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1 Introduction

How well do we understand business cycles and growth? One benchmark answer is pro-
vided by the stochastic neoclassical growth theory or real business cycle theory. Here,
growth is understood to result from the steady progress of productivity, while business cy-
cles result from fluctuations of productivity around this trend. In this paper, we examine
how well a rather simple benchmark real business cycle model fits the key facts.

The paper first documents some key empirical facts in section 2. It then examines
what aspects of the data are ”explained” by a fairly standard simple real business cycle
model, and which ones are not in section 3. Finally, concluding remarks are offered in
section 4 on where this literature might be going and might have to go. In summary, the
fit of the model at business cycle frequencies is quite compelling, given the simplicity of
the model. However, the model does not seem to come much closer to the data than a
”primitive” model, which just rescales TFP fluctuations. Moreover, the fit becomes less
convincing, when no filtering is done. We conclude from this, that comparing theories to
the data in this way is a demanding test. The challenge is to construct better quantitative
theories that address the deficiencies documented here.

One of the major success stories in macroeconomic research over the last two decades
has been the development of quantitative theories. The goal of these theories is to match
empirical facts, while self-imposing two sources of discipline. The first discipline is that
the theories ought to be based on sound microeconomic foundations. The theories need
to spell out the environment as demanded in general equilibrium theory, e.g. Debreu
(1959), i.e. they should specify preferences, technologies and endowments. This is in
contrast to structural or nonstructural econometric models, which typically utilize only
a subset of theoretical implications. The second discipline is that the comparison to the
data ought to be quantitative. Statistics and numbers implied by the model are compared
to the corresponding statistics and numbers in the data. This is in contrast to qualitative
theorizing, which aims at providing insights into the general direction of economic effects
without touching the issue of magnitudes.

There are now a plethora of quantitative theories available, and this paper is not the
place to review that literature. In contrast to some perceptions, these theories allow for
a wide range of possibilities such as many (and thus nonrepresentative) agents, sticky
prices, increasing returns, monopolistic competition, indeterminacies, finite lives etc., see
e.g. Farmer (1999). Some of these theories are constructed with the explicit aim to
provide a fairly exhaustive understanding of the interplay of macroeconomic forces and
for providing policy advice: the models by Christiano, Eichenbaum and Evans (2001b) for
the US and subsequently Smets and Wouters (2002) for Europe are excellent examples.

Which of these theories will survive as leading explanations of observed phenomena
will remain to be seen, and is subject to ongoing debate. Part of that debate is technical.
First, these theories are typically not meant to explain ”everything”, leaving out certain
aspects for the purpose of simplicity. Put differently, the theories are not meant to rep-
resent the true data generating processes. This makes usual econometric techniques such
as maximum likelihood questionable for the purpose of estimation or data comparison.
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The search for suitable techniques beyond calibration methods is on and has recently
successfully focussed on a comparison of impulse responses both in the model as well as
in VARs, see e.g. Christiano, Eichenbaum and Evans (2001a,2001b). Second, Occam’s
razor should be routinely applied, i.e. we should generally favor simpler rather than more
complicated theories. Thus e.g., a model which only needs a ”representative agent” and
thus a single set of preferences to explain the same set of facts as a model using many
agents should be preferred. To put it in pointed terms: Occam’s razor is the opposite of
realism. Reality is complicated. Our theories should not be, if they can avoid it.

A remarkably simple model is the benchmark real business cycle model by Hansen
(1985). It is a full general equilibrium model in the sense of Debreu (1959), yet it can
be stated in three lines and solved with a pocket calculator, performing nothing more
spectacular than the solution of a quadratic equation, see Uhlig (1999). Finally, it is
able to match observed statistics - fluctuations of GNP, hours worked, consumption and
investment at business cycle frequencies - with remarkable quantitative accuracy. The
model misses on a number of other dimensions, e.g. the volatility of real interest rates, see
e.g. Hornstein and Uhlig (2000), but then again, it is not meant to explain all features of
the data. Considerably richer models such as e.g. the models in Cooley (1995), Christiano,
Eichenbaum and Evans (2001a,2001b) or Altig, David, Lawrence J. Christiano, Martin
Eichenbaum and Jesper Linde (2002) go much further in matching a number of additional
aspects. In particular, the literature has pointed to variable capacity utilization as a key
component to improve further on the exercise performed here: see e.g. King and Rebelo
(1999) for an exercise similar to ours, incorporating ariable capacity utilization.

