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a b s t r a c t

We reanalyze data from the observational study by Connors et al. (1996) on the impact of Swan–Ganz
catheterization on mortality outcomes. The study by Connors et al. (1996) assumes that there are no
unobserved differences between patients who are catheterized and patients who are not catheterized
and finds that catheterization increases patient mortality. We instead allow for such differences between
patients by implementing both the instrumental variable bounds ofManski (1990), which only exploits an
instrumental variable, and the bounds of Shaikh and Vytlacil (2011), which exploit mild nonparametric,
structural assumptions in addition to an instrumental variable. We propose and justify the use of
indicators of weekday admission as an instrument for catheterization in this context. We find that in our
application, the Manski (1990) bounds do not indicate whether catheterization increases or decreases
mortality, where as the Shaikh and Vytlacil (2011) bounds reveal that at least for some diagnoses,
Swan–Ganz catheterization reduces mortality at 7 days after catheterization. We show that the bounds
of Shaikh and Vytlacil (2011) remain valid under even weaker assumptions than those described in
Shaikh and Vytlacil (2011). We also extend the analysis to exploit a further nonparametric, structural
assumption – that doctors catheterize individuals with systematically worse latent health – and find
that this assumption further narrows these bounds and strengthens our conclusions. In our analysis, we
construct confidence regions using the methodology developed in Romano and Shaikh (2008). We show
in particular that the confidence regions are uniformly consistent in level over a large class of possible
distributions for the observed data that include distributions where the instrument is arbitrarily ‘‘weak’’.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

We reanalyze data from a well known observational study by
Connors et al. (1996) on the impact of Swan–Ganz catheterization
onmortality outcomes. The Swan–Ganz catheter is a device placed
in patients in the intensive care unit (ICU) to guide therapy.
Connors et al. (1996) examine data on mortality outcomes among
a population of patients admitted to the ICU and reach the
controversial conclusion that patients who receive Swan–Ganz
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catheterization during their first day in the ICU are 1.27 timesmore
likely to die within 180 days of their admission. Even at 7 days
after ICU admission, Connors et al. (1996) find that catheterization
increases mortality. This conclusion was very surprising to ICU
doctors, many of whom continue to use the Swan–Ganz catheter
to guide therapy in the ICU.

The statistical strategy used by Connors et al. (1996) – the
propensity score matching method – assumes away the possi-
bility of unobserved differences between catheterized and non-
catheterized patients. Our analysis, by comparison, permits the
possibility of unobserved differences. We rely on an instru-
ment for Swan–Ganz catheterization to bound the average ef-
fect of catheterization on mortality. We consider the bounds
of Shaikh and Vytlacil (2011), which exploit not only an in-
strumental variable, but also threshold crossing properties for
both the treatment and outcome variables. The assumptions un-
derlying these bounds are therefore stronger than those under-
lying the instrumental variable bounds of Manski (1990). We
show that the bounds of Shaikh and Vytlacil (2011) remain
valid under even weaker assumptions than those described in
Shaikh and Vytlacil (2011) and also extend the analysis to exploit
the assumption that doctors tend to catheterize patients who have
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worse latent health. In each case, we construct confidence regions
using the methodology developed in Romano and Shaikh (2008).
We show in particular that the confidence regions are uniformly
consistent in level over a large class of possible distributions for
the observed data that include distributions where the instrument
is arbitrarily ‘‘weak’’.

We use the day of the week that the patient was admitted
to the ICU as an instrument for Swan–Ganz catheterization. This
same variable has been used as an instrument for treatment
by Hamilton et al. (2000) in their study of the effect of queueing
time on mortality in a Canadian population undergoing hip-
fracture surgery. We argue that this variable meets the two crucial
requirements for an instrument’s validity. First, it is correlatedwith
the application of the treatment: on weekends, patients are less
likely to be catheterized. Second, it is uncorrelated with potential
outcomes, i.e., mortality rates have little to do with the particular
day of the week that a patient is admitted to the ICU and more to
do with the arc of the patient’s medical condition.

We find that the bounds of Manski (1990) do not permit us
to say whether catheterization increases or decreases mortality—
stronger assumptions are needed. In contrast, our application of
the bounds of Shaikh and Vytlacil (2011), which imposes mild
structural assumptions in addition to those of Manski (1990),
shows that at least for some diagnoses, Swan–Ganz catheterization
reduces mortality at 7 days after catheterization. Imposing the
additional assumption that doctors catheterize individuals with
the worst latent health further narrows these bounds.

Treating the decision to catheterize as based upon patient-
specific factors that are, in part, unobservable to us clears up
an economic mystery—why would ICU doctors catheterize their
patients at all if doing so increases patient mortality? For every
diagnosis we analyze, the answer we find is that catheterization
either decreases mortality or has an effect of indeterminant
direction on mortality in the short run (while the patient is still
in the ICU). After the patient has left the ICU and is no longer
under the care of an ICU physician, however, we find (like Connors
et al., 1996) that catheterization, for some diagnoses, increases
mortality.

2. Background on Swan–Ganz catheterization

The placement of Swan–Ganz catheters is common among ICU
patients—over 2million patients inNorth America are catheterized
each year. A Swan–Ganz catheter is a slender tube with sensors
that measure hemodynamic pressures in the right side of the heart
and in the pulmonary artery. Once in place, the catheter is often
left in place for days, so it can continuously provide information
to ICU doctors. This information is often used to make decisions
about treatment, such as whether to give the patient medications
that affect the functioning of the heart.

While there are some risks associated with the placement of
the catheter itself, such complications are rare. Rather, the greater
risk may come from successful catheter placement. Information
from Swan–Ganz catheterization may, for example, lead to false
diagnoses of heart failure, which in turn may lead doctors to
administer inappropriate treatments. Our goal in this paper is
to estimate the treatment effect of catheterization on patient
mortality for ICU patients with different primary diagnoses. Given
the nature of the Swan–Ganz intervention, we interpret the
treatment effect that we aremeasuring as an amalgam of the effect
of catheterization itself plus the therapies that the information
gleaned from catheterization make possible.

