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Rules of Thumb versus Dynamic Programming

By MARTIN LETTAU AND HARALD UHLIG*

This paper studies decision-making with rules of thumb in the context of dynamic
decision problems and compares it to dynamic programming. A rule is a fixed
mapping from a subset of states into actions. Rules are compared by averaging
over past experiences. This can lead to favoring rules which are only applicable
in good states. Correcting this good state bias requires solving the dynamic
program. We provide a general framework and characterize the asymptotic prop-
erties. We apply it to provide a candidate explanation for the sensitivity of con-
sumption to transitory income. (JEL E00, C63, C61, E21)

Agents faced with an intertemporal optimi-
zation problem are usually assumed to act as
if deriving their decision from solving some
dynamic programming problem. A great deal
of research effort has been devoted to recon-
cile this paradigm with observations, resulting
in many successful explanations but also in
some deep puzzles, where such a reconcilia-
tion seems hard to come by (see John Rust,
1992 ) . Thus, an increasing number of re-
searchers have started to investigate the scope
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for other alternative paradigms, often sub-
sumed under the heading of bounded rational-
ity, hoping to find one that may explain
observed facts even better or easier, or that
may result in a fruitful renewal of the current
benchmark. This line of work is necessarily
exploratory in nature: promising-looking al-
ternatives that have been proposed need to be
developed and investigated carefully. More-
over, their relationship to the benchmark par-
adigm of rationality needs to be understood
before these alternatives should even be ad-
mitted for a grand horse race. Surveying these
efforts here is beyond the scope of the paper
and has already been done (see, e.g., Thomas
J. Sargent, 1993; John Conlisk, 1996).

This paper adds to this line of research by
investigating a model of learning in intertem-
poral decision problems. Learning takes place by
evaluating the quality of competing rules of
thumb via past experiences from using them, us-
ing a simple updating algorithm (Section IV).
Using stochastic approximation theory, we char-
acterize all asymptotically possible outcomes
with strict rankings of the rules. We provide an
easy-to-use algorithm to compute these out-
comes1 (Section V). We relate the performance
measure of the rules to the value function in dy-
namic programming and show that dynamic pro-
gramming is a special case of our analysis
(Section III and Section VI, subsection A). We

1 Most of the proofs are in a technical Appendix which
is available from the authors upon request. It can also be
downloaded at www.wiwi.hu-berlin.de/Çlettau.
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exhaustively analyze an application to a theo-
retical case in order to understand precisely the
differences to dynamic programming, which
generally arise (Section VI, subsection B). We
find that the learning scheme investigated here
often gives rise to a ‘‘good state bias,’’ favoring
rules which make possibly bad decisions, but are
applicable only in good states (as measured by
the value function). The intuition is as follows:
even though the dynamic nature of the decision
problem is taken into account when evaluating
past performance, the learning algorithm fails to
distinguish between good luck and smart behav-
ior. This way, a suboptimal rule may be
‘‘falsely’’ learned to be superior to some other
rule, which always implements the ‘‘correct’’
dynamic programming solution.

Before plunging into the theoretical details,
the paradigm is described in words in Section
I, and it is shown how the feature of the good
state bias may help in understanding the ob-
servation of the high sensitivity of consump-
tion to transitory income (see Marjorie A.
Flavin, 1981; Stephen P. Zeldes, 1989). The
excess sensitivity observation has proven to be
a thorny one to explain within the confines of
dynamic programming. The most successful
explanation to date by Glenn R. Hubbard et al.
(1994, 1995) requires an elaborate life-cycle
structure with a rich set of features. Thus, re-
searchers have already moved towards pro-
posing ‘‘rules-of-thumb’’ consumers as a
potential explanation (see John Y. Campbell
and N. Gregory Mankiw, 1990; Annamaria
Lusardi, 1996). We will show how agents can
learn these suboptimal rules within our para-
digm. Intuitively, a rule which prescribes to
splurge in times of high income can win
against a rule implementing the dynamic pro-
gramming solution because of the good state
bias mentioned above. A first toy-example il-
lustrates this. An extended, calibrated example
is then presented, aimed at matching the
observations.

Rules-of-thumb behavior has been postu-
lated and examined elsewhere before. Contri-
butions include Richard H. Day et al. (1974),
Amos Tversky and Daniel Kahneman (1974),
Kahneman and Tversky (1982), J. Bradford
DeLong and Lawrence H. Summers (1986),
Campbell and Mankiw, as mentioned above
(1990), Beth Fisher Ingram (1990), Anthony

A. Smith, Jr. (1991), Kenneth G. Binmore and
Larry Samuelson (1992), Glenn Ellison and
Drew Fudenberg ( 1993 ) , Robert W.
Rosenthal (1993a, b) , Reza Moghadam and
Simon Wren-Lewis (1994), Jonathan B. Berk
and Eric Hughson (1996), Per Krusell and
Smith (1996), and Lusardi (1996). The mo-
tivation of these authors is partly the difficulty
of explaining observed facts—partly, because
rules of thumb are an interesting paradigm in
themselves, and partly, because they can be
used as a computational tool. However, in all
of these papers, the rules are either assumed
ad hoc without any learning about their qual-
ities, or they are investigated only in static de-
cision problems, which is repeated many
times. Several of these studies rely on simu-
lations. By contrast, we provide a theory of
learning about rules of thumb in an explicitely
dynamic decision problem, and provide a
theoretical, rather than a simulation-based,
analysis. We believe these to be important ad-
vances. First, many interesting decision prob-
lems, such as the consumption-savings
problem described above, are intrinsically dy-
namic problems rather than repeated static
problems. Second, many believe bad rules of
thumb to be driven out by learning experi-
ences: so, postulating bad rules a priori is ‘‘too
easy.’’ In contrast to this popular belief, our
results show that learning can lead to selecting
a ‘‘bad’’ rule rather than a rule implementing
the ‘‘correct’’ dynamic programming solution.
Third, while numerical simulations often pro-
vide a useful first step, theoretical results are
clearly desirable.

A further litmus test, which we think should
be applied to models of boundedly rational be-
havior, is a ‘‘psychofoundation,’’ i.e., a foun-
dation in psychology as well as in
experimental evidence. Our framework here is
no exception. John R. Anderson (1995) pro-
vides a good introduction into cognitive psy-
chology. Steven Pinker (1997 pp. 42, 419)
writes that ‘‘behavior is the outcome of an in-
ternal struggle among many mental modules’’
and ‘‘mental life often feels like a parliament
within. Thoughts and feelings vie for control
as if each were an agent with strategies for
taking over the whole person.’’ The theory
provided in this paper can be seen as a simple
model of that description. Alvin E. Roth and
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Ido Erev (1995) cite two well-known facts
from the psychological learning literature as
motivation for their adaptive learning model.
First, the ‘‘Law of Effect’’ says that choices
that have good outcomes in the past are more
likely to be repeated in the future ( E.
Thorndike, 1898). Second, the ‘‘Power Law
of Practice’’ states that the slope of the learn-
ing curve is decreasing with time ( J. M.
Blackburn, 1936). Our learning model is con-
sistent with both laws. It is also consistent with
‘‘melioration,’’ which means that people
choose a strategy that on average gave the
maximal payoff in the past rather than choos-
ing what is optimal now: for experimental ev-
idence, see Erev et al. (1997). The behavioral
pattern resulting from our model could also be
interpreted as a type of satisficing (Herbert
Simon, 1982). The deviation from rationality
tends to occur in good states in which the agent
is ‘‘satisficed’’ with suboptimal behavior.
Gerald M. Edelman (1992) provides a useful
reference on how a biologist and psychologist
relates the functioning of the human brain to
classifier system like structures, indicating that
this paradigm may be promising indeed. David
Easley and Aldo Rustichini (1996) have re-
cently provided an axiomatic underpinning for
our approach. Tilman Börgers (1996) has re-
viewed the role of learning in economics and
provides further arguments in favor of our par-
adigm. Other psychologically based ap-
proaches to boundedly rational choices in
dynamic decision problems are discussed in,
e.g., Richard H. Thaler ( 1991 ) , George
Loewenstein and Jon Elster ( 1992 ) , and
Kahneman et al. (1997).

There are surprisingly few experimental
studies on dynamic decision problems.
Stephen Johnson et al. (1987) report results
on an experimental study on a life-cycle
model: their subjects did not fare well in reach-
ing the theoretically optimal solution. John D.
Hey and Valentino Dardanoni (1987) conduct
an experiment on a dynamic choice model
with uncertainty. Although their underlying
model is not directly comparable to ours, the
behavioral patterns of the experimental sub-
jects appear to be consistent with those of our
model. Specific applications of the learning al-
gorithm in the paper here will probably often
give rise to the feature that people tend to act

more suboptimally in good states than in bad
states. A direct experimental test of this hy-
pothesis would certainly be desirable.

Our research is inspired by John H.
Holland’s (1992) work on classifier system,
but we have stripped away all the features
which did not seem crucial for the issues ad-
dressed in this paper (see Section IV). Fur-
thermore, we did not include a rule-generating
or rule-modifying feature such as the genetic
algorithm, since that seemed to be too hard to
justify and too hard to analyze at this point in
the ongoing research. Related work includes
W. Brian Arthur (1993), who derives some
theoretical results in a simplified, but related,
learning framework in which there is no dy-
namic link between periods. He also compares
his results to experimental studies and con-
cludes that his learning specification mimics
many features of human behavior in experi-
ments. We were most heavily influenced by
Ramon Marimon et al. (1990), who simulate
a dynamic learning model in a Nobuhiro
Kiyotaki and Randall Wright (1989) model of
money, using classifier systems. This paper
grew directly out of thinking about how to un-
derstand theirs. More generally, our learning
algorithm is related to learning via reinforce-
ment and replicator dynamics [ see, e.g.,
Börgers and Rajiv Sarin (1995, 1996)] .

I. The Sensitivity of Consumption
to Transitory Income

While we postpone formal definitions until
Sections II and IV, we shall briefly describe
our paradigm informally here. An agent has to
solve an infinite-horizon dynamic decision
problem. Given a state at some date, he has to
chose some (feasible) action. Given the state
and the chosen action, the agent will experi-
ence instantaneous utility and the state for the
next period is drawn. Traditionally, such prob-
lems are solved using the tools of dynamic
programming. For our paradigm, agents will
use rules instead.

Rules map states into (feasible) actions, but
their domain is typically limited to only a sub-
set of all possible states, i.e., they are typically
not universally applicable. We impose no fur-
ther restrictions like limited complexity. An
agent is endowed with several competing
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rules. The agent does not invent new rules.
Asking why an agent is endowed with these
particular rules or whether, how, and why they
might be changed in the course of time raises
deep and interesting additional questions that
we do not attempt to answer here. It is intrigu-
ing to speculate about possible resolutions
such as instincts ( see e.g., Pinker, 1994 ) ,
learning from your peers, education, meta-
rules for changing rules, or the neuronic limits
of the brain. We simply take these given rules,
as well as the fact that the agent stubbornly
sticks to choosing between them throughout
his infinite life as primitives of the
environment.

