
http://www.econometricsociety.org/

Econometrica, Vol. 85, No. 3 (May, 2017), 1013–1030

RANDOMIZATION TESTS UNDER AN APPROXIMATE
SYMMETRY ASSUMPTION

IVAN A. CANAY
Northwestern University, Evanston, IL 60208, U.S.A.

JOSEPH P. ROMANO
Stanford University, Stanford, CA 94305, U.S.A.

AZEEM M. SHAIKH
University of Chicago, Chicago, IL 60637, U.S.A.

The copyright to this Article is held by the Econometric Society. It may be downloaded, printed and re-
produced only for educational or research purposes, including use in course packs. No downloading or
copying may be done for any commercial purpose without the explicit permission of the Econometric So-
ciety. For such commercial purposes contact the Office of the Econometric Society (contact information
may be found at the website http://www.econometricsociety.org or in the back cover of Econometrica).
This statement must be included on all copies of this Article that are made available electronically or in
any other format.

http://www.econometricsociety.org/


Econometrica, Vol. 85, No. 3 (May, 2017), 1013–1030

RANDOMIZATION TESTS UNDER AN APPROXIMATE
SYMMETRY ASSUMPTION

BY IVAN A. CANAY, JOSEPH P. ROMANO, AND AZEEM M. SHAIKH1

This paper develops a theory of randomization tests under an approximate sym-
metry assumption. Randomization tests provide a general means of constructing tests
that control size in finite samples whenever the distribution of the observed data ex-
hibits symmetry under the null hypothesis. Here, by exhibits symmetry we mean that
the distribution remains invariant under a group of transformations. In this paper, we
provide conditions under which the same construction can be used to construct tests
that asymptotically control the probability of a false rejection whenever the distribu-
tion of the observed data exhibits approximate symmetry in the sense that the limiting
distribution of a function of the data exhibits symmetry under the null hypothesis. An
important application of this idea is in settings where the data may be grouped into a
fixed number of “clusters” with a large number of observations within each cluster. In
such settings, we show that the distribution of the observed data satisfies our approx-
imate symmetry requirement under weak assumptions. In particular, our results allow
for the clusters to be heterogeneous and also have dependence not only within each
cluster, but also across clusters. This approach enjoys several advantages over other
approaches in these settings.

KEYWORDS: Randomization tests, dependence, heterogeneity, differences-in-dif-
ferences, clustered data, sign changes, symmetric distribution, weak convergence.

1. INTRODUCTION

SUPPOSE THE RESEARCHER OBSERVES DATA X(n) ∼ Pn ∈ Pn, where Pn is a set of distribu-
tions on a sample space Xn, and is interested in testing

H0 : Pn ∈ Pn�0 versus H1 : Pn ∈ Pn \ Pn�0�

where Pn�0 ⊂ Pn, at level α ∈ (0�1). The index n here will typically denote sample size. The
classical theory of randomization tests provides a general way of constructing tests that
control size in finite samples provided that the distribution of the observed data exhibits
symmetry under the null hypothesis. Here, by exhibits symmetry we mean that the dis-
tribution remains invariant under a group of transformations. In this paper, we develop
conditions under which the same construction can be used to construct tests that asymp-
totically control the probability of a false rejection provided that the distribution of the
observed data exhibits approximate symmetry. More precisely, the main requirement we
impose is that, for a known function Sn from Xn to a sample space S ,

Sn

(
X(n)

) d→ S (1)

as n → ∞ under Pn ∈ Pn�0, where S exhibits symmetry in the sense described above. In
this way, our results extend the classical theory of randomization tests. Note that in some
cases Sn need not be completely known; see Remark 4.4 below.

While they apply more generally, an important application of our results is in settings
where the data may be grouped into q “clusters” with a large number of observations
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within each cluster. A noteworthy feature of our asymptotic framework is that q is fixed
and does not depend on n. In such environments, it is often the case that the distribu-
tion of the observed data satisfies our approximate symmetry requirement under weak
assumptions. In particular, it typically suffices to consider

Sn

(
X(n)

) = (
Sn�1

(
X(n)

)
� � � � � Sn�q

(
X(n)

))′
� (2)

where Sn�j(X
(n)) is an appropriately recentered and rescaled estimator of the parameter

of interest based on observations from the jth cluster. In this case, the convergence (1)
often holds for S that exhibits symmetry in the sense that its distribution remains invari-
ant under the group of sign changes. Importantly, this convergence permits the clusters
to be heterogeneous and also have dependence not only within each cluster, but also
across clusters. We consider three specific examples of such settings in detail—time series
regression, differences-in-differences, and clustered regression.

Our paper is most closely related to the procedure suggested by Ibragimov and Müller
(2010). As in our paper, they also considered settings where the data may be grouped
into a fixed number of “clusters,” q, with a large number of observations within each clus-
ter. In order to apply their results, they further assumed that the parameter of interest is
scalar and that Sn(X

(n)) defined in (2) satisfies the convergence (1) with S satisfying addi-
tional restrictions beyond our symmetry assumption. Using a result on robustness of the
t-test established in Bakirov and Székely (2006), they proposed an approach that leads
to a test that asymptotically controls size for certain values of q and α, but may be quite
conservative in the sense that its asymptotic rejection probability under the null hypoth-
esis may be much less than α. This same result on the t-test underlies the approach put
forward by Bester, Conley, and Hansen (2011), which therefore inherits the same quali-
fications. The methodology proposed in this paper enjoys several advantages over these
approaches, including not requiring the parameter of interest to be scalar, being valid
for any values of q and α (thereby permitting in particular the computation of p-values),
and being asymptotically similar in the sense of having asymptotic rejection probability
under the null hypothesis equal to α. As shown in a simulation study, this feature trans-
lates into improved power at many alternatives. See Section 2.1.1 and Section S.2 in the
Supplemental Material (Canay, Romano, and Shaikh (2017)) for further details.

