

The Eigenfunctions of Compact Weighted Endomorphisms of C(X)

Author(s): Harald Uhlig

Source: Proceedings of the American Mathematical Society, Vol. 98, No. 1 (Sep., 1986), pp. 89-

93

Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2045774

Accessed: 09/05/2013 18:54

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

THE EIGENFUNCTIONS OF COMPACT WEIGHTED ENDOMORPHISMS OF C(X)

HARALD UHLIG

ABSTRACT. In this note we characterize the eigenmanifolds of compact operators $uC_{\Phi}\colon f\to u\cdot f\circ \Phi$ on C(X) and determine their ascents. As an application we show an easy method for computing the eigenmanifolds of a matrix with at most one nonzero element in each row.

In the sequel X will always denote a compact Hausdorff space, u a function in C(X), and Φ a continuous function from X to X. Let Φ_n be the nth iterate of Φ ; i.e., $\Phi_0(x) = x$ and $\Phi_n(x) = \Phi(\Phi_{n-1}(x))$ for n > 0 and $x \in X$. $c \in X$ is called a fixed point of Φ of order n if n is a positive integer, $\Phi_n(c) = c$, and $\Phi_k(c) \neq c$ for $k = 1, \ldots, n-1$.

By uC_{Φ} we denote the operator $uC_{\Phi} \colon f \to u \cdot f \circ \Phi$ on C(X). This is a weighted endomorphism, and every weighted endomorphism may be represented in this way (see Kamowitz [1]). Kamowitz [1] proved the following result:

THEOREM A. Suppose X is a compact Hausdorff space, u in C(X), and Φ a continuous function from X into X.

- (1) The map $uC_{\Phi} : f \to u \cdot f \circ \Phi$ is compact iff for each connected component C of $\{x|u(x) \neq 0\}$ there exists an open set $V \supset C$ such that Φ is constant on V.
- (2) If uC_{Φ} is compact, then $\sigma(uC_{\Phi}) \setminus \{0\} = \{\lambda | \lambda^n = u(c) \cdots u(\Phi_{n-1}(c)) \text{ for some positive integer n and some fixed point c of } \Phi \text{ of order } n, \lambda \neq 0\}.$

Our aim here is to characterize the eigenfunctions of a compact uC_{Φ} . To do that we need some more notation: We always assume that Φ satisfies the conditions of Theorem A(1) so that uC_{Φ} is compact. We call $x,y\in X$ equivalent $(x\sim y)$ if there exist n,m in $\{0,1,2,\ldots\}$ so that $\Phi_n(x)=y$ and $\Phi_m(y)=x$. The equivalence classes are denoted by [x]. For any λ in $\mathbb{C}\setminus\{0\}$ let $C_{\lambda}:=\{c \text{ in }X|c \text{ is a fixed point of }\Phi$ of order n for some positive integer n and $\lambda^n=u(c)\cdots u(\Phi_{n-1}(c))\}$. Obviously if $x\sim y$ and x in C_{λ} , then y is in C_{λ} , so let $\tilde{C}_{\lambda}:=\{[x]|x \text{ is in }C_{\lambda}\}$ and m_{λ} be the number of equivalent classes in \tilde{C}_{λ} . m_{λ} is finite by Theorem B and the compactness of uC_{Φ} . For every $c\in C_{\lambda}$ let $h_{c,\lambda}$ denote the following function from X to \mathbb{C} or \mathbb{R} respectively:

$$h_{c,\lambda}(x) := \left\{ egin{aligned} \lambda^{-r} u(x) \cdots u(\Phi_r(x)) & ext{for every } r ext{ in } \{0,1,2,\ldots\} ext{ and } x \in \Phi_r^{-1}(\{c\}), \ 0 & ext{otherwise.} \end{aligned}
ight.$$

It is easy to see that $h_{c,\lambda}$ is well defined (remember that e.g. c is in every $\Phi_{kn}^{-1}(\{c\})$ if c is a fixed point of Φ of order n, but then $\lambda^{kn} = u(c) \cdots u(\Phi_{kn-1}(c))$). Furthermore

Received by the editors February 19, 1985 and, in revised form, August 26, 1985. 1980 Mathematics Subject Classification. Primary 47B38, 47B05, 46E25.

