The relation between head movement and periphrasis
Karlos Arregi and Asia Pietraszko
3 February 2024

1 Introduction

In many languages in which the lexical verb moves to T in simple tenses, this movement is impossible in periphrastic tenses. This has been observed in French and many other languages:

(1) a. Elle lisait souvent le livre.
 she read-PST.3SG often the book
 ‘She often read the book.’

b. Elle avait souvent lu le livre.
 she AUX-PST.3SG often read.PTCP the book
 ‘She had often read the book.’

In the simple tense in (1a), the lexical verb moves to T, as diagnosed by its placement to the left of the adverb souvent demarcating the left edge of the VP (Emonds 1978, Pollock 1989). In the periphrastic tense in (1b), the same diagnostic tells us that the lexical verb has not moved to T.

The French constructions above instantiate two out of four possible ways in which head movement could in principle interact with the presence/absence of an auxiliary. The following table represents the four options (the table assumes that T and Aux form a complex head):

(2) V moves to T V doesn’t move to T
 Synthesis S1 T-(V) Adv S2 T Adv [V]
 Periphrasis P1 T-Aux-(V) Adv P2 T-Aux Adv [V]

The option French adopts for synthesis is S1 (synthesis of type 1), in which the lexical verb moves to T. One of the questions we ask here is whether S2 exists, that is, whether there are languages in which the lexical verb and T do not form a complex head via head movement in synthesis. We show in section 3 that S2 indeed exists and is attested in Swahili (we also discuss in that section why English is not a perfect example of this pattern). This difference between French and Swahili is an instance of cross-linguistic optionality in whether T forms a complex head with a verb. We refer to this generalization as T-V Optionality. As for periphrasis, French chooses option P2, in which the lexical verb does not move to T. Thus, a similar question arises as to the availability of P1, that is, a periphrastic construction in which the lexical verb moves to T. Our claim is that such constructions are not attested. As explained in section 2, we view this gap as a ban on head movement of the lexical verb to the auxiliary, what we call the *V-Aux Generalization.1

In section 4, we argue that existing approaches to periphrasis derive one or the other generalization, but not both. In the traditional base-generation approach, the auxiliary verb is generated

1The two questions we raise in this paragraph pertain only to languages that have a synthetic-periphrastic distinction as defined in section 2.
as the head of its own projection, which is present in periphrasis, but absent in synthesis. Since head movement is orthogonal to the presence of this projection, this approach derives T-V Optionality because nothing requires movement of the lexical verb to T in either case. But precisely for the same reason, this approach cannot account for the *V-Aux Generalization, since nothing precludes head movement of the lexical verb to the auxiliary. A different family of approaches builds on the idea that T is an inflectional head requiring a verbal host, and the lexical verb and the auxiliary compete to provide one. This competition derives the *V-Aux Generalization in a way we make precise in subsections 4.2–4.3. However, this approach does not derive T-V Optionality: Since periphrasis arises whenever the lexical verb does not move to T, the approach predicts that in synthesis, this head movement necessarily occurs.

In section 5, we argue that *V-Aux and T-V Optionality can be explained by the combination of two hypotheses proposed in previous literature. The first is that head movement is parasitic on selection (Svenonius 1994, Matushansky 2006, and Preminger 2019). The second is that auxiliaries are merged as specifiers selected by functional heads such as T (Pietraszko 2017:83–157, Pietraszko 2023):

(3) Periphrasis

\[
\begin{array}{c}
\text{TP} \\
T' \\
V_{\text{Aux}} \\
T \\
AspP \\
Asp \\
VP \\
\ldots \ V \ldots
\end{array}
\]

This entails that on this analysis, there is no selectional relation between the auxiliary and the lexical verb, which precludes the possibility of relating them by head movement, deriving *V-Aux. This analysis also accounts for T-V Optionality, as it does not posit a direct link between synthesis/periphrasis and head movement. Instead, the relevant relation is selection: In synthesis, T’s V-selectional requirement is satisfied by the lexical verb, and in periphrasis, by the auxiliary. But, since selection does not entail head movement, this requirement is met irrespective of whether head movement takes place or not.

2 The *V-Aux Generalization

We saw that in French periphrastic constructions, the lexical V doesn’t move to T (option P2 in (2)). We argue in this section that the lack of this movement is principled and that P1 in (2) is not available cross-linguistically. We view this gap as the impossibility of head movement of the lexical verb to the auxiliary, what we call the *V-Aux Generalization. We discuss the precise nature of this generalization, and clarify certain concepts that are crucial in understanding it, such as synthesis, periphrasis, head movement, and complex head formation. We also discuss apparent counterexamples to *V-Aux.

We use the term synthesis to refer to verbal expressions in which the lexical verb bears all the verbal inflection in a clause. The following French example illustrates synthesis in the Imperfect:
In contrast, a *periphrastic* verbal expression additionally contains an auxiliary verb, and verbal inflection is distributed between the lexical verb and the auxiliary, as illustrated by the French Pluperfect in (5).

(5) Elle *av-aît* le livre.
 she *AUX-PST.3SG* read.PTCP the book
 ‘She’d read the book.’

We’re specifically concerned with periphrasis involving *be* or *have* in compound tenses, and not other types of periphrasis such as *do*-support, serial verbs, and others. (See Bjorkman 2011, Pietraszko 2017, and Fenger 2020 for extensive discussion of what sets apart *be/have* periphrasis from other multi-verb constructions.)

The *V-Aux Generalization* (henceforth, *V-Aux*) can be stated as follows:

(6) The *V-Aux Generalization*

In periphrasis, the lexical verb and the auxiliary cannot be related by head movement.

