 2.50 4.21 12.12 <.001 

Kurtosis -0.20 -0.33 8.15 <.001 

RMSE -- 11.15   
  

 

Table C8: Percent of respondents choosing each histogram as most accurate, second most accu-

rate or least accurate.  (Correct answer denoted in bold) 

 

  Binomial Scenarios (N=239) Height (N=282) 

  Most Second most Least Most Second most Least 

Chart A 6.3% 11.7% 4.2% 6.7% 14.5% 6.7% 

Chart B 8.8% 24.7% 8.4% 8.9% 18.8% 9.9% 
Chart C 18.8% 11.7% 33.1% 14.5% 13.8% 31.2% 

Chart D 25.5% 25.5% 3.8% 40.8% 20.9% 3.5% 

Chart E 32.6% 15.1% 27.2% 19.5% 19.9% 27.0% 

Chart F 7.9% 11.3% 23.4% 9.6% 12.1% 21.6% 

 



 

Study 2 

Method Details 

Expert sample. Participants were recruited at the 2012 Society for Judgment and Decision 

Making conference in the hall outside the meeting rooms, to complete a survey in exchange for a 

large Toblerone candy bar.  A total of 96 participants handed in surveys.  In the paper-and-pencil 

survey, along with other unrelated questions, participants were asked to either draw a histogram 

representing 10 coin flips, or to choose among the same six histograms as in Study 1, with the or-

der of outcomes and graphs counterbalanced.  Four of the participants did not complete the coin-

flipping scenario, yielding 92 participants (62 doing drawings and 30 making choices). 

Novice sample. Participants were recruited from a community sample, at the University of 

Chicago’s downtown lab, to complete the same paper and pencil survey, in exchange for $2, with a 

target of approximately 130 participants.  After excluding 5 participants who did not complete the 

coin flip task, we had 64 participants who completed the drawing task and 63 who completed the 

histogram choice task, for a total of 127.    



 

Additional Analyses. 

Table C13: Comparison of estimates to actual values separately in each scenario.  

  Correct Novice sample (N=64) Expert sample (N=62) 

    Avg. Estimate t p Avg. Estimate T P 

Outcome=0 0.10 6.89 4.72 <.001 3.58 5.23 <.001 

Outcome=1 0.98 8.69 7.53 <.001 4.93 9.09 <.001 

Outcome=2 4.39 9.05 6.38 <.001 7.31 7.58 <.001 

Outcome=3 11.72 9.35 2.86 .006 10.81 2.34 .022 

Outcome=4 20.51 11.95 9.25 <.001 14.14 11.97 <.001 

Outcome=5 24.61 15.55 3.96 <.001 19.21 3.54 .001 

Outcome=6 20.51 11.40 6.74 <.001 14.53 10.62 <.001 

Outcome=7 11.72 9.61 1.36 .180 10.63 3.17 .002 

Outcome=8 4.39 6.60 3.49 .001 7.29 7.70 <.001 

Outcome=9 0.98 5.31 7.36 <.001 4.73 11.33 <.001 

Outcome=10 0.10 5.59 3.38 0.001 2.86 7.99 <.001 

Mean Outcome 5.00 4.73 1.59 0.116 4.96 0.62 .536 

Variance 2.50 5.82 8.53 <.001 5.30 9.80 <.001 

Kurtosis -0.20 -0.73 6.12 <.001 -0.52 5.98 <.001 

RMSE -- 33.28 
  

16.96 
   

Table C14: Between-subjects comparison of errors in novice and expert estimates. 

 

  Average Error     

  Novice Expert t p 

Outcome=0 +6.80 +3.48 2.07 .041 

Outcome=1 +7.71 +3.95 3.34 .001 

Outcome=2 +4.66 +2.92 2.09 .039 

Outcome=3 -2.37 -0.91 1.58 .117 

Outcome=4 -8.56 -6.37 2.03 .044 

Outcome=5 -9.06 -5.40 1.32 .189 

Outcome=6 -9.10 -5.98 2.11 .037 

Outcome=7 -2.11 -1.09 0.63 .531 

Outcome=8 +2.20 +2.89 0.93 .355 

Outcome=9 +4.34 +3.75 0.86 .394 

Outcome=10 +5.49 +2.76 1.62 .108 

 



 

Table C15: Between-subjects comparison of novice and expert estimates, summary statistics. 