The remainder of the paper is organized as follows. Section 2 briefly reviews the classi-
cal theory of randomization tests. Here, we pay special attention to an example involving
the group of sign changes, which, as mentioned previously, underlies many of our later
applications and aids comparisons with the approach suggested by Ibragimov and Müller
(2010). Our main results are developed in Section 3. Section 4 contains the application
of our results to settings where the data may be grouped into a fixed number of “clus-
ters” with a large number of observations within each cluster, emphasizing in particular
differences-in-differences and clustered regression. In Section S.1 of the Supplemental
Material to this paper (Canay, Romano, and Shaikh (2017)), we also consider an applica-
tion to time series regression. Simulation results based on the time series regression and
differences-in-differences examples are presented in Section S.2. Finally, in Section S.3,
we use the clustered regression example to revisit the analysis of Angrist and Lavy (2009),
who examined the impact of a cash award on exam performance for low-achievement
students in Israel.
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2. REVIEW OF RANDOMIZATION TESTS

In this section, we briefly review the classical theory of randomization tests. Further
discussion can be found, for example, in Chapter 15 of Lehmann and Romano (2005).
Since the results in this section are non-asymptotic in nature, we omit the index n.

Suppose the researcher observes data X ∼ P ∈ P, where P is a set of distributions on a
sample space X , and is interested in testing

H0 : P ∈ P0 versus H1 : P ∈ P \ P0� (3)

where P0 ⊂ P, at level α ∈ (0�1). Randomization tests require that the distribution of the
data, P , exhibits symmetry whenever P ∈ P0. In order to state this requirement more for-
mally, let G be a finite group of transformations from X to X and denote by gx the action
of g ∈ G on x ∈ X . Using this notation, the classical condition required for a randomiza-
tion test is

X
d= gX under P for any P ∈ P0 and g ∈ G� (4)

We now describe the construction of the randomization test. Let T(X) be a real-valued
test statistic such that large values provide evidence against the null hypothesis. Let M =
|G| and denote by

T (1)(X)≤ T (2)(X)≤ · · · ≤ T (M)(X)

the ordered values of {T(gX) : g ∈ G}. Let k= 	M(1 − α)
 and define

M+(X) = ∣∣{1 ≤ j ≤M : T (j)(X) > T (k)(X)
}∣∣�

(5)
M0(X) = ∣∣{1 ≤ j ≤M : T (j)(X)= T (k)(X)

}∣∣�
Using this notation, the randomization test is given by

φ(X)=

⎧⎪⎨
⎪⎩

1 if T(X) > T (k)(X)�

a(X) if T(X)= T (k)(X)�

0 if T(X) < T (k)(X)�

(6)

where

a(X) = Mα−M+(X)

M0(X)
�

The following theorem shows that this construction leads to a test that controls size in
finite samples whenever (4) holds. In fact, the test in (6) is similar, that is, has rejection
probability exactly equal to α for any P ∈ P0 and α ∈ (0�1).

THEOREM 2.1: Suppose X ∼ P ∈ P and consider the problem of testing (3). Let G be a
group such that (4) holds. Then, for any α ∈ (0�1), φ(X) defined in (6) satisfies

EP

[
φ(X)

] = α whenever P ∈ P0� (7)

REMARK 2.1: Let Gx denote the G-orbit of x ∈X , that is, Gx = {gx : g ∈ G}. The result
in Theorem 2.1 exploits that, when G is such that (4) holds, the conditional distribution of
X given X ∈ Gx is uniform on Gx whenever P ∈ P0. Since the conditional distribution of
X is known for all P ∈ P0 (even though P itself is unknown), we can construct a test that
is level α conditionally, which leads to a test that is level α unconditionally as well.
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REMARK 2.2: In some cases, M is too large to permit computation of φ(X) defined
in (6). When this is the case, the researcher may use a stochastic approximation to φ(X)
without affecting the finite-sample validity of the test. More formally, let

Ĝ = {g1� � � � � gB}� (8)

where g1 = the identity transformation and g2� � � � � gB are i.i.d. Uniform(G). Theorem 2.1
remains true if, in the construction of φ(X), G is replaced by Ĝ.

REMARK 2.3: One can construct a p-value for the test φ(X) defined in (6) as

p̂= p̂(X) = 1
|G|

∑
g∈G

I
{
T(gX) ≥ T(X)

}
� (9)

When (4) holds, it follows that P{p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1 and P ∈ P0. This result
remains true when M is large and the researcher uses a stochastic approximation, in which
case Ĝ as defined in (8) replaces G in (9).

REMARK 2.4: The test in (6) is possibly randomized. In case one prefers not to ran-
domize, note that the non-randomized test that rejects if T(X) > T (k)(X) is level α. In
our simulations, this test has rejection probability under the null hypothesis only slightly
less than α when M is not too small; see Section 2.1.1 below and Sections S.2.1 and S.2.2
in the Supplemental Material for additional discussion.

2.1. Symmetric Location Example

In this subsection, we provide an illustration of Theorem 2.1. The example not only
makes concrete some of the abstract ideas presented above, but also underlies many of
the applications described in Section 4 below.

Suppose X = (X1� � � � �Xq)∼ P ∈ P, where

P =
{

q⊗
j=1

Pj�μ : Pj�μ symmetric distribution on Rd about μ

}
�

In other words, X1� � � � �Xq are independent and each Xj is distributed symmetrically on
Rd about μ, that is, Xj −μ

d= μ−Xj . The researcher desires to test (3) with

P0 =
{

q⊗
j=1

Pj�μ : Pj�μ a symmetric distribution on Rd about μ with μ = 0

}
�

In this case, (4) clearly holds with the group of sign changes G = {−1�1}q, where the action
of g = (g1� � � � � gq) ∈ G on x = (x1� � � � � xq) ∈ ⊗q

j=1 Rd is defined by gx = (g1x1� � � � � gqxq).
As a result, Theorem 2.1 may be applied with any choice of T(X) to construct a test that
satisfies (7).
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2.1.1. Comparison With the t-Test

Consider the special case of the symmetric location example in which d = 1 and Pj�μ =
N(μ�σ2

j ), that is,

P =
{

q⊗
j=1

Pj�μ : Pj�μ =N
(
μ�σ2

j

)
with μ ∈ R and σ2

j ≥ 0

}
� (10)