©1986 American Mathematical Society 0002-9939/86 \$1.00 + \$.25 per page

Key words and phrases. Compact weighted endomorphisms, eigenfunctions, matrices with many zeros.

 $\{h_{c_1,\lambda},\ldots,h_{c_k,\lambda}\}$ is linearly dependent iff, for some $i\neq j,\ c_i\sim c_j$. Finally, let $W_0:=W:=\{x|u(x)\neq 0\}$ and $W_k:=\Phi(W\cap W_{k-1})$ for k>0. For additional notation see Taylor [2].

The principal result of this note is the following theorem.

THEOREM B. (1) Let $\lambda \in \sigma(uC_{\Phi}) \setminus \{0\}$ and $\{c_1, \ldots, c_{m_{\lambda}}\}$ be representative elements of all equivalence classes in \tilde{C}_{λ} . Then $\{h_{c_1,\lambda}, \ldots, h_{c_{m_{\lambda}},\lambda}\}$ is a basis for $\mathcal{N}(\lambda - uC_{\Phi})$ and $\alpha(\lambda - uC_{\Phi}) = 1$, where $\alpha(\lambda - uC_{\Phi})$ denotes the ascent of $\lambda - uC_{\Phi}$.

(2) The case $\lambda = 0$: If n > 0, then $\mathcal{N}((uC_{\Phi})^n) = \{ f \in C(X) | f(x) = 0 \text{ for every } x \in W_n \}$.

Notice that (1) also states that the functions $h_{c,\lambda}$ are continuous.

We will break up the proof by proving several propositions.

PROPOSITION 1. Let $\lambda \in \sigma(uC_{\Phi}) \setminus \{0\}$. Then $h_{c,\lambda}$ is an eigenfunction for λ for every $c \in C_{\lambda}$; that is,

- (i) $\lambda h_{c,\lambda}(x) = u(x)h_{c,\lambda}(\Phi(x))$ for all $x \in X$,
- (ii) $h_{c,\lambda}$ is continuous.

PROOF. (i) Let $x \in X$. If $x \in \Phi_r^{-r}(\{c\})$ for some r > 0, then

$$\lambda h_c(x) = u(x)(\lambda^{-(r-1)}u(\Phi(x))\cdots u(\Phi_r(x))) = u(x)h_{c,\lambda}(\Phi(x)).$$

If $x \notin \Phi_r^{-1}(\{c\})$ for every $r \ge 0$, then the same is true for $\Phi(x)$, so $\lambda h_{c,\lambda}(x) = 0 = u(x)h_{c,\lambda}(\Phi(x))$.

(ii) (1) Since u is continuous, $B = \{x | |u(x)| \ge |\lambda|\}$ is compact. As W may be covered with open sets V_{β} , so that Φ is constant on each V_{β} , $\Phi(B)$ is finite, of cardinality N, say. Let $x \in X$ such that $h_{c,\lambda}(x) \ne 0$, and r the minimal number so that $x \in \Phi_r^{-1}(\{c\})$. Now x, $\Phi(x), \ldots, \Phi_r(x)$ are distinct, whence

$$|h_{c,\lambda}(x)| = |u(x)/\lambda| \cdot |u(\Phi(x))/\lambda| \cdots |u(\Phi_{r-1}(x))/\lambda| \cdot |u(c)|$$

$$\leq \max\{1, (||u||_{\infty}/|\lambda|)^N\} \cdot |u(c)| =: M.$$

Therefore $h_{c,\lambda}$ is bounded on X.