Before Connors et al. (1996), Gore et al. (1985) and Zion et al.
(1990) also found that catheterization increases mortality. Dalen
(2001) criticized both studies because they did not control for
clinically important differences between the patients who had
catheters placed and those who did not. The Connors et al. (1996)
study was conceived in part as a response to this criticism. They
included a dizzying array of clinical variables designed to control
as exhaustively as possible for observed differences between
catheterized and non-catheterized patients. In addition, Connors
et al. (1996) expanded the set of ICU patients beyond just heart
attack patients to all ICU patients. Ironically, Weil (1998) argued
that because Connors et al. (1996) expanded the set of patients
considered, they failed to take account of important unobserved
clinical variables in their statistical work.

Despite substantial criticism, the publication of the Connors
et al. (1996) study was seminal in the Swan–Ganz catheterization
literature. Subsequent studies have focused on expanding the set
of ICU patients considered in the analysis and on minimizing
the possibility of selection bias. There has been one reanalysis
of the Connors et al. (1996) study. Hirano and Imbens (2001)
modify the propensity score matching method by using a model
selection procedure to determine which regressors to include in
the propensity score model. Their main finding is that the Connors
et al. (1996) conclusion that catheterization increases mortality
risk is robust to their model selection exercise.

Prior to Connors et al. (1996), attempts to organize a
randomized trial failed because doctors refused to recruit patients
into the control group. The belief in the efficacy of catheterization
was so strong that doctors believed it unethical to deny this
procedure to patients on the basis of chance. See, for example,
Fowler and Cook (2003) and Guyatt (1991). Since Connors et al.
(1996), there have been at least two randomized trials on
specialized ICU populations: Sandham et al. (2003) and Richard
et al. (2003). Neither finds statistically significant differences in
mortality between catheterized and non-catheterized patients.
While it would be appealing to compare our results with these
trials, substantial differences between the populations studied in
the trials and this study preclude a direct comparison.

In recent work motivated in part by this paper, Li et al. (2008)
and Altonji et al. (2008) also use the data of Connors et al.
(1996) to evaluate the effect of Swan–Ganz catheterization. Li
et al. (2008) apply the methodology of Li et al. (2009), which,
like Connors et al. (1996), rules out the possibility of selection
on unobservable characteristics. Altonji et al. (2008) use the
methodology of Altonji et al. (2005), which allows for selection
on unobservable characteristics, but involves restrictions on the
relationship between the strength of selection on observable
characteristics and the strength of selection on unobservable
characteristics. In contrast to these papers, our methodology
allows for selection on unobservable characteristics and requires
no such restrictions on the strength of selection on these
characteristics relative to the strength of selection on observable
characteristics, but, in order to do so, it requires an instrumental
variable.

3. Notation and assumptions

In this section,wedefine our notation and assumptions. Let Y be
an indicator for patient deathwithin the givennumber of days after
admission into the ICU unit, and let D be an indicator for catheteri-
zation. Let Y1 denote the potential outcome thatwould be observed
if the individual receives treatment, and let Y0 denote the poten-
tial outcome that would be observed if the individual does not re-
ceive treatment. Only Y1 is observed for individuals who receive
catheterization, and only Y0 is observed for individualswho did not
receive catheterization, so that Y = (1 − D)Y0 + DY1. The effect
of catheterization on mortality is Y1 − Y0, and the average effect of
the catheterization on mortality is E[Y1 − Y0] = P{Y1 = 1} − P
{Y0 = 1}. Let X be observed individual characteristics deter-
mining mortality and let Z be observed individual characteristics
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determining catheterization. We assume that Y0, Y1 and D are de-
termined by threshold crossing models, i.e., for d ∈ {0, 1},

Y ∗

d = r(X, d)− ϵd
Yd = 1{Y ∗

d ≥ 0} (1)

and

D∗
= s(Z)− ν

D = 1{D∗
≥ 0}, (2)

where 1{A} is the indicator function of the event A and ϵ0, ϵ1 and
ν are unobserved random variables. The latent indices Y ∗

1 , Y
∗

0 may
be interpreted as unobserved measures of health status with and
without the treatment, and the latent index D∗ may be interpreted
as an unobservedmeasure of the desire by hospital staff to conduct
the catheterization.

We assume further that (X, Z)y(ϵ0, ϵ1, ν). We thus allow
catheterization to be endogenous, reflecting the possible depen-
dence between ϵ0, ϵ1, and ν, but we assume that all other re-
gressors are exogenous. We further impose the rank similarity
assumption of Chernozhukov and Hansen (2005):

ϵd|ν ∼ ϵ|ν (3)

for d ∈ {0, 1}. This restriction is obviously weaker than assuming
that ϵ0 = ϵ1, in which case we obtain the triangular system
of equations considered in Shaikh and Vytlacil (2011). We also
assume that (ϵ, ν) has a strictly positive density with respect to
Lebesguemeasure on R2. This assumption eases the exposition but
is not essential.We also require that there is at least one variable in
Z that is not in X , i.e., there is some variable that affects the decision
to perform catheterization, but does not directly affect mortality.
Such a variable is often referred to as an instrumental variable. In
our application, we will use an indicator variable for whether the
patient was admitted into the ICU on a weekend (rather than a
weekday) for this purpose.

Remark 3.1. Vytlacil (2002) establishes the equivalence between
the threshold crossing model defined in (2) and the monotonicity
assumption of Imbens and Angrist (1994). Using the potential
treatment notation of Imbens and Angrist (1994), we have that
Dz = 1{s(z) − ν ≥ 0} for z ∈ {0, 1}. The special case of our
model with ϵ0 = ϵ1 is equivalent to the monotonicity assumption
of Imbens and Angrist (1994) holding on Y as well as on D. �

Remark 3.2. An important special case of our model is the
bivariate probit model with structural shift of Heckman (1978),
which imposes the further assumptions that ϵ0 = ϵ1, r(X,D) =

Xβ+Dα, s(Z) = Zγ , and (ϵ, ν) is distributed as a bivariate normal
vector with zero means and unit variances. Our model nests this
model as a special case, but does not require any of its parametric
assumptions. �

Remark 3.3. Shaikh and Vytlacil (2011) require that ϵ1 = ϵ0,
which implies that the sign of the treatment effect does not
vary among patients with the same observable characteristics. In
our application, such a restriction would rule out the possibility
that, among patients with the same observable characteristics,
Swan–Ganz catheterization may result in negative effects for
some patients while having positive effects for other patients.
In contrast, the rank similarity assumption in Eq. (3) does not
rule out this possibility. Note, however, that the restriction does
impose that the sign of P{Y1 = 1|X, ν} − P{Y0 = 1|X, ν},
referred to as the ‘‘Marginal Treatment Effect’’ in Heckman and
Vytlacil (2005), does not vary with ν. On the other hand, P{Y1 =

1|X, ν} − P{Y0 = 1|X, ν} may be a non-trivial function of ν. In this
sense, the rank similarity assumption allows for the possibility that
doctors observe factors related to latent health status and factors
related to the effect of treatment that are not observed by the
econometrician. �
4. Bounds on the average treatment effect

In this section, we develop several different bounds on the
average treatment effect. For ease of exposition, suppose that there
are no X covariates and that Z is a binary random variable. See
Remark 4.5 for a discussion of how the results belowwould change
if these assumptions were relaxed. We assume further that Z is
ordered so that P{D = 1|Z = 1} > P{D = 1|Z = 0}. In our
application, Z = 1 therefore corresponds to a admission into an
ICU on a weekday while Z = 0 corresponds to admission on a
weekend.