P0 =
{

q⊗
j=1

Pj�μ : Pj�μ =N
(
μ�σ2

j

)
with μ = 0 and σ2

j ≥ 0

}
� (11)

For this setting, Bakirov and Székely (2006) showed that the usual two-sided t-test re-
mains valid despite heterogeneity in the σ2

j for certain values of α and q. More formally,
they showed that for α≤ 8�3% and q ≥ 2 or α≤ 10% and 2 ≤ q ≤ 14,

P
{
T|t-stat|(X) > cq−1�1− α

2

} ≤ α for any P ∈ P0�

where T|t-stat|(X) is the absolute value of the usual t-statistic computed using the data X
and cq−1�1− α

2
is the 1 − α

2 quantile of the t-distribution with q − 1 degrees of freedom.
Bakirov and Székely (2006) went on to show that this result remains true even if each
Pj�μ is allowed to be a mixture of normal distributions as well. This result was further
explored by Ibragimov and Müller (2010, 2016). Ibragimov and Müller (2016) derived a
related result for the two-sample problem, while Ibragimov and Müller (2010) showed
that the t-test is “optimal” in the sense that it is the uniformly most powerful scale invari-
ant level α test against the restricted class of alternatives with σ2

j = σ2 for all 1 ≤ j ≤ q. In
the Appendix, we establish a similar “optimality” result for the randomization test with
T(X) = T|t-stat|(X) and G = {−1�1}q: we show that it is the uniformly most powerful un-
biased level α test against the same class of alternatives.

We compare the randomization test with T(X) = T|t-stat|(X) and G = {−1�1}q with the
t-test. We follow Ibragimov and Müller (2010) and consider the setup in (10)–(11) with
q ∈ {8�16} and σ2

j = 1 for 1 ≤ j ≤ q

2 and σ2
j = a2 for q

2 < j ≤ q. Figure 1 shows rejection
probabilities under the null hypothesis computed using 100,000 Monte Carlo repetitions
for α= 5%, a ranging over a grid of 50 equally spaced points in (0�1�5), q = 8 (left panel)
and q = 16 (right panel). As we would expect from Theorem 2.1, the rejection probability
of the randomization test equals α for all values of the heterogeneity parameter a (up
to simulation error). The rejection probability of the t-test, on the other hand, can be
substantially below α when the data are heterogeneous, that is, a �= 1. Comparing the
right and left panels, we see that the performance of the t-test improves as q gets larger,
but it is worth emphasizing that the results of Bakirov and Székely (2006) do not ensure
the validity of the test for q > 14 and α≥ 8�4%.

Figure 2 shows rejection probabilities computed using 100,000 Monte Carlo repetitions
for α= 5%, μ ∈ (0�1�5), q = 8, a= 0�1 (left panel) and a= 1 (right panel). The similarity
of the randomization test translates into better power for alternatives close to the null
hypothesis. When a = 0�1, the rejection probability of the randomization test exceeds
that of the t-test for μ less than approximately 0�7; for larger values of μ, the situation is
reversed, though the difference in power between the two tests is smaller. When a = 1,
the t-test slightly outperforms the randomization test, reflecting the previously mentioned
optimality property derived in Ibragimov and Müller (2010). It is important to note that
this does not contradict the optimality result for the randomization test established in
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FIGURE 1.—Rejection probabilities under the null hypothesis for different values of a in the symmetric
location example. Randomization test (randomized and non-randomized) versus t-test. q = 8 (left panel) and
q = 16 (right panel).

the Appendix, as the t-test is not unbiased. In particular, there are alternatives P ∈ P1

under which the t-test has rejection probability <α. Moreover, the loss in power of the
randomization test relative to the t-test even in this case is arguably negligible. These

FIGURE 2.—Rejection probabilities for q = 8 and different values of μ in the symmetric location example.
Randomization test (randomized and non-randomized) versus t-test. a = 0�1 (left panel) and a = 1 (right
panel).
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comparisons continue to hold even if the randomization test is replaced with its non-
randomized version described in Remark 2.4.

In the context of the symmetric location example, the randomization test provides ad-
ditional advantages over the t-test approach. First, the randomization test works for all
levels of α ∈ (0�1), which allows for the construction of p-values; see Remark 2.3. Sec-
ond, the randomization test works for vector-valued random variables, that is, d > 1, while
the result in Bakirov and Székely (2006) is restricted to scalar random variables. Third,
the construction in Theorem 2.1 works for any choice of test statistic T(X). Finally, the
condition in (4) is not limited to mixtures of normal distributions and holds for any sym-
metric distribution. On the other hand, when q is small the rejection probability of the
t-test sometimes exceeds that of the non-randomized version of the randomization test
described in Remark 2.4; see Figure 1.

3. MAIN RESULT

In this section, we present our theory of randomization tests under an approximate
symmetry assumption. Since our results in this section are asymptotic in nature, we re-
introduce the index n, which, as mentioned earlier, will typically be used to denote the
sample size.

Suppose the researcher observes data X(n) ∼ Pn ∈ Pn, where Pn is a set of distributions
on a sample space Xn, and is interested in testing

H0 : Pn ∈ Pn�0 versus H1 : Pn ∈ Pn \ Pn�0� (12)

where Pn�0 ⊂ Pn, at level α ∈ (0�1). In contrast to Section 2, we no longer require that the
distribution of X(n) exhibits symmetry whenever Pn ∈ Pn�0. Instead, we require that X(n)

exhibits approximate symmetry whenever Pn ∈ Pn�0. In order to state this requirement
more formally, we require some additional notation. Recall that Sn denotes a function
from Xn to a sample space S . For simplicity, we assume further that S is a subset of Eu-
clidean space, though this could be generalized to a metric space. As before, let T be a
real-valued test statistic such that large values provide evidence against the null hypoth-
esis, but we will assume that T is a function from S to R as opposed to from Xn to R.
Finally, let G be a (finite) group of transformations from S to S and denote by gs the
action of g ∈ G on s ∈ S . Using this notation, the following assumption is assumed to hold
for certain sequences {Pn ∈ Pn�0 : n≥ 1}:

ASSUMPTION 3.1:
(i) Sn = Sn(X

(n))
d→ S under Pn.

