GAME THEORY I

A STRATEGIC SITUATION (DUE TO BEN POLAK)

Player 2 $\begin{array}{c|cc}
 & \alpha & \beta \\
\hline
 & & B-, B- & A, C \\
 & \beta & C, A & A-, A\end{array}$

SELFISH STUDENTS

Selfish 2

Selfish 1
$$\alpha$$
 $\begin{bmatrix} \alpha & \beta \\ 1,1 & 3,0 \\ \beta & 0,3 & 2,2 \end{bmatrix}$

- No matter what Selfish 2 does, Selfish 1 wants to choose α (and vice versa)
- \triangleright (α, α) is a sensible prediction for what will happen

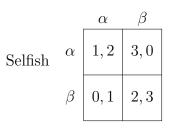
NICE STUDENTS

Nice 2

		α	β
Nice 1	α	2, 2	1,0
	β	0, 1	3,3

- ► Each nice student wants to match the behavior of the other nice student
- (α, α) or (β, β) seem sensible.
- ▶ We need to know what people think about each other's behavior to have a prediction

Selfish vs. Nice



- ▶ Nice wants to match what Selfish does
- ▶ No matter what Nice does, Selfish wants to player α
- ▶ If Nice can think one step about Selfish, she should realize she should play α
- \bullet (α, α) seems the sensible prediction

COMPONENTS OF A GAME

Players: Who is involved?

Strategies: What can they do?

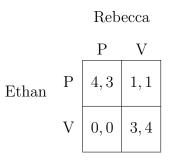
Payoffs: What do they want?

CHICKEN

Player 2

		Straight	Swerve
Player 1	Straight	0,0	3, 1
	Swerve	1,3	2, 2

CHOOSING A RESTAURANT



Working in a Team

2 players

Player i chooses effort $s_i \geq 0$

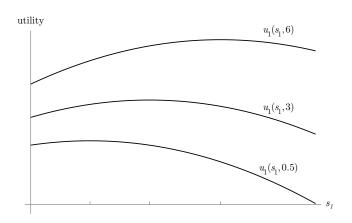
Jointly produce a product. Each enjoys an amount

$$\pi(s_1, s_2) = s_1 + s_2 + \frac{s_1 \times s_2}{2}$$

Cost of effort is s_i^2

$$u_i(s_1, s_2) = \pi(s_1, s_2) - s_i^2$$

PLAYER 1'S PAYOFFS AS A FUNCTION OF EACH PLAYER'S STRATEGY



Choosing a Number

N players

Each player "bids" a real number in [0, 10]

If the bids sum to 10 or less, each player's payoff is her bid

Otherwise players' payoffs are 0

NASH EQUILIBRIUM

A strategy profile where no individual has a unilateral incentive to change her behavior

Before we talk about why this is our central solution concept, let's formalize it

NOTATION

Player i's strategy

 $ightharpoonup S_i$

Set of all possible strategies for Player i

 \triangleright S_i

Strategy profile (one strategy for each player)

$$ightharpoonup {f s} = (s_1, s_2, \dots, s_N)$$

Strategy profile for all players except i

$$\mathbf{s_{-i}} = (s_1, s_2, \dots, s_{i-1}, s_{i+1}, \dots, s_N)$$

Different notation for strategy profile

$$\mathbf{s} = (\mathbf{s}_{-\mathbf{i}}, s_i)$$

SELFISH STUDENTS

Player 2
$$\begin{array}{c|cccc}
 & \alpha & \beta \\
\hline
 & 1,1 & 3,0 \\
 & \beta & 0,3 & 2,2
\end{array}$$

$$S_i = \{\alpha, \beta\}$$

4 strategy profiles: $(\alpha, \alpha), (\alpha, \beta), (\beta, \alpha), (\beta, \beta)$

CHICKEN

Player 2

		Straight	Swerve
Player 1	Straight	0,0	3, 1
	Swerve	1,3	2, 2

 $S_i = \{ \text{Straight, Swerve} \}$

4 strategy profiles: (Straight, Straight), (Straight, Swerve), (Swerve, Straight), (Swerve, Swerve)

Choosing a Restaurant

$$\begin{array}{c|c} & \text{Rebecca} \\ & P & V \\ \\ \text{Ethan} & P & 4,3 & 1,1 \\ & V & 0,0 & 3,4 \end{array}$$

$$S_E = ?$$
 $S_R = ?$

Strategy profiles: ?

CHOOSING A NUMBER WITH 3 PLAYERS

$$S_i = [0, 10]$$

 \triangleright Player i can choose any real number between 0 and 10

$$\mathbf{s} = (s_1 = 1, s_2 = 4, s_3 = 7) = (1, 4, 7)$$

▶ An example of a strategy profile

$$\mathbf{s_{-2}} = (1,7)$$

► Same strategy profile, with player 2's strategy omitted

$$\mathbf{s} = (\mathbf{s}_{-2}, s_2) = ((1, 7), 4)$$

▶ Reconstructing the strategy profile

NOTATING PAYOFFS

Players' payoffs are defined over strategy profiles

▶ A strategy profile implies an outcome of the game

Player i's payoff from the strategy profile s is

$$u_i(\mathbf{s})$$

Player i's payoff if she chooses s_i and others play as in $\mathbf{s_{-i}}$

$$u_i((s_i, \mathbf{s_{-i}}))$$

NASH EQUILIBRIUM

Consider a game with N players. A strategy profile $\mathbf{s}^*=(s_1^*,s_2^*,\ldots,s_N^*)$ is a **Nash equilibrium** of the game if, for every player i