4.1. Bounds of Manski (1990)

Manski (1990) only assumes that Y1 and Y0 are (mean)
independent of Z , i.e., P{Y0 = 1 | Z} = P{Y0 = 1} and P{Y1 =

1 | Z} = P{Y1 = 1}. Note that
P{Y1 = 1 | Z = z} = P{D = 1, Y1 = 1 | Z = z}

+ P{D = 0, Y1 = 1 | Z = z}.
Since Y = Y1 when D = 1, P{D = 1, Y1 = 1 | Z = z} =

P{D = 1, Y = 1 | Z = z} is immediately identified from the
distribution of the observed data. P{D = 0, Y1 = 1 | Z =

z} = P{D = 0 | Z = z}P{Y1 = 1 | D = 0, Z = z}, on the
other hand, is not identified from the distribution of the observed
data since we never observe Y1 for individuals with D = 0. But
0 ≤ P{Y1 = 1 | D = 0, Z = z} ≤ 1, so
P{D = 1, Y = 1|Z = z} ≤ P{Y1 = 1|Z = z}

≤ P{D = 1, Y = 1|Z = z}
+ P{D = 0|Z = z}.

The same argumentmutatis mutandis can be used to derive similar
bounds on P{Y0 = 1|Z = z}. Since Y0 and Y1 are (mean)
independent of Z by assumption, we have
BL
M ≤ E[Y1 − Y0] ≤ BU

M

where
BL
M = max

z
{P{D = 1, Y = 1|Z = z}}

− min
z

{P{D = 0, Y = 1|Z = z} + P{D = 1|Z = z}}

BU
M = min

z
{P{D = 1, Y = 1|Z = z} + P{D = 0|Z = z}}

− max
z

{P{D = 0, Y = 1|Z = z}}.

4.2. Bounds of Shaikh and Vytlacil (2011)

We now construct bounds under the assumptions described
in Section 3. Shaikh and Vytlacil (2011) construct bounds on
the average treatment effect under the assumptions described
in Section 3 with the additional restriction that ϵ0 = ϵ1.
As we show below, their bounds continue to hold under the
weaker rank similarity assumption in Eq. (3). These assumptions,
while remaining nonparametric in nature, are stronger than those
imposed by Manski (1990). Under the assumptions of Section 3,
P{Y = 1 | Z = z}

= P{D = 1, Y = 1 | Z = z} + P{D = 0, Y = 1 | Z = z}
= P{D = 1, Y1 = 1 | Z = z} + P{D = 0, Y0 = 1 | Z = z}
= P{ν ≤ s(z), ϵ1 ≤ r(1)} + P{ν > s(z), ϵ0 ≤ r(0)}
= P{ν ≤ s(z), ϵ ≤ r(1)} + P{ν > s(z), ϵ ≤ r(0)},

with the last equality following from (3). Recall that we have
ordered Z so that P{D = 1 | Z = 1} > P{D = 1 | Z = 0}, which,
under our assumptions, implies s(1) > s(0). Thus, if r(1) > r(0),
P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0}

= P{s(0) < ν ≤ s(1), r(0) < ϵ ≤ r(1)},
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and if r(1) < r(0) then

P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0}
= −P{s(0) < ν ≤ s(1), r(1) < ϵ ≤ r(0)}.

It follows that

P{Y = 1 | Z = 1} > P{Y = 1 | Z = 0} ⇐⇒ r(1) > r(0)
P{Y = 1 | Z = 1} < P{Y = 1 | Z = 0} ⇐⇒ r(1) < r(0).

It follows that if P{Y = 1 | Z = 1} ≥ P{Y = 1 | Z = 0}, for
example, then

P{Y = 1 | D = 1, Z = z} ≥ P{Y0 = 1 | D = 1, Z = z}
P{Y = 1 | D = 0, Z = z} ≤ P{Y1 = 1 | D = 0, Z = z}.

The resulting bounds on the average treatment effect are the same
as those derived by Shaikh and Vytlacil (2011), and are given by

BL
SV ≤ E[Y1 − Y0] ≤ BU

SV ,

where

BL
SV = P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0}

BU
SV = P{D = 1, Y = 1 | Z = 1} + P{D = 0 | Z = 1}

− P{D = 0, Y = 1 | Z = 0}

when P{Y = 1 | Z = 1} > P{Y = 1 | Z = 0},

BL
SV = P{D = 1, Y = 1 | Z = 1} − P{D = 0, Y = 1 | Z = 0}

− P{D = 1 | Z = 0}

BU
SV = P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0}

when P{Y = 1 | Z = 1} < P{Y = 1 | Z = 0}, and BL
SV = BU

SV = 0
when P{Y = 1 | Z = 1} = P{Y = 1 | Z = 0}.

Remark 4.1. The Shaikh and Vytlacil (2011) bounds always lie on
one side of zero, unless P{Y = 1 | Z = 1} = P{Y = 1 | Z = 0}, in
which case the average treatment effect is identified to be zero. To
see this, note that if P{Y = 1 | Z = 1} > P{Y = 1 | Z = 0}, then
the lower bound on the average treatment effect is P{Y = 1 | Z =

1} − P{Y = 1 | Z = 0} > 0. Conversely, if P{Y = 1 | Z = 1} <
P{Y = 1 | Z = 0}, then the upper bound on the average treatment
effect is P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0} < 0. The bounds
of Shaikh and Vytlacil (2011) therefore always identify the sign of
the average treatment effect. �

Remark 4.2. Under the assumptions that D is given by (2) and
that the unobservables are independent of Z , it follows from
the Theorem 2 of Heckman and Vytlacil (2001) that the bounds
of Manski (1990) may be written as

BL
M = P{D = 1, Y = 1|Z = 1} − P{D = 0, Y = 1|Z = 0}

− P{D = 1 | Z = 0}

BU
M = P{D = 1, Y = 1|Z = 1} + P{D = 0 | Z = 1}

− P{D = 0, Y = 1|Z = 0}.