 

  Novice (N=64) Expert (N=62)     

  Mean SE Mean Mean SE Mean t p 

Mean Outcome 4.73 0.17 4.96 0.07 1.22 .225 

Variance 5.82 0.39 5.30 0.29 1.08 .283 

Kurtosis -0.73 0.09 -0.52 0.05 -2.11 .037 

RMSE 33.28 2.70 16.96 1.58 5.18 <.001 

 

 

Table C16: Between-subjects comparison of novice and expert estimates, summary statistics  

(using only monotonic elicited distributions). 

 

  Novice (N=17) Expert (N=43)     

  Mean SE Mean Mean SE Mean t p 

Mean Outcome 5.09 0.09 5.04 0.03 0.70 .486 

Variance 4.79 0.28 4.65 0.21 0.36 .722 

Kurtosis -0.28 0.19 -0.42 0.05 0.96 .340 

RMSE 15.04 1.39 11.91 0.72 2.17 .034 

 

Table C17: Comparison of recoded chosen histograms (from set of 6, all with mean of 5) to actual 

values for each sample 

 

  Correct Novice Sample (N=63) Expert Sample (N=30) 

    Avg. Estimate t p Avg. Estimate T p 

Outcome=0 0.1 2.75 8.95 <.001 1.97 4.35 <.001 

Outcome=1 0.98 3.37 8.26 <.001 3.00 4.10 <.001 

Outcome=2 4.39 5.30 3.59 .001 4.80 1.10 .282 

Outcome=3 11.72 10.10 9.21 <.001 10.10 4.91 <.001 

Outcome=4 20.51 17.17 6.76 <.001 18.00 3.05 .005 

Outcome=5 24.61 22.63 2.41 .019 24.27 0.38 .710 

Outcome=6 20.51 17.17 6.76 <.001 18.00 3.05 .005 

Outcome=7 11.72 10.10 9.21 <.001 10.10 4.91 <.001 

Outcome=8 4.39 5.30 3.59 .001 4.80 1.10 .282 

Outcome=9 0.98 3.37 8.26 <.001 3.00 4.10 <.001 

Outcome=10 0.1 2.75 8.95 <.001 1.97 8.95 <.001 

Mean Outcome 5 5.00 -- -- 5.00 -- -- 

Variance 2.5 4.56 7.71 <.001 3.98 3.68 <.001 

Kurtosis -0.2 -0.35 4.42 <.001 -0.37 5.63 <.001 

RMSE -- 11.16     9.19     

 

 



 

Table C18: Comparison of prediction error in recoded histogram-choice estimates  

 

  Average Error     

  Novice Expert t p 

Outcome=0 +2.65 +1.87 1.50 .138 

Outcome=1 +2.39 +2.02 .676 .500 

Outcome=2 +0.91 +0.41 1.12 .264 

Outcome=3 -1.62 -1.61 .01 .989 

Outcome=4 -3.33 -2.51 .91 .368 

Outcome=5 -1.97 -0.34 1.21 .228 

Outcome=6 -3.33 -2.51 .91 .368 

Outcome=7 -1.62 -1.62 .01 .989 

Outcome=8 +0.91 +0.41 1.12 .264 

Outcome=9 +2.30 +2.02 .676 .500 

Outcome=10 +2.65 +1.87 1.50 .138 

RMSE 11.16 9.19 1.34 .183 

 

 

Table C19: Percent of respondents choosing each histogram as most accurate, second most accu-

rate or least accurate.  (Correct answer denoted in bold) 

 

  Novice Sample (N=63) Expert Sample (N=30) 

  Most Second most Least Most Second most Least 

Chart A 3.2% 7.9% 12.7% 10.0% 10.3% 8.7% 

Chart B 9.5% 23.8% 9.5% 20.0% 10.3% 10.9% 

Chart C 11.1% 19.0% 27.0% 13.3% 31.0% 23.9% 

Chart D 27.0% 28.6% 6.3% 43.3% 20.7% 7.6% 

Chart E 39.7% 12.7% 15.9% 13.3% 20.7% 21.7% 

Chart F 9.5% 7.9% 28.6% 0.0% 6.9% 27.2% 

 



 