Given a particular state at some date, the
agent chooses one of the applicable rules for
that state based on past experience. To model
this learning process, we postulate a simple
algorithm. The agent associates a real num-
ber, called the strength, with each rule. The
strength of a rule is essentially a (weighted)
average of past ‘‘rewards’’ from using that
rule. If a rule has been used at some past date,
it maps the state of that date into some action
and triggers instantaneous utility as well as a
new state for the next date. Its reward for that
date will be given by the sum of the instan-
taneous utility as well as the discounted
strength of the rule called upon for the new
state. That way, the reward captures not only
the instaneous gratification but also incorpo-
rates the future consequences from the cur-
rent action. Higher strengths indicate better
past experiences. We assume that the agent
always picks the strongest among all the ap-
plicable rules.

If the agent is endowed with a single rule
which happens to implement the dynamic pro-
gramming solution, one obviously gets ra-
tional behavior according to this solution as a
special case of our theory. Things become
more interesting when suboptimal rules are al-
lowed into the competition. As we shall see,
an agent can learn to use a rule encoding sub-
optimal behavior even when that rule is com-
peting against another rule which implements
the dynamic programming solution. This can
happen if the suboptimal rule is only applica-
ble in ‘‘good’’ states, in which it is easy to
generate high rewards: the strength of that rule
will be correspondingly biased upward, pos-

sibly exceeding the strength of a universally
applicable dynamic programming solution
rule. We call this the good state bias.

A specific example shall help to illuminate
these abstract concepts. We choose an exam-
ple, which also provides an interesting appli-
cation of our paradigm all in itself. We will
show how our paradigm can help in under-
standing the observation of high sensitivity of
consumption to transitory income, which has
proven hard to explain with the tools of ra-
tional behavior.

In his seminal work, Robert E. Hall (1978)
characterized the first-order condition of a ra-
tional expectations permanent income hypoth-
esis consumer in form of a dynamic Euler
equation. Despite the theoretical appeal of the
theory, the model has been rejected using ag-
gregate and disaggregate data. In particular,
Flavin ( 1981 ) demonstrated that aggregate
consumption responds too much to current in-
come to be consistent with the theory put for-
ward by Hall (1978). For micro data, Hall and
Frederic S. Mishkin (1982) and Zeldes (1989)
are the classical references. Angus S. Deaton
( 1992 ) and Martin Browning and Lusardi
(1996) provide excellent surveys of the liter-
ature. Numerical simulations of elaborate life-
cycle models have been obtained by Hubbard
et al. (1994, 1995), which are able to match
many features of the data. Given the detailed
complexity of their framework, it still makes
sense to search for simpler explanations by
possibly giving up the notion of unbounded
rationality. Campbell and Mankiw ( 1990 )
suggested a model with two types of agents:
the first type is a rational Hall-consumer,
whereas the second type just consumes the en-
tire current income and does not save. In other
words, the second type always uses a rule of
thumb which says ‘‘consume current in-
come.’’ Obviously, the rule-of-thumb con-
sumer is overly sensitive to current income.
Hence, the presence of such consumers would
explain the empirical facts on excess sensitiv-
ity. Campbell and Mankiw (1990) estimate
the share of each type in the population using
aggregate data. The percentage of their rule-
of-thumb consumers appears to be around 50
percent. For micro data and using a new panel
data set, Lusardi (1996) estimates the share of
Campbell-Mankiw rule-of-thumb consumers
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to be between 20 percent and 50 percent.
These studies do not attempt to answer the
question of why these agents may fail to learn
rational behavior. In this section we demon-
strate how such a suboptimal rule can indeed
be learned.

In fact, more is going on in our framework.
We will endow the agent with two rules: a first
rule, which implements the dynamic program-
ming solution, and a second rule, which im-
plements the ‘‘spend everything’’ rule, but is
applicable only when income is high. Because
of the good state bias, the agent can learn to
favor the suboptimal rule despite the fact that
he takes future consequences of his current ac-
tion into account when learning. Thus, rather
than having 50 percent of the agents always
acting irrationally and spending everything
they have,2 we have each agent acting irra-
tionally and spending everything he has 50
percent of the time.

We first provide a simple, stylized example
in subsection A to provide a qualitative expla-
nation for the excess sensitivity observation
and to introduce a bit of the analytics and in-
tuition behind our paradigm before formulat-
ing everything precisely in later sections. We
next provide a more finely tuned quantitative
example calibrated to micro data in subsection
B which delivers results matching empirical
estimates and which we propose as a serious
attempt at an explanation.

A. A Stylized Example

Consider the following situation. There is an
infinitely lived agent who derives utility u(ct)
from consuming ct ¢ 0 in period t and who
discounts future utility at the rate 0 õ b õ 1.
The agent receives random income yt each pe-
riod. Suppose there are two income levels,
yV ú y ú 0 and that income follows a Markov
process with transition probabilities pyy Å
Prob(yt Å yÉ yt 0 1 Å y) , etc. The agent
enters period t with some wealth wt . Next
period’s wealth is given by wt/ 1 Å wt / yt 0
ct . A borrowing constraint is imposed so that

2 This is also a possible solution within our framework,
albeit a trivial one: the agent can always learn to always
use a single, universally applicable rule.

0 °ct ° wt / yt . Furthermore, we assume that
the agent is born with zero wealth: w0 Å 0.

The state of the decision problem at date t
is given by st Å (wt , yt) . Within the utility-
maximizing framework, the decision problem
is most easily formulated as a dynamic pro-
gramming problem, given by

£(w , y)Å max u(c)(1) S
c √ [0,w/ y]

/ b p [£(w/ y0 c , y*) ] .∑ yy= D
y= √ {y , Vy }

The instantaneous utility function u is assumed
to be continuous, concave, strictly increasing,
and bounded. Thus, standard arguments as in
Nancy L. Stokey et al. (1989) show that this
problem is solved by a value function £, which
is itself continuous, concave, strictly increas-
ing and bounded in wealth w ¢ 0, and gives
rise to a unique decision function c*(w , y) .
Note that c*(0, y ) Å y . Due to consump-
tion smoothing motives and precautionary
savings, optimal behavior prescribes positive
savings when the agent is rich: c*(w , yV ) õ
w / yV , w ¢ 0.

Now consider, instead, an agent who be-
haves boundedly rationally in the following
way. The agent is endowed with two rules of
thumb in his mind. The first rule r1 is appli-
cable in all states and coincides with the op-
timal decision function r1(w , y) å c*(w , y) .
The second rule r2 is applicable only in the
‘‘good’’ state when the income is high, and
prescribes to consume everything,

r (w , Vy ) Å w / Vy .(2) 2

With these two competing rules, the agent is
torn between the urge to splurge on the one
hand and the desire to invest his income and
wealth wisely on the other.

The agent’s problem is thus to find out which
one of the two rules he should use in a given
state. Note that he has to make that choice when-
ever income is high (yÅ yV ), whereas he always
follows rule r1 when income is low (y Å y) by
assumption. According to our paradigm, the
agent is assumed to choose among all the appli-
cable rules that rule with which he has had the
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best past average experience. More specifically,
suppose that the agent has always used the sec-
ond, suboptimal rule whenever income was
high, and the first, optimal rule whenever in-
come was low in the past, and now stops at some
date to rethink that behavior.3 In order to do so,
he computes the past average payoffs or
strengths z1 and z2 from using these two rules,
r1 and r2. Suppose that income was high in some
period t , triggering rule r2, but low in period
t / 1, triggering rule r1. The agent is assumed
to attribute

u(c ) / bz(3) t 1

as the payoff for using rule 2 at date t . Thus,
the agent does not simply take u(ct) , the in-
stantaneous gratification, to be the payoff of
period t , but to include z1 as a measure of the
quality of the next state at date t / 1 as well,
since that next state is induced by the con-
sumption decision at date t (aside from the
random fluctuation in income). If income had
been high in period t / 1, triggering rule r2 ,
the agent would have included z2 rather than
z1 , of course. The agent averages over all pe-
riods t in the past where the first rule was used
to obtain the strength z1 of the first rule, and
proceeds likewise for the second rule.

We thus have assumed the agent to recog-
nize the dynamic linkage between periods, but
to be ignorant about differences in states.
When the agent receives the high income at
date t , he does not know that he is in a ‘‘good’’
state. He only learns about the state indirectly
via his actions. Since he splurges, he experi-
ences the instantaneous utility from consum-
ing everything as well the consequences of a
depleted bank account wt/ 1 Å 0 via the dis-
counted strength z1 (or z2) of the rule chosen
at date t / 1. Including z1 in the payoff is sen-
sible and somewhat similar to including
E[£(s *)] in the dynamic programming ap-
proach, since that strength reflects the average
experience with states in which the first rule
was chosen. But this is at the same time a
somewhat crude measure of the induced next
state, since the first rule may also potentially

3 This decision and learning algorithm will be made
more precise in Section IV.

be chosen in other states as well, all being
summarized in one index of strength, z1 . Thus,
there is also a contrast to the dynamic pro-
gramming approach, where a value £(s *) is
calculated for each state. The accounting
scheme (3) is a crucial element of our learning
scheme. Specifying a different scheme will
likely yield different results.

Note that the agent has always been spend-
ing his total current income and has never
saved anything. If many periods are used for
calculating the strengths, the agents will ap-
proximately solve the following two linear
equations in z1 and z2 :

z Å u( y ) / b( p z / (1 0 p )z )(4) 1 yy 1 yy 2

z Å u( Vy) / b( p z / (1 0 p )z ) .(5) 2 Vyy 1 Vyy 2

Here, we used the fact that the consumption
has always been all of income, ct å yt and
that of all dates t with low income yt Å y ,
approximately the fraction py,y of them have
been in turn followed by low income yt/ 1 Å
y in the next period, thus triggering the use of
the first rule in t / 1, etc.

The agent, who is considering whether or
not to change his behavior, will not do so if
the strength of the second rule exceeds the
strength of the first rule, z2 ú z1 . With an in-
creasing utility function u(·) and 0 õ pyy , pyV y ,
b õ 1, we have indeed

u( Vy ) 0 u( y )
z 0 z Å ú 0.(6) 2 1

1 0 b(p 0 p )yy Vyy

The agent will see no reason to change and
will continue his suboptimal behavior. The in-
tuition behind this result is this: rule r2 may
‘‘win’’ against rule r1 since it only applies in
‘‘good times’’ and thus ‘‘feels better’’ on av-
erage than rule r1 . This ‘‘good state bias’’
gives rule r2 an intrinsic advantage when com-
peting against the optimal rule r1 , which is ap-
plicable at all times.4 There are two ways to
think about this result. One can either consider

4 Conlisk pointed out to us that this is related to the
excluded variable bias in regression analysis. One can
think of the strength of the rule as picking up effects of
the ‘‘excluded’’ state variable.
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the accounting scheme (3) faulty and try to
correct it, an issue to which we return in Sec-
tion VI, subsection C. Alternatively, one can
buy into equation (3) and consider the implied
deviations from rational behavior as an in-
triguing possibility for explaining puzzling be-
havior. We favor the latter interpretation.