Note that if P{Y = 1 | Z = 1} ≥ P{Y = 1 | Z = 0}, then BU
SV = BU

M .
The upper bounds on the average treatment effect is therefore the
same. On the other hand,

BL
SV − BL

M = P{D = 0, Y = 1 | Z = 1}
− P{D = 1, Y = 1 | Z = 0} + P{D = 1 | Z = 0}

= P{D = 0, Y = 1 | Z = 1}
+ P{D = 1, Y = 0 | Z = 0} ≥ 0,

so BL
SV ≥ BL

M . Typically, the inequality will in fact be strict.
Conversely, if P{Y = 1 | Z = 1} ≤ P{Y = 1 | Z = 0}, then BL

SV =

BL
M and BU

SV ≤ BU
M . The bounds of Shaikh and Vytlacil (2011)

imposing threshold crossing on both Y and D are therefore smaller
than those of Manski (1990). This result is in contrast to the
results of Heckman and Vytlacil (2001), who show that imposing
threshold crossing only on D alone does not narrow the bounds
of Manski (1990), but rather implies restrictions on the observable
data that simplifies the form of the bounds. �

Remark 4.3. Manski and Pepper (2000) consider a ‘‘monotone
instrumental variables’’ (MIV) assumption and a ‘‘monotone
treatment response’’ (MTR) assumption. The MIV assumption is
a weaker form of the instrumental variable assumption found
in Manski (1990). The MTR assumption requires that one knows a
priori that Y1 ≥ Y0 for all individuals or that one knows a priori
that Y0 ≥ Y1 for all individuals. In the present context of the
effect of catheterization on mortality, where much of the debate
focuses onwhether the average effect of catheterization is positive,
negative, or zero, imposing MTR is unpalatable since it would
involve directly imposing the answer to the question of interest.
The relationship of the analysis of Shaikh and Vytlacil (2011) with
the analysis ofManski andPepper (2000) is studied in Bhattacharya
et al. (2008). As discussed by Bhattacharya et al. (2008), it is
not possible to determine the sign of the treatment effect in the
same way as Shaikh and Vytlacil (2011) under the assumptions
of Manski and Pepper (2000). Current work by Machado et al.
(2011) develops the sharp bounds for the average treatment
effect under the restriction that the outcome is monotone in the
treatment, butwithout assuming the direction of themonotonicity
a priori or that the treatment is monotone in the instrument. They
show further that the sharp bounds under the assumptions of
Manski and Pepper (2000) without assuming that the direction of
the effect is known a priori does not correspond to the bounds of
Shaikh andVytlacil (2011). See also Blundell et al. (2007) for related
analysis in the context of bounding changes in the distribution of
wageswhenwages are only observed forworkers and there is non-
random selection into employment. In this paper, since we do not
assume that ϵ0 = ϵ1, we do not require that Y1 ≥ Y0 for all
individuals or that Y0 ≥ Y1 for all individuals. Thus, we impose
neither that the direction of the effect is the same for all individuals
nor that the direction of the average effect is known a priori. �

4.3. An extension of Shaikh and Vytlacil (2011)

In this section, we extend the analysis of Shaikh and Vyt-
lacil (2011) to exploit the additional assumption that doctors
catheterize individuals with the worst latent health. This re-
striction is referred to as ‘‘monotone treatment selection’’ by
Manski and Pepper (2000), and is analogous to the stochastic domi-
nance restriction considered by Blundell et al. (2007). Formally, we
assume that ϵ and ν are positive quadrant dependent (PQD), i.e.,
P{ϵ ≤ t0 | ν ≤ t1} ≥ P{ϵ ≤ t0} for all t0, t1.
Positive quadrant dependence is a relatively weak measure
of positive dependence between two random variables. See
Joe (1997) for a discussion of the relationship between positive
quadrant dependence and other concepts of positive dependence.
Put differently, this assumption requires that individuals with
unobserved characteristics that make them more likely to be
catheterized (have a low value of ν) are individuals with
unobserved characteristics that make them more likely to suffer
mortality (have a low values of ϵ).

The PQD assumption implies that
P{ϵ ≤ t0 | ν ≤ t1} ≥ P{ϵ ≤ t0 | ν > t1} for all t0, t1.
It follows that
P{Y = 1|D = 1, Z = z} = P{ϵ1 ≤ r(1)|ν ≤ s(z)}

= P{ϵ ≤ r(1)|ν ≤ s(z)}
≥ P{ϵ ≤ r(1)|ν > s(z)}
= P{Y1 = 1|D = 0, Z = z}.
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Similarly, we have that

P{Y0 = 1|D = 1, Z = z} ≥ P{Y = 1|D = 0, Z = z}.

It therefore follows from the analysis of the preceding section that
if P{Y = 1 | Z = 1} ≥ P{Y = 1 | Z = 0}, then

P{Y = 1 | D = 1, Z = z} ≥ P{Y1 = 1 | D = 0, Z = z}
≥ P{Y = 1 | D = 0, Z = z}

P{Y = 1 | D = 1, Z = z} ≥ P{Y0 = 1 | D = 1, Z = z}
≥ P{Y = 1 | D = 0, Z = z};

if, on the other hand, P{Y = 1 | Z = 1} ≤ P{Y = 1 | Z = 0}, then

min{P{Y = 1 | D = 1, Z = z}, P{Y = 1 | D = 0, Z = z}}
≥ P{Y1 = 1 | D = 0, Z = z} ≥ 0

max{P{Y = 1 | D = 1, Z = z}, P{Y = 1 | D = 0, Z = z}}
≤ P{Y0 = 1 | D = 1, Z = z} ≤ 1.

These results bound P{Y0 = 1} and P{Y1 = 1}. If, for example,
P{Y = 1 | Z = 1} > P{Y = 1 | Z = 0}, then

P{Y1 = 1} = P{Y1 = 1 | Z = z}
= P{D = 1 | Z = z}P{Y1 = 1 | D = 1, Z = z}

+ P{D = 0 | Z = z}P{Y1 = 1 | D = 0, Z = z}
≤ P{Y = 1 | D = 1, Z = z},

which implies that

P{Y1 = 1} ≤ min
z

{P{Y = 1 | D = 1, Z = z}}.