The generalization was illustrated for French in the previous section. In addition to the adverb-placement data shown there, further evidence comes from inversion contexts (in matrix questions), in which the [V-T] complex head moves to C, resulting in inversion of the lexical verb with the subject clitic, as in the following example:

(7) *French synthesis: Main verb moves to T*

\[
\begin{array}{c}
\text{Lis-àìt} \\
\text{read-PST.3SG}
\end{array}
\begin{array}{c}
\text{-elle}
\end{array}
\begin{array}{c}
\text{le livre?}
\end{array}
\]

‘Was she reading the book?’

In periphrastic tenses, the auxiliary and T undergo head movement to C stranding the main verb (8a). While movement of the auxiliary, rather than the main verb, follows from the Head Movement Constraint (Travis 1984, Baker 1988), nothing prevents the main verb and the auxiliary from forming a complex head and moving to C as a unit. In such a case, the auxiliary might take the form of an affix or form a compound with the lexical verb. Nonetheless, the lexical verb and the auxiliary cannot form a complex head that moves to C (8b).

(8) *French periphrasis: Lexical verb does not move to T*

a. *Av-aît* le livre?

 AUX-PST.3SG -she read.PTCP the book
 ‘Had she read the book?’

b. *Av-ait-*lu elle le livre?
 AUX-PST.3SG-read.PTCP -she the book
 ‘Had she read the book?’

The unacceptability of (8b) shows that *V-Aux holds in French.

The pattern we observe in French is a common one crosslinguistically, but there are apparent counterexamples. Apparent exceptions to the *V-Aux Generalization can be observed in languages such as Turkish, in which auxiliaries do seem to form some sort of unit with the lexical verb (Kornfilt 1996, Fenger 2019, 2020). Before we illustrate this, let us look at cases that do not look problematic. Turkish has both synthetic (9) and periphrastic (10) constructions. As in other languages, the auxiliary and the lexical verb are independent in the sense that they form separate phonological words, diagnosed by vowel harmony and stress.

(9) Synthetic definite past: one phonological word
a. (kal-di-niz) stay-PST-2PL
 ‘You stayed.’
 (kal-di-niz)
 stay-PST-2PL
 ‘You stayed.’

b. (gel-di-niz) come-PST-2PL
 ‘You came.’

c. *(kal-di-niz) stay-PST-2PL
 ‘You stayed.’

(10) Periphrastic past conditional: two phonological words
(kal-di) (i-se-niz) stay-PST AUX-COND-2PL
 ‘if you had stayed’

The domain of both vowel harmony and stress is the phonological word. Specifically, all morphemes after the root within this domain harmonize with the root vowel in backness and roundness. (In our examples, we notate back vowels in bold, and front ones are underlined.) In addition, stress within this domain is on the final syllable. According to this diagnostic, a synthetic expression such as those in (9) is a single phonological word, as all morphemes after the root of the lexical verb harmonize with the root vowel, and the final syllable in the verbal expression is stressed. In contrast, a periphrastic expression has two separate phonological words: As show in (10), only the morphemes preceding the auxiliary harmonize with the root of the lexical verb, and the auxiliary and morphemes following it form a separate harmony domain. Accordingly, stress falls on the last syllable of the domain containing the root of the lexical verb. Auxiliary words are phonologically weak, hence the absence of stress in the final syllable of a periphrastic expression (Kornfilt 1996).

Interestingly, periphrastic tenses such as the past conditional expression in (10) can optionally form a single harmony domain, as shown in the following:

(11) Periphrastic past conditional: one phonological word with respect to harmony
 kal-dí-y-sa-niz stay-PST-AUX-COND-2PL
 ‘if you had stayed’
We assume that complex heads created by head movement are mapped to phonological words. If we assumed that this was the only way to generate phonological words we could conclude that Turkish has optional V-to-Aux movement, which would be a counterexample to *V-Aux. However, the other diagnostic for phonological words, namely stress, points to a different conclusion. Recall that in (10), the two diagnostics give the same result, namely that the lexical verb forms a separate domain from the auxiliary with respect to both vowel harmony and stress. This is not the case in (11): While we observe one vowel-harmony domain that includes the lexical verb and the auxiliary, the lexical verb forms a domain of stress that excludes the auxiliary. If the two formed a single stress domain, we would expect the stress to fall on the final syllable of the vowel harmony domain, contrary to fact (cf. *kal-di-y-sa-níz). This means that if we diagnose phonological words by stress, (11) is not a counterexample to *V-Aux.

Kornfilt (1996) and Fenger (2019, 2020) account for this apparent contradiction by proposing that the auxiliary and the lexical verb in (11) are put together not by head movement, but by a different operation that applies optionally. Kornfilt calls it cliticization, while Fenger proposes that it is a late PF operation that applies after Vocabulary Insertion. (The standard assumption is that head movement applies before VI, an assumption that’s crucial in Fenger’s analysis and which we adopt as well.) Furthermore, stress and vowel harmony apply at different stages in the derivation: Stress assignment occurs before cliticization, and vowel harmony, after. Fenger implements it in terms of the following order of operations:

(12) head movement \prec VI \prec stress (\prec cliticization) \prec vowel harmony

Due to the absence of an auxiliary, cliticization does not occur in synthetic tenses, and the domains of stress and vowel harmony are identical. In a periphrastic construction, cliticization, if it applies, makes the domain for vowel harmony larger than the stress domain. This accounts for the misalignment of stress and vowel harmony domains in (11). If there is no cliticization, as in (10), the two domains are aligned. (11) is therefore not a counterexample to *V-Aux, since the lexical verb and the auxiliary are not related by head movement. This conclusion is corroborated by syntactic diagnostics such as coordination (Fenger 2020). It is worth noting at this point that, even though we take head movement to be a syntactic operation, our claims are compatible with the view that it is an early PF operation, as proposed in works such as Fenger 2020 or Harizanov and Gribanova 2019.