Obviously, the particular rules chosen and
the states in which they are applicable matter.
One can also easily construct examples, in
which it is the optimal rule, which wins. Our
framework does not contradict behavior ac-
cording to the rational dynamic programming
solution: rather, it includes it as a special case.
In order for the dynamic programming solu-
tion to emerge, the given rules not only need
to permit a ranking, which delivers the rational
decision rule (if the agent always picks the
rule with the highest rank), but that ranking
must also be learnable. The precise conditions
for what is learnable are in Section V.

B. Calibrated Calculations

We now wish to employ our techniques to
provide a calibrated version of our example
and to investigate its quantitative fit to obser-
vations. Except for keeping within an infinite-
horizon setting rather than a life-cycle model,
we largely follow the choices made by
Hubbard et al. (1994, 1995).

These authors have decomposed observed
individual earnings processes

log y Å Z b / u / n(7) it it it it

into a systematic part Zitb, containing variables
for in particular age, an autocorrelated part uit ,
and an idiosynchratic part nit . For the purpose
of their simulations, they regarded nit as mea-
surement error and ignored it. For now, we
will follow their approach, keeping in mind
that this depresses the variance of predictable
changes in income. As for uit , Hubbard et al.
(1994, 1995) fitted an AR(1) and found its its
autocorrelation to equal r Å 0.955 and its in-
novation variance to equal 0.033 for house-
hold heads without high-school education [see
their Table A.4 (1994) or Table 2 (1995)] .
For our calibrated example, we will identify
log income with uit plus a constant and thus
additionally throw away life-cycle informa-

tion: in the infinite-horizon context employed
here, age has little meaning. At least two levels
of income are needed to capture this random
process: we have chosen n Å 5 different levels
instead to allow for a more detailed investi-
gation. These levels were normalized to have
a mean of unity and chosen to be equally
spaced logarithmically. The Markov transition
probabilities pyy= were chosen to equal r /
(1 0 r) /n for y Å y* and (1 0 r) /n for all
other y*, thus ensuring an autocorrelation of r.
The spacing of the logarithmic income grid
was then chosen to yield a variance of 0.033/
(1 0 r 2) as in the data.

The yearly discount factor b was set to b Å
0.96, and the asset return was set at RV Å 1.02.
For the utility function, we have used the usual
CRRA specification, u(c) Å c 10 g/ (1 0 g) .
As in Hubbard et al. (1994, 1995), we have
chosen g Å 3. We used a grid of 40 actions,
corresponding to the fraction spent of total
cash on hand (i.e., wealth plus income). We
chose the grid to be somewhat denser close to
the extreme values of 0 and 1. Note that the
dynamic programming solution was also re-
stricted to this grid. One minus that fraction
spent is the fraction of total cash on hand to
be saved. Savings equal wealth next period,
when multiplied with the asset return RV Å
1.02. Wealth was represented with a logarith-
mically evenly spaced grid of 80 grid points,
starting at 0.0176 and ending at 119. Given a
value for wealth next period not on the grid,
we used the linear interpolation weight to draw
among the two adjacent grid points. Note that
wealth is not allowed to become negative, i.e.,
that we stick with the model of the previous
subsection A and impose a borrowing
constraint.

We used two rules. The first rule is the solution
to the dynamic programming problem, applicable
everywhere. The second is a rule, where spending
is linearly interpolated between the true dynamic
programming solution and spending everything,
parameterized by some value l as the weight on
‘‘spending everything.’’ In particular, spending
everything (l Å 1) and following the optimal
spending policy (l Å 0) are the two extremes.
The second rule will be applicable when both
wealth exceeds some wealth cutoff level as well
as when income exceeds some income cutoff
level. We experimented with l as well as the two
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cutoff levels. In particular for wealth, we tried no
restriction (wealth¢ 0), all wealth levels except
the first grid point (wealth5 ¢ 0.02), wealth at
least mean income (wealth ¢ 1), and wealth at
least three times and ten times mean income
(wealth ¢ 3, wealth ¢ 10).

Results are calculated by applying the the-
ory of Section V below. In reporting our re-
sults, we focussed on the following three
statistics. The first is a regression of D log ct/ 1

on log yt ( as well as a constant ) . Zeldes
(1989) estimates this coefficient to be 00.07
for low-wealth individuals, see e.g., his table
2. This well-known estimate has been inter-
preted as evidence for excess sensitivity of
consumption to predictable changes in in-
come. Instead, one can also focus more di-
rectly on the regression coefficient of D log
ct/ 1 on Et[D log yt/ 1] (as well as a constant) ,
which one can interpret as the elasticity of con-
sumption changes with respect to predictable
income changes. This coefficient has been re-
ported to be around 0.4 for micro data (see
Lusardi, 1996). The two statistics are related.
Indeed, if log yt independently follows an
AR(1) with autocorrelation r, then Et[D log
yt/ 1] Å (1 0 r) log yt , and hence, the second
statistic will equal the first statistic divided by
0(1 0 r) . With the calibrated value of r Å
0.955, the second statistic is thus022 times as
large as the first, resulting in 1.5. This value is
undoubtedly too large and Lusardi’s estimate
of 0.4 is more credible. The most likely reso-
lution of this apparent contradiction is that nit

is not just purely measurement error as
Hubbard et al. assumed. We will return to this
issue in our last calculation of this subsection.
Another resolution is that much of the pre-
dictable changes in income are due to deter-
ministic variables such as age, which we chose
to ignore here. For now, we stick with their
interpretation of nit as measurement error and
report both statistics, keeping in mind that we
would rather aim for 0.4 than 1.5 for the sec-

5 We effectively assume that it is impossible to drop
below this extremely low level of wealth, even when
spending ‘‘everything’’ in the previous period. The results
are unlikely to change dramatically, if we set this lowest
level equal to zero instead, since income is strictly positive
in each period.

ond statistic, and thus00.02 rather than00.07
for the first statistics. The third statistic we re-
port is what fraction of time the rule-based
agent spends in states, where he employs the
suboptimal rule 2, rather than the dynamic pro-
gramming solution labelled as rule 1. This sta-
tistic gives an indication of the deviation from
the rationality benchmark.

It is useful to first examine the dynamic pro-
gramming solution. The regression coefficient
of D log ct/ 1 on log yt is 00.0043 and thus
much smaller than even our conservative value
of00.02. Similarly, a regression of D log ct/ 1

on Et[D log yt/ 1] yields just 0.095 instead of
0.4. Thus, while the imposed borrowing con-
straint yields some elasticity of consumption
changes to predictable income changes, the
elasticity is not large enough quantitatively.
This difficulty of the dynamic programming
solution to an infinite-horizon savings problem
with borrowing constraint to capture the facts
is well appreciated in the relevant literature.

Our results for rule-based behavior are con-
tained in the two Tables 1 and 2. We checked
in each case whether the second rule can in-
deed win against the first rule: it turned out to
be always the case. In the first Table 1, we
undertook mainly variations in l, which is the
weight on ‘‘spending everything’’ in the sec-
ond rule. Note that l Å 0 delivers the same
behavior as the original dynamic program-
ming solution. We can see that we get close to
our target values of 00.02 for the first statistic
and 0.4 for the second statistic even for modest
fractions of times, in which the second rule is
employed. For example, 10 percent of the
agents suffice for l Å 0.5 and around 5 to 6
percent for lÅ 1.0. Thus the effects of modest
deviations from rationality can be dramatic.
Note also how the fraction of time, in which
the agent holds more than ten times mean in-
come as wealth, falls from 30 percent for the
dynamic programming solution (lÅ 0) to less
than 2 percent, when l is increased to a unity.
Finally, an interesting feature of these tables
is the dramatic effect of leaving or removing
the lowest wealth level from the domain for
the second rule.

As promised, we now return to the apparent
contradiction between 00.07 as the target for
the first statistic and 0.4 as the target for the
second statistic. We shall now deviate from
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TABLE 1—VARIATIONS IN l (ZERO VARIANCE IN TRANSITORY INCOME COMPONENT)

Regression of D log ct/1 on constant and log yt

l Å 0.0 0.25 0.5 0.75 1.0

wealth ¢ 0 00.004 00.027 00.034 00.039 00.046
wealth ¢ 0.02 00.004 00.023 00.027 00.028 00.030
wealth ¢ 1 00.004 00.022 00.024 00.026 00.028
wealth ¢ 3 00.004 00.017 00.018 00.020 00.022
wealth ¢ 10 00.004 00.012 00.013 00.014 00.016

Regression of D log ct/1 on constant and Et[D log yt/1]

l Å 0.0 0.25 0.5 0.75 1.0

wealth ¢ 0 0.095 0.590 0.761 0.864 1.031
wealth ¢ 0.02 0.095 0.518 0.602 0.614 0.667
wealth ¢ 1 0.095 0.488 0.543 0.575 0.619
wealth ¢ 3 0.095 0.373 0.411 0.447 0.489
wealth ¢ 10 0.095 0.272 0.296 0.322 0.361

Average fraction of time in percent that agent applies the rule

l Å 0.0 0.25 0.5 0.75 1.0

wealth ¢ 0 40.0 40.0 40.0 40.0 40.0
wealth ¢ 0.02 39.7 39.3 39.2 39.1 19.8
wealth ¢ 1 39.3 38.4 26.2 16.2 13.4
wealth ¢ 3 37.6 22.4 10.8 7.3 5.7
wealth ¢ 10 30.8 5.2 2.9 2.1 1.8

Notes: The suboptimal rule 2 is applicable whenever wealth exceeds the level indicated and whenever income does not
fall below the median income y Å 0.835. The transitory income component nit has zero variarnce.

Hubbard et al. (1994, 1995) and assume that
nit is not measurement error, but rather reflects
actual transitory changes in income. To cap-
ture this, we have used a three-state Markov
process for uit of equation (7), constructed in
the same manner as above and, additionally,
an idiosynchratic two-state process for nit , cal-
ibrated to match the empirically observed vari-
ance of 0.04 [see Hubbard et al., Table A.4
(1994) or Table 2 (1995)] . Mean income was
normalized to unity. Except for a slight shift
in our wealth grid, everything is the same as
above.