Using arguments given in Shaikh and Vytlacil (2011), it is possible
show that

min
z

{P{Y = 1 | D = 1, Z = z}} = P{Y = 1 | D = 1, Z = 1}.

The bounds resulting from this line of reasoning are given by

BL
PQD ≤ E[Y1 − Y0] ≤ BU

PQD,

where

BL
PQD = P{Y = 1 | Z = 1} − P{Y = 1 | Z = 0}

BU
PQD = P{Y = 1 | D = 1, Z = 1} − P{Y = 1 | D = 0, Z = 0},

when P{Y = 1 | Z = 1} > P{Y = 1 | Z = 0},

BL
PQD = P{D = 1, Y = 1 | Z = 1} − P{D = 0, Y = 1 | Z = 0}

− P{D = 1 | Z = 0}

BU
PQD = P{D = 1, Y = 1 | Z = 1} + P{D = 0 | Z = 1}

× min{P{Y = 1 | D = 1, Z = 1}, P{Y = 1 | D = 0, Z = 1}}
− P{D = 0, Y = 1 | Z = 0} − P{D = 1 | Z = 0}
× max{P{Y = 1 | D = 1, Z = 0}, P{Y = 1 | D = 0, Z = 0}},

when P{Y = 1 | Z = 1} < P{Y = 1 | Z = 0}, andBL
PQD = BU

PQD = 0
when P{Y = 1 | Z = 1} = P{Y = 1 | Z = 0}.

Remark 4.4. The PQD bounds are (weakly) narrower than the SV
bounds. To see this, first suppose that P{Y = 1 | Z = 1} > P{Y =

1 | Z = 0}. In this case, BL
SV = BL

PQD, but

BU
SV − BU

PQD = P{D = 0|Z = 1} × P{Y = 0|D = 1, Z = 1}
+ P{D = 1|Z = 0} × P{Y = 1|D = 0, Z = 0}

≥ 0,

so BU
SV ≥ BU

PQD. Similarly, if P{Y = 1 | Z = 1} < P{Y = 1 | Z = 0},
then it is possible to show that BU

SV = BU
PQD, but BL

SV ≤ BL
PQD.

Typically, these inequalities will in fact be strict. If P{Y = 1 | Z =

1} = P{Y = 1 | Z = 0}, then the average treatment effect is
identified to be zero and the two sets of bounds coincide. �
Remark 4.5. Throughout Section 4, we have assumed that there
are noX covariates and that Z is binary. Relaxing these assumptions
is straightforward. If X is contained in Z , then all of the analysis can
simply be carried out conditional on X . If, on the other hand, there
exists a component ofX that is not contained in Z , then it is possible
to further narrow the bounds on the average treatment effect. If
there is a continuous component of X that is not contained in Z ,
then it is possible to obtain point identification. For further details,
see Shaikh and Vytlacil (2011) and Vytlacil and Yildiz (2007). If
Z is not binary, then all of the analysis can be carried out with
z1 in place of 1 and z0 in place of 0, where z1 maximizes P{D =

1|Z = z} and z0 minimizes P{D = 1|Z = z}. Shaikh and
Vytlacil (2011) show that the resulting bounds are sharp under the
additional assumption that the support of the distribution of (X, Z)
equals the product of the support of the distribution of X and the
support of the distribution of Z . On the other hand, Chiburis (2010)
shows that these bounds need not be sharpwithout this additional
restriction. �

5. Inference

In this section, we discuss inference for each of the bounds
described in the preceding section. For ease of exposition, we
assume again that there are no X covariates. We also assume, as
in the preceding section, that Z is ordered so that P{D = 1|Z =

1} > P{D = 1|Z = 0}. Finally, we assume further that 0 < P{Y =

y,D = d, Z = z} < 1 for all (y, d, z) ∈ {0, 1}3.
Let (Yi,Di, Zi), i = 1, . . . , n be an i.i.d. sample of random

variables with common distribution given by the distribution of
(Y ,D, Z). For some pre-specified α ∈ (0, 1), we construct below
random sets Cn such that for each θ between the upper and lower
bounds
lim inf
n→∞

P{θ ∈ Cn} ≥ 1 − α. (4)

Following Romano and Shaikh (2008), who build upon earlier
work by Chernozhukov et al. (2007), our construction will be
based upon test inversion. In each case, our confidence region will
therefore be of the form
Cn = {−1 ≤ θ ≤ 1 : Tn(θ) ≤ ĉn(θ, 1 − α)} (5)
for an appropriate choice of test statistic Tn(θ) and critical value
ĉn(θ, 1−α). The critical value ĉn(θ, 1−α)will be constructed using
subsampling. In order to describe the construction, we require
some further notation. Let b = bn < n be a sequence of positive
integers tending to infinity, but satisfying bn/n → 0. Index by
i = 1, . . . ,Nn =

 n
b


the different subsets of {1, . . . , n} of size

b. Denote by Tn,b,i(θ) the test statistic Tn(θ) computed using only
the ith subset of data of size b. Let ĉn(θ, 1−α) denote the (smallest)
1 − α quantile of the distribution

Ln(x, θ) =
1
Nn


1≤i≤Nn

1{Tn,b,i(θ) ≤ x}. (6)

Romano and Shaikh (2008) show that Cn defined by (5)
satisfies the coverage property (4) under weak conditions on
the distribution of Tn(θ). In each of the applications below, it
is straightforward to show that these conditions hold under
the above assumptions using arguments similar to those given
in Section 3.2 of Romano and Shaikh (2008). Furthermore,
TheoremA.1 in Appendix A establishes that the confidence regions
defined below behave well uniformly over a large class of possible
distributions for (Y ,D, Z). In particular, the class of distributions
we consider allows for the instrument to be ‘‘weak’’ in the sense
that the (strict) inequality in P{D = 1|Z = 1} > P{D = 1|Z = 0}
may be arbitrarily close to an equality. See Imbens and Manski
(2004) and Romano and Shaikh (2008) for further discussion of the
importance of confidence regions that behave well in this sense.



