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We elucidate a powerful yet simple method for deriving comparative statics conclusions for a wide variety of models:
Monotone Comparative Statics (Milgrom and Shannon 1994). Monotone comparative static methods allow researchers
to extract robust, substantive empirical implications from formal models that can be tested using ordinal data and simple
nonparametric tests. When these methods apply, they can replace a diverse range of more technically difficult mathematics
(facilitating richer, more realistic models), assumptions that are hard to understand or justify substantively (highlighting the
political intuitions underlying a model’s results), and a complicated set of methods for extracting implications from models.
We present an accessible introduction to the central monotone comparative statics results and a series of practical tools for
using these techniques in applied models (with reference to original sources, when relevant). Throughout we demonstrate
the techniques with examples drawn from political science.

Formal theorists typically base the testable predic-
tions of their models on comparative statics—the
analysis of how changes in the parameters of a

model affect the model’s solution. For instance, within
a legislative-institutional equilibrium a researcher might
ask what happens to the cohesiveness of party votes when
the competitiveness of elections increases. Similarly, in a
model of judicial politics an analyst might want to pre-
dict how the level of deference to precedent changes with
the independence of the judiciary. Despite the central-
ity of this approach, Cameron and Morton (2002) point
out that no textbook for political scientists discusses any
general techniques for finding comparative statics. In this
article we elucidate a powerful yet simple method for de-
riving comparative statics conclusions for a wide variety
of models. This approach is known as Monotone Compar-
ative Statics (Milgrom and Shannon 1994).

The tools associated with monotone comparative
statics offer several advantages over other techniques,
making them invaluable to scholars interested in solving
or testing applied formal models. Indeed, as will become
clear throughout this article, an understanding of the ba-
sics of monotone comparative statics will allow applied
researchers to solve and deduce testable implications from
a wide array of substantive models that would otherwise

Scott Ashworth is assistant professor of politics, Princeton University, 130 Corwin Hall, Princeton NJ 08544 (sashwort@princeton.edu).
Ethan Bueno de Mesquita is assistant professor of political science, Campus Box 1063, Washington University, One Brookings Dr., St. Louis
MO 63130 (ebuenode@artsci.wustl.edu).

We thank Gary King for encouraging us to start this project and for helpful comments on an early version. We have also benefited from
comments by Bruce Bueno de Mesquita, Amanda Friedenberg, Dan Ho, Andrew Martin, and an anonymous referee.

either be intractable or require knowledge of a much
larger, and more technically difficult, set of techniques.

We want to be clear that the purpose of this article
is not to make a contribution to the theory of mono-
tone comparative statics itself. The original sources for all
theorems are cited in the text. Our purpose is to demon-
strate to political scientists, heretofore largely unfamiliar
with monotone comparative statics, how these tools can
be employed in models of politics.

When the conditions for monotone comparative
statics are met, the analysis of a model is significantly
simplified. The monotone comparative statics approach
identifies simple sufficient conditions for observable im-
plications. The simplicity of these conditions makes them
easy to verify. When the analysis of comparative statics
is simplified to this degree, the researcher is able to solve
richer, more general, and more empirically relevant mod-
els. Thus, this approach frees applied formal theorists
to think about models that otherwise would have been
intractable.

Another advantage is that, when monotone compar-
ative statics are present in a model, they facilitate the de-
velopment of implications of theoretical models that are
directly relevant for empirical testing. First, monotone
comparative static predictions are robust against a large
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class of misspecifications of the theoretical model. Since
formal theorists generally believe that their models are
simplifications, rather than complete descriptions of the
world, if one wants to test a theoretical prediction it is
important to know that one’s hypotheses would not be
fundamentally undermined by model misspecification.
Second, monotone comparative statics often generate pre-
dictions that do not depend on the full specification of
the model but only on a key monotonicity relationship.
As such, this approach generates empirical predictions
that can be tested using purely ordinal information and
nonparametric methods whose consistency does not de-
pend on the correctness of the full range of assumptions
underlying the theoretical model, unlike many common
statistical procedures employed by quantitative empirical
researchers.

Finally, the monotone comparative statics approach
allows a modeler to identify a class of critical substantive
assumptions that drive the predictions of his or her model.
Other approaches to comparative statics (such as choos-
ing functional forms or employing the implicit function
theorem, which we discuss later) often rely on techni-
cal conditions, such as differentiability, to show how a
variable of interest changes with a parameter. In general,
differentiability does not have any political meaning. As
such, if the researcher wants to deduce observable impli-
cations from a model, he or she is forced to make purely
technical assumptions without substantive justification.
When the monotone comparative statics approach ap-
plies, on the other hand, the researcher can easily identify
the key assumptions that must hold in order for his or her
comparative static claims to be valid. This allows extrane-
ous technical assumptions to be dropped. Moreover, the
assumptions that remain are often (though not always)
in a form that can be evaluated through qualitative re-
search and expertise. For instance, we demonstrate that
in a model of appeasement, the level of appeasement will
be decreasing in the level of military expenditures only if
military expenditures and the underlying state of military
technology are complements. That is, we make a substan-
tive prediction (appeasement is decreasing in military ex-
penditures) and show that it will be true in the model
as long as a substantive assumption (better military tech-
nology increases the efficacy of military spending) that
can be evaluated qualitatively holds. An expert can decide
whether this is a reasonable assumption and, therefore,
whether or not to credit the model’s predictions. We will
develop this idea in considerable detail, employing a va-
riety of examples, as the article proceeds.

Of course, comparative statics are interesting even
when they are not monotone. Thus other methods for
comparative statics retain their usefulness, since they ap-

ply in some situations where the techniques discussed here
do not. Thus we do not see monotone comparative statics
as a panacea that solves all comparative static problems.
Rather, these results identify an important class of mod-
els in which the comparative statics properties are easily
determined.

The article is organized as follows. We start with
a simple example to provide intuitions. This example
is followed by an introduction to the central mono-
tone comparative static results and practical tools for us-
ing these techniques in applied models. These sections
should be accessible, with some work, to applied re-
searchers who are familiar with basic formal theoretic
tools. Of necessity, as we continue to more advanced top-
ics in later sections—including games with strategic com-
plementarity and monotone comparative statics under
uncertainty—the presentation becomes somewhat more
technical. This material will still be accessible to scholars
whose research agenda is not pure formal theory, but will
require a considerably greater investment of time. Our
hope is that this organization will make the article useful
to a variety of scholars, from those who want only to learn
the basic techniques in order to deduce and test robust im-
plications from simple models to more advanced formal
theorists seeking an introduction to a set of tools they
may not have previously encountered. Throughout we
demonstrate the techniques with examples drawn from
political science. Although this article is self-contained,
we also provide references to some of the more advanced
theoretical literature on monotone comparative statics for
those who are interested in further reading. We conclude
with a discussion of the implications of monotone com-
parative statics for quantitative empirical research.

Motivating Example: The
Appeasement Problem

Powell (2002) studies the following problem, which we
will call the appeasement problem. (See Fearon (1995)
for related models.) Two states must divide some territory.
There is a status quo division, but one state (call it D) is
dissatisfied with that status quo. The other state (call it S)
is satisfied with the status quo division.

S gets one chance to try to appease D by offering
it some of the disputed territory. Let x be the fraction
of S’s territory that it offers. S is uncertain about how
dissatisfied D is. S believes that D will accept an offer
of x with probability p(x). Assume that p(x) is strictly
increasing, so x >x ′ implies that p(x) >p(x ′). The better
the offer, the more likely D is to accept it. If D accepts
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the offer, then war is averted and S is left with 1 − x of its
territory. If D rejects the offer, then there is a war.

S believes that it will win a war with probability q.
Thus q can be thought of as S’s relative military strength.
If S wins a war, then S keeps all of its territory. If S loses
the war, it ends up with none of the disputed territory.
Given all of this, S will choose the offer of appeasement,
x, to solve the following maximization problem:

max
x

(1 − x)p(x) + q(1 − p(x)).

The comparative static question of interest in this model
is how the level of appeasement, x, changes with S’s per-
ception of its military strength, q. Does S offer more or
less when it perceives itself to be strong? This is a classic
comparative static question, asking how an output of the
model (the level of appeasement) changes with a param-
eter of the model (the probability that S wins a war with
D), holding all else constant.