(2) Let $x \in X$. If u(x) = 0, then $h_{c,\lambda}(x) = 0$ and for every $\varepsilon > 0$ there is a neighborhood U of x so that $|u(y)| < \varepsilon |\lambda|/M$ for every $y \in U$. Therefore

$$|h_{c,\lambda}(y)| = |\lambda|^{-1} |h_{c,\lambda}(\Phi(x))| |u(y)| < \varepsilon$$

for every $y \in U$ and thus $h_{c,\lambda}$ is continuous at x. If $u(x) \neq 0$, then Φ is constant on an open neighborhood U of x and therefore

$$|h_{c,\lambda}(x)-h_{c,\lambda}(y)|=|\lambda|^{-1}|h_{c,\lambda}(\Phi(x))|\,|u(x)-u(y)|<\varepsilon$$

for a suitable neighborhood $U' \subset U$ of x and every $y \in U'$. So $h_{c,\lambda}$ is continuous.

PROPOSITION 2. Let $\lambda \in \sigma(uC_{\Phi})$, $\lambda \neq 0$, and f an eigenfunction for λ . Then (i) For every $c \in C_{\lambda}$ there exists $\alpha(c)$ such that $f(x) = \alpha(c)h_{c,\lambda}(x)$ for every $r \geq 0$ and $x \in \Phi_r^{-1}(\{c\})$.

(ii) If $x \notin \Phi_r^{-1}(\{c\})$ for every $c \in C_\lambda$ and $r \ge 0$, then f(x) = 0.

PROOF. (i) Let $c \in C_{\lambda}$ and $\alpha(c) := f(c)/u(c)$ (remember $\lambda \neq 0$!). Then for $r \geq 0$ and $x \in \Phi_r^{-1}(\{c\})$ we have by iteration

$$f(x) = \lambda^{-r} u(x) u(\Phi(x)) \cdots u(\Phi_{r-1}(x)) f(\Phi_r(x)) = \alpha(c) h_{c,\lambda}(x).$$

(ii) This part of the proof is actually the same as for Proposition 4 in [1] and is repeated here for the sake of completeness:

Let $x \notin \Phi_r^{-1}(\{c\})$ for every $c \in C_\lambda$, $r \ge 0$. If x is a fixed point of Φ , of order n, say, then by iteration $f(x) = \lambda^{-n} u(x) \cdots u(\Phi_{n-1}(x)) f(x)$ and, since $x \notin C_\lambda$, we conclude that f(x) = 0.

If $x \in \Phi_r^{-1}(\{c\})$ for some fixed point $c \notin C_\lambda$ and $r \ge 1$, then, since f(c) = 0, we have $f(x) = \lambda^{-r} u(x) \cdots u(\Phi_{r-1}(x)) f(c) = 0$.

Finally, we may suppose that all $\Phi_r(x)$ are distinct. Let $\delta := |\lambda|/2$. Since $B := \{x | |u(x)| \geq \delta\}$ is compact and by Theorem A W may be covered by open sets on which Φ is constant, $\Phi(B)$ is finite, of cardinality N, say. Therefore for every n > N

$$|f(x)| = |u(x)/\lambda| |u(\Phi(x))/\lambda| \cdots |u(\Phi_{n-1}(x))/\lambda| |f(\Phi_n(x))|$$

$$\leq (||u||_{\infty}/|\lambda|)^N 2^{N-n} ||f||_{\infty} \to 0 \qquad (n \to \infty).$$

Thus f(x) = 0. Q.E.D.

Let $\{c_1,\ldots,c_{m_\lambda}\}$ be representative elements of all equivalence classes in \tilde{C}_{λ} . Then $\{h_{c_1,\lambda},\ldots,h_{c_{m_\lambda},\lambda}\}$ is a basis for $\mathcal{N}(\lambda-A)$ if $0 \neq \lambda \in \sigma(uC_{\Phi})$. So what remains to be done for part (1) of Theorem B is

PROPOSITION 3. Let $0 \neq \lambda \in \sigma(uC_{\Phi})$ and $f \in \mathcal{N}((\lambda - uC_{\Phi})^2)$. Then $f \in \mathcal{N}(\lambda - uC_{\Phi})$.