In this paper, we stick to a version of Hansen (1985) model and reexamine its fit to
the data in section 3. In order to do so and in order to make the comparison compatible
with the empirical investigation to follow, we need to amend it with a few features such as
accounting for population growth as well as for the difference between privately produced
output and the sum of private consumption and investment. We confirm and demonstrate
that it replicates certain business cycle features very well, but also confront the model to
the raw, unfiltered data, where it does less well. We believe that this model or a model
of this type is the benchmark to beat.

Real business cycle models have come under much attack recently: in fact, it has
become fashionable to proclaim them fundamentally flawed as an explanation of business
cycles. This may be so, but the challenge on the table is to provide alternative quantitative
theories, which perform as least as well as the class of real business cycle models in
explaining the data.

Key to the claim that productivity-shock driven theories are useful for understanding
business cycles is the fact that productivity and labor are both procyclical. The most
recent attack on the real business cycle paradigm thus comes from reexamining the Solow
residual, i.e. total factor productivity, and demonstrating that it is not exogenous and
therefore does not represent exogenous technological fluctuations. Gaĺı (1999) and subse-
quently Francis and Ramey (2001) have therefore proposed to instead identify exogenous
technology shocks by their long-run effects in a VAR. With their assumptions, they find
that technology shocks actually lead to declines in labor rather than increases in labor
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output hours labor prod. wages TFP
HP ∆ HP ∆ HP ∆ HP ∆ HP ∆

output 1 1
hours 0.86 0.70 1 1

labor prod. 0.54 0.68 0.04 -0.04 1 1
wages 0.13 0.18 -0.11 -0.24 0.42 0.49 1 1
TFP 0.81 0.85 0.40 0.23 0.92 0.96 0.32 0.40 1 1

Table 1: Correlations, using the Hodrick-Prescott (HP)-filter and the first difference filter
to detrend the data.

input. If one accepts this conclusions, then technology shocks themselves cannot be a lead
explanation of business cycles. The conclusion is subject to considerable debate, though,
see e.g. Altig et al. (2002) and Uhlig (2002a,b). Whether other quantitative theories can
rise to the challenge of replacing fluctuations in productivity as the engine of business
cycles and provide a better quantitative fit remains to be seen.

2 Empirics: the facts to be explained

A remarkable feature of business cycle is that output and labor productivity are positively
correlated. Any explanation of business cycles must be consistent with this fact. For ex-
ample, a business cycle theory which is based on autonomous shifts in the labor supply
due e.g. to leisure preferences, union demands or regulations or a theory which is based on
shifts in demand for total output due e.g. to foreign trade or government policy will not
replicate this observation without further refinements, since shifts along a given supply
curve for output and assuming decreasing average productivity for labor along the aggre-
gate production function will produce countercyclical, not procyclical labor productivity
movements. This issue is well understood.

The facts are shown in table 1, using quarterly US data from 1947 to the fourth quarter
of 20001. The data are per person, age 16 or above. Let YH be the BLS output per hour
in business, N be total hours in private business, W be nominal hourly compensation in
business divided by the implicit price deflator for business, and P16 be total population
age 16 or above. Let LYH = 100 ∗ log(YH), LN = 100 ∗ log(N/P16), LW = log(W ) and
construct the log of private business output per person LY as LY = LYH + LN . The
construction of Log TFP is explained below. Apply the HP-filter or first-difference this
data to calculate the correlations above, using λ = 1600 for the HP filter.

A couple of results can be noticed. Output fluctuations are substantially positively
correlated with fluctuations in both hours as well as labor productivity, but the correlation
with wages is near zero. Labor productivity and hours are almost uncorrelated: this has
been called the Dunlop-Tarshis observation, see Christiano-Eichenbaum (1992).

1I am grateful to Valerie Ramey for providing me with this data. The NIPA data are the same as the
corresponding chain-weighted quarterly data available from the BEA. For the construction of TFP, see
below
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The table also contains correlations with total factor productivity, or TFP: more on
its construction below. TFP is even more strongly procyclical than labor productivity.
Moreover, and in contrast to labor productivity, TFP is positively correlated with hours
worked. Real business cycle theories interpret the positive correlations between total
factor productivity and output as indicating exogenous shifts in the production function
over the cycle, triggering adjustment processes in all macroeconomic variables.

2.1 Capital and productivity: construction of the data

Total factor productivity is the statistic, which naturally emerges from growth accounting.
Since capital shares and labor shares have remained fairly constant over time, one can
try to represent total production in private businesses as a Cobb-Douglas production
function, using e.g. the share ρ of capital income as exponent for capital,

Yt = ΓtK
ρ
t−1N

1−ρ
t (1)

Here, yt is output, kt−1 is capital, nt is labor and Γt is TFP. To calculate Γt, one needs a
number for ρ and one needs a time series for capital, which we shall now construct.