One way to find the comparative statics for this prob-
lem is to choose a specific functional form for p and
calculate the solution explicitly. For example, suppose
p(x) = x . This means that S believes that if it offers one-
half of the disputed territory, then D accepts that offer
with probability one-half and likewise for all offers be-
tween 0 and 1. Under this assumption, S’s maximization
problem can be rewritten as follows:

max
x

(1 − x)x + q(1 − x).

We can solve this using simple calculus. The first-order
condition is:

1 − 2x − q = 0,

so the solution is

x∗(q) = 1 − q

2
,

where x∗(q) represents state S’s optimal choice of appease-
ment as a function of S’s perceived military strength. Thus,
for any given probability that S would win a war (q) we
know precisely what offer S will make to try to appease
D. We can find comparative statics by examining how
this equilibrium offer (x∗(q)) changes when q changes.
Differentiating x∗(q) with respect to q yields:

dx∗

dq
(q) = −1

2
< 0.

Not surprisingly, the optimal offer is decreasing in q. The
stronger S is militarily, the less willing S is to appease D.

While this final conclusion seems intuitive, the pre-
ceding derivation relied on the functional form of p, the
probability that D accepts an offer. Without this func-
tional form (p(x) = x) the analysis would not have sim-
plified in the nice way that it did and so we would not

have had an explicit solution for the optimal offer.1 But
the functional form was not chosen because of some com-
pelling substantive political argument that the probability
of an offer being accepted is linear in the offer. Rather, it
was chosen because it simplified the algebra. This is trou-
blesome for at least two reasons. First, if the conclusion,
rather than just the derivation, relies on the functional
form, then the conclusion is suspect unless the functional
form can be substantively justified. Second, this approach
makes it hard to generalize or add nuance to the results,
since to solve a richer model we would still have to find
functional forms that lead to explicit solutions, a process
which gets harder and harder as the model becomes more
realistic.

To see this second point more clearly, consider an
intuitively appealing extension of the appeasement prob-
lem. One might like to model S as having two decisions
to make rather than one. For example, suppose that S’s
perceived military strength is actually the result of both
some preexisting military capacity and the level of military
buildup during the negotiations. Write this probability as
q(z, �), where z is preparation for fighting and � is pre-
existing military capacity. It is natural to assume that S’s
military strength is increasing in both military buildup
(∂q/∂z > 0) and in preexisting capacity (∂q/∂� > 0).
Further, a military buildup is costly. We represent this cost
with a function c(z). Finally, it seems sensible to think that
the likelihood D accepts an offer of appeasement depends
on both the offer (x) and S’s military buildup during the
crisis, so the probability of acceptance is some function
p(x, z).

To solve this richer, more realistic model, we have to
find S’s optimal offer by analyzing the following maxi-
mization problem:

max
x,z

(1 − x)p(x, z) + q(z, �)(1 − p(x, z)) − c(z).

It would be nice to be able to analyze this without mak-
ing strong and substantively unjustified functional form
assumptions. Indeed, choosing a functional form for p(x,
z) that leads to a simple explicit solution is no longer a
simple task. While it may have been quite easy to select
the functional form p(x) = x in the first example, what
is the obvious choice for the functional form of p(x, z)?

Motivated by the desire to solve models of this sort we
now turn to the theory of monotone comparative statics.
We begin by developing techniques that are useful for
solving general decision theoretic problems such as the

1An explicit solution, as opposed to an implicit solution, is one in
which the variable being solved for appears on its own on one side
of an equal sign.



MONOTONE COMPARATIVE STATICS 217

one above. We then extend these techniques for use in
game theoretic settings.2

The Theory of Monotone
Comparative Statics

In developing the theory, we start with the simplest case: a
one-dimensional decision. We will develop this rigorously
and then show intuitively how the techniques extend to
more general cases. This will allow us to solve our moti-
vating example above, as well as a host of other political
science models.

Before proceeding, one technical point is necessary.
When developing more general models in the way that we
advocate, one is not always assured of having unique solu-
tions. For ease of exposition, while developing the theory
we assume unique solutions. However, this assumption
is not necessary in order to reach comparative static con-
clusions. Indeed, one of the strengths of the monotone
comparative statics approach is that it allows one to make
comparative static statements even when there are mul-
tiple equilibria. However, it is easier to explain the basics
when there is only one solution. We return to the issue of
multiplicity later in this section.

We will study comparative statics in the context of a
general optimization problem:

max
a∈A

f (a, �),

where � is a parameter and a is a choice variable. The
function to be maximized is sometimes called the objective
function. We assume that a ∈ A ⊂ R and � ∈ � ⊂ R. We
want to know how the optimal choice, a∗, changes as �

changes.
This general optimization problem can represent a

host of political decisions. As in our opening example, it
might represent the optimal level of appeasement given
a state’s military strength. In this case, a∗ corresponds
to the optimal offer (x∗ in our opening example) and �

corresponds to S’s military strength (q in our opening
example). Another political problem this optimization
problem could represent is the decision over what tax

2The distinction between decision and game-theoretic problems
is that in decision-theoretic problems we consider the choices of
only one actor, holding other actors actions constant (or assuming
they are nonstrategic). In game theoretic problems we have mul-
tiple actors, all of whom are strategic. For example, to make the
appeasement problem game theoretic, we would model the state
D as a strategic actor and have the probability that D rejects an
offer be an optimal choice within an equilibrium. We will address
such problems, but expositionally it is easier to begin with decision
theory.

policy a legislator supports (a) given the percentage of
people in her district living below the poverty line (�).
One can come up with many further such examples.

Consider two possible choices, a and a′, where a >

a ′. If the problem is choice of tax policy, then a would be a
higher tax rate than a′. In order to think about monotone
comparative statics, we will need to study the function
f (a , ·) − f (a ′, ·), which is called the incremental return.
The incremental return is a measure of the benefit (or
loss if it is negative) that our decision maker realizes by
moving from the lower choice (a′) to the higher one (a).
Clearly, for any given level of the parameter �, the decision
maker prefers a to a′ if and only if f (a , �) − f (a ′, �) >

0.
In order to derive monotone comparative statics, we

will study a special property of the incremental return
known as the single-crossing condition. We will show that
when the single-crossing property holds, then powerful
comparative statics follow.

The single-crossing condition requires that the incre-
mental return change sign only once as the parameter �

increases. That is, suppose that a decision maker prefers
policy a′ to policy a when � is small. This means that, for
a sufficiently small � (call it �′), the incremental return is
negative. If, for some new � >�′ the decision maker would
prefer policy a to policy a′ (so that the incremental return
is positive for this new parameter value �), then all deci-
sion makers with parameter value greater than � must also
prefer a to a′. Otherwise, the incremental return would
change signs more than once and, therefore, would not
satisfy the single-crossing condition. The single-crossing
property is illustrated in Figure 1.

Definition 1. The function f satisfies the single-crossing
condition if for all a >a′ and � >�′, f (a , �′)− f (a ′, �′)≥
0 implies f (a , �)− f (a ′, �)≥0, and f (a , �′)− f (a ′, �′)>

0 implies f (a , �) − f (a ′, �) > 0.

At first glance, the single-crossing condition may
seem hopelessly technical, belying our earlier promise to
ground comparative static analysis in easy and intuitive
assumptions. However, it is our intention to show that
the single-crossing condition is, in fact, both easy and in-
tuitive. We will start with why it is intuitive. Then, after
developing a little more theory, we will show how check-
ing for the existence of the single-crossing condition is
often quite easy as well. First, however, in what sense is
the single-crossing condition intuitive?

Consider the appeasement problem mentioned
above. Imagine that there are two appeasement offers, a
large appeasement or a small appeasement. Suppose that
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FIGURE 1 Objective Functions (Left Panel) and Their Incremental
Return (Right Panel) Satisfying the Single Crossing Property

a state with relative strength q prefers the large appease-
ment offer. Then the single-crossing condition requires
that all weaker states also prefer the larger appeasement
offer. The intuition underlying the single-crossing condi-
tion is also now clear: if a moderately strong state prefers
the large appeasement offer, then it reveals a preference
for a large concession and low probability of war to a small
concession and a high probability of war. A weaker state
has a lower expected payoff from war, so it has even more
reason to prefer the combination of a large concession and
low probability of war. The power of the monotone com-
parative statics approach is that comparative static results
hold as long as we are comfortable making assumptions
consistent with intuitive statements such as the previous
sentences.

