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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 98, Number 1, September 1986 

THE EIGENFUNCTIONS OF COMPACT WEIGHTED 
ENDOMORPHISMS OF C(X) 

HARALD UHLIG 

ABSTRACT. In this note we characterize the eigenmanifolds of compact op- 
erators uCp: f -+ u * f o ? on C(X) and determine their ascents. As an 
application we show an easy method for computing the eigenmanifolds of a 
matrix with at most one nonzero element in each row. 

In the sequel X will always denote a compact Hausdorff space, u a function in 
C(X), and 4 a continuous function from X to X. Let 4Dn be the nth iterate of 4; 
i.e., 4o(x) = x and 4n(x) = (n-i(x)) for n > 0 and x E X. c E X is called a 
fixed point of 4T of order n if n is a positive integer, 4Tn(c) = c, and 4k(C) - c for 
k= 1,... ,n- 1. 

By uCt we denote the operator uCo: f -* u. f o 4 on C(X). This is a weighted 
endomorphism, and every weighted endomorphism may be represented in this way 
(see Kamowitz [1]). Kamowitz [1] proved the following result: 

THEOREM A. Suppose X is a compact Hausdorff space, u in C(X), and a a 
continuous function from X into X. 

(1) The map uCt: f -+ u. f o 4? is compact iff for each connected component C 
of {xlu(x) :$ O} there exists an open set V D C such that a is constant on V. 

(2) If uC. is compact, then o(uCo) \ {O} = {AlAn = U(C) ... Uni(c)) for 
some positive integer n and some fixed point c of 4? of order n, A $ O}. 

Our aim here is to characterize the eigenfunctions of a compact uC.. To do that 
we need some more notation: We always assume that 4 satisfies the conditions of 
Theorem A(1) so that uC. is compact. We call x, y E X equivalent (x y) if 
there exist n, m in {0, 1, 2, ... .} so that ~n(x) = y and 4!m(Y) = x. The equivalence 
classes are denoted by [x]. For any A in C \ {0} let Cx {c in XIc is a fixed 
point of X of order n for some positive integer n and An = u(c) ... U0Pn_i(cW} 
Obviously if x y and x in CX, then y is in CX, so let CA := {[x]lx is in 0x4 and 
m>, be the number of equivalent classes in CA. mA is finite by Theorem B and the 
compactness of uC.. For every c E CA let hc,A denote the following function from 
X to C or R respectively: 

ArA(X) ... U ('r(X)) for every r in {0, 1, 2 ... .} and x E 
hc,AO(x) = otherwise. 

It is easy to see that hc, x is well defined (remember that e.g. c is in every 4>k 1({c}) if 
c is a fixed point of 4 of order n, but then Akn = u(c) ... U(44kni(c))). Furthermore 
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90 HARALD UHLIG 

{hc1,A,... hCk, is linearly dependent iff, for some i 7$ j, ci cj. Finally, let 
Wo := W := {xlu(x) 5$ O} and Wk := (W n Wk-l) for k > 0. For additional 
notation see Taylor [2]. 

The principal result of this note is the following theorem. 

THEOREM B. (1) Let A E a(uCt) \ {O} and {cl,..., Cm } be representa- 
tive elements of all equivalence classes in C>. Then {hc1,A, .. ., hcm,x } is a basis for 
N (A-uCt) and a(A -uCt) = 1, where a(A -uCt) denotes the ascent of A - uCt . 

(2) The case A = 0: If n > O, then NV((uCt)n) = {f E C(X)If(x) = O for every 
X E Wn} 

Notice that (1) also states that the functions hc,x are continuous. 
We will break up the proof by proving several propositions. 
PROPOSITION 1. Let A E a(uCt) \ {O}. Then hc,A is an eigenfunction for A 

for every c E C>; that is, 
(i) Ahc,A(x) = u(x)hc,A(4D(x)) for all x E X, 
(ii) hc,A is continuous. 

PROOF. (i) Let x E X. If x E 4-r({c}) for some r > 0, then 

Ahc(x) = u(x)(A -(r-l)u(4D(x)) ... U(4Dr(x))) = u(x)hc,x(4D(x)) 

If x ? 4r-1({c}) for every r > 0, then the same is true for (x), so Ahc,A(x) = 0 = 
u (x) hc,,x (4P(x)). 