To that end, assume that capital evolves according to

Kt = (1− δ)Kt−1 +Xt (2)

where Xt is gross investment.
With these two equations, values for δ and ρ and some auxilliary assumptions one can

construct a time series for capital and for productivity. Observe that

Kt

Yt
= (1− δ)

Yt−1
Yt

Kt−1

Yt−1
+
Xt

Yt

Assuming the ratios in this expression to be stationary and Yt−1

Yt
and Kt−1

Yt−1

to be (approx-

imately) uncorrelated, we find for the averages

K̄

Y
=

1

1− (1−δ)
gY

X̄

Y

where gY is the mean growth factor, i.e. the average of Yt

Yt−1

. Given a level of depreciation
δ and the average investment-output ratio, one can calculate the average capital-output
ratio. Multiplying this ratio with initial output provides a guess for initial capital. With
equation (2), one now obtains a time series for capital. We use the BEA NIPA real annual
data starting in 1929 for gross investment and output and this calculation to obtain a
time series for capital prior to 1947 and thereby a starting point for capital in 1947, used
to construct the remaining data and comparison. Care needs to be taken in that the
NIPA tables use annualized numbers also for the quarterly time series.

For the calculation prior to 1947, the investment series has been scaled up by the
average ratio of investment plus durable consumption to investment, based on quarterly
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Figure 1: Capital per person. The construction is explained in the text

data after 1947. To calculate gross investment from NIPA data after 1947 and also for the
comparisons to the theory below, we add durable consumption to gross private domestic
investment. To obtain a time series for real durable consumption starting in 1947, we
splice the real durable consumption series the same way the NIPA tables splice e.g. data
on gross private domestic investment for obtaining real data starting in 1947. Similarly
and for later comparison to the theory, we construct a quarterly time series for real
consumption of nondurables and services, starting in 1947, which we simply interpret as
consumption.

To obtain total factor productivity, calculate

log Γt = log Yt − (ρ logKt−1 + (1− ρ) logNt)

Two parameters, ρ and δ, are necessary for performing this calculation. We use
ρ = 0.30, which is in the range of numbers typically used in the literature, and can be
fixed from the share of capital income, and δ = 10% on an annual basis (i.e. δ = 0.025 for
quarterly data), which again is a commonly used number. Furthermore, these parameters
imply (together with the other parameters we choose further below), that the theory
steady state investment-to-output ratio is 23%, a value very close to the corresponding
average in the data, which is 24%. These numbers imply a steady state output-to-capital
ratio of 12.7% for yt/kt.

2.2 Observations about capital, productivity and others.

Figure 1 shows the calculated capital time series per person over the age of 16. The time
series and the results to follow are somewhat sensitive to the assumption about initial
capital in 1947 - which we have constructed here based on annual data starting in 1929 -
as well as the parameters.
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Figure 2: Output per unit of capital. Note that the ratio is high before 1970 and low after
1970, indicating a possible break around 1970.

Figure 2 shows the output-to-capital ratio, using per-capita data, i.e. it shows
(Yt/P16t)/(Kt−1/P16t−1). The ratio is higher than the steady state value of g

Y/P16 ∗

12.7% prior to 1970, and falls below it afterwards, where g
Y/P16 is the growth factor

for Yt/P16t. This probably indicates that one should really treat the sample has having
a break somewhere around 1970 rather than assume a constant output-to-capital ratio
throughout, around which the data fluctuates. We have not pursued a calculation, using
a break: instead, we shall see that this break will occur in a number of pictures.

Figure 3 shows the implied time series for total factor productivity. TFP appears to
be growing at a fairly constant pace over the entire sample, with some slowdown after
1970.

To examine this more closely, it is useful to study the growth rate of TFP and to
compare it to the growth rate of labor productivity. To understand this relationship, note
that (1) implies

(1− ρ) log
Yt
Nt

= log Γt − ρ log
Yt
Kt−1

relating labor productivity on the left hand side to TFP and the output-capital-ratio on
the right hand side. This equation implies

gΓt
− (1− ρ)g Yt

Nt

= ρg Yt

Kt−1

(3)

i.e. the difference between the growth rate of TFP and (1 − ρ) times the growth rate
of labor productivity is equal to ρ times the growth rate of the output-capital ratio
shown in figure 2. Figure 4 compares the trends in labor productivity growth multiplied
with (1 − ρ) and total factor productivity growth. The trends are constructed with the
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Figure 3: Total factor productivity, using the calculated capital time series, ρ = 0.3 and
δ = 0.025 for quarterly data.
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Figure 4: Comparing trends in TFP and labor productivity. TFP is the solid line, whereas
labor productivity is the dashed line. The trends were calculated with the HP filter. The
trends are broadly consistent and the productivity slowdown from approximately 1970 to
1995 is clearly visible.
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Figure 5: Hours worked per person above the age of 16 (ignoring a scale factor).