Study 3 

Method Details 

Participants from Amazon Mechanical Turk were recruited, with the goal of having ap-

proximately 180 participants.  From a total of 175 completed surveys, records with duplicate IP 

addresses, or who failed a basic attention check were removed (prior to any analysis), yielding 172 

valid completes.  Participants read one of four versions of the coin-flipping scenario from Study 1, 

with either 2, 10, 21 or 109 flips. Participants then made estimates, using either the numeric elicita-

tion or the adjustable histogram (with outcome order counterbalanced) from Study 1.  The 10, 21 

and 109 flip scenarios were designed to be comparable, all elicited using 10 categories of outcomes 

and a similar range of monetary amounts (i.e. for the 21 flips, the eleven outcome categories 

ranged from $0-$.50, $1 to $1.50, up to $10-$10.50).    

Additional Analyses – Online Sample Only 

Table C9:  Comparison of estimated and actual distribution in the 10 flips condition.  

  Correct 10 Flips (N=41) 

    Avg. Estimate t P 

Outcome=0 0.098 4.57 3.45 0.001 

Outcome=1 0.977 6.68 4.15 <.001 

Outcome=2 4.395 8.00 4.94 <.001 

Outcome=3 11.719 10.26 -2.32 0.026 

Outcome=4 20.508 13.44 -8.52 <.001 

Outcome=5 24.609 22.20 -1.10 0.28 

Outcome=6 20.508 13.22 -6.62 <.001 

Outcome=7 11.719 8.67 -5.26 <.001 

Outcome=8 4.395 5.76 3.06 0.004 

Outcome=9 0.977 4.20 5.74 <.001 

Outcome=10 0.098 3.01 5.41 <.001 

Tails 10.9375 32.22 7.04   

Mean Outcome 5.00 4.72 -2.13 0.04 

Variance 2.50 5.13 5.98 <.001 

Kurtosis -0.20 -0.11 0.51 0.615 

RMSE -- 23.02     



 

 

Figure C1: Estimates (grey line) vs. best fit error-model predictions (constant variance, dotted line; 

heterogeneous variance, dashed line) vs. actual values (solid line) for 10 flips. 

 

Table C10: Comparison of estimated and actual distribution in the 21 flips condition. 

 

  Correct 21 Flips (N=42) 

    Avg. Estimate t P 

Outcome=0 0.001 9.67 3.92 <.001 

Outcome=1 0.073 7.31 6.40 <.001 

Outcome=2 1.256 7.69 6.63 <.001 

Outcome=3 8.132 9.10 0.80 0.427 

Outcome=4 23.719 11.83 -8.91 <.001 

Outcome=5 33.638 20.81 -4.32 <.001 

Outcome=6 23.719 10.69 -11.65 <.001 

Outcome=7 8.132 7.45 -0.99 0.33 

Outcome=8 1.256 5.40 6.80 <.001 

Outcome=9 0.073 4.43 5.56 <.001 

Outcome=10 0.001 5.62 2.60 0.013 

Tails 2.6604 40.12 8.89   

Mean Outcome 5.00 4.57 -1.70 0.097 

Variance 5.25 4.95 -0.66 0.514 

Kurtosis -0.10 0.84 2.00 0.052 

RMSE -- 37.22     



 

 

 

 

Figure C2: Estimates (grey line) vs. best fit error-model predictions (constant variance, dotted line; 

heterogeneous variance, dashed line) vs. actual values (solid line) for 21 flips. 

 

Table C11: Comparison of estimated and actual distribution in the 109 flips condition. 

  Correct 109 Flips (N=43) 

    Avg. Estimate t P 

Outcome=0 0.000 10.26 4.41 <.001 

Outcome=1 0.000 8.65 6.40 <.001 

Outcome=2 0.000 8.18 10.44 <.001 

Outcome=3 0.193 9.14 15.95 <.001 

Outcome=4 16.717 12.05 -4.86 <.001 

Outcome=5 66.182 20.52 -15.14 <.001 

Outcome=6 16.717 10.23 -7.73 <.001 

Outcome=7 0.193 7.30 14.26 <.001 

Outcome=8 0.000 5.59 11.56 <.001 

Outcome=9 0.000 4.54 8.82 <.001 

Outcome=10 0.000 3.55 6.31 <.001 

Tails 0.0001 40.77 11.18   

Mean Outcome 5.00 4.37 -3.56 0.001 

Variance 27.25 5.92 -40.81 <.001 

Kurtosis -0.02 1.45 1.02 0.314 

RMSE -- 55.61     

 



 

  

 

Figure C3: Estimates (grey line) vs. best fit error-model predictions (constant variance, green line; 

heterogeneous variance, dashed line) vs. actual values (solid line) for 109 flips. 