228 J. Bhattacharya et al. / Journal of Econometrics 168 (2012) 223–243
5.1. Bounds of Manski (1990)

Let

nz = |{1 ≤ i ≤ n : Zi = z}| (7)

and define

δ1,n(z1, z2) =
1
nz1


1≤i≤n:Zi=z1

DiYi

−
1
nz2


1≤i≤n:Zi=z2

((1 − Di)Yi + Di) (8)

δ2,n(z1, z2) =
1
nz1


1≤i≤n:Zi=z1

(DiYi + (1 − Di))

−
1
nz2


1≤i≤n:Zi=z2

(1 − Di)Yi. (9)

If z1 ≠ z2, then define

s1,n(z1, z2) =


σ̂ 2
n,DY |Z=z1

nz1
+
σ̂ 2
n,(1−D)Y+D|Z=z2

nz2
(10)

s2,n(z1, z2) =


σ̂ 2
n,DY+(1−D)|Z=z1

nz1
+
σ̂ 2
n,(1−D)Y |Z=z2

nz2
; (11)

if z1 = z2, then define

s1,n(z1, z2) =


σ̂ 2
n,DY−(1−D)Y−D|Z=z1

nz1

s2,n(z1, z2) =


σ̂ 2
n,DY+(1−D)−(1−D)Y |Z=z1

nz1
.

Finally, for −1 ≤ θ ≤ 1, define

Tn(θ) =


(z1,z2)∈{0,1}2


δ1,n(z1, z2)− θ

s1,n(z1,z2)

2

+

+


(z1,z2)∈{0,1}2


θ − δ2,n(z1, z2)

s2,n(z1,z2)

2

+

.

Remark 5.1. Imbens and Manski (2004) discuss the construction
of confidence regions with the coverage property (4) for partially
identified models where the identified set is an interval whose
upper and lower endpoints aremeans or at least behave likemeans
asymptotically. Although the identified set here is also an interval,
the upper and lower endpoints do not have this property, so their
analysis is not applicable here. Chernozhukov et al. (2009), on
the other hand, develop methods that would be applicable in our
context. �

5.2. Bounds of Shaikh and Vytlacil (2011)

Let

∆n =
1
n1


1≤i≤n:Zi=1

Yi −
1
n0


1≤i≤n:Zi=0

Yi, (12)

where nz is given by (7), and define

sn =


σ̂ 2
n,Y |Z=1

n1
+
σ̂ 2
n,Y |Z=0

n0
. (13)

For 0 < θ ≤ 1, define

Tn(θ) =


−∆n

sn

2

+

+


∆n − θ

sn

2

+

+


θ − δ2,n(1, 0)

s2,n(1, 0)

2

+

, (14)
where δ2,n(1, 0) is given by (9) and s2,n(1, 0) is given by (11); for
−1 ≤ θ < 0, define

Tn(θ) =


∆n

sn

2

+

+


θ −∆n

sn

2

+

+


δ1,n(1, 0)− θ

s1,n(1, 0)

2

+

,

where δ1,n(1, 0) is given by Eq. (8) and s1,n(1, 0) is given by
Eq. (10); and for θ = 0, define

Tn(θ) =


∆n

sn

2

.

5.3. PQD bounds

Let

nz,d = |{1 ≤ i ≤ n : Zi = z,Di = d}|,

let∆n be given by (12), and let sn be given by (13). Define

δ3,n =
1

n1,1


1≤i≤n:Zi=1,Di=1

Yi −
1
n0


1≤i≤n:Zi=0

Yi

δ4,n =
1

n1,1


1≤i≤n:Zi=1,Di=1

Yi −
1

n0,0


1≤i≤n:Zi=0,Di=0

Yi

δ5,n =
1
n1


1≤i≤n:Zi=1

Yi −
1

n0,0


1≤i≤n:Zi=0,Di=0

Yi,

and

s3,n =


σ̂ 2
Y |Z=1,D=1

n1,1
+
σ̂ 2
Y |Z=0

n0

s4,n =


σ̂Y |Z=1,D=1

n1,1
+
σ̂Y |Z=0,D=0

n0,0

s5,n =


σ̂Y |Z=1

n1
+
σ̂Y |Z=0,D=0

n0,0
.

For 0 < θ ≤ 1, define

Tn(θ) =


−∆n

sn

2

+

+


∆n − θ

sn

2

+

+


θ − δ4,n

s4,n

2

+

;

for −1 ≤ θ < 0, define

Tn(θ) =


∆n

sn

2

+

+


δ1,n(1, 0)− θ

s1,n(1, 0)

2

+

+


θ −∆n

sn

2

+

+


θ − δ3,n

s3,n

2

+

+


θ − δ4,n

s4,n

2

+

+


θ − δ5,n

s5,n

2

+

,

where δ1,n(1, 0) is given by (8) and s1,n(1, 0) is given by (10); and
for θ = 0, define

Tn(θ) =


∆n

sn

2

.

6. A test of threshold crossing

In this section, we briefly discuss a means of testing for
the threshold crossing structure on the treatment equation. As
discussed in Remark 4.2, Heckman and Vytlacil (2001) show that
whenD is given by (2) and that the unobservables are independent
of Z the bounds of Manski (1990) may be written as

BL
M = P{D = 1, Y = 1|Z = 1} − P{D = 0, Y = 1|Z = 0}

− P{D = 1 | Z = 0}

BU
M = P{D = 1, Y = 1|Z = 1} + P{D = 0 | Z = 1}

− P{D = 0, Y = 1|Z = 0}.
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Table 1
Catheterized vs. not catheterized; demographic and diagnostic comparisons.

Variable Not catheterized [s.d.] Catheterized [s.d.] p-value

Age 61.7 [0.323] 60.7 [0.292] 0.020
Male 53.8% [0.009] 58.5% [0.011] 0.001
Black 16.5% [0.007] 15.3% [0.008] 0.184
Other race 6.0% [0.004] 6.5% [0.006] 0.564
Years education 11.6 [0.052] 11.9 [0.080] 0.003
No insurance 5.3% [0.004] 6.2% [0.005] 0.160
Private insurance 27.1% [0.008] 33.5% [0.011] <0.001
Medicare 26.7% [0.007] 23.4% [0.010] 0.003
Medicaid 12.8% [0.005] 8.8% [0.006] <0.001
Private insurance and medicare 21.0% [0.007] 22.5% [0.008] 0.150
Family Income:<$11 k 58.8% [0.009] 52.4% [0.010] <0.001
Family Income: $11–25 k 20.1% [0.006] 20.7% [0.009] 0.558
Family Income: $25–50 k 13.9% [0.006] 18.0% [0.010] 0.001
Weight (kg) 65.2 [0.475] 72.4 [0.626] <0.001
Dx: Acute respiratory failure 45.0% [0.007] 41.7% [0.010] 0.007
Dx: COPD 11.4% [0.006] 2.7% [0.004] <0.001
Dx: Congestive heart failure 7.0% [0.005] 9.6% [0.006] <0.001
Dx: Cirrhosis 5.0% [0.003] 2.2% [0.003] <0.001
Dx: Coma 9.7% [0.004] 4.4% [0.004] <0.001
Dx: MOSF with malignancy 6.9% [0.005] 7.3% [0.005] 0.574
Dx: MOSF with sepsis 15.0% [0.006] 32.1% [0.010] <0.001
N 3511 (61.7%) 2178 (38.3%) –