(ii) gS
d= S for all g ∈ G.

(iii) For any two distinct elements g ∈ G and g′ ∈ G,

either T(gs) = T
(
g′s

) ∀s ∈ S or P
{
T(gS) �= T

(
g′S

)} = 1�

Assumption 3.1(i)–(ii) formalizes what we mean by X(n) exhibiting approximate sym-
metry. Assumption 3.1(iii) is a condition that controls the ties among the values of T(gS)
as g varies over G. It requires that T(gS) and T(g′S) are distinct with probability 1 or de-
terministically equal to each other. For examples of S that often arise in applications and
typical choices of T , we verify Assumption 3.1(iii) (see, in particular, Lemmas S.5.1–S.5.3
in the Supplemental Material).
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The construction of the randomization test in this setting parallels the one in Section 2
with Sn replacing X . Let M = |G| and denote by

T (1)(Sn)≤ T (2)(Sn) ≤ · · · ≤ T (M)(Sn)

the ordered values of {T(gSn) : g ∈ G}. Let k = 	M(1 − α)
 and define M+(Sn) and
M0(Sn) as in (5) with Sn replacing X . Using this notation, the proposed test is given by

φ(Sn)=

⎧⎪⎨
⎪⎩

1 T(Sn) > T (k)(Sn)�

a(Sn) T(Sn)= T (k)(Sn)�

0 T(Sn) < T (k)(Sn)�

(13)

where

a(Sn)= Mα−M+(Sn)

M0(Sn)
�

The following theorem shows that this construction leads to a test that is asymptotically
level α whenever {Pn ∈ Pn�0 : n ≥ 1} is such that Assumption 3.1 holds. In fact, the pro-
posed test is asymptotically similar, that is, has limiting rejection probability equal to α
for all such sequences.

THEOREM 3.1: Suppose X(n) ∼ Pn ∈ Pn and consider the problem of testing (12). Let Sn :
Xn → S , T : S → R, and G : S → S be such that T : S → R is continuous and g : S → S is
continuous for all g ∈ G. Then, for any α ∈ (0�1), φ(Sn) defined in (13) satisfies

EPn

[
φ(Sn)

] → α (14)

as n → ∞ whenever {Pn ∈ Pn�0 : n ≥ 1} is such that Assumption 3.1 holds.

REMARK 3.1: Note that the limiting random variable S that appears in Assumption 3.1
may depend on the sequence {Pn ∈ Pn�0 : n ≥ 1}.

REMARK 3.2: The assumptions in Theorem 3.1 are stronger than required. The con-
clusion (14) holds, for example, under the following weaker conditions: if T is such that T
is only continuous on a set S ′ ⊆ S such that P{S ∈ S ′} = 1; if G is such that g is continuous
on a set S ′ ⊆ S such that P{S ∈ S ′} = 1 for all g ∈ G; and whenever {Pn ∈ Pn�0 : n ≥ 1} is
such that, for every subsequence {Pnk ∈ Pnk�0 : k ≥ 1}, there exists a further subsequence
{Pnk�

∈ Pnk� �0
: � ≥ 1} for which Assumption 3.1 is satisfied with Pnk�

in place of Pn. More
generally, as noted by a referee, the assumptions we impose are sufficient to ensure that
φ is continuous on a set S ′ ⊆ S such that P{S ∈ S ′} = 1. In establishing this, an important
observation is that φ(s)= φ(s′) for any s and s′ such that the orderings of {T(gs) : g ∈ G}
and {T(gs′) : g ∈ G} correspond to the same transformations g(1)� � � � � g(M). This conti-
nuity may, of course, be established under alternative sets of assumptions. For example,
in the context of a regression discontinuity setting, Canay and Kamat (2015) fruitfully
exploited the fact that T is a rank statistic to provide an alternative set of conditions.

REMARK 3.3: If for every sequence {Pn ∈ Pn�0 : n ≥ 1} there exists a subsequence
{Pnk ∈ Pnk�0 : k ≥ 1} for which Assumption 3.1 is satisfied with Pnk in place of Pn, then
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the conclusion of Theorem 3.1 can be strengthened as follows: for any α ∈ (0�1), φ(Sn)
defined in (13) satisfies

sup
Pn∈Pn�0

∣∣EPn

[
φ(Sn)

] − α
∣∣ → 0

as n → ∞.

REMARK 3.4: As described in Remark 2.1, the validity of the randomization test in
finite samples is tightly related to the fact that the conditional distribution of X given
X ∈ Gx is uniform on Gx. While this property holds for the limiting random variable S in
our framework, it may not hold even approximately for Sn for large n.

REMARK 3.5: Earlier work on the asymptotic behavior of randomization tests includes
Hoeffding (1952), Romano (1989, 1990), Chung and Romano (2013, 2016a, 2016b). The
arguments in these papers involve showing that the “randomization distribution” (see,
e.g., Chapter 15 of Lehmann and Romano (2005)) settles down to a fixed distribution
as |G| → ∞. In our framework, |G| is fixed and the “randomization distribution” will
generally not settle down at all. For this reason, the analysis in these papers is not useful
in our setting.

REMARK 3.6: Comments analogous to those made in Remarks 2.2–2.4 after Theo-
rem 2.1 apply to Theorem 3.1. In particular, Theorem 3.1 still holds when G is replaced by
Ĝ defined in (8), asymptotically valid p-values can be computed using (9), and the non-
randomized test that rejects if T(Sn) > T (k)(Sn) is also asymptotically level α, although
possibly conservative.

4. APPLICATIONS

In this section, we present two applications of Theorem 3.1 to settings where the data
may be grouped into a fixed number of “clusters,” q, with a large number of observa-
tions within each cluster: differences-in-differences and clustered regression. Before pro-
ceeding to these specific examples, we highlight a common structure found in all of the
applications.