For another example, consider the tax problem men-
tioned above. There, the choice variable represents a tax
rate and the parameter � represents the percentage of peo-
ple in a district who live below the poverty line. So, con-
sider two possible choices of a tax rate, a high level of tax,
a, and a low level of tax, a′. Suppose, further, that a legisla-
tor with fraction �′ of her constituents below the poverty
line prefers the larger tax, a. Then, the single-crossing
condition holds only if all other legislators from districts
that are even poorer will prefer the higher tax rate to the
lower tax rate (they will also have a positive incremental
return).3

Now that we have seen that the single-crossing prop-
erty has a substantive interpretation, we present the
central result of monotone comparative statics: if the
single-crossing condition holds, then the optimal choice
changes monotonically with the parameter. Throughout

3Readers might note a similarity between the intuition of single
crossing and single peakedness. It turns out that, while the intuitions
are similar, these are logically distinct properties, both of which are
sufficient conditions for the existence of a median voter theorem
(Gans and Smart 1996).

the article, theorems are presented without proof (though
we always provide the technical intuition and a citation
to the proof).

Theorem 1. (Milgrom and Shannon (1994)) Assume
that f satisfies the single-crossing property and let a∗(�) =
arg maxa∈A f (a , �). Then a∗ is weakly increasing in �.

The proof of this result follows straightforwardly
from the intuitive interpretation of the single-crossing
condition. Consider a decision maker with type �′ who
prefers a to a′. Her payoff function satisfies f (a , �) −
f (a ′, �) > 0, which we can rewrite as

f (a, �′) − f (a ′, �′) > 0.

If f satisfies the single-crossing property, then we have

f (a, �) − f (a ′, �) > 0

for all � > �′. Thus a decision maker with type � has f (a ,
�) > f (a ′, �), which says that she also prefers a to a′. This
argument shows that, if type �′ chooses a, then every type
� > �′ prefers a to any alternative a ′ < a . Thus a higher
type cannot choose a lower alternative.

We have, thus far, seen that the single-crossing prop-
erty is intuitive and powerful. However, these alone do not
make it useful. To make this concept practical, we need a
way to check whether or not it holds so that we can know
whether or not we have monotone comparative statics in
an applied model. It turns out that there is a sufficient
condition for single crossing, called increasing differences,
that is easy to check in applications. We develop this next.

Increasing Differences: A Sufficient
Condition for Single Crossing

We begin with a definition of increasing differences, which
is illustrated in Figure 2.
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FIGURE 2 Objective Functions (Left Panel) and Their Incremental
Return (Right Panel) Satisfying Both the Single Crossing
Property and Increasing Differences

Definition 2. The function f has increasing differences
if the incremental return, f (a , ·) − f (a ′, ·), is weakly in-
creasing in the parameter, �.

If the incremental return is weakly increasing, then
the single-crossing condition is satisfied. Why is this? In-
creasing differences is true if:

f (a, �) − f (a ′, �) ≥ f (a, �′) − f (a ′, �′),

for all a >a ′ and � > �′. If f (a , �′) − f (a ′, �′) ≥ 0, then
we have the following chain of inequalities

f (a, �) − f (a ′, �) ≥ f (a, �′) − f (a ′, �′) ≥ 0,

and f is single crossing. Notice, however, that the converse
is not true. An incremental return can satisfy single cross-
ing without having increasing differences, as illustrated in
Figure 1.

Increasing differences is a generalization of the clas-
sical idea of complementarity—an increase in the param-
eter increases the marginal benefit of an increase in the
choice variable. Another way of interpreting this is that,
the higher the value of the parameter, the more efficacious
is an increase in the choice variable. For example, in the
appeasement problem, if state strength and offers of ap-
peasement are complements, then the stronger the state is
the more likely a small increase in the appeasement offer
is to lead to acceptance. Under convexity and smoothness
assumptions, the optimal choice in a formal model sets
marginal benefits equal to marginal costs. When the pa-
rameter and choice variable are complements, an increase
in the parameter increases the marginal benefits, which
then increases the optimal choice. The monotonicity the-
orem based on increasing differences generalizes this re-
sult so that it holds without the extraneous assumptions
regarding convexity and smoothness.4

4We discuss a special case of this, discrete choice, below.

If the objective function (f ) is twice continuously
differentiable, then increasing difference becomes trivial
to verify. To see this, write the definition of increasing
differences as

[ f (a, �) − f (a ′, �)] − [ f (a, �′) − f (a ′, �′)] ≥ 0,

for all a >a ′ and � > �′. Notice that if f is twice continu-
ously differentiable, then for small changes in a, the first
term in square brackets is approximated by ∂ f (a,�)

∂a (a − a ′)
and the second term by ∂ f (a,�′)

∂a (a − a ′). Since (a − a ′) is
positive, increasing differences can be rewritten as

∂ f (a, �)

∂a
− ∂ f (a, �′)

∂a
≥ 0.

Now notice that this condition says that the derivative of
the objective function with respect to a must be weakly
increasing in the parameter. That can be written as follows:

∂2 f (a, �)

∂a∂�
≥ 0.

This condition is easy to check. In particular, we can
confirm that, the optimal choice has monotone compar-
ative statics with respect to some parameter by taking a
simple cross partial derivative. Thus, the single-crossing
property is indeed powerful, intuitive, and useful.

Discrete Choice and Multiple Optima

It is worth noting that monotone comparative static
results do not depend on differentiability. We used
differentiability to verify the single-crossing property in a
particularly easy way, but the monotonicity theorem was
stated entirely in terms of the single-crossing property.
This is important because in some applied settings dif-
ferentiability is not a good assumption. Consider a cou-
ple of examples. In a model of parliamentary coalition
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formation, the actors might be extreme-leftist, left-center,
centrist, right-center, and extreme-rightist parties. The
centrist party might have to choose which other parties
to bring into a governing coalition. There is no sensible
way to model this decision continuously—the choice is
inherently discrete. Similarly, in a model of conflict and
appeasement (which we discuss in more detail later) the
land under dispute might have religious significance mak-
ing partition infeasible.

In such discrete choice situations, we can still reach
comparative static conclusions using monotone com-
parative static techniques. This is because, unlike other
techniques (such as the implicit function theorem),
monotone comparative statics do not depend on differ-
entiability in any way. We do not, for instance, need to
exploit a first-order condition to do comparative statics,
we simply need to determine whether the incremental
return is single crossing.

Moreover, in discrete choice situations, the objective
function may sometimes be differentiable in the param-
eter (�) even though it is not differentiable in the choice
variable (a). For instance, in an appeasement setting the
land might not be infinitely divisible. If the parameter
is something continuous, such as relative military power,
then it is reasonable to assume differentiability in the pa-
rameter. In this case, we can check whether the incremen-
tal return is weakly increasing using calculus. Recall that
the incremental return is f (a , �) − f (a ′, �). The incre-
mental return is weakly increasing if, for all � ∈ � and a,
a ′ ∈ A with a > a ′:

∂

∂�
[ f (a, �) − f (a ′, �)] ≥ 0.

This condition is particularly easy to verify in a model
with only two possible actions. In this case, monotone
comparative statics imply a cutpoint decision rule; there is
a parameter value �∗ such that the decision maker chooses
the smaller action if � < �∗ and she chooses the larger
action if � > �∗.

Thus far, we have presented the results assuming that
a unique solution to the decision problem exists. How-
ever, our current focus on discrete choice forces us to
confront the issue of multiple optima. In the typical case
of discrete choice with continuous payoff functions, the
decision maker will be indifferent between two choices at
the parameter value where she switches from one choice
to the other. For example, in the cutpoint case, the de-
cision maker is indifferent between the two actions if
� = �∗. Thus, at that point there are multiple optima.5 An

5This problem is not limited to discrete choice but also arises when-
ever the global maximum of a nonquasiconcave objective changes
from one local maximum to another.

advantage of the monotone comparative statics approach
is that it allows us to draw comparative static conclusions
even in these cases.