The dynamic programming solution yields
00.0017 as regression coefficient of D log
ct/ 1 on log yt , which is too small, and00.0171
as regression coefficient of D log ct/ 1 on Et[D
log yt/ 1] , which is even of the wrong sign
compared to the data. Results from rule-of-
thumb calculations are contained in Table 3,
where we now only vary the income cutoff
level. Again, the second rule was always learn-

able as dominant. The results are quite a bit
richer than those found in Table 2. In partic-
ular, we observe different signs for both re-
gression coefficients, sometimes siding with
the results from the dynamic programming so-
lution and sometimes siding with the data. For
some combinations of cutoff levels, both sta-
tistics are the same as the estimates from ob-
served data within a tolerable margin. For
example and as a first scenario, if agents apply
the second rule, whenever income exceeds 1.4
times mean income, i.e., if agents are in the
highest of the three Markov states for uit , the
first statistic takes the value of 00.078, which
compares favorably to 00.07 in the data, and
the second statistic takes the value of 0.335,
which is somewhat below the value 0.4 found
in the data. We think that this might be a po-
tentially reasonable scenario. Note that the
suboptimal second rule is used a third of the
time in this case. One also gets a match to the
empirical estimates in a second scenario,
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TABLE 2—VARIATIONS IN INCOME CUTOFF, l Å 1 (ZERO VARIANCE IN TRANSITORY INCOME COMPONENT)

Regression of D log ct/1 on constant and log yt

income ¢ 0.6 1.0 1.5 2.3

wealth ¢ 0 00.046 00.046 00.046 00.043
wealth ¢ 0.02 00.022 00.026 00.030 00.034
wealth ¢ 1 00.020 00.024 00.028 00.032
wealth ¢ 3 00.017 00.020 00.022 00.027
wealth ¢ 10 00.014 00.015 00.016 00.019

Regression of D log ct/1 on constant and Et[D log yt/1]

income ¢ 0.6 1.0 1.5 2.3

wealth ¢ 0 1.012 1.027 1.031 0.949
wealth ¢ 0.02 0.485 0.579 0.667 0.745
wealth ¢ 1 0.437 0.528 0.619 0.712
wealth ¢ 3 0.374 0.446 0.489 0.603
wealth ¢ 10 0.301 0.340 0.361 0.416

Average fraction of time in percent that agent applies the rule

income ¢ 0.5 0.8 1.3 2.0

wealth ¢ 0 80.0 60.0 40.0 20.0
wealth ¢ 0.02 20.2 20.0 19.8 10.0
wealth ¢ 1 13.6 13.5 13.4 8.6
wealth ¢ 3 5.8 5.7 5.7 4.1
wealth ¢ 10 1.8 1.8 1.8 1.4

Notes: The suboptimal rule 2 is applicable whenever wealth exceeds the level indicated and whenever income exceeds
the level indicated. The transitory income component nit has zero variance.

where agents only apply the rule of spending
everything, if their wealth exceeds three times
average earnings and if their income is at the
highest level: the first coefficient takes on the
value of 00.068, while the second coefficient
has the value 0.5. Furthermore, for that sce-
nario, agents employ that rule only 5 percent
of the time. Put differently, even though these
agents behave as predicted by the analysis
from dynamic programming 95 percent of the
time, their deviation in the remaining 5 percent
is sufficiently large to yield the observed re-
gression coefficients for D log ct/ 1 . The ex-
planation for the dramatic effect is that income
will drop with more than 50-percent probabil-
ity at the highest income level, and that con-
sumption must drop dramatically, if the agent
has just consumed three times yearly earnings.
This rather extreme scenario is probably not
the explanation for the estimated values of our
statistics: we put more stock in the first sce-
nario described above. Clearly, a more de-

tailed empirical as well as theoretical
investigation of spending patterns, depending
on wealth and income, is called for. Nonethe-
less, we find these results very intriguing and
encouraging. More often than not, our rule-
based paradigm beats the dynamic program-
ming paradigm when it comes to matching the
facts in this context.

II. A General Dynamic Decision Problem

Next, we describe our framework in general
terms. Time is discrete, starting at t Å 0, and
the agent is infinitely lived. At each date t and
given the state s Å st from some set of states
S Å {s1 , ... , sn}, the agent must choose some
action a Å at from a set of actions A Å {a1 ,
... , am}. The agent then experiences the in-
stantaneous utility u(s , a)√ R and a new state
s* Å st/ 1 for the next period t / 1 is randomly
selected from S according to some probability
distribution ps ,a on S . We assume throughout
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TABLE 3—VARIATIONS IN INCOME CUTOFF, l Å 1 (VARIANCE IN TRANSITORY INCOME COMPONENT)

Regression of D log ct/1 on constant and log yt

income ¢ 0.5 0.7 1.0 1.4 2.1

wealth ¢ 0 00.135 00.108 00.109 00.078 00.118
wealth ¢ 0.02 00.028 00.028 00.053 00.042 00.120
wealth ¢ 1 0.027 0.023 0.008 0.005 00.090
wealth ¢ 3 0.007 0.004 00.001 00.003 00.068
wealth ¢ 10 0.008 0.006 0.005 0.004 00.031

Regression of D log ct/1 on Et[D log yt/1]

income ¢ 0.5 0.7 1.0 1.4 2.1

wealth ¢ 0 0.981 0.662 0.667 0.335 0.845
wealth ¢ 0.02 0.050 00.040 0.202 0.021 0.908
wealth ¢ 1 00.441 00.451 00.317 00.367 0.657
wealth ¢ 3 00.207 00.216 00.177 00.193 0.500
wealth ¢ 10 00.185 00.190 00.181 00.187 0.183

Average function of time in percent that agent applies the rule

income ¢ 0.5 0.7 1.0 1.4 2.1

wealth ¢ 0 83.3 66.7 50.0 33.3 16.7
wealth ¢ 0.02 33.5 27.9 24.4 16.8 11.2
wealth ¢ 1 14.6 14.5 14.0 12.2 8.9
wealth ¢ 3 6.1 6.1 6.0 5.8 4.9
wealth ¢ 10 1.8 1.8 1.8 1.8 1.6

Notes: The suboptimal rule 2 is applicable whenever wealth exceeds the level indicated and whenever income exceeds
the level indicated. The transitory income component nit has variance 0.04.

that ps ,a(s *) ú 0 for all s * √ S . Total time-
zero utility is given by

`
tU Å E b u(s , a ) ,∑0 0 t tF G

tÅ 0

where 0 õ b õ 1 is a discount factor and E0

is the conditional expectations operator. Most
recursive stochastic dynamic decision prob-
lems can be formulated in this way at least
approximately by discretizing the state space
and the action space and by changing zero
transition probabilities to some small amount.
Since the instantaneous utility as well as the
transition probabilities depend on the state as
well as the action chosen, we have not lost
generality by assuming that the agent always
has the same set of actions available to him,
regardless of the underlying state.

Define a decision function to be a function
h : S r A and let H be the set of all decision
functions. The objective of a decision theory

is to find h , given a particular paradigm. We
will consider and compare two such para-
digms: the paradigm of dynamic programming
(or, equivalently, dynamic optimization) and
the paradigm of decision-making and learning
with rules of thumb.

III. Dynamic Programming

The standard approach is to rewrite the de-
cision problem above as a dynamic program,

£(s) Å max {u(s , a) / bE £(s*) } .(8) ps ,a
a √ A

A standard contraction mapping argument as
in Stokey et al. (1989) shows that there is a
unique £* solving the dynamic programming
problem in (8). The solution is characterized
by some ( not necessarily unique ) decision
function h* : S r A that prescribes some ac-
tion h*(s) in state s .
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For any decision function h , define the as-
sociated value function £h as the solution to the
equation

£ (s) Å u (s , h(s) ) / bE £ (s*)(9) h p hs ,h(s)

or as

01v Å (I 0 bP ) u ,(10) h h h

where vh is understood as the vector [£h(s1) ,
... , £h(sn)]* in R n , Ph is the n 1 n matrix de-
fined by

P Å p (s ),h ,i ,j s ,h (s ) ji i

and uh is the vector [u(s1 , h(s1)) , ... , u(sn ,
h(sn))]* in R n . Clearly, £* Å vh * . The next
proposition tells us that no randomization over
actions is needed to achieve the optimum. This
will contrast with some classifier systems in
the example in subsection B below, which re-
quire randomizing among classifiers even in
the limit.

PROPOSITION 1: For all s √ S ,

£*(s) Å max £ (s) .h
h √ H

For future reference, define mh to be the
unique invariant probability distribution on S
for the transition law Ph , i.e., mh is the solution
to mh Å with (s mh(s) Å 1. The unique-P*mh h

ness of mh follows with standard results about
Markov chains from the strict positivity of all
ps ,a(s *) .

IV. Decision-Making and Learning
with Rules of Thumb

This section defines how the agent makes
decisions by using rules of thumb and learns
about their quality. We first define a rule of
thumb as a mapping from a subset of the states
into action space. For example, a rule of thumb
might say ‘‘when the economy is in state s1 ,
use action a1 ; when it is in state s3 , use action
a2 .’’ Each rule of thumb has an associated
strength, which will be a measure of how well
the rule has performed in the past. A list of
these rules of thumb and strengths is called a
classifier system. We assume that the set of

rules in the classifier system will be constant
throughout the life of the agent. Learning takes
place via updating the strengths. Rules that
performed well in the past will have a high
strength, while rules that performed poorly
will have a low strength. Performance is mea-
sured not only with respect to how much in-
stantaneous utility is generated, but also how
the restrictions imposed on future choices by
the current actions are evaluated. The spirit of
the algorithm which we will use is dynamic
programming in nature, but it requires only
keeping track of past and present experiences
and hence can be performed in real time.

More formally, let A0 Å a0 < A , where a0

is meant to stand for ‘‘dormant.’’ A rule of
thumb is a function r : S r A0 with r( S) x
{a0}. A classifier c is a pair (r , z) consisting
of a rule of thumb r and a strength z √ R. A
classifier cÅ (r , z) is called applicable in state
s , if r(s) x a0 . A classifier system is a list
CÅ (c1 , ... , cK) of classifiers, so that for every
state s , there is at least one applicable
classifier.

Choose a decreasing gain sequence6 (gt )t¢0

of positive numbers satisfying

`
pg õ ` for some p ¢ 2,(11) ∑ t

tÅ 1

`

g Å ` ,(12) ∑ t

tÅ 1

as well as an initial classifier system C0 and an
initial state s0 for the initial date t Å 0.

Classifier system learning is a stochastic se-
quence of states indices of` `(s ) , (k )t tÅ 0 t tÅ 0

classifiers and classifier systems Pro-`(C ) .t tÅ 0

ceed recursively for each date t Å 0, 1, 2, ···
by going through the following steps. Before
updating the strengths at date t , the current
state st and the current classifier system Ct are
known. Choosing an action takes place at the
end of date t , whereas the updating step for
the strength of the active classifier in period t
takes place at the beginning of date t / 1. In
detail:

6 For some of the terminology used, see Albert
Benveniste et al. (1990).
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1. (In date t) the classifier ct Å (r , z) in Ct

with highest strength among all applicable
classifier in state st is selected.7 Use ran-
domization with some arbitrarily chosen
probabilities to break ties. Denote the index
of the winning classifier by kt Å k(st ; Ct) .

2. (In date t) the action atÅ r(st) is carried out.
3. (In date t) the instantaneous utility ut Å

u(st , at) is generated.
4. (In date t / 1) the state transits from st to

st/ 1 according to the probability distribu-
tion on S .ps ,at t

5. (In date t / 1) determine the index k* Å
k(st/ 1 ; Ct) of the strongest classifier in Ct

which is applicable in state st/ 1 . Denote its
strength by z *. Update the strength of clas-
sifier with index kt to8

Iz Å z 0 g (z 0 u 0 bz*) .(13) t/ 1 t

The classifier system Ct/ 1 is then defined
to be the classifier system Ct with c re-
placed by c̃ Å (r , z̃) .