Similar observations and analyses have been made for Japanese and Slavic and Bantu languages in which auxiliaries appear to form some sort of domain with lexical verbs (Borsley and Rivero 1994, Migdalski 2006, Pietraszko 2018, Fenger 2020:19–42). The important conclusion for present purposes is that known instances of word formation between a lexical verb and an auxiliary are distinct from head movement. This is manifested by the fact that the lexical verb and auxiliary belong to separate domains for at least some syntactic and phonological processes, contrasting with synthetic expressions. This is exactly what is expected from *V-Aux, which is a ban on relating the lexical verb and the auxiliary by head movement, and says nothing about post-VI building of phonological domains.

3 T-V Optionality

The *V-Aux Generalization discussed in the previous section accounts for the fact that the lexical verb and T are not related by head movement in periphrasis, which rules out option P1 in (2). In
synthetic tenses, on the other hand, the lexical verb and T are in a head-movement relation in some languages, such as French (option S1 in (2)). In this section, we argue that option S2, in which T and the lexical verb don’t form a complex head in synthesis, is also attested. We propose that the crosslinguistic generalization that accounts for the presence of both S1 and S2 is the following:

(13) **T-V Optionality**

Languages vary as to whether T is in a head movement relation with a verb.

That is, in some languages the lexical verb moves to T, and in other, it does not. In fact, we show that this generalization extends to periphrastic constructions: The auxiliary verb moves to T in some languages, but not in others. An obvious candidate for an S2 language is English, which has been analyzed as lacking a head-movement relation between the lexical verb and T (i.a. Bobaljik 1995, Adger 2003, Bjorkman 2011). However, others have argued that T and the lexical verb in English are in fact related by head movement, and that traditional arguments for its absence, such as *do*-support, are better explained otherwise (Arregi and Pietraszko 2021). Another reason is that T in English does trigger head movement of a verb in some constructions: In periphrasis, the auxiliary verb undergoes head movement to T in this language. For these reasons, we do not argue for T-V Optionality using English and instead present much clearer evidence for it from Swahili. In this language, T is never in a head-movement relation with a verb, and there are no complicating factors such as *do*-support.

Like French, Swahili has a synthetic-periphrastic distinction, illustrated here with the Simple Past and the Past Perfect:

(14) A-li-soma.
3SG-PST-read
‘(S)he read.’
Swahili Simple Past: synthesis

(15) A-li-kuwa a-me-soma.
3SG-PST-AUX 3SG-PERF-read
‘(S)he had read.’
Swahili Past Perfect: periphrasis

Furthermore, *V-Aux holds in this language as well. This is shown by the fact that an adverb can intervene between the auxiliary and the lexical verb in the Past Perfect:

(16) A-li-kuwa tayari a-me-soma
3SG-PST-AUX already 3SG-PERF-read
‘(S)he had already read.’

Previous literature has shown that the lexical verb and T in Swahili synthetic constructions, such as (14), do not form a complex head (Barrett-Keach 1986, Ngonyani 1999, Buell 2002, Henderson 2003, Ngonyani 2006, Henderson 2006:68–166). The first piece of evidence that the lexical verb and T are not in the same complex head comes from stress, which in Swahili falls on the penultimate syllable of the phonological word. In synthetic tenses such as the Simple Past in (14), there are two domains for penultimate stress. One consists of the lexical verb stem (and thus includes the lexical verb root), and the other consists of all inflectional prefixes (including T). Thus, the stress pattern for the verb in (14) is (à-li-)(sóma).³

³In (à-li-)(sóma), stress on the first phonological word surfaces as secondary stress. We assume that this is due to
The second argument for the syntactic independence of the lexical verb and T in synthetic tenses has to do with inversion in relative clauses. As shown in (17), in a specific type of relative clause, the agreement and tense complex (a-li-) surfaces to the left of the relative C (cho-). Following Kinyalolo (1991), Ngonyani (1999, 2006), Demuth and Harford (1999), and Henderson (2003, 2006:68–166), we assume this is the result of T-to-C movement. Importantly, the verb is not carried along and is instead stranded after C.

(17) Swahili Simple Past: T moves to C alone

\[
\begin{array}{c}
\text{kitabu a-li-} \\
\text{7book 3SG-PST} \\
\text{the book that (s)he read}
\end{array}
\]

Given this, we conclude that in Swahili synthetic expressions, the lexical verb does not undergo head movement to T, as observed in the literature cited above. If it did, we would expect the verb to surface before the complementizer, contrary to fact (18).

(18) Swahili Simple Past: Lexical verb does not move to C

\[
\begin{array}{c}
\text{kitabu a-li-ki-soma} \\
\text{7book 3SG-PST-7O-read} \\
\text{the book that (s)he reads}
\end{array}
\]

By comparison, recall that T-to-C movement in French carries the lexical verb along in synthesis, a fact that we interpreted in the previous section as evidence that the lexical verb moves to T in this language.

One may be tempted to analyze the contrast in (17–18) in postsyntactic terms, that is, the lexical verb does move to T in synthetic tenses and is thus carried along to C, but is postytntactically displaced to the right of C. This could be viewed as a nonfinality requirement on the relative complementizer, or a finality requirement on the verb, along the lines of Arregi and Nevins 2012:237–340. Evidence against this analysis comes from so-called tenseless relatives, in which the verb does precede the relative complementizer (19). In contrast with tensed relatives, such as (17), tenseless relatives have been analyzed as lacking a TP layer and involving V-to-C head movement (Henderson 2003).

(19) Swahili tenseless relatives: Lexical verb moves to C

\[
\begin{array}{c}
\text{kitabu a-ki-soma} \\
\text{7book 3SG-7O-read} \\
\text{the book that (s)he reads}
\end{array}
\]

Tenseless relatives show that a verb that moves to C is linearized to the left of C. This confirms that in tensed relatives (17), T moves to C alone, stranding the verb. This, in turn, entails that there is no head movement relating the lexical verb and T in Swahili synthetic constructions.