Note: Each entry shows the mean and standard deviation (in brackets) for each variable. The p-value (not adjusted
for multiple comparisons—see Remark 7.1) is for a t-test of the hypothesis that the means for catheterized and non-
catheterized patients are equal.
It is therefore possible to test whether D is given by (2) and
that the unobservables are independent of Z by comparing these
expressions for the bounds of Manski (1990) with those stated in
Section 4.1. These two expressions will be the same if and only if

P{D = 0, Y = 1|Z = 1} − P{D = 1 | Z = 1}
≥ P{D = 0, Y = 1|Z = 0} − P{D = 1 | Z = 0}

P{D = 1, Y = 1|Z = 0} + P{D = 0 | Z = 0}
≥ P{D = 1, Y = 1|Z = 1} + P{D = 0 | Z = 1}

P{D = 1, Y = 1|Z = 1} ≥ P{D = 1, Y = 1|Z = 0}
P{D = 0, Y = 1|Z = 0} ≥ P{D = 0, Y = 1|Z = 1}.

We now describe one of several possible ways of testing whether
these inequalities hold jointly. Let nz be given by (7) and define

ψ1,n =
1
n0


1≤i≤n:Zi=0

((1 − Di)Yi − Di)

−
1
n1


1≤i≤n:Zi=1

((1 − Di)Yi − Di)

ψ2,n =
1
n1


1≤i≤n:Zi=1

(DiYi + (1 − Di))

−
1
n0


1≤i≤n:Zi=0

(DiYi + (1 − Di))

ψ3,n =
1
n0


1≤i≤n:Zi=0

DiYi −
1
n1


1≤i≤n:Zi=1

DiYi

ψ4,n =
1
n1


1≤i≤n:Zi=1

(1 − Di)Yi −
1
n0


1≤i≤n:Zi=0

(1 − Di)Yi.

Consider the test statistic

Tn = max
1≤i≤4

ψi,n.

Large values of this test statistic provide evidence against the
null hypothesis that all four of the above inequalities hold. We
may again construct a critical value for this test statistic using
subsampling as described in the beginning of Section 5. As before,
the validity of such an approach can be verified using arguments
similar to those given in Section 3.2 of Romano and Shaikh (2008).
It may, of course, be desirable to divide each of the ψi,n by an
estimate of its standard error, as was done in the previous section.

7. Data

The Connors et al. (1996) data come from intensive care
units (ICUs) at five prominent hospitals—Duke University Medical
Center, Durham, NC; MetroHealth Medical Center, Cleveland,
OH; St. Joseph’s Hospital, Marshfield, WI; and University of
California Medical Center, Los Angeles, CA. The study admitted
only severely ill patients with one of nine disease conditions: acute
respiratory failure, chronic obstructive pulmonary disease (COPD),
congestive heart failure, cirrhosis, nontraumatic coma, metastatic
colon cancer, late-stage non-small cell lung cancer, andmultiorgan
system failure (MOSF) with malignancy or sepsis. 59.2% of the
sample is over the age of 60. Murphy and Cluff (1990) provide a
detailed description of patient recruitment procedures, including
a list of exclusion criteria. Connors et al. (1996) count a patient as
catheterized if the procedure was performed within 24 hours of
entering the ICU.

There are 5735 patients, all of whom were admitted to or
transferred to the ICU within 24 hours of entering the hospital.
Because we analyze each diagnosis separately, we drop patients
with a primary diagnosis of lung cancer or colon cancer because
there are few patients with these diagnoses in the data (seven
colon cancer and 39 lung cancer patients). After these patients are
dropped, there remain 5689 patients in the data.

Connors et al. (1996) collected a large amount of information
about each patient via standardized medical chart abstraction
methods and interviews with patients and patient surrogates.
Tables 1–3 compare patients who were catheterized during their
first day of admission to the ICU with those who were not
catheterized. These tables present the p-value from a test of
the hypothesis that the means of the variables are equal for
catheterized and non-catheterized patients.

Table 1 compares patients on the basis of demographic variables
and the primary diagnosis at admission. Catheterized patients are
more likely to be male (by 4.7%), privately insured (by 6.4%), richer
(less likely to have an income of less than $11,000 per year by 6.4%),
and less likely to be on Medicaid (by 4.0%). Catheterized patients
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Table 2
Catheterized vs. not catheterized; disease history and functional status.

Variable Not catheterized [s.d.] Catheterized [s.d.] p-value

Hx: Cardiac disease 16.1% [0.006] 20.5% [0.008] <0.001
Hx: Congestive heart failure 16.9% [0.006] 19.5% [0.008] 0.002
Hx: Dementia 11.7% [0.005] 6.9% [0.005] <0.001
Hx: Psychiatric condition 8.1% [0.005] 4.6% [0.005] <0.001
Hx: Chronic pulmonary disease 21.8% [0.007] 14.4% [0.007] <0.001
Hx: Renal disease 4.2% [0.003] 4.8% [0.004] 0.201
Hx: Liver disease 7.5% [0.005] 6.2% [0.006] 0.070
Hx: GI Bleed 3.7% [0.003] 2.5% [0.003] 0.002
Hx: Malignant cancer 23.7% [0.008] 20.1% [0.008] 0.004
Hx: Immunological disease 25.7% [0.008] 29.2% [0.009] 0.009
Hx: Acute myocardial infarction 3.0% [0.003] 4.3% [0.005] 0.017
Admitted via transfer 9.5% [0.005] 15.0% [0.007] <0.001
2 month predicted survival 60.8% [0.003] 56.9% [0.004] <0.001
Duke activity scale index 20.4 [0.090] 20.7 [0.106] 0.022
Acute physiology score 51.1 [0.319] 60.8 [0.345] <0.001
Glasgow coma score 22.4 [0.518] 19.0 [0.619] <0.001
Diastolic blood pressure 84.9 [0.612] 68.1 [0.731] <0.001
Do not resuscitate order 13.9% [0.005] 7.1% [0.006] <0.001

Note: Each entry shows the mean and standard deviation (in brackets) for each variable. The p-value (not adjusted
for multiple comparisons—see Remark 7.1) is for a t-test of the hypothesis that the means for catheterized and non-
catheterized patients are equal.
Table 3
Catheterized vs. not catheterized; lab values and secondary diagnoses.