 

The 2 flip condition was not directly comparable to the other three conditions, and so it was 

analyzed separately. The tails of the distribution were substantially over-estimated.  However, the 

overall error was much lower for the 2 flip condition than the 10 flip condition (14.88 vs. 23.02, 

t(84)=2.54, p=.013, d=.56), as well as compared to the 21 and 109 flip conditions (both ps < .001). 

 

Table C12: Comparison of estimated and actual distribution in the 2 flips condition. 

  Correct 2 Flips (N=45) 

    Avg. Estimate t P 

Outcome=0 25.00 30.36 3.64 0.001 

Outcome=1 50.00 41.73 -3.83 <.001 

Outcome=2 25.00 27.91 2.34 0.024 

Mean Outcome 1.00 0.98 1.47 0.149 

Variance 0.50 0.57 3.20 0.003 

Kurtosis -1.00 -1.16 -2.77 0.008 

RMSE -- 14.88     



 

 
 

Figure C4: Estimates (dashed line) vs. actual values (solid line) for 2 flips. 

 

The comparison of the different conditions shows that RMSE increases with the complexi-

ty (e.g., number of flips). 

 

 

Figure C5: Error (RMSE) by the number of flips in the estimated distribution (r = .93). 

 



 

Additional Analyses – Expert and Online Sample Combined 

Similar results hold when constraining the data to only those estimated distributions that 

are monotonically decreasing on both sides from the middle and which are not near-flat (N=104). 

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

10 flips

21 flips

109 flips

 

Figure C6: Estimates (dashed lines) when constraining the data. 

In all three conditions, the tails of the distribution (winning less than $3, winning $8 or 

more) were significantly over-estimated (10 flips: 16.1% estimated vs. 10.9% actual, t(43)=3.3, 

p=.002, d=.49; 21 flips: 18.6% estimated vs. 2.7% actual, t(20)=5.5, p<.001, d=1.3; 109 flips: 

19.4% estimated vs. under .01% actual, t(41)=10.7, p<.001, d=1.2).   Likewise, while the 

probability of the most likely outcome (winning between $5 and under $6) increased substantially 

with the number of coin flips (from 24.6%, to 33.6% to 66.2%), the estimated probability for the 

median outcome range did not vary with the number of flips (33.2% vs. 34.3% vs. 30.2%).  As a 

result, the average error was significantly higher for estimates of 21 flips than for 10 flips (RMSE 

= 22.5 vs. 15.9, t(63)=2.29, p=.025, d=.59) and for 109 flips than for 21 flips (RMSE = 41.2 vs. 

22.5, t(61)=5.44, p<.001, d=1.21). 

 



 

Additional Study A4 

Method 

Forty nine online-participants were first asked to estimate the probabilities of the outcomes 

from a single round, and then the full 10 round coin-flip game from Study 1 using numeric elicita-

tion and the adjustable the histogram elicitation.   

Results and Discussion 

 The majority of participants (45/49, or 92%) correctly answered that there was a 50% 

chance of getting $1 and a 50% chance of getting $0.  The other four responses indicated a 30%, 

51%, 55% or 60% chance of winning $1.  Excluding participants who gave these incorrect re-

sponses, the bias in estimates for the 10 round game demonstrated in Study 1 was replicated.  The 

tail outcomes (0, 1, 2, 8,9 and 10) were all estimated to have significantly higher probability than 

actual and the remaining outcomes (3 through 7) were all estimated to have significantly lower 

probabilities (all ps < .05). 



 

 

Figure C7: Estimates (dashed line) vs. actual values (solid line) for 10 flip scenario, among those 

participants giving correct answer to the baseline probability question. 

 

Additional Analyses. 