(ii) (1) Since u is continuous, B = {xI Iu(x)I > IAI} is compact. As W may 
be covered with open sets V3, so that 4 is constant on each V3, 4(B) is finite, of 
cardinality N, say. Let x E X such that hc, (x) 7$ 0, and r the minimal number so 
that x E -1({c}). Now x, 4(x), . . ., r(x) are distinct, whence 

Ihc,A(x)l = Iu(x)/AI * Iu(4(x))/Al ... IU(r-i(x))/AI * Iu(c)I 

< max{1, (IIulloo/IAI)N}. Iu(c)I =: M. 

Therefore hcx, is bounded on X. 
(2) Let x E X. If u(x) = 0, then hc,A(x) = 0 and for every E > 0 there is a 

neighborhood U of x so that Iu(y)I < EIAI/M for every y E U. Therefore 

Ihc,X(y)I = IAK-'Ihc,A(4(x))I Iu(y)I < E 

for every y E U and thus hc>, is continuous at x. If u(x) $ 0, then 4T is constant 
on an open neighborhood U of x and therefore 

Ihc,A(x) - hc,x(y)l = IAK-1Ihc,A(4(x))I lu(x) - u(y)I < E 

for a suitable neighborhood U' C U of x and every y E U'. So hc,x is continuous. 

PROPOSITION 2. Let A E a(uCo), A $ 0, and f an eigenfunction for A. Then 
(i) For every c E CA there exists a(c) such that f(x) = a(c)hc,.X(x) for every 

r>0 O and x E D-1({c}). 
(ii) If x ? 4y- 1({c}) for every c E CA and r > 0, then f (x) = 0. 

PROOF. (i) Let c E Cx and a(c) := f(c)/u(c) (remember A $ 0!). Then for 
r > 0 and x E 4T-7({c}) we have by iteration 

f(x) = A-ru(x)u(4(x)) ... U(4 r -(X))f( r( )) = a(c)hc,A(x). 
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ENDOMORPHISMS OF C(X) 91 

(ii) This part of the proof is actually the same as for Proposition 4 in [1] and is 
repeated here for the sake of completeness: 

Let x 5 1y '({c}) for every c E Cx, r > 0. If x is a fixed point of 4, of order 
n, say, then by iteration f(x) = A-nu(x) . u(0>n- (x))f(x) and, since x ? CX, we 
conclude that f(x) = 0. 

If x E r -({c}) for some fixed point c ? CA and r > 1, then, since f(c) = 0, we 
have f(x) = A-ru(x) ... u(4r-i(X))f(c) = 0. 

Finally, we may suppose that all 4r(x) are distinct. Let 6 := IAI/2. Since 
B := {xI Iu(x)I > 6} is compact and by Theorem A W may be covered by open sets 
on which TX is constant, 4D(B) is finite, of cardinality N, say. Therefore for every 
n > N 

If(x)| = Iu(x)/AI Iu(1D(x))/A| ... I u(4Dn- (x))/AI If( Ob(n))I 
? (IIuloo/IAI)N2N-nlfKo -o 0 (n -- oo) 

Thus f(x) 0. Q.E.D. 
Let {Cj,... , cm,\} be representative elements of all equivalence classes in CA. 

Then {hc1 ,A, I . hc,,,, is a basis for NM(A - A) if 0 5 A E a(uCD). So what 
remains to be done for part (1) of Theorem B is 

PROPOSITION 3. Let 0 5$ A E a(uCo) and f E N((A - UCt)2). Then f E 
N.(A - uCt). 

PROOF. Since g := (A-uCD)f is an eigenfunction for A, we know by Proposition 
2 that if x is not in D- 1({c}) for some c E CA and r > 0, then g(x) = 0. If c E Cx 
there exists a(c) so that g(x) = a(c)hc,A(x) for every r > 0 and x E r'({c}) by 
Proposition 2, so we have to show that a(c) = 0. Let c be of order n. Since by 
iteration 

f =n. * + (uC' 
)n fK 

evaluation at c yields 
f(c) = na (c)hc,A(c)/A + f(c), 

for g is an eigenfunction and An = u(c)... u(On, (c)). Therefore a(c) = 0. 
So far we have proved Theorem B(1). Part (2) follows from 

PROPOSITION 4. (uC(D)kf = O X f(x) = 0 for every x E Wk. 