Suppose the researcher observes data X(n) ∼ Pn ∈ Pn and considers testing the hypothe-
ses in (12) with

Pn�0 = {
Pn ∈ Pn : θn(Pn)= θ0

}
�

where θn(Pn) ∈ Θ ⊆ Rd is some parameter of interest. Further suppose that the data
X(n) can be grouped into q clusters, X(n)

1 � � � � �X(n)
q , where the clusters are allowed to

have observations in common. Let θ̂n�j = θ̂n�j(X
(n)
j ) be an estimator of θn(Pn) based on

observations from the jth cluster such that under weak assumptions on the sequence
{Pn ∈ Pn�0 : n≥ 1},

Sn

(
X(n)

) = √
n(θ̂n�1 − θ0� � � � � θ̂n�q − θ0)

d→ N(0�Σ) (15)

as n → ∞, where Σ = diag{Σ1� � � � �Σq} and each Σj is of dimension d × d. In this setting,
the conditions of Theorem 3.1 hold for G = {−1�1}q and T(Sn) = TWald(Sn), where

TWald(Sn)= qS̄′
n�qΣ̄

−1
n�qS̄n�q (16)
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with

Σ̄n�q = 1
q

q∑
j=1

Sn�jS
′
n�j� S̄n�q = 1

q

q∑
j=1

Sn�j� and Sn�j = √
n(θ̂n�j − θ0)�

See Lemma S.5.3 in the Supplemental Material for details. In the special case where
d = 1, the conditions of Theorem 3.1 also hold for T(Sn)= T|t-stat|(Sn), where

T|t-stat|(Sn)= |S̄n�q|√√√√ 1
q− 1

q∑
j=1

(Sn�j − S̄n�q)2

�

See Lemmas S.5.1–S.5.2 in the Supplemental Material for details. Equivalently,

T|t-stat|(Sn)= | ¯̂θn�q − θ0|
sθ̂/

√
q

� (17)

with

¯̂θn�q = 1
q

q∑
j=1

θ̂n�j and s2
θ̂
= 1

q− 1

q∑
j=1

(θ̂n�j − ¯̂θn�q)
2�

In each of the applications below, we will therefore simply specify X(n)
j and θ̂n�j and argue

that the convergence (15) holds under weak assumptions on the sequence {Pn ∈ Pn�0 : n ≥
1}.

REMARK 4.1: In the special case where d = 1, the idea of grouping the data in this way
and constructing estimators satisfying (15) has been previously proposed by Ibragimov
and Müller (2010). Using the result on the t-test described in Section 2.1.1, they went on
to propose a test that rejects the null hypothesis when T|t-stat|(Sn) in (17) exceeds the 1 − α

2
quantile of a t-distribution with q − 1 degrees of freedom. Further comparisons with this
approach are provided in Section S.2 of the Supplemental Material.

REMARK 4.2: The convergence (15) permits dependence within each cluster. It also
permits some dependence across clusters, but, importantly, not so much that Σ in (15)
does not have the required diagonal structure. See, for example, Jenish and Prucha (2009)
for some relevant central limit theorems. The convergence (15) further allows for hetero-
geneity in the distribution of the data across clusters in the sense that Σj need not be
independent of j in Σ= diag{Σ1� � � � �Σq}.

REMARK 4.3: The asymptotic normality in (15) arises frequently in applications, but is
not necessary for the validity of the test described above. All that is required is that the
q estimators (after an appropriate recentering and scaling) have a limiting distribution
that is the product of q distributions that are symmetric about zero. This may even hold
in cases where the estimators have infinite variances or are inconsistent. See Remark 4.5
below.

REMARK 4.4: The test statistics in (16) and (17) are both invariant under scalar mul-
tiplication. As a result, the

√
n in the definition of Sn in (15) may be omitted or replaced

with another sequence without changing the results.
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4.1. Differences-in-Differences

Suppose

Yj�t = θDj�t +ηj + γt + εj�t with E[εj�t] = 0� (18)

Here, the observed data are given by X(n) = {(Yj�t�Dj�t) : j ∈ J0 ∪ J1� t ∈ T0 ∪ T1} ∼ Pn

taking values on a sample space Xn = ∏
j∈J0∪J1�t∈T0∪T1

R × {0�1}, where Yj�t is the outcome
of unit j at time t, Dj�t is the (non-random) treatment status of unit j at time t, T0 is the
set of pre-treatment time periods, T1 is the set of post-treatment time periods, J0 is the
set of control units, and J1 is the set of treatment units. The scalar random variables ηj ,
γt , and εj�t are unobserved and θ ∈ Θ ⊆ R is the parameter of interest.

As before, in order to state the null and alternative hypotheses formally, it is useful to
introduce some further notation. Let W (n) = {(εj�t�ηj�γt�Dj�t) : j ∈ J0 ∪ J1� t ∈ T0 ∪ T1} ∼
Qn ∈ Qn taking values on a sample space Wn = ∏

j∈J0∪J1�t∈T0∪T1
R × R × R × {0�1} and

An�θ : Wn → Xn be the mapping implied by (18). Our assumptions on Qn are discussed
below. Using this notation, define

Pn =
⋃
θ∈Θ

Pn(θ) with Pn(θ) = {
QnA

−1
n�θ :Qn ∈ Qn

}
�

The null and alternative hypotheses of interest are thus given by (12) with Pn�0 = Pn(θ0).
In order to apply our methodology, we must again specify X(n)

j and θ̂n�j and argue that
the convergence (15) holds under weak assumptions on the sequence {Pn ∈ Pn�0 : n ≥ 1}.
Different specifications may be appropriate for different asymptotic frameworks. We first
consider an asymptotic framework similar to the one in Conley and Taber (2011), where
|J1| = q is fixed, |J0| → ∞, and min{|T0|� |T1|} → ∞ with |T1|

|T0| → c ∈ (0�∞). A modifica-
tion for an alternative asymptotic framework in which |J0| is also fixed is discussed in
Remark 4.10 below. For such an asymptotic framework, for each j ∈ J1, define