Table C20: Comparison of estimates to actual values  

  Correct 
Participants passing screening 

question (N=45) 

    Avg. Estimate t p 

Outcome=0 0.10 9.69 4.12 <.001 

Outcome=1 0.98 8.58 5.66 <.001 

Outcome=2 4.39 7.33 6.29 <.001 

Outcome=3 11.72 8.62 6.51 <.001 

Outcome=4 20.51 12.02 8.15 <.001 

Outcome=5 24.61 18.67 2.42 .020 

Outcome=6 20.51 10.87 10.33 <.001 

Outcome=7 11.72 7.92 7.22 <.001 

Outcome=8 4.39 6.57 4.19 <.001 

Outcome=9 0.98 5.57 8.54 <.001 

Outcome=10 0.10 4.17 6.99 <.001 

Mean Outcome 5.00 4.55 2.55 .014 

Variance 2.50 6.33 7.58 <.001 

Kurtosis -0.20 -0.26 0.22 .825 

RMSE -- 29.41 
   



 

Additional Study A5 

Method 

All students enrolled in an MBA course were asked to complete the numeric elicitation 

version of the survey scenario from Study 1, as an in-class exercise at the start of a lecture on sur-

vey sampling. Eighty seven students, all of whom had completed at least one statistics course as a 

pre-requisite, completed the exercise.  Because the paper-and-pencil version they completed did 

not force estimates to add up to 100, 21% of the estimates were rescaled to sum to100 (multiplying 

estimate xij for person i by 100/Sjxij). 

 

Results and Discussion 

The MBA student estimates (dark dashed line in Figure A11 below) significantly diverged 

from the binomial distribution for all the outcomes (solid line).  While the mean of the distribution 

was estimated accurately, the students’ estimated distribution had higher variance (3.68 vs. 2.5, 

t=5.65, p<.001, d=0.61) and more kurtosis (.43 vs. -.20, t=2.89, p=.005, d=0.31) than the actual 

distribution.   

 



 

 

Figure C8: Novice estimates (light dashed line) vs. expert estimates (MBA students, dark 

dashed line) vs. actual values (solid line) for 10 flips. 

 

 

Nevertheless, the MBA student estimates for most of the outcomes were significantly dif-

ferent from the estimates of the novice population in Study 1, made using the same scenario and 

elicitation procedure (N=61, light dashed line in Figure C8 above), and were closer to the actual 

distribution. Overall, the MBA students were significantly more accurate (RMSE=16.0 vs. 33.5, 

t=6.21, p<.001, d=1.04) than the corresponding Study 1 participants. 

 



 

Additional Analyses. 

Table C21: Comparison of estimates to actual values separately in each scenario 

 

  Correct Novice sample (Study 1, N=61) Expert sample (MBA, N=87) 

    Avg. Estimate t P Avg. Estimate t p 

Outcome=0 0.10 1.65 4.44 <.001 1.46 6.15 <.001 

Outcome=1 0.98 4.64 6.02 <.001 3.09 8.57 <.001 

Outcome=2 4.39 5.77 2.32 .024 5.07 2.88 .005 

Outcome=3 11.72 6.55 9.00 <.001 9.28 8.32 <.001 

Outcome=4 20.51 10.92 10.20 <.001 15.14 10.53 <.001 

Outcome=5 24.61 39.57 4.16 <.001 31.68 4.60 <.001 

Outcome=6 20.51 10.84 10.49 <.001 15.28 10.86 <.001 

Outcome=7 11.72 6.49 10.16 <.001 9.36 8.13 <.001 

Outcome=8 4.39 4.84 0.95 .347 5.08 2.92 .004 

Outcome=9 0.98 4.60 5.45 <.001 3.09 8.50 <.001 

Outcome=10 0.10 4.13 4.30 <.001 1.47 6.15 <.001 

Mean Outcome 5.00 5.09 1.44 .156 5.00 1.22 .227 

Variance 2.50 4.36 4.67 <.001 3.68 5.65 <.001 

Kurtosis -0.20 -0.09 0.43 .671 0.43 2.89 .005 

RMSE -- 33.49 
  

16.01 
   

Table C22: Between-subjects comparison of errors in novice (Study 1) and expert (MBA student) 

estimates. 

 

  Average Error     

  Novice Expert t p 

Outcome=0 +1.55 +1.36 0.48 .633 

Outcome=1 +3.66 +2.11 2.64 .009 

Outcome=2 +1.37 +0.68 1.23 .223 

Outcome=3 -5.17 -2.44 4.59 <.001 

Outcome=4 -9.58 -5.37 4.24 <.001 

Outcome=5 +14.96 +7.07 2.24 .027 

Outcome=6 -9.67 -5.23 4.62 <.001 

Outcome=7 -5.23 -2.36 5.21 <.001 

Outcome=8 +0.45 +0.69 0.49 .625 

Outcome=9 +3.63 +2.11 2.41 .017 

Outcome=10 +4.03 +1.38 3.20 .002 

 

 



 

Table C23: Between-subjects comparison of novice and expert estimates, summary statistics. 