This appearance of multiple optima raises an impor-
tant question—what does monotonicity mean for sets
of solutions? The literature offers several answers to this
question; we use the simplest one. Say that a set of solu-
tions S1 is greater than another set of solutions S2 if the
greatest element of S1 is larger than the greatest element
of S2 and the least element of S1 is larger than the least el-
ement of S2. (Notice that this definition of monotonicity
reduces to the standard order on real numbers when there
is a unique optimum.) All theorems we have stated (and
will state throughout) hold exactly as stated if we substi-
tute this concept of increasing sets for the usual concept
of monotonicity (Milgrom and Shannon 1994).

An Application to the Appeasement
Problem

Now that we have presented the basic theory, let’s put
it to work in our motivating example. In our opening
treatment of the appeasement problem we chose a spe-
cific functional form for p, the probability that the offer
is accepted, in order to derive comparative statics from
an explicit solution. Using monotone comparative static
techniques we can derive these comparative statics with-
out assuming a functional form, or even concavity of the
objective function.

Consider the one-dimensional problem:

max
x

(1 − x)p(x) + q(1 − p(x)).

Assume that p is differentiable and recall that p is in-
creasing, that is the probability that an offer is accepted is
increasing in the size of that offer. We want to determine
whether the optimal offer x∗ is decreasing in the decision-
making country’s military strength (q). The monotonic-
ity results imply that this will be true if the cross partial
derivative of the objective function with respect to x and q
is negative. To check this we first differentiate with respect
to q to get:

∂

∂q
f (x, q) = (1 − p(x))

and then with respect to x to get:

∂2

∂x∂q
f (x, q) = −p′(x).

Since p is increasing, p′(x) is positive, which implies
that the cross-partial derivative is negative. It seems that
this will stymie our comparative statics results, since the
monotonicity theorem applies to objective functions with
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positive cross-partial derivatives. However, we can solve
the problem using a trick called the “method of reorder-
ing.” Define the parameter � = −q . Then we can rewrite
the objective function as

(1 − x)p(x) − �(1 − p(x)).

The cross-partial of this function is

∂2

∂x∂�
f (x, q) = p′(x) > 0.

Thus the monotonicity theorem implies that x is weakly
increasing in � , which means that x is weakly decreasing
in q.

Substantively, this says that, so long as more generous
offers are more likely to be accepted, states with stronger
chances in war will offer less territory to a dissatisfied bar-
gaining partner. Importantly, the result depends only on
the substantive claim that better offers are more likely to be
accepted. We did not need the additional substantive re-
striction that the objective function be globally concave.6

Thus, in addition to being easy to check, the monotone
comparative statics approach clarifies which assumptions
drive the results.

As discussed above, if we do not assume differentia-
bility we can still make comparative static statements. This
is important substantively because one might want to ana-
lyze the appeasement problem in a case where the territory
is not perfectly divisible. For example, suppose that part
of the territory has important religious significance for
influential groups in each state and that consequently di-
vided control of the religious site is unacceptable to these
groups. In this case, the set of feasible offers in not convex
and the objective function cannot be everywhere differ-
entiable. However, we can still say that the optimal offer
is weakly decreasing in military strength since the weak
comparative static conclusion depends only on increasing
differences, which does not imply convexity, continuity,
or differentiability.

Multidimensional Decision Problems

So far we have studied the simplest possible decision prob-
lem: one actor making one choice. We now generalize the
results to show how they apply when a single decision
maker has to make multiple choices and the state of the
world is described by multiple parameters.

In order to address the multidimensional problem we
need to extend the notion of complementarity discussed

6Global concavity follows from the restriction p′′(x)
p′(x)

> −1. Con-
vexity of p is sufficient, but not necessary, for this restriction.

above to a multidimensional setting. Formally charac-
terizing the analog to the single-crossing condition for a
multidimensional monotonicity theorem would require a
lengthy technical tangent from our main theme.7 Instead,
we will simply extend the earlier concept of increasing
differences to show sufficient conditions for monotone
comparative statics in a multidimensional problem. This
is the essential tool for applied work.

In the one-dimensional problem we assumed that the
action a was in R. Since this is now a multidimensional
problem, the decision maker is choosing a vector a =
(a1, a2, . . . ,an). Thus, we assume that the action is a ∈
A ⊂ R

n. Similarly, before we had a single parameter �

that described the state of the world. Now, we assume the
parameter is a ∈ � ⊂ R

m.
The multidimensional decision problem is now writ-

ten:

max
a

f (a, �).

The extension of the earlier concept of increasing differ-
ences that we will use is called supermodularity. Before we
can define supermodularity, we need another definition.

Definition 3. If the set of alternatives, A, is a subset of R
n

and the set of parameters � is a subset of R
m, the set X =

A × � is a product set if it can be represented by the
Cartesian product of subsets of R.8

Now we can define supermodularity.

Definition 4. A function f : A × � → R is supermod-
ular if A × � is a product set and f has increasing diffe-
rences for all pairs of arguments of the function.

For a simple example, this definition says that if we
have a twice continuously differentiable function f (a1,
a2, �), then it is supermodular if all of the following

hold: ∂2 f
∂a1∂a2

> 0,
∂2 f

∂a1∂�
> 0,

∂2 f
∂a2∂�

> 0. As we add in more
choice alternatives or more parameters, increasing differ-
ences must hold for each possible dyad.

7The interested reader should consult Milgrom and Shannon
(1994).

8For example, the square given by {x , y | x ∈ [0, 1], y ∈ [0, 1]}
is a product of set in R

2. In particular, it is the Cartesian product:
[0, 1] × [0, 1]. However, the triangle given by {x , y | x ≥ 0, y ≥
0, x + y ≤ 1} is not a product sets, as it cannot be written as a
Cartesian product of two intervals of R . This restriction to product
sets is important because it means that monotone comparative
static techniques cannot be used for problems such as the classic
consumer problem, where the consumer makes a multidimensional
choice subject to a budget constraint. Other powerful comparative
static techniques exist for such problems, but are beyond the scope
of this article.
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This is clearly a generalization of increasing differ-
ences. If A and � are one dimensional, then the defini-
tion is exactly the same as the earlier definition of in-
creasing differences. Moreover, as we discussed earlier,
the key fact about increasing differences (and the sin-
gle crossing property) that made monotone comparative
statics work was complementarity. Supermodularity sim-
ply extends the notion of complementarity saying that all
choices and parameters must be complements with one
another.

Given this, we can state the main result, which is that
supermodularity is sufficient for monotone comparative
statics. We will say that the solution to the multidimen-
sional maximization problem (labeled a∗) has monotone
comparative statics if every component is weakly increas-
ing in the parameters. This result is formalized in the
following theorem.

Theorem 2. (Topkis (1978)) Consider the problem
maxa∈A f (a, �) where � ∈ � is a parameter. If f is su-
permodular, then the optimal solution a∗ has monotone
comparative statics.

This result is based on a simple idea. An increase in a pa-
rameter � has the direct effect of weakly increasing the
optimal levels of each component of the action, since su-
permodularity implies increasing differences for each pair
of parameter and action. Since supermodularity also im-
plies increasing differences for each pair of actions, this
direct effect induces indirect effects of further increases
in the action variables. Thus, all the effects of an increase
in a parameter on the optimal solution are in the same
direction.

Without supermodularity, the interactions between
choice variables could potentially outweigh the direct ef-
fect of the change in parameters, and then the direction
of comparative statics would depend on the relative size
of direct and indirect effects. For example, consider the
simple example of a function f (a1, a2, �). Assume that a1

has increasing differences with � and with a2 but that the
function is not quite supermodular because a2 does not
have increasing differences with �. Now consider the effect
of an increase of � on the optimal a1. An increase in � leads
to a direct effect of upward pressure on the optimal a1 be-
cause of increasing differences. However, an increase in �

can also put downward pressure on the optimal a2 which
has the indirect effect of putting downward pressure on
the optimal a1, since a1 and a2 have increasing differences.
There is no way to sign the overall effect (that is, the net
effect considering both the direct and indirect effects) of
an increase in � on a1 without making detailed assump-

tions about the functional form of f (precisely what we
are trying to avoid doing). Thus, for monotone compara-
tive static claims to be true we need the full strength of the
supermodularity assumption. Increasing differences of a
parameter and one particular component of the choice
vector is not sufficient to make monotone comparative
static claims about that binary relationship.