4 If the subject of a relative clause such as (17) is overt, it necessarily follows the verb. See Ngonyani 2006 and Henderson 2006:106–108 for two possible accounts.
This conclusion is supported by evidence from stress. Recall that stress in Swahili falls on the penultimate syllable of the phonological word. In tenseless relatives, stress falls on the penultimate syllable of the entire verbal expression, showing that it is a single phonological word (20). This is expected under the assumption that complex heads created by head movement map onto phonological words.

(20) One stress domain in (19)

\[
\begin{align*}
[C+V \text{ a-ki-soma-cho}] & \rightarrow (\text{a.ki.so.má.cho})_\omega \\
3SG-7O\text{-read-REL7} & \rightarrow \\
\end{align*}
\]

In tensed relatives, however, there are two stress domains:

(21) Two stress domains in (17)

\[
\begin{align*}
[C+T \text{ a-li-cho}] & \rightarrow (\text{a.li.cho})_\omega (\text{ki.só.ma})_\omega \\
3SG-PST\text{-REL7} & \rightarrow 7O\text{-read} \\
\end{align*}
\]

Importantly, the two stress domains align with the complex heads predicted under the claim that the lexical verb does not move to T: The T-C complex head forms one stress domain, and the lexical verb forms the other.

This confirms T-V Optionality for synthesis: The lexical verb moves to T in French synthesis, but not in Swahili synthesis. Interestingly, a parallel contrast between the two languages is observed in periphrasis: In French, T is in a head-movement relation with a verb (the auxiliary), but no such head movement occurs in Swahili. Evidence for this comes again from inversion. As we showed in (8a), repeated below, the auxiliary is carried along to C under T-to-C movement in French:

(22) French Pluperfect: T moves to C carrying along the auxiliary

\[
\begin{align*}
\text{Av-ait} & -elle lu le livre? \\
\text{AUX}\text{-PST.3SG} & -\text{she read.PTCP the book} \\
\text{‘Had she read the book?’} & \\
\end{align*}
\]

In contrast, Swahili auxiliaries behave just like lexical verbs with respect to inversion, as shown in Pietraszko 2023:368–369. The tense-agreement prefix alone inverts with C, leaving the auxiliary behind:

(23) Swahili Past Perfect: T moves to C alone stranding the auxiliary

\[
\begin{align*}
\text{kitabu a-li-} & \text{ cho- } \textbf{kuwa a-me-ki-soma} \\
7\text{book 3SG-PST-7REL-} & \textbf{AUX 3SG-PERF-7O\text{-read}} \\
\text{‘the book that (s)he read’} & \\
\end{align*}
\]

The stress facts confirm this. In (23), the auxiliary forms a separate stress domain from tense inflection and the complementizer: (a.li.cho)_ω (ku.wa)_ω.

The fact that the contrast between Swahili and French holds in both synthesis and periphrasis suggests that the relevant parameter is a property of T, which may or may not require a head-movement relation with a verb, regardless of the identity of the verb (lexical or auxiliary). This is how T-V Optionality is stated above, and how our analysis derives the contrast between the two languages (see section 5).
4 Three existing analyses and their shortcomings

In the previous two sections, we argued that the relation between head movement and the synthesis-periphrasis distinction is characterized by the following two generalizations:

(24) The *V-Aux Generalization
 In periphrasis, the lexical verb and the auxiliary cannot be related by head movement.

(25) T-V Optionality
 Languages vary as to whether T is in a head movement relation with a verb.

In this section, we discuss three approaches to periphrasis and show that none of them can account for both generalizations, and thus cannot capture the correct relationship between head movement and periphrasis.

4.1 The base-generation approach to periphrasis

In this section, we argue that the traditional, base-generation approach to periphrasis derives T-V Optionality but fails to account for *V-Aux. Both predictions are due to the fact that the head movement is orthogonal to the formation of periphrastic constructions.

In this approach, an auxiliary is a lexical item that is merged as a verb (i.a. Ross 1969, Déchaine 1995, Harwood 2014) or functional head (i.a. Tenny 1987, Adger 2003, Cinque 2006) whose complement is a VP (or an extended projection of VP). The structure of the French periphrastic verbal expression in (26) (repeated from (5)) is as in (27–28).

(26) Elle av-ait lu le livre. 'She’d read the book.'

Pluperfect: periphrasis

(27) Base-generation as verb

(28) Base-generation as functional head

On this approach, the source of the auxiliary is the presence of particular functional head, here AspPRF, which, by stipulation, is either selected (27) or realized (28) by an auxiliary. In synthesis, the aspectual head, if present, does not have these properties.

This analysis allows, but does not require, head movement of the auxiliary to T. The same holds for synthetic tenses, in which the lexical verb may or may not move to T. This freedom of movement to T is coextensive with T-V Optionality, as argued for in section 3. However, this same
freedom should allow the lexical verb to move to the auxiliary, at least in some languages. The absence of this movement crosslinguistically (section 2) is accidental on this account. For this reason, this analysis does not derive *V-Aux.

4.2 The head-movement approach to periphrasis

In this section, we discuss the head-movement approach to periphrasis and argue that it makes the opposite predictions to the base-generation approach: It derives *V-Aux but not T-V Optionality. The signature property of this approach is the requirement that T form a complex head with a verb. This requirement is satisfied either by movement of the lexical verb to T (synthesis) or by inserting an auxiliary verb directly in T (periphrasis). *V-Aux is derived because an auxiliary is inserted only when the lexical verb cannot move to T. For this reason, the lexical verb and the auxiliary can never be in the same complex head. On the other hand, synthesis requires head movement of the lexical verb to T (otherwise, auxiliary insertion would occur), which directly contradicts T-V Optionality.