A classifier system C thus gives rise to a
decision function h(s ; C) å rk (s ; by se-(s))C
lecting the strongest among all possible clas-
sifiers at each state. The updating of the
strength of the classifier activated in period t
occurs at stage 5 when ut and st/ 1 are known.
Note that the updating equation (13) uses the
period t strengths to determine z *, which is
added to the strength of classifier that is active
in period t . We are not using Ct/ 1 here, since
Ct/ 1 is not available yet. In other words, the
agent makes a forecast about Ct/ 1 by using
the no-change prediction Ct . After finishing
with stage 5, we go on to stage 1 in time t /
1. The classifier chosen at stage 1 in period
t / 1 might differ from the ‘‘hypothetical’’
one which was used to complete the updating
in stage 5. The updating algorithm is formu-
lated in such a way that the updating does not
require calculating the strengths at t / 1 first,

7 Another method to determine the decision function is
to randomize among applicable classifiers according to
their relative strengths; see, e.g., Arthur (1993).

8 Marimon et al. (1990) introduce an adjustment factor
in the bidding to account for differences in the ‘‘general-
ity’’ of classifiers. We will consider this extension in Sec-
tion VI, subsection C.

which would otherwise give rise to compli-
cations in cases where the activated classifiers
at date t and t / 1 have the same index.

There is a connection to dynamic program-
ming, which should be pointed out here. Con-
sider the term in brackets in equation (13),
which is used for updating, and suppose that
updating was no longer necessary, as the
strengths have already converged. We would
then have

z Å u (s , r (s ) ) / bz*,(14) t t t

which looks formally similar to

£(s ) Å u (s , h*(s ) ) / b£(s*)t t t

if we drop expectations in equation (8) for the
moment: strengths there correspond to values
here. We return with additional tools to this
comparison with equations (18) and (19) be-
low. Here, we just note that the difference be-
tween the two sides of equation (14) is used
to update the strength z : the larger that differ-
ence, and the less experience the agent has ( t
small, i.e., gt large) , the larger the adjustment
of the strength. An updating equation like (13)
is common in the learning literature, see e.g.,
Albert Marcet and Sargent [1989 equation
(4a)] . One can think of equation (13) as an
error correction model, in which the weight on
the error correction term is decreasing over
time. It is also often referred to as a bucket
brigade, since each activated classifier has to
pay or give away part of its strength z in order
to get activated, but in turn receives not only
the instantaneous reward ut for his action, but
also the ‘‘payment’’ by the next activated clas-
sifier bz *, discounted with b.

Note, that the dimension K of the strength
vector can in principle be substantially larger
than n , the dimension of the value function,
since a classifier system can contain up to
(#A / 1) classifiers with different rules,#S
and even more, if several classifiers use the
same rule. However, we like to think of ap-
plications, in which only a few rules are used,
so that the strength vector is shorter than the
dimensionality of the state space. We then
have an attractive way of modelling bounded
rationality, since an agent using this learning
scheme has to memorize only a small number
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of strengths, and learns by simply adding and
subtracting from the strength vector in real
time. He does not need to form forward-
looking expectations or solve fixed-point
problems.

Our definitions are motivated by Holland’s
(1992) work on classifier systems, but we do
not include a rule-generating or rule-modifying
feature such as the genetic algorithm, since that
deemed to be too hard to justify and too hard to
analyze at this point in the ongoing research, and
furthermore eliminated features which do not
seem essential for the issues studied here. First,
without the genetic algorithm, there is no partic-
ularly good reason to insist on binary encoding.
Second, our rules are mappings from subsets of
states into actions, whereas research on classifier
systems typically assumes a rule to always take
the same action in all states in which it is appli-
cable. It is easy to see, however, that both are
formally equivalent if one allows for a suitable
redefinition of the action space (see the fourth
remark in Section VI, subsection A). Note that
Holland’s original definition of classifier sys-
tems allowed rules to have state-dependent ac-
tions as well (see Holland, 1986 p. 603).

V. Asymptotic Behavior

Classifier-system learning leads to a sto-
chastic sequence of decision functions

given by ht Å h(st ; Ct) . We are inter-`(h )t tÅ 0

ested in determining the asymptotic behavior
of this sequence, i.e., which decision functions
are eventually learned, and whether they co-
incide with an optimal decision function for
(8) . We characterize all possible learning out-
comes with strict strengths orderings. The con-
vergence proof itself uses results from the
stochastic approximation literature 9 ( for a
general overview and introduction to stochas-
tic approximation algorithms, see L. Ljung et
al., 1992; Sargent, 1993).

One might think the requirement of a strict
asymptotic strengths ordering to be generically
satisfied, but it is not. Section VI, subsection
B, provides an example in which one cannot

9 Marimon et al. (1990 Sec. 5) already suggest using
stochastic approximation results to study the limit behav-
ior of classifier system.

obtain such a strict asymptotic ordering for an
open set of utility values. Intuitively, imagine
two candidates for the asymptotic ordering of
the strengths. It may so happen, that the first
ordering results in a behavior, where one would
rather conclude the second ordering to be cor-
rect based on average experience and vice
versa. Over time, the observed ordering flip-
flops back and forth between these two possi-
bilities, settling on assigning equal strengths to
some classifiers asymptotically. This case is not
yet covered by the theory here, but would make
for an interesting extension. For now, we stick
to strict asymptotic orderings.

For ease of notation, let Yt Å [ st 0 1 , kt 0 1 ,
st , kt ] and let ut denote the vector of all
strengths zk , k Å 1, ... , K of the classifier
system Ct at date t . Consider a vector of
strengths u` so that, conditional on some
strength and some value for at someu Yt t0 0

date t0 , we have ut r u` with positive prob-
ability. If all elements of u` are distinct, we
call u` an asymptotic attractor. We aim at
characterizing all asymptotic attractors. In-
deed, the example about excess sensitivity
of consumption in Section I was based on
the calculation of such an asymptotic at-
tractor. Calculating the strengths z1 and z2

with equations (4 ) and (5 ) was based on
averaging over many periods, replacing
sample averages by expectations, i.e., prob-
abilistic averages. We will show that all as-
ymptotic attractors can be computed in this
manner as long as one also checks the con-
sistency condition below. Following this
procedure of Section I, i.e., to calculate the
asymptotic attractors and hence to figure
out where a rule-based agent eventually
gets stuck, is probably the most natural and
useful thing to do in any application of our
framework. This section provides an algo-
rithm for calculating these asymptotic at-
tractors, and proves that this algorithm
indeed works.

Given the K rules, the algorithm takes
the following steps. The idea is to start
with some candidate ranking of the strengths
of the rules and then to calculate the
implications ( such as numerical values of
the strengths ) of that ranking. The implied
numerical values for the strength values then
need to be checked for whether their ranking
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is consistent with the ranking which was as-
sumed at the start. If all asymptotic attractors
need to be calculated, then this algorithm
needs to be performed for all K ! permuta-
tions of {1, ... , K} .

1. Pick a permutation of {1, ... , K} . Think
of this permutation as a candidate ranking
of the strengths. For example, for five
rules, that permutation might take the
form (4, 1, 3, 5, 2 ) , and we will be look-
ing for an asymptotic attractor, in which
rule 4 will have the highest strength and
rule 2 the lowest.

2. Given this candidate ranking of the
strengths, find the winning rule k (s ) for
each state s by selecting from the chosen
permutation the first among the applica-
ble rules for that state. For example, if
rules 2 and 3 are applicable in some state
s , we would use k (s ) Å 3 in the example
above.

3. Equipped with k(s) , find the implied de-
cision function h(s) Å rk (s ) (s) , the utilities
u(s , h(s)) , and the probabilities Ph ,i ,j for
transiting from state si to state sj .

4. Find the unique, invariant distribution mh

over states for the probabilities Ph ,i ,j .
Find the unconditional probability n(k )
for choosing a particular rule k by sum-
ming over all the unconditional probabil-
ities mh (s ) of being in states s , in which
the particular rule is chosen, k (s ) Å k .
Formally,

n(k) Å Prob(k Å k(s) )

Å m (s) .∑ h

{sÉkÅ k(s)}

Call classifiers asymptotically active, if
they are a winning classifier for at least one
state, i.e., if n(k) ú 0. Call all other clas-
sifiers asymptotically inactive. Only
asymptotically active classifiers are acti-
vated with some positive probability, given
the rule choice function k(s) . Let K̃ Å {k
: n(k) x 0} be the set of asymptotically
active classifiers.

5. Calculate the average instantaneous util-
ity uk generated by an asymptotically active

classifier k √ K̃ ,

(15) u Å E [u (s , h(s) )Ék(s)Å k]k mh

1Å m (s)u (s , h(s) )∑ h
n(k) {sÉk(s)Å k}

and let √ R K̃ be the vector of these util-uu
ities uk for asymptotically active classifiers.
One needs to be a bit careful here in the
meaning of indices: they always refer to the
classifier and not to the position in the vec-
tor uu .

6. Calculate the matrix B √ R K̃ ,K̃ of transition
probabilities between classifier choices for
asymptotically active classifiers, i.e.,

(16)

B Å Prob( {s* : k(s*)Å l}Ék(s)Å k)k ,l

( ( m (s)p (s*)h s ,h (s)
{sÉkÅk(s)} {s=ÉlÅk(s=)}Å .

n(k)

Again, one needs to be a bit careful here in
the meaning of indices: they always refer
to the classifier and not to the position in
the matrix B .

7. Calculate

01
Hu Å (I 0 bB) uu(17) `

to find the strengths for asymptotically ac-
tive classifiers. For asymptotically inactive
classifiers, choose any value strictly below
the minimum of all the computed values for
asymptotically active classifiers. Together,
these strengths form the vector u` . For ease
of notation, let zk Å u` ,k be the asymptotic
strength of classifier k .

8. Check the

CONSISTENCY CONDITION:

for all states s √ S and all applicable,
losing rules for that state, kx k(s) and
rk(s) x a0 , the strength is dominated
by the strength of the winning rule
k(s) :
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z õ z .k k (s )

This consistency condition checks, whether
the ranking of the implied strengths is consis-
tent with the chosen candidate ranking, from
which we started. The consistency check is
done by examining the choice for the winning
classifier due to the candidate ranking as this
is the essential feature of the initial ranking.10

If the consistency condition is satisfied, ter-
minate successfully. Otherwise terminate
unsuccessfully.

A vector u` is called a candidate asymptotic
attractor if it can be calculated with this al-
gorithm for some initial ranking of the
strengths and under successful termination,
i.e., if it satisfies equation (17) as well as the
consistency condition.