Hodrick-Prescott (HP) filter. The two trends are broadly consistent, with the differences
”explained” by the changes in the output-capital ratio, see figure 2.

There are fluctuations in the broad trends in hours worked too, which can be glanced
from figure 5. Hours per person are trending down until 1980 and then trending up again.
Whether this time series is stationary or not underlies some of the recent debate about
the role of productivity shocks, see Francis and Ramey (2001).

Examining the deviations from the HP-trend for output and juxtaposing it to the
corresponding deviations in TFP is done in figure 6, visually reconfirming the results of
table 1: TFP (and likewise labor productivity) comoves with output over the cycle.

There are two remaining bits to clean up before proceeding to the theory and to a
quantitative comparison to the data: these issues are occasionally swept under the rug
as of minor importance, but need to be treated carefully in order to allow for a clean
comparison.

The first issue is population growth. We have concentrated on per-person data
throughout. This makes sense: what matters for preferences is arguably not the total
number of hours worked but the hours per person, and not total consumption but con-
sumption per person. Figure 7 shows the annualized growth rates of the population above
the age of 16 exhibit considerable fluctuations. These fluctuations matter e.g. for calcu-
lating the return to capital and a host of other issues: we thus need to incorporate them
into the theory.

The second issue is that private consumption plus private investment does not equal
private output, as simple business cycle models assume. The most appropriate method to
deal with this issue is to also include a government sector as well as international trade
into the model, at the price of additional complexity and the need to make choices. The
alternative - slightly worse, but not much - is to treat the difference as due to exogenous
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Figure 6: Comparing business cycle frequency fluctuations in output (solid line) to those
in TFP (dashed line). The fluctuations have been constructed, using the HP filter. Note
the close correspondence of the two time series.
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Figure 7: Growth rates of the US population above the age 16.
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Figure 8: ”Government spending” as share of private business output per person. ”Gov-
ernment spending” is constructed as the difference between private business output and
private consumption plus private investment.

government consumption. Figure 8 plots the difference between private business output
and private consumption plus private investment. Examining a similar plot for actual
government spending divided by private business output shows that the difference be-
tween these two is fairly constant, which in turn roughly corresponds to the difference
between private business output and total GDP. We therefore feel that we do not make a
major mistake with this interpretation, and have instead provided for a convenient way
to interpret the difference.

3 A real business cycle model

What can explain these (and other) macroeconomic facts? Real business cycle models
supply one reasonably successful set of theories. We shall examine one prototype example,
building on Hansens (1985) benchmark real business cycle model. We amend his model
to allow for stochastic population growth and for stochastic and exogenous government
spending for the reasons described towards the end of the previous section.

We shall provide a comparison of the model time series to the data time series for the
period 1960 to 2001 in order to minimize potential ”beginning-of-sample” effects which
may distort our calculations of the capital stock and TFP for 1947.

We use the following notational conventions. Capital letters, such as Kt denote
economy-wide aggregates. Small letters with a caret such as k̂t are per person above
the age of 16, i.e., k̂t = Kt/P16t. Small letters with a tilde such as k̃t are detrended to
achieve stationarity: exactly how is explained further below. Finally, kt itself will denote
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the log-deviation of k̃t from its steady state k̄, kt = log k̃t− log k̄. Kt denotes capital avail-
able at the end of period t and used for production at the beginning of period t + 1, Ct

is consumption in period t, Nt is hours worked, Yt is output, Gt is government spending,
P16t is the population aged 16 or above. Values without time subscripts or bars denote
parameters. Et[·] is the conditional expectation at date t.

We assume that there is a representative household, who maximizes its infinite-horizon
expected discounted utility subject to the resource constraint of the economy,

E

[

∞
∑

t=0

βt (log ĉt − An̂t)

]

s.t. Ct +Gt +Kt = Yt + (1− δ)Kt−1

Yt = ΓtK
ρ
t−1N

1−ρ
t

and given K−1, where e.g. Ct = ĉt ∗ P16t and where Γt, P16t and Gt are exogenous
stochastic processes. A few remarks are in order. First, faster population growth will
ceteris paribus decrease utility: with a given stock of total capital and since there are
decreasing returns to labor, a larger population will result in less output per person ŷt =
Yt/P16t. An alternative would be to multiply the per-period felicity function log ĉt −An̂t
with the size of the population P16t, but this would imply that the total labor supply,
not the per-person labor supply would be stationary, an implication incompatible with
the data and necessitating another utility function. Finally, the linearity in the disutility
for hours worked implies a rather high elasticity of labor supply. This can be made
consistent with the micro-evidence of individually low elasticity of labor supply with
respect to wages by incorporating indivisibility of labor and using the lottery formulation
to aggregate individual labor supplies, see Hansen (1985) or the original source, Rogerson
(1988) for details.