$$u_i(s_i^*, \mathbf{s_{-i}}^*) \ge u_i(s_i', \mathbf{s_{-i}}^*)$$

for all $s_i' \in S_i$

Best Responses

A strategy, s_i , is a **best response** by Player i to a profile of strategies for all other players, $\mathbf{s_{-i}}$, if

$$u_i(s_i, \mathbf{s_{-i}}) \ge u_i(s_i', \mathbf{s_{-i}})$$

for all $s_i' \in S_i$

Best Response Correspondence

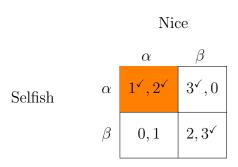
Player i's **best response correspondence**, BR_i , is a mapping from strategies for all players other than i into subsets of S_i satisfying the following condition:

▶ For each $\mathbf{s_{-i}}$, the mapping yields a set of strategies for Player i, $\mathrm{BR}_i(\mathbf{s_{-i}})$, such that s_i is in $\mathrm{BR}_i(\mathbf{s_{-i}})$ if and only if s_i is a best response to $\mathbf{s_{-i}}$

AN EQUIVALENT DEFINITION OF NE

Consider a game with N players. A strategy profile $\mathbf{s}^* = (s_1^*, s_2^*, \dots, s_N^*)$ is a **Nash equilibrium** of the game if s_i^* is a best response to $\mathbf{s_{-i}}^*$ for each $i = 1, 2, \dots, N$

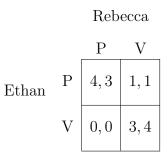
Selfish vs. Nice



CHICKEN

		Player 2	
		Straight	Swerve
Player 1	Straight	0,0	$3^{\checkmark}, 1^{\checkmark}$
	Swerve	$1^{\checkmark}, 3^{\checkmark}$	2, 2

You Solve Choosing a Restaurant



ANOTHER PRACTICE GAME

		Player 2	
		L	R
Player 1	U	10, 2	3,4
	D	-1, 0	5,7

Working in a Team

$$u_1(s_1, s_2) = \pi(s_1, s_2) - s_1^2 = s_1 + s_2 + \frac{s_1 s_2}{2} - s_1^2$$

Find Player i's best response by maximizing for each s_2

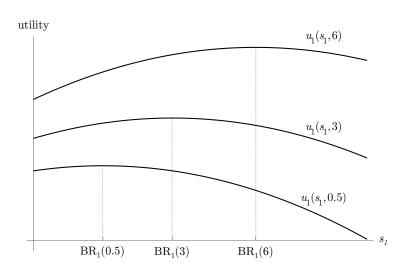
$$\frac{\partial u_1(s_1, s_2)}{\partial s_1} = 1 + \frac{s_2}{2} - 2s_1$$

First-order condition sets this equal to 0 to get $BR_1(s_2)$

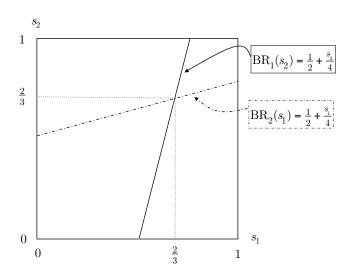
$$1 + \frac{s_2}{2} - 2 BR_1(s_2) = 0$$

$$BR_1(s_2) = \frac{1}{2} + \frac{s_2}{4}$$
 $BR_2(s_1) = \frac{1}{2} + \frac{s_1}{4}$

PLAYER 1'S BEST RESPONSE



NASH EQUILIBRIUM



SOLVING FOR NE

Since best responses are unique, a NE is a profile, (s_1^*, s_2^*) satisfying

$$s_1^* = BR_1(s_2^*) = \frac{1}{2} + \frac{s_2^*}{4}$$
 $s_2^* = BR_2(s_1^*) = \frac{1}{2} + \frac{s_1^*}{4}$

Substituting

$$s_1^* = \frac{1}{2} + \frac{\frac{1}{2} + \frac{s_1^*}{4}}{4}$$

$$s_1^* = \frac{2}{3} \qquad s_2^* = \frac{2}{3}$$

PRACTICE GAME WITH CONTINUOUS CHOICES

2 players

Each player, i, chooses a real number s_i

There is a benefit of value 1 to be divided between the players

At a strategy profile (s_i, s_{-i}) , Player i wins a share

$$\frac{s_i}{s_i + s_{-i}}$$

The cost of s_i is s_i

SOLVING

Write down Player 1's payoff from (s_1, s_2)

Calculate Player 1's best response correspondence

Solving²

Player 2 is symmetric to Player 1, so write down both players' best response correspondences

At a NE each player is playing a best response to the other. Write down two equations that characterize equilibrium.

SOLVING³

Use substitution to find Player 1's equilibrium action

Now substitute this in to find Player 2's equilibrium action

WHY NASH EQUILIBRIUM?

No regrets

Social learning

Self-enforcing agreements

Analyst humility

TAKE AWAYS

A Nash Equilibrium is a strategy profile where each player is best responding to what all other players are doing

You find a NE by calculating each player's best response correspondence and seeing where they intersect

NE is our main *solution concept* for strategic situations