Some working definitions (second version)

A grammar G consists of a pair of a set of lexical elements L and a set of operations O: $G = \langle L, O \rangle$ A derivation on a numeration D_N is a pair: a set of lexical elements drawn from L, called the Numeration N, and an ordered n-tuple of phrase markers PM: $D_N = \langle N, \langle PM_1, ..., PM_n \rangle \rangle$ A derivation D_N is said to *converge* iff 1. PM_n contains no unchecked uninterpretable (*u*) features 2. PM_n contains no unchecked strong (*) features 3. PM_n contains no unvalued (:___) features 4. All elements in the Numeration have been Merged 5. For each adjacent pair of phrase markers $\langle PM_k, PM_{k+1} \rangle$ in D_N , there is an operation such that applied to PM_k yields PM_{k+1}.

Feature structures:

A lexical item *LI* has the following feature structure, given in three equivalent notations:

	category features		inflectional features		selo fea	selectional features	
LI	[]	[]	[]	
LI	CAT [INFL [SEL [.]]]		LI	[;]		
Some	example	s:					
see	V [-aux]		[]	и <]	2D TH>	
<i>V</i> _{trans}	CAT	v [-aux]					
	INFL	Infl: : V* uCase:ACC					
	SEL	uV, uD <ag></ag>					

T_{pres}	T [-aux] Infl: Pres	Clause-type: :	[<i>uv</i> , <i>u</i> D*]
dog	N : 3sm	[Case:]	[]

Operations:

Merge(,)

For any syntactic objects , , where bears an unchecked selectional feature F, and bears a matching categorial feature F,

```
call the head and
let = { , { , }}
      call the label (or projection) and
let F be checked (written F), and
let = ____, where _____ is the set of all unchecked non-inflectional features
```

Adjoin(,)

For any syntactic objects , , where neither nor has any unchecked selectional feature,

call the host, and let = { , { , }} call the label (or projection) and let =

 $Move_{head}(X^*, Y)$ (F* on probe) (read: 'X moves to Y')

If X is a head with a strong inflectional feature F*, Y a head with a matching feature F, and X c-commands Y, then

let $X = \{X, \{Y, X\}\}$ and let $F^* = F^*$, and let $Y = \langle Y \rangle$

 $Move_{head}(X, Y^*)$ (F* on goal) (read: 'X moves to Y')

If Y is a head with a strong inflectional feature F*, X a head with a matching feature F, and X c-commands Y, then

let $X = \{X, \{Y, X\}\}$ and let $F^* = F^*$, and let $Y = \langle Y \rangle$ **Agree**(X,Y;F) (read: 'X triggers agreement on Y in F' or 'Y agrees with X in F')

For any syntactic objects X and Y, where X bears a feature F with value Val(F) and Y bears a matching unvalued inflectional feature F': , and either X c-commands Y or Y c-commands X,

let Val(F') = Val(F) and if F is uninterpretable, let F = F

Move_{phrase}(Y, X*) (F* on probe) (read: 'Y moves to specXP')

If X is a projection with a strong feature F*, Y a maximal projection with a matching feature F, and X contains Y, then

let $X = \{X, \{Y, X\}\}$ and let $F^* = F^*$, and let $Y = \langle Y \rangle$

Move_{phrase}(Y*, X) (F* on goal) (read: 'Y moves to specXP')

If Y is a maximal projection with a strong feature F*, X a projection with a matching feature F, and X contains Y, then

let $X = \{X, \{Y, X\}\}$ and let $F^* = F^*$, and let $Y = \langle Y \rangle$

 $Move_{phrase}(Y^*, X^*)$ (F* on both probe and goal) (read: 'Y moves to specXP')

If X is a projection with a strong feature F*, Y a maximal projection with a matching feature F*, and X contains Y, then

let $X = \{X, \{Y, X\}\}$ and let $F^* = F^*$, and let $Y = \langle Y \rangle$ to_{raising} T [-aux] Infl: Inf

uClause-type: [uv, uD^*] $u : ___$