X(n)
j = {

(Yk�t�Dk�t) : k ∈ {j} ∪ J0� t ∈ T0 ∪ T1

}
and let θ̂n�j be the ordinary least squares estimator of θ in (18) using the data X(n)

j , includ-
ing indicator variables appropriately in order to account for ηj and γt . Note that in this
case the X(n)

j are not disjoint. We may also express θ̂n�j more simply as

θ̂n�j = �n�j − 1
|J0|

∑
k∈J0

�n�k� (19)

where

�n�k = 1
|T1|

∑
t∈T1

Yk�t − 1
|T0|

∑
t∈T0

Yk�t�

It follows that for θ as in (18),

√|T1|(θ̂n�j − θ) = √|T1|
(

1
|T1|

∑
t∈T1

εj�t − 1
|T0|

∑
t∈T0

εj�t

)

− √|T1| 1
|J0|

∑
k∈J0

(
1

|T1|
∑
t∈T1

εk�t − 1
|T0|

∑
t∈T0

εk�t

)
�
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For this choice of X(n)
j and θ̂n�j , the convergence (15) (with |T1| in place of n) therefore

holds under {Pn ∈ Pn�0 : n ≥ 1} with Pn = QnA
−1
n�θ0

under weak assumptions on {Qn ∈ Qn :
n ≥ 1}. In particular, it suffices to assume that εj = (εj�t : t ∈ T0 ∪ T1) are independent
across j, that for 1 ≤ �≤ 2

1
|J0|2

∑
k∈J0

(
1

|T�|
∑
t∈T�

∑
s∈T�

E[εk�tεk�s]
)

→ 0� (20)

and that (
1√|T1|

∑
t∈T1

εj�t�
1√|T0|

∑
t∈T0

εj�t : j ∈ J1

)
(21)

satisfies a central limit theorem (see, e.g., Politis, Romano, and Wolf (1999, Theo-
rem B.0.1)).

REMARK 4.5: The construction described above relies on the fact that min{|T0|� |T1|} →
∞ in order to apply an appropriate central limit theorem to (21). The construction re-
mains valid, however, even if |T0| and |T1| are small provided that

1
|T1|

∑
t∈T1

εj�t and
1

|T0|
∑
t∈T0

εj�t

are independent and identically distributed. This property will hold, for example, if
|T0| = |T1| (which may be enforced by ignoring some time periods if necessary) and the
distribution of εj is exchangeable (across t) for all j. While these assumptions may be
strong, this discussion illustrates that the estimators θ̂n�j of θ need not even be consistent
in order to apply our methodology.

REMARK 4.6: The construction described above applies equally well in the case where
(18) includes covariates Zj�t . The estimators θ̂n�j of θ can no longer be expressed as in
(19), but they may still be obtained using ordinary least squares using the jth cluster of
data. Under an appropriate modification of the assumptions to account for the Zj�t , the
convergence (15) again holds under {Pn ∈ Pn�0 : n ≥ 1} with Pn =QnA

−1
n�θ0

.

REMARK 4.7: The requirement that εj are independent across j can be relaxed using
mixing conditions as in Conley and Taber (2011). In order to do so, it must be the case
that the εj can be ordered linearly.

REMARK 4.8: The construction described above applies equally well in the case where
there are multiple observations for each unit j. This situation may arise, for example,
when j indexes states and individual-level data within each state are available.

REMARK 4.9: The construction above may also be used if T0 and T1 vary across j ∈ J1.
In this case, we simply define X(n)

j = {(Yk�t�Dk�t) : k ∈ J0 ∪ {j}� t ∈ T0�j ∪ T1�j}.

REMARK 4.10: The requirement that |J0| → ∞ can be relaxed by modifying our pro-
posed test in the following way. Suppose |J0| is fixed and that |J1| ≤ |J0| (if this is not the
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case, then simply relabel treatment and control). Denote by {J̃0�l : 1 ≤ l ≤ q} a partition
of J0. For each j ∈ J1, define

X(n)
j = {

(Yk�t�Dk�t) : k ∈ J̃0�j ∪ {j}� t ∈ T0 ∪ T1

}
and let θ̂n�j be computed as before using the data X(n)

j . For this choice of X(n)
j and θ̂n�j ,

the convergence (15) continues to hold when Pn ∈ Pn�0 for all n ≥ 1 under appropriate
modifications of the assumptions described above.

4.2. Clustered Regression

Suppose

Yi�j = θDj +Z′
i�jγ + εi�j with E[εi�j|Dj�Zi�j] = 0� (22)

Here, the observed data are given by X(n) = {(Yi�j�Zi�j�Dj) : i ∈ Ij� j ∈ J0 ∪ J1} ∼ Pn taking
values on a sample space Xn = ∏

i∈Ij �j∈J0∪J1
R × Rd × {0�1}, where Yi�j is the outcome of

unit i in area j, Zi�j is a vector of covariates of unit i in area j, Dj is the treatment status
of area j, Ij is the set of units in area j, J1 is the set of treated areas, and J0 is the set of
untreated areas. The scalar random variable εi�j is unobserved, γ ∈ � ⊆ Rd is a nuisance
parameter, and θ ∈ Θ ⊆ R is the parameter of interest. The mean independence require-
ment is stronger than needed; indeed, all that is required is that the εi�j is uncorrelated
with Dj and Zi�j . For simplicity, we assume below that |J0| = |J1| = q, but the arguments
are easily adapted to the case where |J0| �= |J1|.