The model does not have much to say about real wages, since nothing is said about
the way labor markets operate. One can decentralize the model above as a competitive
equilibrium and assume that wages are equal to market-clearing spot wages for labor, in
which case there is no difference between real wages and labor productivity. But even in
a competitive equilibrium, there is no reason for measured wages to correspond to these
spot wages. For example, it is perfectly consistent with this model and with a competitive
equilibrium, that agents specify labor contracts involving labor supply for several periods
with a variety of termination options and insurance possibilities. Viewed from an asset
pricing perspective, labor contracts can be understood as derivative securities based on
the fundamental underlying assets such as the spot market for labor and the spot market
for capital. What we observe as wage then corresponds to the price for these derivative
securities. Without further specifying the exact nature of these contracts, it is impossible
to make any meaningful statement about the behaviour of real wages: therefore, we do
not.
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3.1 Specifying the details and solving the model

The logarithm of population and the logarithm of TFP may be usefully regarded as
random walks with drift: the AR(1) coefficients are 0.9997 and 0.9931 respectively, the
AR(1) coefficients of their log-differences are 0.5803 and 0.0442. An alternative is to
regard the logarithm of population and the logarithm of TFP as trend-stationary. In
either case, one can reformulate the model in terms of stationary variables by detrending
all variables except labor by Zt = Γ

1/(1−ρ)
t , which can be interpreted as labor productivity

(up to a constant factor), if the output-capital ratio was constant, see equation (3). I.e.,
let k̃t = k̂t/Zt = Kt/(Zt ∗ P16t), c̃t = ĉt/Zt = Ct/(Zt ∗ P16t), ỹt = ŷt/Zt, g̃t = ĝt/Zt,
ñt = n̂t. The model can then be equivalently rewritten as

E

[

∞
∑

t=0

βt (logZt + log c̃t − Añt)

]

s.t. c̃t + g̃t + k̃t = ỹt + (1− δ)

(

P16tZt

P16t−1Zt−1

)

−1

k̃t−1

ỹt =

(

P16tZt

P16t−1Zt−1

)

−ρ

k̃ρt−1ñ
1−ρ
t

Note that population growth and shocks to population growth play the same role as
TFP growth and shocks to TFP growth: a difference comes about in the dynamics only
because population growth and TFP growth have different degrees of persistence. Also,
an increase in TFP seems to lead to a decrease in output ỹt, holding the inputs k̃, ñ
constant. But remember, that ỹt is itself detrended: the level of output will increase with
a TFP shock, just as before.

Substituting ỹt in the feasibility constraint with the help of the production function
and writing λ̃t for the Lagrange multiplier for the resulting equation, one now easily
derives the first order conditions

λ̃t =
1

c̃t

A = λ̃t(1− ρ)
ỹt
ñt

λ̃t = βEt[λ̃t+1R̃t+1]

where

R̃t = ρ
ỹt

k̃t−1
+ (1− δ)

(

P16tZt

P16t−1Zt−1

)

−1

can be read as the return to investing in capital. It is related to the return

Rt = ρ
Yt
Kt−1

+ 1− δ =

(

P16tZt

P16t−1Zt−1

)

R̃t

in the first formulation of the model.
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In order to solve the model and analyze its quantitative properties, one needs values for
the parameters. We have taken fairly standard values: ρ = 0.30, δ = 0.025, β = 1/1.01,
n̄ = 1.34, and thus A = 0.71. The parameter A has been chosen so that the steady state
supply of hours per person equals the average labor supply in the data for the period
1960 to 2001. The exogenous processes γ̃t = log Γt − log Γt−1, ν̃t = logPt − logPt−1 and
g̃t, have been assumed to be AR(1) processes with the means and AR(1) coefficients ψγ,
ψν and ψg respectively given by γ̄ = z̄(1 − ρ) = 0.40%, ψγ = ψz = 0.044, ν̄ = 0.34%,
ψν = 0.58, ḡ = 0.095, (thus, ḡ/ȳ = 0.03 ) and ψg̃ = 0.97. We have not taken the log of g̃t,
since g̃t occasionally takes negative values. Government spending g̃t is a very persistent
process: its AR(1) coefficient is near unity, and if it were to play a larger role, it may be
sensible to use a better fitting regression to describe its stochastic properties. In any case,
one probably does not make much of a mistake in assuming simple AR(1) processes: the
main difference to a more elaborate specification is that agents assume the processes to
be somewhat less predictable than they actually are.