The Appeasement Problem Revisited

As we pointed out earlier, it would be nice to be able to
solve a richer, multidimensional version of the appease-
ment problem. For instance, Bueno de Mesquita et al.
(1999) present a related model in which the decision-
making country must choose both an offer to make and
how much to invest in military preparedness.9 Using the
results on multidimensional problems, we can easily han-
dle such complications.

Assume that the utility of S to war depends on both
some preexisting military capacity and on the level of
military buildup during the negotiations. Write this utility
as q(z, �), where z is preparation for fighting and � is
military capacity. It is natural to assume that ∂q/∂z > 0
(more preparation increases S’s chance of winning) and
that ∂q/∂� > 0 (preexisting capacity makes S more likely
to win). Increasing military preparedness is costly, with
cost function c(z). Now, the state solves

max
x,z

(1 − x)p(x) + q(z, �)(1 − p(x)) − c(z).

We will see that the comparative statics of this prob-

lem depend on the cross-partial ∂2q
∂z∂�

. This cross-partial
derivative is positive only if military preparations and mil-
itary capacity are complements. When might this be true?
Suppose that � measures the state of military technology
and that a given increment to spending is more productive
when technology is better. Under this assumption, z and
� are complements and so the crosss-partial is positive.

If z and � are complements, it is straightforward to
verify that the objective is supermodular in (−x , z, �). In
particular:

∂2 f (x, z, �)

∂x∂�
= −∂q

∂�
(z, �)p′(x) < 0

∂2 f (x, z, �)

∂x∂z
= −∂q

∂z
(z, �)p′(x) < 0

∂2 f (x, z, �)

∂z∂�
= ∂2q

∂�∂z
(z, �)(1 − p(x)) > 0.

9Bueno de Mesquita et al. (1999) present a game theoretic model,
but it is in the spirit of our analysis here.
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This means that we can conclude that x∗ is decreas-
ing in � and that z∗ is increasing in �, without ever solv-
ing explicitly for x∗. Notice that an empirical researcher
attempting to evaluate this model may not observe the
underlying state of military technology (�), but likely will
observe the offer (x) and the level of build-up (z). The
key observable prediction, then, is that x and z will be
negatively correlated.

As we mentioned at the outset, a key advantage of
monotone comparative statics is that it highlights the
substantive content of the assumptions, so they can be
examined with qualitative empirical work. For exam-
ple, we just derived the result that, if preexisting mil-
itary capacity makes resources devoted to a military
buildup more productive (that is, if they are comple-
ments), then ex ante stronger states will choose both
less generous offers and greater buildups. The key con-
dition used in this argument concerns the effect of pre-
existing capacity on the efficiency of military invest-
ment, a subject which qualitative empirical work and
expert interviews can shed light on. If this assumption
is false, then the comparative static predictions do not
hold.

The other approach that one could use to derive com-
parative statics from the multidimensional appeasement
model is to employ the implicit function theorem. If we
assume that territory and military capacity are both per-
fectly divisible, that the objective function is twice con-
tinuously differentiable, and that the first-order condi-
tion characterizes the optimum, then we can use the im-
plicit function theorem to calculate the comparative static
derivatives as:




∂x∗

∂�

∂z∗

∂�


 =

−
( −2px + (1 − x − q(z, �))pxx −pz − qz px

−qz px qzz(1 − p) − c zz

)−1

×
( −q� px

qz�(1 − p(x))

)
.

The implicit function theorem does, in the end, lead to
the same comparative static predictions as the monotone
comparative statics approach with differentiability. How-
ever, two significant advantages to monotone compar-
ative statics are evident. First, for monotone methods
we did not need to assume convexity or differentiabil-
ity. The implicit function theorem, however, only works
if the first-order condition characterizes the optimum.
Thus, the implicit function theorem requires stronger as-

sumptions and cannot be applied to models such as the
appeasement problem when the territory is not perfectly
divisible.10 Second, whenever the implicit function ap-
proach does work, the monotone comparative statics ap-
proach also works while only requiring that the modeler
calculate simple cross-partial derivatives.

Further Tools

So far, we have concentrated on the role of increasing
differences and supermodularity in ensuring that choice
variables are weakly increasing in the parameters. In this
section, we tie up a couple of loose ends in this discussion.
First, we discuss an alternative sufficient condition for the
single-crossing property that is useful in multiplicatively
separable problems. Second, we discuss the problem of
ensuring that the solution is strictly increasing in the pa-
rameters. Although the results we present hold for mul-
tidimensional problems, we simplify the discussion by
restricting attention to one-dimensional choices.

Log-supermodularity

In some situations, the decision maker’s objective func-
tion may not be supermodular, but we can still apply
monotone comparative statics. Recall that supermodular-
ity is a sufficient, but not necessary condition for mono-
tone comparative statics. In certain circumstances, a use-
ful trick makes it possible to demonstrate that a decision
problem has the needed complementarities even though
supermodularity of the objective function cannot be es-
tablished. This trick involves taking logs. We illustrate this
using an example.

Consider the following simple model of election
spending.11 A candidate is running for office as a chal-
lenger and must decide how much money to devote to
campaign spending a. The probability that the challenger
wins p(a, �) is increasing in campaign spending and de-
creasing in the incumbent’s level of name recognition
� > 0.12 The candidate also gains some utility from hold-
ing office, u(a). This utility is a decreasing function of

10See Fearon (1995) for a discussion of the importance of models
of conflict without perfect divisibility.

11This simple decision-theoretic model is related to more sophisti-
cated models studied by Erikson and Palfrey (2000), Grossman and
Helpman (1996), and Baron (1994).

12To keep the example simple, we do not model strategic behavior
by other candidates, though doing so along the lines of the game-
theoretic methods discussed below would only reinforce the point.
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the amount of resources spent on campaigning ( ∂u
∂a < 0).

This assumption reflects the idea that campaign funds are
raised in exchange for promises that the challenger will
provide favors to interest groups if she wins, and that pro-
viding these favors uses resources that the candidate could
otherwise use to pursue her own legislative goals.

The candidate’s objective function is U = p(a ,
�)u(a), and he solves the following maximization prob-
lem:

max
a

p(a, �)u(a).

Unfortunately, the candidate’s objective function may not
be supermodular. To see this, note that

∂2U

∂a∂�
= ∂u

∂a

∂p

∂�
+ ∂2 p

∂a∂�
u.

The first term here is clearly positive, but the second term
need not be. For instance, consider a stochastic voting
model where the candidate believes that he will win the
pivotal voter’s vote only if � + � < a , where � is a normally
distributed, random variable. The probability of the can-
didate winning, then, is p(a , �) = �(a − �), where � is
the cumulative density function of the standard normal
distribution. The cross partial probability that the candi-
date wins is given by:

∂2 p

∂a∂�
= ∂2�(a − �)

∂a∂�
= −�′(a − �),

where � is the probability density function (pdf) of the
normal distribution. Since the pdf of the normal is in-
creasing to the left of its mean and decreasing to the right
of its mean, the sign of �′(a − �) changes depending on
the values of a and �. Thus, the cross-partial cannot be
signed and so, even using the normal distribution, the
objective function may not be supermodular.

Fortunately, comparative statics conclusions con-
tinue to hold when the objective function is transformed
in any monotonic way. A particularly convenient such
transformation is to take logarithms. Hence, to attempt
to establish comparative statics of our elections model, we
can study the transformed maximization problem:

max
a

(log p(a, �) + log u(a)).

If this transformed problem is supermodular, then the
monotonicity theorem still implies that there are mono-
tone comparative statics. Since this transformation is so
broadly useful, we give a formal definition.

Definition 5. The function f: A × � → R+ is log-
supermodular if log f is supermodular.

To see the usefulness of log-supermodularity, assume
again that the candidate expects to win the voter’s vote
only if � ≤ a − �. The candidate believes that � ∼ F ,
where F is a strictly increasing, absolutely continuous dis-
tribution with density f . Thus the candidate wins with
probability

p(a, �) = F (a − �),

and the transformed objective function is

log F (a − �) + log u(a).