As before, in order to state the null and alternative hypotheses formally, it is useful to
introduce some further notation. Let W (n) = {(εi�j�Dj�Zi�j) : i ∈ Ij� j ∈ J0 ∪ J1} ∼ Qn ∈ Qn

taking values on a sample space Wn = ∏
i∈Ij �j∈J0∪J1

R × {0�1} × Rd and An�θ�γ : Wn → Xn

be the mapping implied by (22). Our assumptions on Qn are discussed below. Using this
notation, define

Pn =
⋃

θ∈Θ�γ∈�
Pn(θ�γ) with Pn(θ�γ)= {

QnA
−1
n�θ�γ :Qn ∈ Qn

}
�

where, as before, A−1
n�θ�γ denotes the pre-image of An�θ�γ . The null and alternative hypothe-

ses of interest are thus given by (12) with

Pn�0 =
⋃
γ∈�

Pn(θ0�γ)�

In order to apply our methodology, we must again specify X(n)
j and θ̂n�j and argue that

the convergence (15) holds under weak assumptions on the sequence {Pn ∈ Pn�0 : n ≥ 1}.
Note that the clusters cannot be defined by areas themselves because θ is not identified
within a single area. Indeed, Dj is constant within a single area. We therefore define the
clusters by forming pairs of treatment and control areas, that is, by matching each area in
J1 with an area in J0. In experimental settings, such pairs are often suggested by the way in
which treatment status was determined (see, e.g., the empirical application in Section S.3
of the Supplemental Material). More specifically, for each j ∈ J1, let k(j) ∈ J0 be the area
in J0 that is matched with j. For each j ∈ J1, define

X(n)
j = {

(Yi�l�Zi�l�Dl) : i ∈ Il� l ∈
{
j�k(j)

}}



1026 I. A. CANAY, J. P. ROMANO, AND A. M. SHAIKH

and let θ̂n�j be the ordinary least squares estimator of θ in (22) using the data X(n)
j . For

this choice of X(n)
j and θ̂n�j , the convergence (15) holds under {Pn ∈ Pn�0 : n≥ 1} with Pn =

QnA
−1
n�θ0�γ

under weak assumptions on γ ∈ � and {Qn ∈ Qn : n ≥ 1}. Some such conditions
can be found in Bester, Conley, and Hansen (2011, Lemma 1).

REMARK 4.11: In the application described in this section as well as the one described
in the previous section when both |J0| and |J1| are small (see Remark 4.10), our methodol-
ogy requires the researcher to match treated units and control units. While there may be
a natural way of doing so in some empirical settings (see, e.g., Section 4.1), this may not
be the case in all empirical settings. The test proposed by Ibragimov and Müller (2016),
which can be used in these applications, may therefore sometimes be an attractive alter-
native in that it does not require the researcher to match treated units and control units
in this way. However, unlike the approach proposed in this paper, their test, which relies
on a generalization of the result by Bakirov and Székely (2006) described in Section 2.1
to two-sample problems, may be quite conservative even under restrictive homogeneity
assumptions. To illustrate this point, consider the application described in this section
with |J0| = |J1| = 3 and suppose that the data are i.i.d. across both i ∈ Ij and j ∈ J0 ∪ J1.
Even under such strong assumptions, the limiting rejection probability of their test with
a nominal level of 5% when the null hypothesis is true is approximately 1%. This same
probability when |J0| = |J1| = 8 is 3%. This conservativeness stems from the rule they used
for choosing the degrees of freedom for the quantile of the t-distribution with which they
compared their test statistic.

APPENDIX A: OPTIMALITY OF RANDOMIZATION TEST

Define

P =
{

q⊗
j=1

Pj�μ : Pj�μ =N
(
μ�σ2

j

)
with μ ≥ 0 and σ2

j ≥ 0

}
�

P0 =
{

q⊗
j=1

Pj�μ : Pj�μ =N
(
μ�σ2

j

)
with μ = 0 and σ2

j ≥ 0

}
�

Let X = (X1� � � � �Xq) ∼ P ∈ P consider testing (3) at level α ∈ (0�1). Below we argue
that the randomization test with T(X)= Tt-stat(X) and G = {−1�1}q is the uniformly most
powerful unbiased level α test against the restricted class of alternatives with σ2

j = σ2 > 0
for all 1 ≤ j ≤ q. A similar argument can be used to establish the corresponding two-sided
result for the randomization test with T(X)= T|t-stat|(X) and G = {−1�1}q when P and P0

according to (10)–(11). Related results have been obtained previously in Lehmann and
Stein (1949).

Consider a test φ̃(X) = φ̃(X1� � � � �Xq). Since the test is unbiased, it must be the case
that EP[φ̃(X)] ≤ α for all P ∈ P0 and EP[φ̃(X)] ≥ α for all P ∈ P1. Using the dominated
convergence theorem, it is straightforward to show that the requirement of unbiasedness
therefore implies that the test is similar, that is, EP[φ̃(X)] = α for all P ∈ P0.

Next, note that U = (|X1|� � � � � |Xn|) is sufficient for P0. Indeed, the distribution of X|U
under any P ∈ P0 is uniform over the 2n points of the form (±|X1|� � � � �±|Xn|). Further-
more, PU

0 , the family of distributions for U under P as P varies over P0, is complete. To
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see this, for γ ∈ Rn, define Pγ to be the distribution with density

C(γ)exp

(
−

n∑
j=1

γjx
2
j

)
�

where C(γ) is an appropriate constant. By construction, Pγ ∈ P0, so the desired result fol-
lows from Theorem 4.3.1 in Lehmann and Romano (2005). Therefore, by Theorem 4.3.2
in Lehmann and Romano (2005), we see that all similar tests have Neyman structure,
that is, EP[φ̃(X)|U = u] = α for all P ∈ P0 and all u except those in a set N such that
supP∈P0

P{U ∈ N} = 0.
To find an optimal test, we therefore maximize the power of the test under P =⊗q

j=1 N(μ�σ2) where μ > 0 and σ2 > 0. Under the null, the distribution of X|U is uni-
form, as described above. Under this alternative, the conditional probability mass function
is proportional to

∏
1≤i≤n

exp
(

− 1
2σ2 (xi −μ)2

)
= exp

(
− 1

2σ2

( ∑
1≤i≤n

x2
i − 2μ

∑
1≤i≤n

xi +μ2

))
�

Since
∑

1≤i≤n X
2
i is constant conditional on U = u, the Neyman–Pearson lemma implies

that the optimal (conditional) test rejects when
∑

1≤i≤n Xi > c(u) and rejects with prob-
ability γ(u) when

∑
1≤i≤n Xi = c(u), where the constants c(u) and γ(u) are chosen so

that the test has (conditional) rejection probability equal to α. Such tests are, of course,
randomization tests with underlying choice of test statistic equal to

∑
1≤i≤n Xi, and this

test is identical to the randomization test with underlying choice of test statistic equal to
Tt-stat(X) (see Example 15.2.4 in Lehmann and Romano (2005) for details). Denote this
test by φ(X).