PROOF. Since $g:=(\lambda-uC_{\Phi})f$ is an eigenfunction for λ , we know by Proposition 2 that if x is not in $\Phi_r^{-1}(\{c\})$ for some $c\in C_{\lambda}$ and $r\geq 0$, then g(x)=0. If $c\in C_{\lambda}$ there exists $\alpha(c)$ so that $g(x)=\alpha(c)h_{c,\lambda}(x)$ for every $r\geq 0$ and $x\in \Phi_r^{-1}(\{c\})$ by Proposition 2, so we have to show that $\alpha(c)=0$. Let c be of order n. Since by iteration

$$f = n \cdot rac{g}{\lambda} + (u C_{\Phi})^n rac{f}{\lambda^n},$$

evaluation at c yields

$$f(c) = n\alpha(c)h_{c,\lambda}(c)/\lambda + f(c),$$

for g is an eigenfunction and $\lambda^n = u(c) \cdots u(\Phi_{n_1}(c))$. Therefore $\alpha(c) = 0$. So far we have proved Theorem B(1). Part (2) follows from

PROPOSITION 4. $(uC_{\Phi})^k f = 0 \Leftrightarrow f(x) = 0$ for every $x \in W_k$.

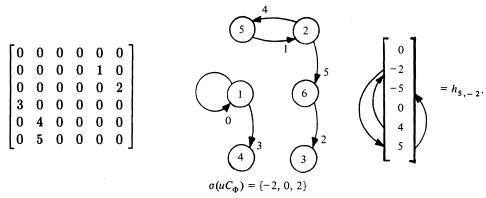
PROOF. By induction:

- (\Rightarrow) Let k=1 and $uC_{\Phi}f=0$. Then for any $x\in W$ we have $0=u(x)f(\Phi(x))$, whence $f(\Phi(x))=0$. If k>1 and $(uC_{\Phi})^kf=0$, we know by induction that $u(x)f(\Phi(x))=0$ for every $x\in W_{k-1}$. Furthermore, if $x\in W$, then $u(x)\neq 0$, so that $f(\Phi(x))=0$. Thus f vanishes on W_k .
- (\Leftarrow) Let k=1 and f(x)=0 for every $x\in W_1$. For $x\in X$ either $x\in W$ and therefore $f(\Phi(x))=0$ or $x\not\in W$ and u(x)=0. Thus $uC_{\Phi}f=0$. Now let k>1 and f(x)=0 for every $x\in W_k$. We have to show that $u(x)f(\Phi(x))=0$ for every $x\in W_{k-1}$, because then the assertion follows by induction hypothesis. But this is trivial since either $x\not\in W$ and u(x)=0, or $\Phi(x)\in W_k$ and $f(\Phi(x))=0$, if $x\in W_{k-1}$.

EXAMPLE 1. We want to give an example for Theorem B(2) that the case $\mathcal{N}((uC_{\Phi})^n) \neq \mathcal{N}((uC_{\Phi})^{n+1})$ for ever n may occur. Let $X := \{0\} \cup \{1/n | n \in \mathbb{N}\}$ with the topology induced by the usual topology on \mathbb{R} so that X is compact. Let

u(x)=x and $\Phi(1/n)=1/(n+1)$, $\Phi(0)=0$. These are continuous functions satisfying the conditions of Theorem A. Therefore uC_{Φ} is a compact operator on C(X), where C(X) may obviously be identified with $c(\mathbf{N}):=\{(a_n)_{n\in \mathbf{N}}|\lim_{n\to\infty}a_n$ exists}. Since there are no fixed points $c\neq 0$ of Φ of any order, $\sigma(uC_{\Phi})=\{0\}$ by Theorem A. Now $W_k=\{x\in X|0< x<1/k\}$, so $\mathcal{N}((uC_{\Phi})^k)=\{(a_n)|a_n=0$ for every $n>k\}$ and the union of all $\mathcal{N}((uC_{\Phi})^k)$ is exactly the set of all (a_n) satisfying $a_n=0$ for all but finitely many n.