It is instructive to compare the equation
characterizing the value function, given the
optimal decision function h*,

£(s) Å u (s , h*(s) )(18)

/ b p (s*)£(s*)∑ s ,h (s )

s=

to equation (17), characterizing the strengths
of the asymptotically active classifiers and re-
written as

z Å u / b B z .(19) ∑k k k ,l l

l

The similarity is striking. The key difference
is that equation (18) attaches values to states,
whereas the algorithm here attaches strengths
to r ules [ see equation ( 19 ) ] . Thus, the
strength of a rule is intuitively something like
an average of all the values £(s) for all those
states where the rule is applied. In Section I,
we have indeed calculated the asymptotic
strengths z1 and z2 in this manner: compare
equations (4) and (5) with equation (19).

10 One could alternatively simply check directly,
whether one gets the same ranking of the strengths. Paying
a bit of attention to how one sets the strengths for the
asymptotically inactive classifiers, this will deliver the
same result, as one tries out all possible candidate rankings
at the start of this algorithm.

Another way to see the similarity is to in-
troduce a new state-dependent function x(si )
and to rewrite (19) as

x(s) Å u (s , h(s) )(20)

/ b P (s*)z∑ s ,h (s ) k (s=)
s=

m (s)hz Å x(s) ,(21) ∑k
n(k){sÉkÅ k(s)}

if n(k) x 0.

The first equation (20) is even more similar to
equation (18), except that the decision func-
tion h rather than h* is used and except that
the values £(s *) for the next state s * are re-
placed with the strengths of the classifier zk (s =)
to be used in that state. The second equation
(21) tells us to sum all the x(s) for states s in
which a particular rule k is activated, using the
probabilities of being in state s conditional on
using rule k as weights. For the Bellman equa-
tion, the decision function h* is obtained via
maximization. For classifier systems, the con-
sistency condition is used instead. Finally,
Proposition 2 shows there is an intriguing re-
lationship between £h and u` .

PROPOSITION 2: For any candidate as-
ymptotic attractor, the expected value function
associated with its decision rule equals the ex-
pected strength,

E [z ] Å E [£ (s) ]m k (s ) m hh h

1Å E [u (s , h(s) ) ] .mh1 0 b

However, one cannot in general just average
over the £h(s) for those states s in which a
classifier is active to get its strength,

z x E [£ (s)Ék(s) Å k](22) k m hh

( in general) .

We note in summary, that for each of the
K! possible strict orderings of the K classifiers,
there is a vector u` √ RK satisfying (17) for
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the asymptotically active classifiers. u` is
unique up to the assignment of strengths to
asymptotically inactive classifiers, and is a
candidate asymptotic attractor, if it also satis-
fies the consistency condition. The next theo-
rem shows that the algorithm indeed provides
a complete characterization of all asymptotic
attractors.

THEOREM 1: Every candidate asymptotic
attractor is an asymptotic attractor and vice
versa.

The proof of this theorem can be found in
the Appendix. It draws on a result by Michel
Métivier and Pierre Priouret (1984) about
Markov stochastic approximation proce-
dures. The theorem indicates how classifier
system learning happens over time. For some
initial periods, the orderings of the classifiers
may change due to chance events. Eventu-
ally, however, the system has cooled down
enough and a particular ordering of the
strengths is fixed for all following periods.
As a result, the asymptotically inactive clas-
sifiers will no longer be activated, and the
system converges to the asymptotic attractor
as if the transition from state to state was
exogenously given. The classifier system has
learned the final decision rule. Alternatively,
one can train a classifier system to learn a
particular decision rule corresponding to
some candidate asymptotic attractor by forc-
ing the probabilistic transitions from one
state to the next to coincide with those gen-
erated by the desired decision rule. After
some initial training periods and with pos-
sibly sizeable probability, the strengths will
remain in the desired ordering and will not
change the imprinted pattern. However,
given a particular history, the theorem and
its proof do not rule out the possibility that
the strengths may break free once more to
steer towards a different limit. In fact, this
will typically happen with some probability
due to (12) . A sufficiently long string of un-
usual events could have a large effect on the
updating of the strengths in (13) and thus
change an existing ordering.

Keep in mind that the strict ordering of the
strengths is part of our definition of asymptotic
attractors and candidate asymptotic attractors.

It should thus be noted that the characteriza-
tion applies only to asymptotic attractors with
a strict ordering of the strengths. As we will
see in the next section, this is not just ruling
out knife-edge cases. We will construct a ro-
bust example in which equality of the
strengths of two classifiers is necessary as-
ymptotically. In that sense, our theory is not
exhaustive. It covers only the cases in which
the agent is never indifferent asymptotically
between choosing between two asymptotically
active classifiers and thus has no reason to ran-
domize. This theory could also consider ran-
domization as a natural extension to cover the
cases of ties as well, but this would probably
probably involve quite a bit of additional
machinery.

The paper started out in Section I by ar-
guing that classifier system learning can lead
to a good state bias, and demonstrating this
claim in an example. In words, the good state
bias means that a suboptimal rule cannot be
active in just the worst states as measured by
the value function, when that suboptimal
rule is active in only a subset of states, and
competes against the everywhere applicable
dynamic programming solution. It would be
desirable to have a general theorem, stating
this. We conjecture the following result to
be true. We have not been able to falsify it
in numerical experiments, but were also un-
able to prove it so far.

CONJECTURE 1: Suppose there are two
rules. Let the first rule r1 be active in all states
and coincide with a solution h* to the dynamic
programming problem. Let the second rule r2

be active in only a strict subset S(2) of all
states. Suppose each rule is active, i.e., sup-
pose that z2 ú z1 , where zk is the asymptotic
strength of classifier k . Then,

min £(s ) õ max £(s ) .i i
(2)(2) i √i √ SS /S

We can prove the conjecture in the case of
just two states, however.

PROPOSITION 3: Suppose there are two
rules and two states. Let the first rule r1 be
active in all states and coincide with a solution
h* to the dynamic programming problem. Let
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the second rule r2 be active in only one state,
say s2 . Suppose each rule is active, i.e., that
z2 ¢ z1 , but that they together do not imple-
ment a solution to the dynamic programming
problem. Then, £*(s2) ú £*(s1) .

VI. Illustrations and Extensions

A. Some Simple Cases

There are several simple cases, in which the
asymptotic behavior is easy to see and which
establish useful benchmarks. Furthermore,
there are numerical examples to study the case
of a union of rules and of randomizing be-
tween rules. Details, like additional proofs or
calculations, are available from the authors
upon request as part of the technical Appendix.

1. Suppose there is only one rule. Then there
is a unique candidate asymptotic attractor
u` √ R and it satisfies u` Å E [£ ] .m rr

In particular, if r Å h*, then u` Å
This follows immediately fromE [£*].mh *

Proposition 2.
2. Let h* be a decision function with £*Å £h *

and suppose that h* is unique. Suppose,
furthermore, that all K rules are applicable
in at most one state and that for each s √
S , there is exactly one rule with r(s) Å
h*(s) ; denote its index with k*(s) . Define
u` by assigning for each state s strength
zk *(s ) Å £*(s) to the classifier with index
k *( s ) . For all other rules, assign some
strength strictly below all £*(s) for states
s , in which that rule is applicable. Then u`

is a candidate asymptotic attractor which
implements the dynamic programming
solution.11

11 This is closely related to results about Q-learning in-
troduced by C. Watkins (1989). In the notation of this
paper, Q-learning algorithms update strengths Q(s , a) ap-
plicable in state s for action a . This corresponds to clas-
sifiers that are only applicable in a single state. Q-learning
defines one Q for each possible state-action combination.
The updating of the Q’s is similar to the equation (13).
The difference is that not the strongest of the applicable
Q’s is determining the action taken, but by some other

3. If all rules are applicable in all states ( i.e.,
all rules are total) , then for each rule, there
is an asymptotic attractor u` , where that
rule is the only asymptotically active rule.

4. In many parts of the literature on classi-
fiers, rules are action based, i.e., prescribe
the same action regardless of the under-
lying state. Formally, this can always be
accomplished as follows. Given some
classifier system with K rules rk , k Å 1,
... , K , define a new action space ÅHA
{ ã1 , ... , ãK } . Replace the utility payoffs
u (s , a ) by ũ (s , ãk ) Å u (s , rk (s ) ) , if rk is
applicable in state s , and by some number
below the minimum of all u ( s , a ) other-
wise. Similarly, replace the transition
probabilities ps ,a (s * ) by ÅIp (s* )s , Iak

if rk (s ) is applicable in state sp (s* ) ,s ,r (s)k

and by otherwise. Finally, re-p (s* )s ,a1

place the K old rules by the K new rules
r̃k (s ) Å ãk , k Å 1, ... , K with the same
domains of applicability as the old rules.
After all these redefinitions, the rules are
action based, but nothing of substance has
changed. An asymptotic attractor for the
untransformed system is an asymptotic
attractor for the transformed system, and
vice versa, and the dynamic programming
solution stays the same too.

5. Suppose we replace two active rules which
are disjoint with the union of the rules.
Then it is possible that the new rule be-
comes inactive. We found an example, in-
volving four rules. One apparently needs to
be quite careful in specifying just the right
payoffs and transition probabilities to gen-
erate such an example, however.

mechanism that allows for enough exploration so that all
Q’s are triggered infinitely often. Then the matrix of Q’s
will converge to the values implied by the value function
from dynamic programming (see A. Barto et al., 1993).
Clearly, the definitions of the Q’s is a special case of the
classifiers defined in this paper, since classifiers are al-
lowed to cover more general sets of state-action pairs. The
second difference is that classifier learning always selects
the strongest classifier among the applicable ones. Q-
learning activates Q’s using a randomization method that
guarantees that each Q(s , a) is used often enough. How-
ever, this advantage is offset by the increased space com-
plexity compared to classifiers with more general
domains.
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B. An Example

We provide an example that demonstrates
the similarities and differences between clas-
sifier systems and the dynamic programming
approach. It also demonstrates why the case of
asymptotically equal strengths cannot be ruled
out. The example is abstract and meant for il-
lustration only; it has therefore been kept as
simple as possible.

Suppose S Å {1; 2; 3}, A Å {1; 2} and
that the transition to the next state is deter-
mined by the choice of the action only, re-
gardless of the current state s :

s*Å 1 s*Å 2 s*Å 3

aÅ 1: p (1)Å 1/3, p (2)Å 1/3, p (3)Å 1/3s ,1 s ,1 s ,1

aÅ 2: p (1)Å 0, p (2)Å 1, p (3)Å 0.s ,2 s ,2 s ,2

Note that some probabilities are zero, in con-
trast to our general assumption. This is done
to simplify the algebra for this example. We
further have a discount factor 0õ bõ 1 and
utilities u (s , a ) , s Å 1, 2, 3, a Å 1, 2. We
assume without loss of generality that u (2,
1 ) Å 0. We impose the restriction that u (3,
a ) Å u (1, a ) for a Å 1, 2, so that state s Å
3 is essentially just a ‘‘copy’’ of state s Å 1.
Thus, there are three free parameters, u (1,
1 ) , u (1,2 ) , and u (2, 2 ) .