Under the head-movement analysis, the auxiliary verb is not the realization of any verbal or functional head initially merged in the clausal spine. Instead, the auxiliary is a dummy verb inserted in T only in cases when the lexical verb does not move to T, which is possible only in synthetic constructions (Laka 1990:18–25, Arregi 2000, Embick 2000, Schutze 2003, Kornfeld 2004:95–129, Saab 2008:200–221, Fenger 2019, 2020, Calabrese 2019, Cruschina and Calabrese 2021). The basic idea is that T cannot be stranded, which is normally implemented as a constraint, such as (29a).

\[
(29) \text{The head movement approach to periphrasis}
\]

a. T must be in a complex head with a V.

b. (29a) is satisfied by head movement that combines lexical V and T if possible; otherwise, by auxiliary insertion in T.

For instance, in the synthetic Imperfect in French (4), (29a) is satisfied by head movement of the lexical verb to T (30). This movement does not take place in the Pluperfect, triggering insertion of an auxiliary verb in T (31).

\[
(30) \text{Head movement approach: synthesis} \quad (31) \text{Head movement approach: periphrasis}
\]

The reason the lexical verb does not move to T in a periphrastic tense such as the Pluperfect is that a functional head (here Asp_{PRF}) intervenes between T and V, blocking head movement. An important stipulation of this analysis is that whereas Asp_{PRF} blocks V-to-T head movement, other Asp heads do not.\(^5\)

\(^5\)A possible alternative implementation of the head movement approach would assume that there is no Asp projection in synthesis. We include this projection here following Embick (2000) and Fenger (2019, 2020). This detail does not affect our criticism of this approach below.
This derives *V-Aux as follows. Under this account, an auxiliary is only ever inserted in a stranded T, that is, a T that is not already in a complex head with a verb. This logically precludes the cooccurrence of an auxiliary and a lexical verb in the same complex head. However, this account is incompatible with T-V Optionality: In synthesis, the lexical verb necessarily moves to T; in periphrasis, the auxiliary is inserted directly in T, producing the same outcome as obligatory head movement of the auxiliary to T.

In sum, while the head-movement approach can derive *V-Aux, it is incompatible with T-V Optionality. The base-generation approach faces the opposite problem:

<table>
<thead>
<tr>
<th>Analysis</th>
<th>*V-Aux</th>
<th>T-V Optionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base generation</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Head movement</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>

In the next section, we consider a third existing type of approach, and argue that it faces the same problems as the head-movement approach.

4.3 The stranded-feature approach to periphrasis

The head-movement approach discussed in the previous section can be described as involving insertion of an auxiliary verb in a stranded head, namely a head that is not already in a complex head with the lexical verb. A similar approach based on a featural relation has been proposed by Cowper (2010) and Bjorkman (2011) – in those accounts, what ends up stranded is a feature of a functional head, rather than a head itself. The repair strategy is the same as in the head movement approach, namely auxiliary insertion in the head that carries that stranded feature. In this section, we discuss Bjorkman’s implementation of this approach, and argue that, because of its similarities with the head-movement approach, it also derives *V-Aux but fails to derive T-V Optionality in either synthesis or periphrasis.

Following Adger (2003), Bjorkman (2011) assumes that some functional heads have a valued [iINFL] feature. For instance, a past tense T has [iINFL:PST]. Lexical verbs, on the other hand, have an unvalued [uINFL:] counterpart of this feature. In a synthetic construction such as (33), the [uINFL:] on V enters into an upward Agree relation with [iINFL] in T:

(33) A-li-soma.
 3SG-PST-read
 ‘(S)he read.’

(34) Synthesis: V agrees with T

```
Swahili Simple Past: synthesis
```

```
TP
   T  AspP
     [iINFL:PST]
     Asp  VP
         V
       Agree [uINFL:PST]
```
Notably, this account of synthesis need not involve a head-movement relation between T and the lexical verb, and therefore may be understood as deriving T-V Optionality. However, other details of the analysis crucially make it impossible to account for the facts that support T-V Optionality, as explained below.

In Bjorkman’s theory, while [uИНФ] features may be relevant for semantic interpretation, [uИНФ] plays a pivotal morphosyntactic role: (i) it is the feature exponed by tense inflection, and (ii) it is the feature that must be in a (complex) head with a verb, that is, it’s the feature that can’t be stranded. As shown in (34), [uИНФ] in V is the only such feature present in a synthetic construction, so the requirement that it occur in the same head as a verb is met. Importantly, this [uИНФ] in V is what’s realized as tense inflection in (33). Consequently, tense inflection and the lexical verb are necessarily located in the same head in this analysis. This makes it impossible to account for the Swahili inversion facts, which, as discussed in the previous section, demonstrate that tense inflection is syntactically independent of any verb. For this reason, the stranded-feature approach fails to derive T-V Optionality, in the sense that it cannot account for the facts that support it. As discussed below, this approach also fails to derive T-V Optionality in periphrasis.

Even though T-V Optionality is a problem for this approach, it does derive *V-Aux. Just like the other approaches reviewed in this section, the stranded-feature approach makes a stipulation specific to perfect aspect that plays a role in deriving periphrasis in this aspect. Specifically, Bjorkman proposes that Asp

perfect has its own [uИНФ] features. As shown above, the Asp head present in synthetic tenses does not have such features. Thus, in the Swahili Past Perfect (35), there are two [uИНФ] features (in V and Asp), and each is valued by the head immediately above it (Asp and T, respectively), as shown in (36).

(35) A-li-kuwa a-me-soma

3SG-PST-AUX 3SG-PERF-read.

’S’he had read.’