Given these model parameters, one can easily calculate the steady state ȳ, k̄, n̄, c̄ and
R̄ for ỹt, k̃t, ñt, c̃t and R̃t. To calculate the dynamics around the steady state, consider the
log-deviations

ct = log c̃t − log c̄

rt = log R̃t − log R̄

etc., with the exception that gt = g̃t − ḡ to allow for the possibility that it can take
negative values. Likewise, let

γt = γ̃t − γ̄

= (log Γt − log Γt−1)−mean(log Γt − log Γt−1)

= (1− ρ)

(

log

(

Zt

Zt−1

)

−mean

(

log

(

Zt

Zt−1

)))

νt = ν̃t − ν̄

= (log P16t − log P16t−1)−mean(log P16t − log P16t−1)

With that, the exogenous AR(1) processes can be written as

γt = ψγγt−1 + εγ,t

νt = ψννt−1 + εν,t

gt = ψggt−1 + εg,t

and the residuals εγ,t, εν,t and εg,t can be calculated from the data.
The equations characterizing the solution of the model, i.e. the feasibility constraint,

the production function and the first order conditions, can be log-linearized to deliver a
linear system in the log-deviations. The linear system can then be solved for the stable
recursive equilibrium law of motion in these log-deviations. The calculations do not
involve anything more complicated than the solution of a quadratic equation, and can
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reasonably be performed with pencil, paper and pocket calculator: details are contained
in Uhlig (1999).

The result is a recursive equilibrium law of motion, relating the current date-t values
for the log-deviations of all variables to the state variables, i.e. to the endogenous state
variable kt−1 and the three exogenous state variables γt, νt and gt. One obtains

kt = 0.91kt−1 − 1.31γt − 1.13νt + 0.02gt

ct = 0.46kt−1 − 0.62γt + 0.04νt − 0.15gt

yt = −0.06kt−1 + 0.03γt − 1.09νt + 0.36gt

nt = −0.52kt−1 + 0.65γt − 1.13νt + 0.51gt

rt = −0.05kt−1 − 1.37γt − 1.00νt + 0.02gt

and λt = −ct. The initial values can be computed from the data as

k−1 = −8.3%, γ0 = 1.91%, ν0 = 0.34%, g0 = 0.021

with t = 0 corresponding to the first quarter of 1960. With the equations above, these
initial values and the data for γt, νt and gt, one can easily construct impulse responses or
simulate the model by recursively calculating the values for kt, ct, yt, nt, rt for t = 0, . . . , T .
By adding the logarithm of the steady state and adding logZt (except for nt), one can
obtain simulations comparable to the log of the actual data, and compare.

It is worth emphasizing, that this model really is remarkably simple. It is stated in
three lines. The solutions involves nothing more than solving a quadratic equation. And
the model can be simulated, using a few linear equations stated above.

3.2 Results

To get a sense for the dynamics and for the comparison with the empirical results in the
next section, it is useful to examine impulse response functions to a productivity growth
shock εγ,0 = 1%. Rather than plot the response of the TFP-detrended values yt, ct, etc.,
we show the response of the non-TFP-detrended variables, i.e. we show yt + ζt, ct + ζt,
etc., where

ζt =
1

1− ρ

(

t
∑

s=0

ψγ
s

)

εγ,0 =
1− ψγ

t+1

(1− ρ)(1− ψγ)
εγ,0

is the change in the detrending factor log(Γ
1/(1−ρ)
t ) due to the shock to productivity

growth, εγ,0 = 1%. These non-TFP-detrended variables show, how the per capita level
variables change in percent due to the productivity growth shock.

The result can be seen in figure 9. As is typical in this model, output, TFP and hours
worked all rise simultaneously. Labor then slowly declines after the initial jump upwards,
while consumption and capital show a hump-shaped response, following an initial jump
upwards. These are intuitively appealing results, and they are good news. We know
from table 1, that these variables are positively correlated. The model provides dynamic
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Figure 9: Impulse responses to a technology shock, i.e. a shock to total factor productivity
growth.

responses consistent with these facts. Investigating this dynamic response is at the heart
of the next section.