It remains to show that φ(X) is indeed unbiased. By construction, it is similar and
therefore has rejection probability = α for all P ∈ P0. To see that the rejection probability
is ≥ α under any P ∈ P1, note that φ(X) is weakly increasing in each of its arguments. We
therefore have that EP[φ(X1 + μ� � � � �Xn + μ)] ≥ α for all μ > 0 and any P ∈ P0, from
which the desired result follows.

REMARK A.1: It is important to emphasize that this optimality result, like the one in
Ibragimov and Müller (2010), is only for a restricted class of alternatives. On the other
hand, it can readily be shown that the specified randomization test is in fact admissible
whenever the set of alternatives contains this class and α is a multiple of 1

2q . The argument
hinges on the fact that the above argument using the Neyman–Pearson lemma together
with Lemma S.5.1 in the Supplemental Material guarantees that the optimal test is non-
randomized for these values of α.

REMARK A.2: The argument presented above in fact shows that the specified random-
ization test remains uniformly most powerful unbiased against the same class of alterna-
tives even if P0 is enlarged so that each Pj�μ is only required to be symmetric about zero.

APPENDIX B: PROOF OF THEOREM 3.1

Let {Pn ∈ Pn�0 : n ≥ 1} satisfying Assumption 3.1 be given and define M = |G|. By As-
sumption 3.1(i) and the Almost Sure Representation Theorem (cf. van der Vaart (1998,
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Theorem 2.19)), there exist S̃n, S̃, and U ∼ U(0�1), defined on a common probability
space (Ω�A�P), such that

S̃n → S̃ w.p.1�

S̃n
d= Sn, S̃ d= S, and U ⊥ (S̃n� S̃). Consider the randomization test based on S̃n, that is,

φ̃(S̃n�U)≡
{

1 T(S̃n) > T (k)(S̃n) or T(S̃n)= T (k)(S̃n) and U < a(S̃n)�

0 T(S̃n) < T (k)(S̃n)�

Denote the randomization test based on S̃ by φ̃(S̃�U), where the same uniform variable
U is used in φ̃(S̃n�U) and φ̃(S̃�U).

Since S̃n
d= Sn, it follows immediately that EPn[φ(Sn)] = EP[φ̃(S̃n�U)]. In addition, since

S̃
d= S, Assumption 3.1(ii) and Theorem 2.1 imply that EP[φ̃(S̃�U)] = α. It therefore suf-

fices to show

EP

[
φ̃(S̃n�U)

] → EP

[
φ̃(S̃�U)

]
� (23)

In order to show (23), let En be the event where the orderings of {T(gS̃) : g ∈ G} and
{T(gS̃n) : g ∈ G} correspond to the same transformations g(1)� � � � � g(M). We first claim that
I{En} → 1 w.p.1. To see this, note that by Assumption 3.1(iii) and S̃

d= S, any two g�g′ ∈ G
are such that either

T(gs) = T
(
g′s

) ∀s ∈ S� (24)

or

T(gS̃) �= T
(
g′S̃

)
w.p.1 under P� (25)

It follows that there exists a set with probability 1 under P such that for all ω ∈ Ω in this
set, S̃n(ω) → S̃(ω) and T(gS̃(ω)) �= T(g′S̃(ω)) for any two g�g′ ∈ G not satisfying (24).
For any ω in this set, let g(1)(ω)� � � � � g(M)(ω) be the transformations such that

T
(
g(1)(ω)S̃(ω)

) ≤ T
(
g(2)(ω)S̃(ω)

) ≤ · · · ≤ T
(
g(M)(ω)S̃(ω)

)
�

For any two consecutive elements g(j)(ω) and g(j+1)(ω) with 1 ≤ j ≤ M − 1, there are
only two possible cases: either T(g(j)(ω)S̃(ω)) = T(g(j+1)(ω)S̃(ω)) or T(g(j)(ω)S̃(ω)) <

T(g(j+1)(ω)S̃(ω)). If T(g(j)(ω)S̃(ω))= T(g(j+1)(ω)S̃(ω)), then by (24) it follows that

T
(
g(j)(ω)S̃n(ω)

) = T
(
g(j+1)(ω)S̃n(ω)

) ∀n ≥ 1�

If T(g(j)(ω)S̃(ω)) < T(g(j+1)(ω)S̃(ω)), then

T
(
g(j)(ω)S̃n(ω)

)
< T

(
g(j+1)(ω)S̃n(ω)

)
for n sufficiently large�

as S̃n(ω) → S̃(ω) and the continuity of T : S → R and g : S → S imply that
T(g(j)(ω)S̃n(ω)) → T(g(j)(ω)S̃(ω)) and T(g(j+1)(ω)S̃n(ω)) → T(g(j+1)(ω)S̃(ω)). We can
therefore conclude that

I{En} → 1 w.p.1�
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which proves the first claim.
We now prove (23) in two steps. First, we note that

EP

[
φ̃(S̃n�U)I{En}

] = EP

[
φ̃(S̃�U)I{En}

]
� (26)

This is true because, on the event En, if the transformation g = g(m) corresponds to
the mth largest value of {T(gS̃) : g ∈ G}, then this same transformation corresponds
to the mth largest value of {T(gS̃n) : g ∈ G}. In other words, φ̃(S̃n�U) = φ̃(S̃�U)

on En. Second, since I{En} → 1 w.p.1, it follows that φ̃(S̃�U)I{En} → φ̃(S̃�U) w.p.1 and
φ̃(S̃n�U)I{Ec

n} → 0 w.p.1. We can therefore use (26) and invoke the dominated conver-
gence theorem to conclude that

EP

[
φ̃(S̃n�U)

] =EP

[
φ̃(S̃n�U)I{En}

] +EP

[
φ̃(S̃n�U)I

{
Ec

n

}]
=EP

[
φ̃(S̃�U)I{En}

] +EP

[
φ̃(S̃n�U)I

{
Ec

n

}]
→ EP

[
φ̃(S̃�U)

]
�

This completes the proof. Q.E.D.
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