(36) **Periphrasis, step 1: V agrees with Asp, Asp agrees with T**

Because of this, [uИНФ] in Asp is stranded, that is, it is not in a complex head with a verb. This stranded feature triggers insertion of an auxiliary in Asp to satisfy this requirement:6

6Another way to satisfy this requirement would be by V-to-Asp movement, which would bleed auxiliary insertion in Asp. This is observed in Latin; see Bjorkman 2011:69–76.
After auxiliary insertion, tense inflection (i.e. the exponent of $[uINFL{:}PST]$ in Asp) is in a complex head with a verb. This account derives *V-Aux in a similar way to the head-movement approach: Because the auxiliary is only inserted in a head with a stranded feature, that is, a feature that is not already in a complex head with a verb, the auxiliary cannot logically cooccur in the same complex head as the lexical verb. However, for the same reason, tense inflection is necessarily in the same complex head as the auxiliary. It therefore fails to predict T-V Optionality in periphrasis, just like it does for synthesis. As we argued in the previous section, tense inflection in Swahili is not in the same complex head as the auxiliary.\(^7\)

4.4 Tacking stock

The following table summarizes the predictions made by the three different approaches with respect to *V-Aux and T-V Optionality:

<table>
<thead>
<tr>
<th>Analysis</th>
<th>*V-Aux</th>
<th>T-V Optionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base generation</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Head movement</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Stranded feature</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>

Consider the base-generation approach first (39). Since the auxiliary is merged, rather than inserted directly in T, it may, but need not, form a complex head with T, depending on whether head movement applies. This derives T-V Optionality. However, the same is true of the relation between the auxiliary and the lexical verb: Nothing prevents head movement of the lexical verb to the auxiliary, which makes this account unable to derive *V-Aux.

\(^7\)Pietraszko (2023) entertains a modification of the stranded-feature approach that shifts the focus from $[uINFL]$ to $[iINFL]$. As shown by Pietraszko, this modification correctly predicts T-V Optionality in synthesis, but fails to derive it in periphrasis. A different modification of the analysis is to assume that inflectional exponents realize $[iINFL]$, not $[uINFL]$ features, but that the latter are still the trigger of auxiliary insertion. These assumptions would predict T-V Optionality in synthesis. However, this would incorrectly predict that, in periphrastic constructions, the auxiliary would form a complex head with the perfect aspect prefix, since this prefix would be the realization of $[iINFL{:}PRF]$ in Asp – the head in which the auxiliary in inserted (see (37)). As we show above, the perfect aspect prefix is in a separate complex head than the auxiliary as the two can be separated by adverbs (16). Therefore, neither modification would completely solve the problems with the stranded-feature approach.
(39) **Base-generation approach**

```
TP
 T  V_{Aux}P
  +  +
V_{Aux}  VP
  +  +
   V  ...
```

- Virtue: The auxiliary is merged, not inserted directly into a complex head with T.
- Vice: The auxiliary and lexical verb are relatable by head movement.

As we showed above, the auxiliary and the lexical verb are not relatable by head movement in the other two approaches (40), allowing them to derive *V-Aux. This advantage is, however, brought about by the requirement that T form a complex head with a verb, which is in turn incompatible with T-V Optionality.

(40) **Head-movement and stranded-feature approaches**

```
TP
 V_{aux}+T  VP
  +  +
    V  ...
```

- Virtue: The auxiliary and the lexical verb are not relatable by head movement.
- Vice: The auxiliary is inserted directly into a complex head with T, not merged.

In the next section, we argue that there is no necessary connection between the virtue and the vice of each of these approaches. We propose an analysis that maintains the virtues of both types of approaches without inheriting any of their vices.

5 **A selection-based theory of the relation between head movement and periphrasis**

In this section, we argue that *V-Aux and T-V Optionality can be derived from two existing claims: i) that auxiliaries are selected by T as specifiers (Pietraszko 2017, 2023) and ii) that head movement is parasitic on a selectional relation (Svenonius 1994, Julien 2002:52–98, Matushansky 2006, Pietraszko 2017, Preminger 2019). The idea to incorporate these two claims into a theory of periphrasis was originally proposed in Pietraszko 2017. Here, we develop a detailed analysis in this vein and demonstrate how it derives the two generalizations. In brief, since the auxiliary is merged as a specifier of T (41), it need not end up in the same complex head as T (virtue 1), which derives T-V Optionality in periphrasis. For the same reason, the auxiliary is not in a selectional relation with the lexical verb, unlike in the base-generation approach. We claim that the absence of this selectional relation is the reason why these two elements are not relatable by head movement (virtue 2), which derives *V-Aux.
Selection-based approach

The following table compares the analysis with previous approaches (see (39) and (40)):

<table>
<thead>
<tr>
<th>Virtue 1</th>
<th>Virtue 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{aux} is merged</td>
<td>V_{Lex} and V_{Aux} not relatable by HM</td>
</tr>
<tr>
<td>Base generation</td>
<td>✓</td>
</tr>
<tr>
<td>Head movement</td>
<td>✗</td>
</tr>
<tr>
<td>Stranded feature</td>
<td>✗</td>
</tr>
<tr>
<td>Selection</td>
<td>✓</td>
</tr>
</tbody>
</table>

We start with the derivation of synthesis first and then turn to periphrasis, focusing on how the generalizations are derived in each construction.

5.1 Synthesis

In this subsection, we present our analysis of synthesis and show how it derives T-V Optionality. We illustrate our analysis with the Simple Past in Swahili and the French Imperfect. Recall that, even though both are synthetic, the lexical verb moves to T in French, but it does not in Swahili. This point of variation is what we refer to as T-V Optionality.