PROOF. By induction: 
(=*) Let k = 1 and uCtf = 0. Then for any x E W we have 0 = U(XV 0DW), 

whence f(4D(x)) = 0. If k > 1 and (uCO)kf = 0, we know by induction that 
u(x)f(4?(x)) = 0 for every x E Wk-l. Furthermore, if x E W, then u(x),h 0, so 
that f(4(x)) = 0. Thus f vanishes on Wk. 

(=) Let k = 1 and f(x) = 0 for every x E W1. For x E X either x E W and 
therefore f(4b(x)) = 0 or x ? W and u(x) = 0. Thus uC4f = 0. Now let k > 1 
and f(x) = 0 for every x E Wk. We have to show that u(x)f(4?(x)) = 0 for every 
x E Wk-l, because then the assertion follows by induction hypothesis. But this 
is trivial since either x ? W and u(x) = 0, or 40(x) E Wk and f(4?(x)) = 0, if 
x E Wk l 

EXAMPLE 1. We want to give an example for Theorem B(2) that the case 
AI((uC,)') $4 VA((uCD)n+l) for ever n may occur. Let X := {O} U {1/nln E N} 
with the topology induced by the usual topology on R so that X is compact. Let 
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92 HARALD UHLIG 

u(x) = x and 4(1/n) = 1/(n + 1), 4(O) = 0. These are continuous functions 
satisfying the conditions of Theorem A. Therefore uC. is a compact operator on 
C(X), where C(X) may obviously be identified with c(N) := {(an)nENI limS,BOO an 
exists}. Since there are no fixed points c $ 0 of 4 of any order, a(uCt) = {O} by 
Theorem A. Now Wk = {x E X|O < x < l/k}, so .V((uCt)k) = {(an)lan = 0 for 
every n > k} and the union of all N((uCt)k) is exactly the set of all (an) satisfying 
an= 0 for all but finitely many n. 

EXAMPLE 2. We give an application of our results to the finite-dimensional case. 
Let X = {1, ... , n} with the discrete topology. Then C(X) will be identified with 
Kn, where K = C or K = R is the underlying scalar field. Every linear operator 
may (and will) be identified with the matrix (aij)l<i,j<n with ai3 = (A6j)(i), where 
6j(j) = 1, 6j(i) = O if i j. 

4 

0 00 000 1 0 

0 0 0 0 1 0 5 -2 

0 0 0 0 0 2 1 6 - 

3 00 0 00 o 
0 4 0 0 0 0 0 4 

0 5 0 0 0 0J 3 2 5 

u(uC.) = {-2, 0, 2} 

XA(A) = {(Xn)IX= X2 =X5 =X6 = 0} .AI(A2) = {(Xn)IX5 X2 = 0} = Jl(A3). 

If A = uC., then aij = u(i) if j = 4t(i) and aij = 0 otherwise, so there is at 
most one nonzero element in each row. Conversely let A have this property. Then 
for i = 1,... , n let j = 4>(i) and u(i) = aij, if aij is the unique nonzero element in 
row i. If aij = 0 for all j = 1, . . . , n we let i = 4>(i) and u(i) = 0. Then obviously 
A= uCo. 

Now the eigenvalues and eigenvectors are easily determined: first find out all 
cycles of C. e.g. by drawing n dots with numbers 1, ... , n and an arrow from dot 
j to dot i if 4(i) = j, adding u(i) to that arrow for later purposes. For each cycle 
multiply all the u(i) of this cycle and calculate the kth roots, where k denotes the 
number of elements of this cycle: these are all eigenvalues possibly except 0. 

Take one eigenvalue A #- 0 and a cycle corresponding to that A. Choose an 
arbitrary dot j, say, of that cycle and set xj := u(j). Now follow the arrows. If you 
reach dot i from dot k let xi be the product of A-lui and xk. When you are done 
with all the dots which belong to the "connected component" containing the cycle 
set all other xi = 0. This is an eigenvector for A. 

If you do this for every cycle corresponding to A you get a basis for the eigenspace 
)1(A -A). 

In order to determine .A(Ar) remove all arrows where ui = 0. Now NM(A) consists 
of all (Xk), where Xk = 0 if there is a directed path of length one starting in dot 
k (to dot k itself or any other dot), and Xk is arbitrary otherwise. Similarly for 
)1(Ar), r > 1: "one" has to be replaced by "r" and it is allowed to "use" the same 
arrow more than one time. 
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ENDOMORPHISMS OF C(X) 93 

There is a diagonalization for A iff A/(A) = 1 (A2). Of course all these results 
are easily obtained by direct verification as well. 
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