Figure 10 shows the response to a surprise one percent increase in the population above
the age of 16: this could e.g. be immigration or (by reversing all signs) the response to a
violent disease which wipes out 1% of the population. Recall that all the variables are in
per capita terms: thus, initially, output and capital per capita decrease by approximately
as much in percentage terms as the population increases. Consumption, interestingly,
does not do so: apparently, the shortfall is made up by ”consuming” the capital stock,
i.e., by initially reducing investment.

The model is meant to explain the business cycle movements in the data. Thus, it is
sensible to compare the data to a simulation of the model, where the actual data for TFP,
population growth and ”government spending” has been used as input. We shall consider
the logarithm of all variables, and first compare the deviations from an HP trend.

The results are in table 2. The dotted lines indicate the data: they are very close to
the solid lines, coming out of the simulations. This is a success. They show that this
simple model can amazingly convincingly replicate the business cycle features of the data.
Any other alternative model needs to be able to provide pictures which provide a similarly
good fit.

This can also be seen from the raw statistics in table 3. The theory is able to replicate
the size of the fluctuations, as indicated by the standard deviations, and comes close to
the correlations observed in the data. While there are population shocks and government
spending shocks in this model, this is essentially a one-shock model, driven mainly by
productivity shocks. Enriching the model with additional sources of shocks might enable
it to come closer to matching the observed correlations. The purpose here is to investigate,
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Table 2: Comparison of the business cycle component in the simulations (solid line) and
in the data (dashed line). The lines correspond very closely.
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Figure 10: Impulse responses to a population shock, i.e. a shock to population growth.

output TFP labor prod. hours cons. inv. cap.
std.dev: data 2.01 1.22 1.05 1.67 0.83 5.95 0.64
std.dev: theory 1.83 1.22 1.03 1.09 1.03 4.58 0.52

Correlations
TFP: data 0.81 1.00
theory 0.94 1.00

lab.prod. 0.56 0.93 1.00
0.85 0.97 1.00

hours 0.85 0.39 0.05 1.00
0.87 0.66 0.47 1.00

cons. 0.83 0.66 0.45 0.72 1.00
0.85 0.97 1.00 0.47 1.00

inv. 0.94 0.81 0.56 0.78 0.72 1.00
0.97 0.97 0.87 0.80 0.87 1.00

capital 0.40 -0.03 -0.13 0.57 0.30 0.24 1.00
0.40 0.26 0.34 0.34 0.34 0.22 1.00

Table 3: Data-theory comparison of standard deviations and correlations with output for
the business cycle frequencies for the time series listed. The business cycle component was
calculated, using the HP-filter.
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data series with theory series with data TFP
TFP 1.00 1.00
output 0.81 0.81

labor productivity 0.86 0.93
hours 0.30 0.39

consumption 0.74 0.66
investment 0.73 0.81
capital 0.58 -0.03

Table 4: Comparing the correlations of the results at business cycle frequencies. The sec-
ond column shows the correlation of the data time series with the corresponding simulated
time series, e.g. output in the data with output in the model. The third column shows the
correlation of the data time series with the data TFP series, e.g. output in the data with
TFP in the data. Note that there is generally not much improvement, when moving from
the correlation with TFP to the correlation with the corresponding theory time series. All
time series have been HP-filtered to compare the results at business cycle frequencies.

in how far this simple model can already do the trick. The answer is: it does pretty well.
But can one really proclaim success, based on these results? Further investigations

cast doubt on this conclusion. Take the results in table 4. There, the correlation between
the data series and the simulated series have been juxtaposed to the correlations between
the data series and the data on TFP: all series again are in logs and have been HP-
filtered. Except for the time series on capital, the theory does not deliver a closer fit
to the data than the raw TFP series alone, possibly appropriately rescaled. This is bad
news, considering that the TFP series has been used as input into the simulations.

To put it differently, let e.g. yHP,t indicate the business cycle component of log(ŷt),
obtained with the HP-filter. A model which simply appropriately rescales the business
cycle component of TFP by postulating

yHP,t =
std.dev(yHP,t)

std.dev(TFPHP,t)
TFPHP,t

cHP,t =
std.dev(cHP,t)

std.dev(TFPHP,t)
TFPHP,t

etc. does just as well as the real business cycle model above in ”explaining” the data,
except for capital. The propagation mechanisms in the model do not add anything towards
our understanding of the model. This is essentially the point made by Cogley and Nason
(1993, 1995): the internal propagation mechanism of the model is weak, the seemingly
excellent fit shown in e.g. the figures of table 2 mainly come about due to the dynamics
of TFP, which the model takes as given.