The difference between state sÅ 1 and state
sÅ 3 is in how they are treated by the available
rules. Assume that there are two rules, r1 and
r2 , described by

sÅ 1 sÅ 2 sÅ 3,

r : r (1)Å 1, r (2)Å 0, r (3)Å 11 1 1 1

r : r (1)Å 2, r (2)Å 1, r (3)Å 02 2 2 2

with ‘‘0’’ denoting the dormant action a0 .
Note that the two given rules never lead to
action a Å 2 in state s Å 2. The value of u(2,
2) is thus irrelevant for the comparison of the
classifiers. Strength comparisons will thus
place restrictions only on the remaining two
free parameters u(1, 1) and u(1, 2) .

We aim at calculating all candidate asymp-
totic attractors. Since there are only two rules,

there can be only two strict rankings of the
corresponding classifier strengths, namely
z1 ú z2 (case I) and z2 ú z1 (case II) . Calcu-
lating the strengths with the algorithm of Sec-
tion V, one can show that case I can arise if
and only if u(1, 1) ú 0, whereas case II can
arise if and only if u(1, 2) ú 3u(1, 1) .

It is interesting to also consider the case
z1 Å z2 (case III) with nontrivial randomiza-
tion between the classifiers, a situation not
covered by our theoretical analysis above. The
reasoning employed here should be rather in-
tuitive, however. Given state s Å 1, we guess
that classifier c1 is activated with some prob-
ability p , whereas classifier c2 is activated with
probability 1 0 p ( i.e., there is randomization
between the classifiers) . The resulting deci-
sion function is random. Given s Å 1, states
s* Å 1 and s * Å 3 will be reached with prob-
ability p /3 each. The invariant distribution mh

is therefore mh(1) Å mh(3) Å 1/(4 0 p) ,
mh(2) Å (2 0 p) / (4 0 p) . The joint proba-
bilities that state s occurs and classifier k is
activated, mh(s , k) , follow immediately. The
common strength z should satisfy both equa-
tions arising from (17) yielding

1
u(1, 1) Å z(23)

1 0 b

1 1 0 pÅ u(1, 2) ,
1 0 b 3 0 2p

which can be solved for p . Note that p is a
viable probability if and only if 0 ° p ° 1.
Thus, case III is valid, if and only if one of the
following two inequality restrictions is
satisfied:

1. u(1, 2) ° 3u(1, 1) ° 0 or
2. u(1, 2) ° 3u(1, 1) ¢ 0.

The strengths and probabilities in this case are
unique except if u(1, 1) Å u(1, 2) Å 0. The
inequalities have to be strict in order for p to
be nondenerate. Otherwise, the decision rule
obtained coincides with the one derived from
case I or case II. If the probability p is strictly
between zero and one, then there will be
alteration between the two classifiers even
asymptotically. Thus, there will be randomiza-
tion between the actions as a function of the
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TABLE 4—ALL POSSIBLE ASYMPTOTIC OUTCOMES IN EXAMPLE IN SECTION VI, SUBSECTION B

Area Restriction
Case I
z1 ú z2

Case II
z1 õ z2

Case III
z1 Å z2 h*(1)

h* Å h?
(Dynamic programming Å rules?)

A1 u(1, 1) ú 0
u(1, 2) ° 3u(1, 1)
u(1, 2) ° (1 / 2/3b)u(1, 1)

Yes No No 1 yes

B2 u(1, 1) ú 0
u(1, 2) ° 3u(1, 1)
u(1, 2) ¢ (1 / 2/3b)u(1, 1)

Yes No No 2 no

A2 u(1, 1) ° 0
u(1, 2) ú 3u(1, 1)
u(1, 2) ¢ (1 / 2/3b)u(1, 1)

No Yes No 2 cannot

B1 u(1, 1) ° 0
u(1, 2) ú 3u(1, 1)
u(1, 2) ° (1 / 2/3b)u(1, 1)

No Yes No 1 no, but could

C1 u(1, 1) ° 0
u(1, 2) ° 3u(1, 1)

No No Yes 1 random

u(1, 2) ° (1 / 2/3b)u(1, 1)

C2 u(1, 1) ú 0
u(1, 2) ú 3u(1, 1)

Yes Yes Yes 2 maybe

u(1, 2) ¢ (1 / 2/3b)u(1, 1)

Notes: This table shows the various cases for the numerical example of Section VI, subsection B, parameterized by the
utility received in state 1, when taking action 1, u(1, 1) or action 2, u(1, 2) (see also Figure 1).

state asymptotically in contrast to the dynamic
programming solution.

Table 4 shows that for any given values of
u(s , a) there is at least one applicable case.
However, the only case available may be case
III and thus the solution prescribed by the clas-
sifier system involves randomization between
the classifiers.

Let us now compare these possibilities with
the solution to the dynamic programming
problem. If u(2, 2) is large enough, the opti-
mal decision function will always prescribe
action a Å 2 in state s Å 2, which cannot be
achieved with the classifiers above. Assume
instead that u(2, 2) is small enough, so that
the optimal decision function takes action
h*(2) Å 1 in state s Å 2. Directly calculating
£ * Å £h * with equation ( 10 ) for the two
choices yields

21, if u(1, 2)° (1/ b)u(1, 1) ,
3h*(1)ÅH 22, if u(1, 2)¢ (1/ b)u(1, 1) .
3

A summary of all possible situations is found
in Table 4 and Figure 1. The learnable decision

function may not be unique (area C2). The
learnable decision function may involve asymp-
totic randomization between the available rules
(area C1). The learnable decision function can
also be different from the solution to the dy-
namic programming problem, even if that solu-
tion is attainable by ranking the classifiers
appropriately (this is the case in area B1). In-
tuitively, since u(2, 1) has been normalized to
zero, u(1, 1) Å u(3, 1) measures how much
classifier c1 gains against classifier c2 by being
applicable in state s Å 3 rather than state s Å 2.
If u(1, 1) is positive, state s Å 3 corresponds to
‘‘good times’’ and state s Å 2 corresponds to
‘‘bad times.’’ Since the accounting system (13)
for calculating the strengths of classifiers does
not distinguish between rewards generated from
the right decision and those generated from be-
ing in good times, a classifier that is applicable
only in good times ‘‘feels better’’ to the rule-
using agent than it should. Thus, if u(1, 1)ú 0,
classifier c1 may be used ‘‘too often’’ and if u(1,
1) õ 0, classifier c1 may be used ‘‘too little.’’
This is what happens in areas B and C. An
important insight of this example and Figure 1
is that both the areas of strict orderings of
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FIGURE 1. GRAPHIC REPRESENTATION OF CASES IN TABLE 4

Notes: This figure shows the various cases for the numerical example of Section VI, subsection B, parameterized by the
utility received in state 1, when taking action 1, u(1, 1) or action 2, u(1, 2) (see also Table 4). For example, the rule-
based decision is unique and coincides with the dynamic programming solution in area A1, is not unique in area C2, or
requires equal strength and thus is the probabilistic choice between the two rules even asymptotically in area C1.

classifiers as the only possible asymptotic out-
come (areas A and B) and the area of equality
of classifiers as the only possible asymptotic out-
come (area C1) are robust to parameter changes.

C. Strength Adjustment

In the accounting scheme (13) as laid out
in Section IV all classifiers are treated equally
independent of the states in which they are ac-
tive. This raises the immediate question
whether it is possible to adjust the scheme so
that the learnable decision function coincides
with the dynamic programming solution. For
example, Marimon et al. (1990) adjust the
payment of the classifiers with a proportional
factor that depends on the number of states in
which each classifier is active. Would that do
the trick?

Consider the above example with only two
classifiers. Let k1 ú 0 and k2 ú 0 be adjust-
ment factors for classifiers 1 and 2, respec-
tively, and let zi Å ki zi be the adjusted strength
for classifier i . The most obvious way of al-
tering the accounting scheme (13) is as fol-
lows. Find the strongest classifier by

comparing the values of z instead of z and up-
date the strength according to

Iz Å z 0 g (kz 0 u 0 bk*z*)(24) t/ 1 t

or, equivalently, Å z 0 kgt/ 1(z 0 ut 0Hz
bz *) . This equation differs from (13) only by
a classifier-individual scalar adjustment for the
gain gt/ 1 . Asymptotically, only the expres-
sion in brackets matters, and there is no dif-
ference. Thus, this alteration does not get us
any closer to the dynamic programming solu-
tion than before. Somehow, the term used to
update the strength has to be adjusted differ-
ently from the strength comparison.

Consider therefore a different alteration.
Compare zk’s to determine the winning clas-
sifier, but use (24) to update the strengths. In-
tuitively, the winning classifier ‘‘pays’’ kz
instead of z to the receiving classifier, but k is
not used to rescale strengths for determining
the winning classifier. Indeed, the ‘‘bids’’ in
Marimon et al. (1990) correspond to our pay-
ment kz . Like here, the winning classifier in
their paper is determined by the strength and
not by the bid. To calculate a candidate as-
ymptotic attractor, modify equation (19) by

http://pubs.aeaweb.org/action/showImage?doi=10.1257/aer.89.1.148&iName=master.img-000.png&w=205&h=184
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replacing zk with kkzk everywhere and solve.
For the example, let us normalize k2 to unity,
assume that u(1, 1) õ 0, assume that the
dynamic programming solution prescribes
h*(1) Å 1, and let us check whether it is pos-
sible to find a value for k1 which guarantees
that the classifier learning solution is identical
to the dynamic programming solution, i.e., that
the z1 ú z2 . In terms of Figure 1, we are trying
to adjust k so that area B1 and C1 get elimi-
nated and become part of area A1 instead. Af-
ter some algebra, one finds that the first
classifier is stronger than the second one, if
and only if,

3 0 b
k ú .(25) 1 2b

Intuitively, classifier 2 is too strong in area B1,
and we need to give the first classifier an extra
advantage by raising its adjustment factor k1 .
But we only want to make that adjustment,
when indeed h*(1) Å 1, i.e., when u(1, 2) °
(1 / 2/3b)u(1, 1) . This shows that we can
find appropriate payment adjustments that can
lead the classifier system solution to coincide
with the dynamic programming solution if it
is attainable, but it is not possible to select the
correct payment adjustment factors without
knowing the dynamic programming solution.
Furthermore, the proper adjustments correct
the good state bias rather than differences in
the number of states in which a rule is
applicable.

VII. Conclusion

In this paper, we have introduced learning
about rules of thumb and analyzed its asymp-
totic behavior. We have discussed how a
bucket brigade learning algorithm about the
strengths of the rules is able to deal with gen-
eral discrete recursive stochastic dynamic op-
timization problems. We have reformulated
the evolution of the strengths as a stochastic
approximation algorithm and obtained a gen-
eral characterization of all possible limit out-
comes with strict strength rankings.

We have compared classifier learning to dy-
namic programming. While there are some
formal similarities between the computation of
strengths in our framework and the computa-

tion of the value function in the context of dy-
namic programming, there are also some
important differences. Strengths provide a
crude average of values across all states where
a particular rule is applied. As a result, a sub-
optimal rule might dominate the optimal one
if it is applicable only in ‘‘good’’ states of the
world: bad decisions in good times can ‘‘feel
better’’ than good decision in bad times.