As is standardly assumed, Merge of a head with its complement is licensed by a selectional feature on the head. For the Swahili Simple Past, T selects for Asp, Asp for Voice, and Voice for V. As shown in (43), we formalize selectional feature checking as deletion of the value of a feature with attribute Sel. Furthermore, we build on previous literature proposing that functional projections in the extended projection of the verb are themselves verbal (Abney 1987:54–88, van Riemsdijk 1990, 1998, and Grimshaw 1991, 2000). Following Keine 2019, we implement this idea by projecting the category of the complement of the functional head as well as its own category. The first few steps of the derivation of a synthetic construction are thus the following:

8For simplicity, we assume that AspP is projected in both synthetic and periphrastic tenses in French and Swahili, although the analysis we propose is compatible with the absence of AspP in synthetic tenses.
Following previous work on the synthesis-periphrasis distinction, we adopt the hypothesis that T has a V-selectional requirement (Déchaine 1995, Cowper 2010, Pietraszko 2017). Specifically, we propose that T selects both for the category of the complement and for V, as shown in (45). In synthesis, both selectional requirements are met by the complement of T, due to category projection:

(45) **Merge of T and AspP: T selects for both Asp and V**

This completes the syntactic derivation of synthetic tenses in languages like Swahili. Importantly, this derivation of synthesis doesn’t necessitate head movement of the lexical verb to T, but it is compatible with this process, as we show below for French.\(^9\) That is, the analysis accounts for the fact that a head-movement relation between the lexical verb and T in synthesis is optional crosslinguistically, that is, T-V Optionality holds.

In languages such as French, the derivation additionally involves head movement of the lexical verb to T. Recall our hypothesis that head movement is parasitic on selection. We implement

\(^9\)The Swahili case might involve head movement of the lexical verb to a lower position, but crucially, not all the way up to T. We abstract away from this here.
this as follows: A head that triggers head movement has a selectional feature whose attribute is \(^{\ominus}\text{Sel}\), instead of simply \text{Sel}. For instance, an Asp head that triggers head movement has the selectional feature \([^{\ominus}\text{Sel}]:\text{Voice}\). Specifically, after the value of the selectional feature is checked, the remaining valueless \([^{\ominus}\text{Sel}]:\) is what triggers head movement:

\[(46)\quad \text{Head movement}\]

a. Structural description: a node \(X\) with the feature \([^{\ominus}\text{Sel}]:\), and \(Y\), the head of \(X\)’s sister.
b. Structural change: replace the head \(H\) of \(X\) with \([Y\ H]\), and \([^{\ominus}\text{Sel}]:\) in \(X\) with \([\text{Sel}]:\).

Since in French the lexical verb moves all the way up to \(T\), all functional heads have \(^{\ominus}\text{Sel}\). We illustrate the effect of \(^{\ominus}\text{Sel}\) with the first part of the derivation involving Voice and VP:

\[(47)\quad \text{Merge of Voice and VP followed by head movement}\]

\[
\begin{array}{c}
\text{Voice} \\
[\text{Cat:Voice}, \text{Sel}:] \\
\text{VP} \\
[\text{Cat:V}] \\
\rightarrow \\
\text{VoiceP} \\
[\text{Cat:Voice, V}] \\
\rightarrow \\
\text{VoiceP} \\
[\text{Cat:Voice, V}] \\
\end{array}
\]

After Merge of Voice and VP, the selectional requirement of Voice is satisfied, leaving a valueless \([^{\ominus}\text{Sel}]:\) that triggers head movement of \(V\) to Voice. Further head movement all the way up to \(T\) is derived in the same way:

\[(48)\quad \text{Voice-to-Asp movement in French}\]

\[
\begin{array}{c}
\text{Asp} \\
[\text{Cat:Asp}, \text{Sel}:\text{Voice}] \\
\text{VoiceP} \\
[\text{Cat:Voice, V}] \\
\rightarrow \\
\text{AspP} \\
[\text{Cat:Asp, Voice, V}] \\
\end{array}
\]
To summarize so far, the analysis derives that synthetic expressions can involve head movement, as in the French Imperfect, but need not, as in the Swahili Simple Past. This analysis, then, derives T-V Optionality in synthesis.

5.2 Periphrasis

In this subsection, we present our analysis of periphrasis and show how it derives T-V Optionality in periphrasis, as well as *V-Aux. We illustrate our account with the Swahili Past Perfect and the French Pluperfect.

As mentioned above, we claim that T selects for V in addition to the category of its complement. In a synthetic tense, the V-selectional feature of T is satisfied by T’s complement (AspP) because of category projection from VP all the way up to AspP (see subsection 5.1). In contrast, periphrasis arises when T’s V-selectional feature is not satisfied by T’s complement. We propose that this occurs when T’s complement doesn’t participate in category projection, i.e. it doesn’t inherit the category features of lower projections. This is how our analysis implements the difference between functional projections that trigger periphrasis, such as the perfect AspP in Swahili, and those that do not. Parallel stipulations are needed in other approaches, as reviewed in section 4.

Consider the derivation of Swahili Past Perfect below, which proceeds the same way as synthetic tenses, but only up to AspP. Unlike the type of AspP found in synthesis, perfect AspP doesn’t inherit the category of lower projections. Because of this, the category of AspP is just [Cat:Asp]—crucially, it does not include V. Consequently, T’s V-selectional feature remains unchecked after T is merged:
We propose that unsatisfied selectional features percolate to the phrasal level, here to TP:

(51) **Sel-feature percolation**

The [Sel:V] feature in TP triggers Merge of TP with an element of category V, a process referred to as *cyclic selection* in Pietraszko 2017, 2023:

(52) **Auxiliary merged as the specifier of T**

The V in the specifier of T is realized as auxiliary *be* (*kuwa* in Swahili). This completes the syntactic derivation of the Swahili Past Perfect. Importantly, no head movement applies between the auxiliary and T, in compliance with T-V Optionality. Evidence against this head-movement relation is given in section 3.\(^{10}\)