So, while there is an excellent fit, this is not in itself good news. It simply shows that
the TFP fluctuations are essential for understanding business cycle fluctuations, but it
does not show that the responses postulated by real business cycle models are. What the
business cycle model does achieve is the appropriate scaling, i.e., it does explain why e.g.
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investment fluctuates strongly and consumption weakly over the cycle.
One can take the comparison a step further and investigate the quality of the fit

between simulations and data without applying the HP-filter. This is perhaps an unfair
comparison, as the real business cycle models were not meant to explain the low frequency
movements in the data as well. But since the model builds on the neoclassical growth
model, and since eventually one wishes to understand these low-frequency dynamics as
well, this is a sensible issue to investigate.

The results are shown in table 5. While there is some agreement between these lines,
there are uncomfortable gaps. The model is often able to match the general trend as
well as fluctuations at business cycle frequencies, but misses swings at somewhat longer
frequencies. Given the insights above, this may not be regarded as too surprising. We
have already seen that there is a close match at business cycle frequencies. Furthermore,
per construction, Zt = Γ

1/(1−ρ)
t is used for detrending or re-trending all time series except

hours worked. I.e., the general trend may again be nothing more than TFP plus parameter
choices in the theory to match the investment-to-output ratio.

One might therefore suspect that detrending these series with Zt and comparing the
unfiltered version will reveal uncomfortable discrepancies. This is indeed the case, as
table 6 reveals. While there are fits at business cycle frequencies, and while the fit e.g.
for consumption looks fine, there is considerable disagreement at lower frequencies e.g.
for capital, output or investment. It is interesting, though, that the lower frequency
movements in hours worked are matched reasonably well.

These gaps at lower frequencies and likewise the break visible in the output-to-capital
ratio in figure 2 can perhaps be fixed with slow-moving changes in depreciations rates or
slow swings in TFP growth, as indicated by figure 4. The real business cycle model was
not meant to address these facts. But given that it apparently does not do much more
than rescale TFP growth fluctuations at business cycle frequencies and TFP trends for
the long-run behavior, one would have hoped for better news here.

In sum, the real business cycle model apparently does contain some ingredients, which
are there to stay - the emphasis on TFP, the desire for consumption smoothing - but
lots of the details can be subject to a complete overhaul without doing much harm to
the quality of the fit. The research agenda for finding appropriate models of the business
cycle is, again, wide open. That does not mean that anything goes. The standards of
comparison applied above and in the literature are rather stringent, and need to be applied
to any alternative. These standards have been successful in ruling out lots of explanations
already. It remains to be seen, which theories will eventually stand the test of time as
convincing and possibly alternative explanations of the cycle.

4 Where do we go from here? Concluding Remarks

Where do we go from here? The investigation above delivers several positive as well as
negative conclusions. On the positive side, it has been shown that productivity movements
- be they TFP movements, labor productivity movements or technology shocks identified
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Table 5: Comparison of the unfiltered time series in the simulations (solid line) and in
the data (dashed line), using log scales. The agreement is close, but gaps remain.
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Table 6: Comparison of the unfiltered time series in the simulations (solid line) and in

the data (dashed line), using log scales. The productivity trend Zt = Γ
1/(1−ρ)
t has been

removed. Uncomfortably big gaps are visible.
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in a reasonable manner - are key to understanding macroeconomic dynamics: they are
the main source of movements in the medium-to-long run.

Whether these movements are helpful for understanding business cycle dynamics and
whether technology shocks lead to rises or declines in hours worked is more of an open
issue. The propagation mechanics of real business cycle theory is weak: the success of
these theories in matching the facts is mainly due to the high correlation of TFP with a
number of macroeconomic variables rather than a deepened understanding of the response
to TFP movements. On the other hand, it may not be wise to already consider recent
claims in the literature, that technology shocks lead to declines rather than rises in hours
worked, as robust conclusions.

The literature has provided us with tools both in theory as well as in time series
econometrics to probe further into these issues, and we must. Plant-level data should
enable researchers to reach more conclusive results regarding the effects of technology
shocks. Quantitative theories need to be build which go beyond replicating correlations
with TFP and getting steady states and the size of the fluctuations right. The level
of the debate has risen considerably. There is a large number of litmus tests we are
able to apply now to separate good theories from bad or good and robust econometric
conclusions from bad or nonrobust ones. These tests have been instrumental in discarding
many ideas once constituting core macroeconomic teachings, but the search for convincing
theories and econometric models is far from over. It remains to be seen, which theoretical
and empirical models will survive these stringent tests: I am confident, that some will
eventually.
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