 

  Novice (N=61) Expert (N=87)     

  Mean SE Mean Mean SE Mean t p 

Mean Outcome 5.09 0.06 5.00 0.00 1.64 .103 

Variance 4.36 0.40 3.68 0.21 1.62 .108 

Kurtosis -0.09 0.26 0.43 0.22 1.52 .130 

RMSE 33.49 2.73 16.01 1.38 6.21 <.001 

 

 

Table C24: Between-subjects comparison of novice and expert estimates, summary statistics  

(using only monotonic elicited distributions). 

 

  Novice (N=34) Expert (N=81)     

  Mean SE Mean Mean SE Mean t p 

Mean Outcome 5.02 0.02 5.00 0.00 0.89 .377 

Variance 3.31 0.35 3.44 0.18 -0.38 .705 

Kurtosis 0.48 0.37 0.53 0.23 -0.12 .904 

RMSE 24.80 2.26 15.57 1.45 3.46 .001 

 



 

Appendix D:  Study Stimuli 

Study 1 Stimuli 

 

Incentive instructions: 
 

Please take your time, read closely and answer the next section very carefully.    You are eligible to receive a bonus 

payment, via Mturk, based on the accuracy of your response.     The questions you will answer have a factually cor-

rect answer.       If you give the most accurate answer possible, you will get an extra $1.       If you give an answer 

that is not better than guessing at random, you will get $0.       If your answer is in between, you will get a partial 

bonus, based on your accuracy.  So, for example, if your answer is halfway between completely correct and guess-

ing at random, you would get 50 cents.     *** IMPORTANT: THIS IS NOT HYPOTHETICAL.  YOU CAN EARN 

AN ACTUAL ADDITIONAL PAYMENT BASED ON YOUR ACCURACY.***    
 

SCENARIO 1: Coin flip – probability: 
 

COIN FLIP GAME Imagine that you are going to play the following hypothetical game.  In the game, you would 

flip a coin 10 times and you will show the experimenter the result each time.  Each time that it comes up heads, 

you win $1, and each time it comes up tails, you get nothing. In this game, any amount between $0 and $10 is possi-

ble.  Using the graph below, indicate the probability of each of the outcomes from 10 coin flips.   (0 = no chance, 50 

= equally likely to happen or not happen, 100 = certain to happen)  Since all the possible outcomes are listed, proba-

bilities you give should add up to 100.  

 

SCENARIO 2: Coin flip – frequentist: 

 
COIN FLIP GAME Imagine that 100 people were going to play the following hypothetical game.  In the game, each 

person would flip a coin 10 times and would show the experimenter the result each time.  Each time that it comes up 

heads, the person wins $1, and each time it comes up tails, the person gets nothing. In this game, for a given player, 

any amount between $0 and $10 is possible.  Using the graph below, indicate how many of the 100 people would 

have each outcome.     Since all the possible outcomes are listed, the number of people for each outcome you give 

should add up to the total of 100 people.  

 

SCENARIO 3: Survey outcomes: 

 
SURVEY OUTCOMES Imagine that there is a population in which exactly half of the people prefer Coke to Pepsi, 

and half prefer Pepsi to Coke, and no one is indifferent. Imagine that you conduct a survey with 10 people, and there 

is no sampling bias (everyone has an equal probability of completing the survey).       What are the chances of each 

of the following possible outcomes? Using the graph below, please give a probability between 0% (never) and 100% 

(will always happen) for each outcome.Since all the possible outcomes are listed, probabilities you give should add 

up to 100.  
 

SCENARIO 4: Soccer game: 

 
SOCCER PRACTICE GAME Imagine that you are going to play the following hypothetical game.  In the game, 

you would kick a soccer ball into a goal. The difficulty of the game would be adjusted for you personally. You 

would kick the ball from far away enough that, on any given kick, you have a 50% chance of getting the ball in (you 

are equally likely to make it into the goal as to not make it into the goal).  You would try 10 kicks.  In this game, any 

outcome between making no goals and making 10 goals is possible.  Using the graph below, indicate the probability 

of each of the outcomes from making 10 tries.   (0 = no chance, 50 = equally likely to happen or not happen, 100 = 

certain to happen)  Since all the possible outcomes are listed, probabilities you give should add up to 100.  
 