\(^{10}\)Recall that, as in Turkish, the inflectional complex in Swahili cliticizes onto a verb (here, the auxiliary) post-syntactically (see footnote 3). This cliticization process is responsible for the surface order in which the inflectional material is linearized to the left of the verb.
In summary, synthesis arises when T’s V-selectional feature is satisfied by the [Cat:V] feature projected from the lexical verb. Periphrasis is Merge of a new V to satisfy the V-selectional requirement of T when it cannot be satisfied this way.\(^\text{11}\) As shown above, this occurs when T’s complement is not verbal.\(^\text{12}\)

The derivation of the French Pluperfect is the same as the Swahili Past Perfect: Because perfect AspP is not verbal, an auxiliary is merged in the specifier of T to satisfy T’s V-selectional requirement. As discussed for synthesis in section 3, unlike Swahili, T triggers head movement in French. This correctly predicts that some head undergoes movement to T in periphrasis as well. Importantly, in this case, what undergoes head movement is the auxiliary in the specifier of T. The relevant \[^{\circ}\text{Sel:}\] feature is in TP, which according to our definition of head movement in (46), triggers movement of (the head of) its sister to its own head (T):

\[(53) \quad \text{Head movement of auxiliary V to T} \]

\[
\begin{array}{c}
\text{TP} \\
\begin{array}{c}
\text{[Cat:T,Asp,V]} \\
\text{V} \\
\text{T'} \\
\text{AspP} \\
\text{[Cat:Asp]} \\
\text{T} \\
\text{Asp VoiceP}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\text{TP} \\
\begin{array}{c}
\text{[Cat:T,Asp,V]} \\
\text{V} \\
\text{T'} \\
\text{AspP} \\
\text{[Cat:Asp]} \\
\text{T} \\
\text{Asp VoiceP}
\end{array}
\end{array}
\]

Although this looks like lowering, the locality condition imposed by our version of head movement is the same in all cases, namely sisterhood. In the standard case of head movement, the trigger is in the head, resulting in head movement out of the complement. In (53), however, the trigger is in the projection of the head, resulting in head movement out of the specifier. In both cases, however, the structural relation is the same: The moved head is the head of the selectee.

Recall that our analysis links head movement to selection: X can move to Y if it satisfies a selectional requirement of Y. It follows from our definition of head movement in (46) that, if more

\[^{11}\text{In this paper, we concentrate on periphrastic constructions in which the auxiliary is finite, that is, those in which}
\text{the auxiliary satisfies a V-selectional feature in T. Functional heads other than (finite) T can also have a V-selectional}
\text{feature that triggers periphrasis, as can be observed, for instance, in sentences with multiple auxiliaries, such as English}
\text{She had been reading: The higher auxiliary have satisfies the V-selectional feature in T, and the lower auxiliary be}
\text{satisfies the V-selectional feature in a lower head (presumably perfect Asp).}\]

\[^{12}\text{Lack of a verbal complement is a necessary condition for periphrasis, but it is not sufficient: If T doesn’t have}
\text{a V-selectional feature, an auxiliary will not be merged. This the case in Swahili Present Perfect, which is synthetic}
\text{despite perfect AspP being non-verbal. This is because, we claim, present T in this language lacks a V-selectional}
\text{feature. This distribution of periphrasis is termed the overflow pattern by Bjorkman (2011), who derives this pattern}
\text{from featural underspecification of some functional heads. In some languages, like Swahili (but unlike French or}
\text{English), present T is less featurally specified than past T. In our terms, this underspecification is implemented as the}
\text{absence of a V-selectional feature.}\]
than one element satisfies the selectional requirement of a head, head movement must occur from the last such element. This is because head movement is triggered by a valueless \(^{\circ} \text{Sel:} \) feature. Consider the case of T, which has two selectional requirements (Sel:Asp,V). In synthesis, both are satisfied by T’s complement AspP and so Asp undergoes head movement. In periphrasis, however, the complement of T satisfies only one of those requirements, namely Asp. The V-selectional requirement is satisfied by the auxiliary at a later step, after the Sel:V feature projects to T’. Since it’s the auxiliary that makes T’s Sel feature valueless, it must be the auxiliary that undergoes head movement to T.

The selection-based analysis of periphrasis derives *V-Aux in the following way. First, the lexical verb embedded in AspP in (53) cannot undergo head movement to the auxiliary in the specifier of T because the two are not in a selectional relation (unlike in the base-generation analysis). Furthermore, they cannot both end up in T by head movement since, as we explained in the previous paragraph, only the auxiliary can undergo head movement to T in periphrasis.

Our analysis derives the complementarity between moving the lexical verb and the auxiliary to T, without positing that the auxiliary is inserted directly into T (as in the head movement and stranded feature approaches). Whether the auxiliary moves to T in a language depends on the properties of T. This derives not only T-V Optionality (T triggers head movement only in some languages), it also derives uniformity of head movement across synthesis and periphrasis within a language: Since French T triggers head movement, it forms a complex head with a verb in both synthesis and periphrasis. In Swahili, T doesn’t trigger head movement and so neither the lexical verb nor the auxiliary move to T in this language.

6 Conclusion

In this paper, we argued that a selection-based theory of periphrasis combined with a selection-based theory of head movement correctly predicts two generalizations: That the lexical verb and the auxiliary cannot be related by head movement (*V-Aux) and that languages vary as to whether T is in a head-movement relation with a verb (T-V Optionality). *V-Aux follows from the view that T’s verbal selectional requirement is satisfied by different elements in synthesis and in periphrasis: by the lexical verb in the former and by the auxiliary in the latter. Assuming that head movement is parasitic on selection, we derive that in synthesis, only the lexical verb can move to T, and in periphrasis, only the auxiliary can do so. Given this analysis, T-V Optionality is simply a consequence of lexical variation as to whether T triggers head movement or not.

References