What are the comparative statics of this problem?
Consider the effect of a change in the name recognition
of the incumbent on the level of campaign spending by the
challenger. The first derivative of the objective function
with respect to a is

f (a − �)

F (a − �)
+ u′(a)

u(a)
.

The level of spending a will be increasing in the incum-
bent’s name recognition if this derivative is increasing in
�, which is true if f

F is a decreasing function.

It turns out that this condition that f
F (called the

hazard rate) be decreasing is equivalent to an empirically
testable claim about the distribution. In particular, this
condition will hold if the density (f ) is logconcave. While
logconcavity of the density is not a qualitatively intuitive
assumption, it has two desirable properties. First, it seems
a relatively innocuous assumption since most of the stan-
dard assumptions we use in formal and statistical model-
ing (normal, uniform, extreme value, beta, Weibull, etc.)
are logconcave (Bagnoli and Bergstrom 1989). Further,
one can use nonparametric methods to empirically eval-
uate whether or not logconcavity is present (An 1997).
Thus, by using the trick of taking logs of the original ob-
jective function, we are able to show that the problem has
monotone comparative statics as long as the distribution
of shocks in the stochastic voting model is logconcave.

Strict Conclusions

The monotonicity theorems that we have presented only
tell us that a∗ is weakly increasing in a parameter—we
have not yet ruled out intervals of � over which a∗ is
constant. Sometimes it is possible to go further and show
that the solution must be strictly increasing. To do this,
we must strengthen the assumptions in two ways. First,
we assume that f is differentiable in a. Second, we assume
that ∂ f

∂a (a, �) is strictly increasing in �. Notice that the



MONOTONE COMPARATIVE STATICS 225

second condition implies that the incremental return f (a ,
�) − f (a ′, �), is strictly increasing in � as opposed to the
earlier increasing differences condition, which was that it
was weakly increasing in �.

Now we are ready for a strict comparative statics re-
sult. We have assumed that f has strictly increasing incre-
mental returns and is differentiable. This clearly implies
that f has increasing differences, so the earlier mono-
tonicity theorem implies that a∗(�) ≥ a∗(�′). We want to
show that, under the stronger conditions, this inequality
is strict.

Assume that a∗(�) is in the interior of A. Since a∗(�)
is optimal at �, the first-order condition holds, which
implies that:

∂

∂a
f (a∗(�), �) = 0. (1)

If the comparative statics are not strict, then a∗(�′) =
a∗(�). Thus, for the comparative statics to be weak it must
be that the optimal choice under �′ is characterized by:

∂

∂a
f (a∗(�), �′) = 0.

But we have assumed that ∂ f
∂ai

(a, �) is strictly increasing
in �, so both equalities cannot hold simultaneously. Since
we know that the equality in equation (1) holds, it must be
that a∗(�) 
= a∗(�′). Moreover, we already know from the
earlier monotonicity theorem that a∗(�) ≥ a∗(�′). Thus,
a∗(�) > a∗(�′).

This result is formalized in the following theorem.

Theorem 3. (Edlin and Shannon (1998)) Assume f is
differentiable and ∂ f (a , �)/∂a is strictly increasing in �. If
� > �′ and at least one of a∗(�) and a∗(�′) is in the interior
of A, then a∗(�) > a∗(�′).

We can use this result to strengthen the earlier results
from the appeasement problem. Since the objective func-
tion in that problem is differentiable, we can conclude
that the optimal offer is strictly decreasing at any q where
x∗(q) is not 0 or 1.

Monotone Comparative Statics
for Game Theoretic Problems

Monotone comparative statics tools are useful beyond de-
cision theory—they also can be employed in strategic set-
tings. For this, we must extend the idea of complementar-
ity to strategic complementarity. Informally, a game is a
situation where several decision makers make choices and

all of them care about the choices of the others. A game has
strategic complementarities if each player wants to choose
a higher action when another player increases her actions.
We will start with a simple example to show how some of
the decision-theoretic monotone comparative static re-
sults developed above can be used in a game-theoretic
setting. We will then progress to techniques specifically
suited to analyzing comparative statics of equilibria of
game theoretic models.

Consider the following model of an arms race be-
tween two states. A state, i, has to choose a level of in-
vestment in arms, ai. The state cares both about how well
armed it is as well as how well armed its rival, j, is. Further,
investment in arms is costly. The cost of an investment ai

is given by ciai. The payoff to state i is given by:

ui (ai , a j ) = v(ai − a j ) − ci ai ,

and to state j by:

u j (ai , a j ) = v(a j − ai ) − c j a j ,

where v(·) is increasing and concave.
An equilibrium of this game is a pair (a∗

i , a∗
j ) such

that a∗
i is a best response to a∗

j and vice-versa. To do
comparative statics we will take a closer look at the best
response functions. For player i the best response function
(which determines the optimal level of ai) is a function
of both aj and c i, which we will write BRi(aj , c i). We can
use our previous results to show that BRi is increasing in
aj and decreasing in c i. To see this note first that

∂2u

∂ai∂a j
= −v′′(ai − a j ) > 0,

sincev is concave. Thus, our earlier monotonicity theorem
implies that the optimal ai is increasing in aj , so that BRi

must also be increasing in aj . Similarly,

∂2u

∂ai∂ci
= −1 < 0,

so the optimal ai is decreasing in c i.
So far we have treated player i’s decision problem in

isolation. However, we would like to think about strategic
interactions between i and j. As we have already seen, a
decrease in the cost of arms to player i increases the level
of arms in which player i invests. Further, an increase
in player i’s investment leads to an increase in player j’s
investment. Since a Nash equilibrium requires each player
to choose a best response to the other’s choice, this suggests
that a decrease in player i’s costs will increase the level of
arms investment by both players.

In order to formalize this intuition we need to think
more generally about the nature of equilibria in game
theoretic models. A Nash equilibrium is a profile of ac-
tions (a1, . . . , an) such that, for all i , ai = BRi(a−i), where
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FIGURE 3 An Increasing Function Has at Least One Fixed Point
But a Decreasing Function with Jumps Need Not

BRi(a−i) is player i’s best response to the actions a−i of
all the other players. We can write a profile of actions
as a vector a, and say that it is a Nash equilibrium if
a = BR(a), where BR(a) = (BR1(a−1), . . . , BRn(a−n)).
An equilibrium, then, is a fixed point of the map taking
the vector a to BR(a). Thus we need to extend the earlier
comparative statics ideas from optimization problems to
fixed-point problems.

We start by formally defining strategic comple-
mentarity.

Definition 6. A game has strategic complementarities if
each player’s decision problem has monotone comparative
statics.

Notice that in a game with strategic complementarities
the best response functions will be increasing. That is, a
player’s optimal choice is increasing in each other player’s
choice. Intuitively, it is not surprising that strategic com-
plementarity is sufficient to insure that if something in-
creases one player’s best response function, then all the
optimal actions will increase, just as occurred when the
costs to one player decreased in the arms race game. This
intuition reflects the following theorem.13

Theorem 4. (Tarski) Let f = ( f 1, f 2, . . . , f n), where
fi : A × � → R. If each f i is increasing in a and �, then

13This result was introduced into game theory by Topkis (1979).
Further results were obtained by Milgrom and Roberts (1990, 1994)
and Vives (1990).

a greatest and least fixed point exist, and they are increasing
in �.

The first part of the theorem (the existence of fixed
points) is illustrated in Figure 3. A fixed point in these two-
dimensional drawings is a value of x such that the value
of the function (call it f ) is also x (that is, x = f (x)). The
picture on the right demonstrates that a decreasing func-
tion does not necessarily have a fixed point—a decreasing
function with jumps need not cross the 45-degree line.
The picture on the left shows that an increasing function
(even if it has jumps) always has a fixed point. To convince
yourself of this try to draw a function (with or without
jumps) from x = 0 to x = 1 such that it never crosses the
45 degree line (that is, x never equals f (x)).