 



 

SCENARIO 5: Height estimation: 

 
ESTIMATING HEIGHT Thinking only of men in the U.S. who are 18 years old or older, how common do you 

think each of the heights below is? Using the graph below, indicate the proportion  of men in the U.S. 18 or older 

who are in each height range.    Since all the possible heights are listed, the proportions you give should add up to 

100.  

 

 

 



 

Elicitation Mode: Numeric
3
 

 

 
 

Elicitation Mode: Adjustable Histogram 

 

 

                                                           
3 Note: The outcome order was counterbalanced in all elicitation modes 



 

Elicitation Mode: Choosing between histograms 

 

 

 
 



 

Elicitation: Numeric (Height) 

 
 

 



 

Study 2 Stimuli 

SCENARIO 1: 10 flips 

 
COIN FLIP GAME Imagine that you are going to play the following hypothetical game.  In the game, you would 

flip a  

coin 10 times and you will show the experimenter the result each time.  Each time that it comes up heads, you win 

$1, and each time it comes up tails, you get nothing. In this game, any amount between $0 and $10 is possible, in 

increments of $1.  Using the graph below, indicate the probability of each of the outcomes from 10 coin flips.   (0 = 

no chance, 50 = equally likely to happen or not happen, 100 = certain to happen)  Since all the possible outcomes are 

listed, probabilities you give should add up to 100.  

______ Winning $0  

______ Winning $1  

______ Winning $2  

______ Winning $3  

______ Winning $4  

______ Winning $5  

______ Winning $6  

______ Winning $7  

______ Winning $8  

______ Winning $9  

______ Winning $10  

 

SCENARIO 2: 21 flips 

 
COIN FLIP GAME Imagine that you are going to play the following hypothetical game.  In the game, you would 

flip a coin 21 times and you will show the experimenter the result each time.  Each time that it comes up heads, 

you win 50 cents ($0.50), and each time it comes up tails, you get nothing. In this game, any amount between $0 and 

$10.50 is possible, in 50 cent increments.  Using the graph below, indicate the probability of each of the out-

comes from 21 coin flips.   (0 = no chance, 50 = equally likely to happen or not happen, 100 = certain to hap-

pen)  Since all the possible outcomes are listed, probabilities you give should add up to 100.  

______ Winning $0 to $.50  

______ Winning $1 to $1.50  

______ Winning $2 to $2.50  

______ Winning $3 to $3.50  

______ Winning $4 to $4.50  

______ Winning $5 to $5.50  

______ Winning $6 to $6.50 

______ Winning $7 to $7.50 

______ Winning $8 to $8.50 

______ Winning $9 to $9.50 

______ Winning $10 to $10.50 

 



 

SCENARIO 3: 109 flips 

 
COIN FLIP GAME Imagine that you are going to play the following hypothetical game.  In the game, you would 

flip a coin 109 times and you will show the experimenter the result each time.  Each time that it comes up heads, 

you win 10 cents ($0.10), and each time it comes up tails, you get nothing. In this game, any amount between $0 and 

$10.90 is possible, in increments of 10 cents.  Using the graph below, indicate the probability of each of the out-

comes from 109 coin flips.   (0 = no chance, 50 = equally likely to happen or not happen, 100 = certain to hap-

pen)  Since all the possible outcomes are listed, probabilities you give should add up to 100.  

______ Winning $0 to $0.90  

______ Winning $1 to $1.90  

______ Winning $2 to $2.90  

______ Winning $3 to $3.90  

______ Winning $4 to $4.90  

______ Winning $5 to $5.90  

______ Winning $6 to $6.90  

______ Winning $7 to $7.90  

______ Winning $8 to $8.90  

______ Winning $9 to $9.90  

______ Winning $10 to $10.90 

 

SCENARIO 4: 2 flips 

 
COIN FLIP GAME Imagine that you are going to play the following hypothetical game.  In the game, you would 

flip a coin 2 times and you will show the experimenter the result each time.  Each time that it comes up heads, 

you win $5, and each time it comes up tails, you get nothing. In this game, any amount between $0 and $10 is possi-

ble, in increments of $5.  Using the graph below, indicate the probability of each of the outcomes from 2 coin flips.   