We have demonstrated that this ‘‘good state
bias’’ might help in understanding the obser-
vation of high sensitivity of consumption to
transitory income. A simple theoretical ex-
ample was analyzed exhaustively. It was
shown that the attainable decision function is
neither necessarily unique nor characterized
by a strict ordering of classifiers. It was fur-
thermore shown that adjusting the learning al-
gorithm to correct the good state bias cannot
be done in a simple way.

APPENDIX

We now provide the proof for Theorem 1.
Additional calculations, propositions and all
other proofs are in a technical Appendix which
can be obtained from the authors. Everything
here can also be followed without it, provided
one has access to Métivier and Priouret (1984).

It is convenient for the following analysis to
rewrite the accounting scheme (13) in the fol-
lowing way as a stochastic approximation al-
gorithm. The goal here is to cast the updating
scheme into a Markov form. This transfor-
mation enables us to study the properties of
the system, using existing results. Given Yt

and ut , the vector ut/ 1 is computed via

u Å u 0 g f (u , Y )(A1) t/ 1 t t/ 1 t t/ 1

with

f (u , Y ) Å e g(u , Y ) ,(A2) t t/ 1 k t t/ 1t

where is the K-dimensional unit vector withekt

a one in entry kt and zeros elsewhere, and
where the scalar factor g(ut , Yt/ 1) is given by

g(u , Y )(A3) t t/ 1

Å u 0 u (s , r (s ) ) 0 bu .t ,k t k t t ,kt t t/ 1
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The first equation (A1) is the standard format
for stochastic approximation algorithms: the
strength vector ut is updated, using some cor-
rection f (ut , Yt/ 1) , weighted with the de-
creasing weight gt / 1 . The format of that
equation is similar to the bucket brigade equa-
tion (13), but is now restated here for the en-
tire vector of strengths. The second equation
(A2) states that this correction takes place
only in one component of the strength vector,
namely the strength corresponding to the clas-
sifier kt , which was activated at date t . The
third equation (A3) states by how much that
entry should be changed and rewrites the term
in brackets of the bucket brigade equation
(13). Together, these three equations achieve
the same result as the bucket brigade equation
(13). Note, that f (u , Y ) is linear in u . Given
a transition law Ph for states, one can derive
the implied transition law for Yt and its in-PP
variant distribution, keeping the decision func-
tion h fixed.

PROOF OF THEOREM 1:
We first show that a given candidate as-

ymptotic attractor is an asymptotic attractor.
To that end, we analyze first an alteration of
the stochastic approximation scheme above
and characterize its limits in the claim below.
We then show that the limit to this altered
scheme corresponds to an asymptotic attractor
in the original scheme. Let u Å mins ,a u(s , a)
and uV Å maxs ,a u(s , a) be, respectively, the
minimum and the maximum one-period utility
attainable. We assume without loss of gener-
ality that the initial strengths are bounded be-
low by u / (1 0 b) .

Claim: Consider a candidate asymptotic at-
tractor u` and its associated decision function
h . Fix the transition probabilities Ph . Consider
the following altered updating system: let the
classifier system consist only of the asymptot-
ically active classifiers according to u` . Fix
some starting date t0 , an initial strength vector

with ¢ u / (1 0 b) for all l and an ini-u ut t ,l0 0

tial state Let be the vector of strengthsY . Hut t0

of this reduced classifier system at date t ¢ t0

and let be the corresponding subvector ofHu`

u` of strengths of only the asymptotically ac-
tive classifiers. Furthermore, let the transition
from state st to st/ 1 always be determined by

the transition probabilities Ph . Then rHu Hut `

almost surely. Furthermore, for almost every
sample path, the transition probabilities ps ,rt kt

coincide with the transition probabilities given
by Ph for all but finitely many t .

PROOF OF THE CLAIM:
The updating scheme is still given by (A1),

(A2), and (A3). The transition law for Yt is
given by In particular, does not dependOP . OP
on due to our alteration of the updating pro-Hut

cess. The random variables Y lie in a finite,
discrete set. Note that always remains in theHut

compact set [u / (1 0 b) , zV ] d , where d is the
number of asymptotically active classifiers and
zV is the maximum of all initial starting
strengths in and uV / (1 0 b) : by induction,Hut0

if u / (1 0 b) ° ut ,k ° uV / (1 0 b) / forVr
all k and some ¢ 0, then u / (1 0 b) °Vr
ut/ 1,k ° uV / (1 0 b) / for all k via equationb Vr
(A3). We will use the theorem of Métivier and
Priouret (1984), restated in the technical Ap-
pendix to this paper, which is available on re-
quest from the authors. We need to check its
assumptions. With the remarks after the re-
statement of that theorem in the technical Ap-
pendix, the Métivier and Priouret ( 1984 )
theorem applies if we can verify assumptions
(F), (M1), (M5c) and the additional assump-
tions listed in the theorem itself.

Assumption (F) is trivial, since f is con-
tinuous. Assumption (M1) , the uniqueness
of G, follows from the uniqueness of mh . For
(M5c) , note that I 0 is continuously in-OP
vertible on its range and that Y ) is lin-f ( Hu ,
ear and thus Lipschitz continuous in ForHu .
the additional assumptions of the theorem,
note first that p Å ` in (M2) is allowed ac-
cording to our remarks following the theo-
rem in the technical Appendix, so that the
restriction (n õ ` is simply the re-1/ (p /2)g n

striction that the sequence (gn ) is bounded.
For the conditions on the differential equa-
tion, consider f as given in

(f( Hu) ) Å n(k) ( Hu 0 u 0 b(B Hu) ) ,k k k k

and and B given in equations (15) and (16).uu
Note that the differential equation

d Hu( t) Å 0f( Hu( t) ) Å n + ( Hu 0 uu 0 bB Hu)
dt
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is linear with the unique stable point givenHu`

by (17). The differential equation is globally
stable since the matrix0n + (I0 bB) has only
negative eigenvalues (note that 0õ bõ 1 and
that B is a stochastic matrix) . The theorem of
Métivier and Priouret (1984) thus applies with
A Å u and we have

lim Hu Å Hu a.s.,t `
tr`

as claimed.
The claim that the transition probabilities

coincide with the transition probabilitiesps ,rt kt

given by Ph follows from the almost sure con-
vergence to the limit. Given almost any sample
path, all deviations 0 will be smallerHu Hut ,k ` ,k

than some given e ú 0 for all t ¢ T for some
sufficiently large T , where T depends in gen-
eral on the given sample path and on «. Make
« less than half the minimal difference be-
tween the limit strengths of any two different
classifiers 0 We then have that theÉ Hu Hu É.` ,k ` ,l

ranking of the classifiers by strength will not
change from date T onwards. But that means
that the transition probabilities coincideps ,rt kt

with the transition probabilities given by Ph ,
concluding the proof of the claim.

Given a candidate asymptotic attractor u` ,
find « ú 0 such that 4« is strictly smaller than
the smallest distance between any two entries
of u` . Denote the underlying probability space
by (V, S, P) and states of nature by v √ V.
Consider the altered updating scheme as de-
scribed in the claim above with t0 Å 1 and the
given initial state. Find the subvector of u` ,Hu`

corresponding to the asymptotically active
classifiers according to u` . We can thus find a
date t1 , a state Y, and a strength vector forUu
only the asymptotically active classifiers so
that given some event V * , V of posi-
tive probability, sample paths satisfy Å Y ,Yt1

0 õ « for all 1, 0 õ « forUÉ Hu u É É Hu Hu Ét ,l l t ,l ` ,l1

all l and all t and r For any sample pathHu Hu .t `

( i.e., not just those obtained for states( Hu )t t¢ t1

of nature in V *), find the ‘‘shifted’’ sample
path obtained by starting from Å U( Ou ) Ou ut t¢ t t1 1

instead of but otherwise using the same re-Hu ,t1

alizations ut and states Yt for updating. This
resets the initial conditions and shifts the start-
ing date to t1 , but leaves the probabilistic struc-
ture otherwise intact. The claim thus applies

and we have again r a.s. Furthermore,Ou Hut `

given V *, an induction argument applied to
(13) yields 0 ° 0 õ «P PÉu Hu É Éu Hu Ét ,l t ,l t ,l t ,l1 1

for all t ¢ t1 and all l . As a result, 0PÉut ,l

õ 2« for all t ¢ t1 and all l , given V *.Hu É` ,l

Extend to a strength vector for all clas-Ou cut t

sifiers by assigning the strengths given by u`

to inactive classifiers. By our assumption
about «, the ordering of the strengths given by
any t ¢ t1 coincides with the ordering ofcu ,t

the strengths given by u` . Thus starting the
classifier system learning at t1 , strength vector
Å and state Å Y at t1 , the evolutionu cu Yt t t1 1 1

of the strengths ut is described by ut Å forcut

all v √ V * and we therefore have that ut r u`

with positive probability. This shows that u`

is an asymptotic attractor, completing the first
part of the proof.

Consider in reverse any asymptotic attractor
u` : we have to show that u` satisfies (17),
since the consistency condition is trivially sat-
isfied by definition of k(s) . Find «ú 0 so that
4« is strictly smaller than the smallest distance
between any two entries of u` . Find a date
t1 ¢ t0 so that on a set V * of positive proba-
bility, we have Éut ,l 0 u` ,lÉ õ « for all t ¢ t1

and all l , and ut r u` . Given the strict ordering
of the strengths in u` , there is a candidate as-
ymptotic attractor which is unique up to theu *̀
assignment of strength to asymptotically in-
active classifiers. Given any particular state of
nature √ V * and thus values for andVv ut1

at date t1 , consider the altered updatingYt1

scheme as outlined in the claim with that start-
ing value (and t0 å t1 for the notation in the
claim). Via the claim, r a.s., whereHu Hu Hu*t ` `

is the subvector of the candidate asymptotic
attractor corresponding to the asymptoti-u *̀
cally active classifiers. Thus, the strengths in

coincide with the strengths of the as-Hu(v)
ymptotically active classifiers in for al-u ( Vv )t

most all v and it is now easy to see that
therefore the strengths of the asymptotically
active classifiers in u` have to coincide with
the strength of the asymptotically active clas-
sifiers in finishing the proof of the secondu* ,`

part. To make the last argument precise, ob-
serve that r except on a measurableHu (v) Hut `

nullset v √ √ S. Note that the exceptionalJ
Vv

set is the same whenever the initial conditions
and are the same. Since there are onlyu Yt t1 1

finitely many such initial conditions that can
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be reached, given the discrete nature of our
problem and the fixed initial conditions at date
t0 , the exceptional set J Å √ V *,{( Vv , v)É Vv
v √ is a measurable subset of zero prob-J }

Vv

ability of V * 1 V in the product probability
space on V 1 V. It follows that the strengths
of the asymptotically active classifiers in u`

and coincide for all v) √ V * 1 V /J,u* ( Vv ,`

which is a set of positive probability. Since
these strengths are not random, we must have
equality with certainty.
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