The second part of the theorem (monotone compar-
ative statics) is illustrated in Figure 4. It is assumed that the
function is increasing in the parameter. Thus, when the
parameter increases from �′ to �, the function increases
pointwise. The result is that both the least and greatest
fixed points (marked in the figure) increase. Notice, that,
as in the figure, fixed points other than the greatest and
least may decrease rather than increase in the parameter.
This is not of major concern, however, since Echenique
(2002) shows that if equilibrium sets are ordered this way,
then a broad class of adaptive adjustment processes will
converge to greater equilibria whenever a shock increases
the equilibrium set.

These game-theoretic techniques can be applied to a
range of substantive models of interest to political scien-
tists. For instance, Tarski’s fixed-point theorem formalizes
our earlier discussion of the arms race. We showed that
the best response functions in the arms race model are
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FIGURE 4 An Increase from �′ to � Shifts f up
(f Is Increasing in �) and
Consequently Both the Least and
Greatest Fixed Points Increase

increasing in the actions (the level of weapons investment)
and the parameters (the cost of weapons). Given this,
Tarksi’s fixed-point theorem establishes that an equilib-
rium exists and that it has monotone comparative statics.

Comparative Statics
Under Uncertainty

Many of the most important formal theory papers of the
past 20 years have featured incomplete information. Thus
it is important that monotone comparative statics tech-
niques can simplify the analysis of these models as well.
From an abstract perspective, extending the results to in-
clude uncertainty is easy—the expected payoff function
must satisfy the single-crossing condition. Indeed, the
appeasement problem and the campaigning problem we
studied in earlier sections are already problems of choice
under uncertainty.

Nonetheless, it is worthwhile to examine some re-
sults that are specific to uncertainty. The standard
model of choice under uncertainty is expected payoff
maximization—the decision maker maximizes

U (a, s ) =
∫

u(a, �) f (�, s ) d�,

where a is the choice variable and � is a parameter that
is unknown to the decision maker. The decision maker’s
beliefs are represented by the probability density f (·, s ),
where s is a parameter indexing distributions. The optimal
choice is written a∗(s ).

As always in monotone comparative statics, we want
to determine when a∗ is weakly increasing in s. Athey
(2002) exploits the special structure of expected payoff
maximization to find conditions on the Bernoulli util-
ity function (u) and the probability distribution (f ) that
together imply that the expected utility function (U) is
single crossing. In applications, it is often easier to check
these more primitive conditions on utilities and distribu-
tions than to check directly whether the expected utility
function is single crossing.

The easiest way to understand the intuition for
Athey’s result is to start with the special case in which the
unknown parameter � can take only two values �̄ > �

¯
. In

this case, expected utility maximization says

max
a

(Pr(�̄)u(a, �̄) + Pr(�
¯
)u(a, �

¯
)).

Assume that the Bernoulli utility function, u, is single
crossing in a and �. If � is known, then this is a problem
without uncertainty, and Theorem 1 tells us that the op-
timal a is weakly increasing in � (that is, a∗(�̄) ≥ a∗(�

¯
)).

In the case with uncertainty over �, it is intuitive that
a∗ should be weakly increasing in Pr(�̄). That is, if the
optimal action is weakly increasing in the parameter in
the complete information case, then the optimal action
should be weakly increasing in the probability that the
parameter takes on the high value in the incomplete in-
formation case.

It is easy to prove this intuitive conclusion if we
strengthen the assumption that u is single crossing and
instead assume that it has increasing differences. Let
p = Pr(�̄), and write the expected payoff as

U (a, p) = pu(a, �̄) + (1 − p)u(a, �
¯
).

We want to show that the optimal choice (a∗(p)) is weakly
increasing in p. To do this, we need only confirm that U(a,
p) has increasing differences. Differentiating with respect
to p yields

∂

∂p
U (a, p) = u(a, �̄) − u(a, �

¯
).

This derivative is increasing in a, since u has increasing
differences. Thus U has increasing differences and the
optimal a is weakly increasing in p.

As demonstrated in this simple example, in order to
study monotone comparative statics in incomplete infor-
mation environments, we need a way to order probability
distributions. In the example with just two values of �,
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this is easy—one distribution is greater than a second if
and only if it assigns higher probability to the larger value
of �. In the two value case, then, we can say that a distribu-
tion that assigns probability p to �̄ is greater than another
distribution that assigns probability p′ to �̄ if p > p′.

It turns out to be useful to rewrite this condi-
tion in a different way. We will say that a distribution
( f (·, s 1)) that assigns probability p to the higher param-
eter value is greater than a distribution ( f (·, s 2)) that
assigns probability p′ to the higher parameter value if

p

1 − p
>

p′

1 − p′ . (2)

When there are only two values, this is just a somewhat
odd way of saying p > p′. The important fact, as we will
see, is that this form of the condition is the “right” one
for generalization to cases with more than two possible
parameter values.

If we extend this ratio inequality to hold for all pairs
�1, �2 ∈ �, even when there are more than two values
of �, then we say that the s1 distribution likelihood ratio
dominates the s2 distribution. This is a strong notion of
“larger” for random variables.14

Definition 7. A distribution f (·, s 1) monotone likeli-
hood ratio dominates or is larger in the likelihood ratio
order than a distribution f (·, s 2), if for all �1 > �2, �1,
�2 ∈ �,

f (�1, s1)

f (�2, s1)
≥ f (�1, s2)

f (�2, s2)
.

We will also use the following, closely related
definition.

Definition 8. A family of distributions satisfies the mono-
tone likelihood ratio property if it is indexed by parameters,
s, that can be ordered such that f (·, s ′) monotone likelihood
ratio dominates f (·, s ′′), for all s ′ > s ′′.

This definition simply says that if distributions can be
rank ordered in terms of monotone likelihood ratio dom-
inance, then they are said to satisfy the monotone likeli-
hood ratio property.

Athey’s theorem shows that the monotone likelihood
ratio order is the notion of larger needed to extend single
crossing to the case of uncertainty with more than two
possible parameter values. We state two of her results,
one for one-dimensional problems and one that applies
to multidimensional problems.

14The appendices to Krishna (2002) provide a useful summary of
the large literature on orders for random variables.

Theorem 5 (Athey).

1. Assume that A is one-dimensional. If u, is single cross-
ing in a and �, and f satisfies the monotone likelihood
ratio property, then U (a, s ) = ∫

u(a, �) f (�, s ) d� is
single crossing in a and s and, therefore, a∗(·) is weakly
increasing in s.

2. If u is either supermodular or log-supermodular, and
f satisfies the monotone likelihood ratio property, then
a∗ is weakly increasing in s.15

We already know how to check the conditions on u.
However, in order for this theorem to be useful, we must
also be able to check whether the distribution satisfies the
monotone likelihood ratio property.

Recall from the definition that the likelihood ratio
order requires

f (�1, s1)

f (�2, s1)
≥ f (�1, s2)

f (�2, s2)
.

We can take logs of both sides and rewrite the condition
as

log f (�̄, s1) − log f (�
¯
, s1) ≥ log f (�̄, s2) − log f (�

¯
, s2).

Thus a family of distributions has the monotone like-
lihood ratio property if and only if the density is
log-supermodular. Thus the monotone likelihood ratio
property can be verified by computing the cross partial
derivative of log f . Hence, Theorem 5 implies that the
expected utility function (U) will be single crossing if the
Bernoulli payoff function (u) is single crossing and the
density function is log-supermodular.

We have described how to extend the single-crossing
property, and thereby monotone comparative statics, to
problems involving uncertainty. However, the question
remains as to whether there is any intuition underlying
the assumption that the family of densities is ordered by
the likelihood ratio order. Milgrom (1981) shows that this
ordering on distributions is particularly natural in prob-
lems where the distributions are derived from Bayesian
updating.

To see why, assume that the decision maker has a
prior distribution f on � and that she observes a signal
with likelihoods p(s | �). Using Bayes’s rule, her posterior
distribution is then

15Van Zandt and Vives (2003) show that a weaker condition, that
the s index the distributions in the sense of first-order stochastic
dominance, is sufficient if the Bernoulli utility is supermodular.
We emphasize Athey’s result because the likelihood ratio ordering
is easier to check in applications and because it is general enough
to apply to the kind of utility functions that arise in probabilistic
voting model and to the use of monotone comparative statics in
the median voter theorem.
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f (� | s ) = p(s | �) f (�)∫
p(s | �′) f (�′) d�

.