(0 = no chance, 50 = equally likely to happen or not happen, 100 = certain to happen)  Since all the possible out-

comes are listed, probabilities you give should add up to 100.  

______ Winning $0  

______ Winning $5  

______ Winning $10  



 

Study 3 Stimuli 

 

SCENARIO 1: Histogram Drawing 

 

COIN FLIP GAME 

 
Imagine that you are going to flip a coin 10 times and you will show the game administrator the 

result each time. Each time that it comes up heads, you win $1; each time it comes up tails, you 

get nothing. 

 

In this game, any amount between $0 and $10 is possible.  Using the graph below, indicate the 

probability of each of the outcomes from 10 coin flips by drawing a histogram.  For each 

amount, shade in a bar such that the height of the bar represents the probability of that outcome.   
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SCENARIO 1: Histogram Drawing 

 

 



 

Study A4 Stimuli 

 

 
COIN FLIP GAME Imagine that you are going to play the following hypothetical game.  In the game, you would 

flip a coin once, and you will show the experimenter the result.  If it comes up heads, you win $1, and if it comes 

up tails, you get nothing. In this game, either $0 or $1 is possible.  Using the graph below, indicate the probability of 

each of the outcomes from the single coin flip.   (0 = no chance, 50 = equally likely to happen or not happen, 100 = 

certain to happen)  Since all the possible outcomes are listed, probabilities you give should add up to 100.  

______ Winning $0  

______ Winning $1  

Now, we would like to ask you about a DIFFERENT version of the coin flip game. 

 

COIN FLIP GAME Imagine that you are going to play the following hypothetical game.  In the game, you would 

flip a coin 10 times and you will show the experimenter the result each time.  Each time that it comes up heads, 

you win $1, and each time it comes up tails, you get nothing. In this game, any amount between $0 and $10 is possi-

ble, in increments of $1.  Using the graph below, indicate the probability of each of the outcomes from 10 coin flips. 

  (0 = no chance, 50 = equally likely to happen or not happen, 100 = certain to happen)  Since all the possible out-

comes are listed, probabilities you give should add up to 100.  

______ Winning $0  

______ Winning $1  

______ Winning $2  

______ Winning $3  

______ Winning $4  

______ Winning $5  

______ Winning $6  

______ Winning $7  

______ Winning $8  

______ Winning $9  

______ Winning $10  

 



 

Study A5 Stimuli 

 

SCENARIO: Sampling (MBA classroom version) 

 

Sampling Exercise: 
 

Imagine that there is a population in which exactly half of the people prefer Coke to Pepsi, and half prefer Pepsi to 

Coke, and no one is indifferent. 

 

We conduct a survey with 10 people, and there is no sampling bias (everyone has an equal probability of completing 

a survey). 

 

What are the chances of each of the following possible outcomes? Please give a probability between 0% (never) and 

100% (will always happen): 

 

In our sample of 10 people, no one prefers Coke and all 10 prefer Pepsi.         Probability:_______ 

In our sample of 10 people, 1 person prefers Coke and 9 prefer Pepsi.    Probability:_______ 

In our sample of 10 people, 2 people prefer Coke and 8 prefer Pepsi.    Probability:_______ 

In our sample of 10 people, 3 people prefer Coke and 7 prefer Pepsi.    Probability:_______ 

In our sample of 10 people, 4 people prefer Coke and 6 prefer Pepsi.    Probability:_______ 

In our sample of 10 people, 5 people prefer Coke and 5 prefer Pepsi.    Probability:_______ 

In our sample of 10 people, 6 people prefer Coke and 4 prefer Pepsi.    Probability:_______ 

In our sample of 10 people, 7 people prefer Coke and 3 prefer Pepsi.    Probability:_______ 

In our sample of 10 people, 8 people prefer Coke and 2 prefer Pepsi.    Probability:_______ 

In our sample of 10 people, 9 people prefer Coke and 1 prefer Pepsi.    Probability:_______ 

In our sample of 10 people, all 10 prefer Coke and no one prefers Pepsi.         Probability:_______ 

 

TOTAL (should add up to 100):      _________________ 

 
 

 

 

 
 