EXAMPLE 2. We give an application of our results to the finite-dimensional case. Let $X = \{1, ..., n\}$ with the discrete topology. Then C(X) will be identified with \mathbf{K}^n , where $\mathbf{K} = \mathbf{C}$ or $\mathbf{K} = \mathbf{R}$ is the underlying scalar field. Every linear operator may (and will) be identified with the matrix $(a_{ij})_{1 \le i,j \le n}$ with $a_{ij} = (A\delta_j)(i)$, where $\delta_j(j) = 1$, $\delta_j(i) = 0$ if $i \ne j$.



$$\mathcal{N}(A) = \{(x_n)|x_1 = x_2 = x_5 = x_6 = 0\}, \quad \mathcal{N}(A^2) = \{(x_n)|x_5 = x_2 = 0\} = \mathcal{N}(A^3).$$

If $A = uC_{\Phi}$, then $a_{ij} = u(i)$ if $j = \Phi(i)$ and $a_{ij} = 0$ otherwise, so there is at most one nonzero element in each row. Conversely let A have this property. Then for $i = 1, \ldots, n$ let $j = \Phi(i)$ and $u(i) = a_{ij}$, if a_{ij} is the unique nonzero element in row i. If $a_{ij} = 0$ for all $j = 1, \ldots, n$ we let $i = \Phi(i)$ and u(i) = 0. Then obviously $A = uC_{\Phi}$.

Now the eigenvalues and eigenvectors are easily determined: first find out all cycles of Φ . e.g. by drawing n dots with numbers $1, \ldots, n$ and an arrow from dot j to dot i if $\Phi(i) = j$, adding u(i) to that arrow for later purposes. For each cycle multiply all the u(i) of this cycle and calculate the kth roots, where k denotes the number of elements of this cycle: these are all eigenvalues possibly except 0.

Take one eigenvalue $\lambda \neq 0$ and a cycle corresponding to that λ . Choose an arbitrary dot j, say, of that cycle and set $x_j := u(j)$. Now follow the arrows. If you reach dot i from dot k let x_i be the product of $\lambda^{-1}u_i$ and x_k . When you are done with all the dots which belong to the "connected component" containing the cycle set all other $x_i = 0$. This is an eigenvector for λ .

If you do this for every cycle corresponding to λ you get a basis for the eigenspace $\mathcal{N}(\lambda - A)$.

In order to determine $\mathcal{N}(A^r)$ remove all arrows where $u_i = 0$. Now $\mathcal{N}(A)$ consists of all (x_k) , where $x_k = 0$ if there is a directed path of length one starting in dot k (to dot k itself or any other dot), and x_k is arbitrary otherwise. Similarly for $\mathcal{N}(A^r)$, r > 1: "one" has to be replaced by "r" and it is allowed to "use" the same arrow more than one time.

There is a diagonalization for A iff $\mathcal{N}(A) = \mathcal{N}(A^2)$. Of course all these results are easily obtained by direct verification as well.

REFERENCES

- 1. H. Kamowitz, Compact weighted emdomorphisms of C(X), Proc. Amer. Math. Soc. 83 (1981).
- 2. A. E. Taylor, Introduction to functional analysis, Wiley, New York, 1958.

FACHBEREICH 3 (MATHEMATIK), SEKR. 6-4, TECHNISCHE UNIVERSITÄT BERLIN, STRASSE DES 17 JUNI 136, D-1000 BERLIN 12, WEST GERMANY

 $\it Current\ address$: School of Economics, University of Minnesota, Minnesota, Minnesota 55455