The problem will have monotone comparative statics if
the posterior distribution conditioned on a given signal
monotone likelihood ratio dominates the posterior dis-
tribution conditioned on a lower signal.

To see how this is related to the model’s primitives,
rewrite Bayes’s rule in odds form:

f (� | s )

f (�′ | s )
= p(s | �)

p(s | �′)
f (�)

f (�′)
.

From this expression it is clear that the posteriors will be
ordered in the likelihood ratio order if and only if the
likelihood ratio p(s | �)

p(s | �′) is increasing in s. Substantively,
this will be true if, for any two values of the parameter
(�), higher values of the signal make the higher parame-
ter value relatively more likely. This condition is satisfied
for many standard parametric forms of the likelihood
(normal, etc.).

Likelihoods that satisfy this condition also arise quite
naturally in models of measurement error. Assume that
the signal is a noisy observation of the true parameter
value, s = � + �, where � is a mean zero random variable
independent of � distributed according to a logconcave
density, f . The likelihood ratio is p(s | �)

p(s | �′) = f (s−�)
f (s−�′) . Since

f is logconcave, the likelihood ratio is increasing in s.
It will be instructive to see how these techniques can

be applied in the appeasement problem we have already
examined. Assume that the relative military strength of
the satisfied state is q(�), where � is D’s strength and q is
decreasing. Further assume that S knows its own strength,
but must rely on intelligence reports to assess D’s strength.
The intelligence service produces a signal, s = � + �,
where � is independent of � and has a logconcave density,
f . Due to the argument in the previous paragraph, S’s
posterior beliefs (f (� | s)) satisfy the monotone likelihood
ratio property. The expected utility function is given by

US = E[p(x)(1 − x) + (1 − p(x))q(�)]

=
∫

(p(x)(1 − x) + (1 − p(x))q(�)) f (� | s ) d�

Our earlier treatment of the appeasement problem, with-
out uncertainty, showed that

uS = p(x)(1 − x) + (1 − p(x))q(�)

is single crossing in x and �. Given that f (� | s ) satisfies the
monotone likelihood ratio property, Theorem 5 implies
that U S is single crossing, and therefore the optimal offer
(x∗(s )) is weakly increasing in the signal (s)—the higher
the signal of D’s military strength, the larger the offer of
appeasement.

Implications for Empirical Work

We have demonstrated a variety of ways in which mono-
tone comparative static techniques aid formal theorists
in building, solving, and deriving results from models.
We have also discussed how qualitative empirical research
can help to evaluate whether the assumptions necessary
for monotone comparative statics hold. We conclude by
discussing several ways in which monotone comparative
statics have benefits for researchers who want to combine
formal models and quantitative empirical research.16

There are several approaches to testing the empirical
implications of theoretical models. An increasingly pop-
ular technique is to derive a complete likelihood func-
tion from a formal model augmented only by random
noise. This structural modeling approach has been ap-
plied in each of the empirical subfields. A few examples
include Diermeier, Eraslan, and Merlo’s (2003) work on
government formation in parliamentary systems, Smith’s
(1999) and Signorino’s (1999) estimations of a variety
of models of crisis bargaining in international relations,
and Gowrisankaran, Mitchell, and Moro’s (2003) estimate
of the incumbency advantage in the United States Sen-
ate based on a formal model of electoral selection. The
primary benefit of this approach is that it allows the re-
searcher to fully estimate the structure of an equilibrium
model. This provides a strong test of the theory and fa-
cilitates counterfactual simulations which are useful for
prediction and policy evaluation.

As Signorino and Yilmaz (2003) point out, the validity
of this approach to estimation depends on the functional
forms implied by the formal model accurately reflecting
the true data-generating process. Often, however, formal
theorists think of their models as partial treatments, in-
tended to isolate particular mechanisms of interest, but
failing to capture the full complexity of the political situ-
ation being studied. In these situations, it may not be fea-
sible to do structural estimation. Nonetheless, even if we
cannot test the full specification of the model, we want to
be able to test some of the predictions of the model, to de-
termine whether the basic causal mechanisms the model
identifies are important. When the monotone compara-
tive statics approach applies, it facilitates this more limited
type of testing of theoretical models by providing some
assurance of the robustness of comparative static predic-
tions even with an incompletely specified model.

When we model a decision problem by assuming that
a decision maker maximizes f (a , �), we intend to high-
light the role of � in the determination of a. We typically do

16For an example of an empirical application where the single cross-
ing condition emerges, see King and Wand (2004).
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not intend to suggest that there are no other important de-
terminants of a. That is, we think the true data-generating
process results from the maximization of f (a , �) + g (a),
for some arbitrary function g . Ideally, our results would
be robust to such arbitrary perturbations that do not di-
rectly affect the particular relationship we are studying.
Such robustness does not hold for all decision problems,
but it does hold if f has increasing differences. In that case,
f (a , �)+ g (a) satisfies the single crossing condition for all
g. Thus increasing differences justifies drawing compar-
ative statics conclusions from partially specified models.
What is important for comparative statics is not fully spec-
ifying the problem, but only correctly specifying the parts
of the problem where the variables of interest interact.

By comparing the right-hand panels of Figures 1 and 2
it is easy to see why increasing differences gives us this kind
of robustness but single crossing on its own does not. No
matter how one shifts the graph of the incremental return
in Figure 2, it will remain single crossing. However, a shift
of the incremental return in Figure 1 could easily cause
the graph to cross zero more than once. More formally,the
incremental return in the perturbed problem is

f (a, �) − f (a ′, �) + g(a) − g (a ′).

For any value of g (a) − g (a ′), this incremental return
will be increasing, and hence single crossing, in � if f has
increasing differences.

Monotone comparative statics approaches provide
some robustness against incorrect specification, and thus
yield the type of prediction that can be tested even when
we are not confident enough in our theoretical model to
test its full specification. Because the comparative static
predictions do not depend on precisely specifying the
functional form, it is natural to test these limited claims
nonparametrically, without making any assumptions ex-
cept those necessary for monotonicity.17 This can be done,
for example, by using rank tests, either on the raw data or
on the residuals from regressions of the variables of inter-
est on a vector of control variables (Rosenbaum 2002).

For example, recall that in our model of the ap-
peasement problem the level of expenditures on military
buildup (z) and the offer of concession (x) were negatively
correlated. Since, as discussed above, monotone compar-
ative statics are invariant to monotone transformations of
the domain, we can test this prediction of the model with
only ordinal information, using Spearman’s rank corre-
lation test. Hence, when we are concerned that misspeci-
fications of our theoretical model might limit the validity
of structural estimation, but there are monotone compar-

17For a discussion of the use of nonparametric methods in political
science, see Beck and Jackman (1998).

ative statics, we can suggest an alternative approach that
still allows us to test the empirical implications of theo-
retical models with confidence in the robustness of our
conclusions.

It is important to note that monotone comparative
statics do not provide robustness against arbitrary speci-
fication errors in standard linear models. Signorino and
Yilmaz (2003) point out that omitted nonlinearity leads
to omitted variable bias, and they show that simple strate-
gic models of deterrence imply nonlinearities that make
estimators like logit and probit inconsistent. They identify
one case where the standard linear-index estimators may
be appropriate: the left-hand side variable must be un-
conditionally monotonic in the regressors. Since omitted
variable bias typically leads to bias in all of the coeffi-
cients, one needs this unconditional monotonicity in all
of the regressors. Monotone comparative statics typically
do not yield this strong result. In particular, the results
described in this article are ceteris paribus results. In em-
pirical applications, this means that the researcher needs
control variables to isolate the effects described by the
theory. But monotone comparative statics says nothing
about unconditional monotonicity of the left-hand-side
variable in these control variables.

Thus, in our view, monotone comparative statics
and associated nonparametric methods should be viewed
as complementary to structural approaches. Monotone
comparative statics, for instance, can play an important
role in the approach advocated by Signorino and Yilmaz
(2003) in which the researcher iterates between reduced
form and structural models. By providing predictions that
are robust to specification error, monotone comparative
statics contribute by allowing for nonparametric testing
that can then lead to revised theoretical models that ap-
proach a true model of the data generating process, lead-
ing ultimately to a model that can be structurally esti-
mated.
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