Variable Not Catheterized [s.d.] Catheterized [s.d.] p-value

WBC count 15.3 [0.172] 16.3 [0.280] 0.002
Heart rate 113.0 [0.684] 118.9 [0.870] <0.001
Respiratory rate 29.0 [0.272] 26.7 [0.253] <0.001
Temperature (°C) 37.6 [0.027] 37.6 [0.040] 0.320
PAO2/(0.01∗FiO2) 240.0 [2.055] 192.5 [2.409] <0.001
Albumin 3.2 [0.012] 3.0 [0.024] <0.001
Hematocrit 32.7 [0.151] 30.5 [0.133] <0.001
Bilirubin 2.0 [0.078] 2.7 [0.105] <0.001
Creatinine 1.9 [0.036] 2.5 [0.046] <0.001
Sodium 137.0 [0.136] 136.3 [0.160] 0.002
Potassium 4.1 [0.020] 4.1 [0.020] 0.315
PACO2 40.0 [0.216] 36.8 [0.193] <0.001
Serum Ph 7.4 [0.002] 7.4 [0.002] <0.001
2nd Dx: Respiratory 41.9% [0.009] 28.9% [0.010] <0.001
2nd Dx: Neurological 16.2% [0.005] 5.4% [0.005] <0.001
2nd Dx: Gastrointestinal 14.8% [0.007] 19.2% [0.008] <0.001
2nd Dx: Renal 4.2% [0.003] 6.7% [0.005] <0.001
2nd Dx: Metabolic 4.8% [0.004] 4.3% [0.004] 0.260
2nd Dx: Hematological 6.8% [0.004] 5.2% [0.004] 0.004
2nd Dx: Sepsis 14.6% [0.007] 23.7% [0.008] <0.001

Note: Each entry shows the mean and standard deviation (in brackets) for each variable. The p-value (not adjusted
for multiple comparisons—see Remark 7.1) is for a t-test of the hypothesis that the means for catheterized and non-
catheterized patients are equal.
also weigh more than non-catheterized patients (by 7.2 kg). The
primary diagnosis on ICU admission plays an important role in the
probability of catheterization. Catheterized patients are less likely
to have COPD, cirrhosis, or coma as an admitting diagnosis, but
more likely to have congestive heart failure or MOSF with sepsis.

Table 2 compares patients on the basis of disease history
prior to admission and functional status. Catheterized patients
are more likely to have had a history (Hx) of cardiac disease (by
4.4%), but less likely to have a history of dementia, psychiatric
disease, or COPD. Catheterized patients are more likely than
non-catheterized patients to have arrived at the hospital by
transfer from another hospital. Catheterized patients have a 3.9%
lower two month predicted survival rate upon admission than
non-catheterized patients and a worse acute physiology score.
Catheterized patients have a lower Glasgow coma score and
are less likely to have requested a ‘‘do not resuscitate’’ (DNR)
order. Patients with DNR orders typically want to avoid aggressive
therapies, includingmany of the sort supported by catheterization.
Clearly, catheterized patients are observably more ill than non-
catheterized patients.
Table 3 compares catheterized and non-catheterized patients’
laboratory values at admission, as well as any secondary diagnoses
these patients may have had at admission. Among the laboratory
values, all the clinically significant and interpretable differences
point toward the conclusion that catheterized patients are
observably sicker.

Remark 7.1. Because of the large number of comparisons we are
making (there are 59 variables in Tables 1–3), it is likely that
we will reject several hypotheses falsely. We use the multiple
testing procedure of Holm (1979) to make the comparisons while
controlling the familywise error rate – the probability of even one
false rejection – at level α. Let p̂(1) ≤ · · · ≤ p̂(s) denote the
ordered values of the p-values and let H(1), . . . ,H(s) denote the
corresponding null hypotheses. If p̂(1) ≥ α/s, then the procedure
rejects no null hypotheses; otherwise, it rejects null hypotheses
H(1), . . . ,H(r), where r is the largest index such that p̂(i) ≤ α/(s −

i + 1) for all i ≤ r . This procedure always rejects at least as many
null hypotheses as the Bonferroni procedure, which simply rejects
any null hypothesis Hi for which the corresponding p̂i ≤ α/s.
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At the α = 0.05 significance level, we find that patients who
are catheterized differ from those who are not catheterized along
32 of 59 possible variables. The results are qualitatively similar at
the α = 0.01 significance level. Hence, even after accounting for
themultiplicity of comparisons,wemaintain our earlier conclusion
that catheterized patients are significantly different from non-
catheterized patients. �

8. Instrumenting with admission day

A direct comparison of outcomes between catheterized and
non-catheterized patients is unlikely to yield the causal effects of
catheterization. Even if a full set of controls were included in the
analysis, the results would be unconvincing. If catheterized and
non-catheterized patients differ on so many observed dimensions,
it is unlikely that they do not differ on unobserved dimensions
as well. See Altonji et al. (2005) for a formal justification of this
argument. In this section, we develop suggestive evidence that
day-of-the-week of admission is an appropriate instrument to
determine the causal effect of catheterization on patient mortality.

8.1. Admission day of week predicts catheterization

We first establish that patients who are admitted to the ICU
on a Saturday, Sunday, or Monday are substantially less likely to
be catheterized on the day of admission than patients admitted
on other days of the week. The results remain similar if we
exclude Monday from the definition of the weekend. Fig. 1 shows
catheterization rates by day-of-the-week for patients, divided
upon the basis of primary diagnosis upon ICU admission. For
patients with acute respiratory failure, congestive heart failure,
MOSF with malignancy, or MOSF with sepsis the probability
of being catheterized decreases on weekends. A t-test of the
difference in probability of catheterization between weekend and
weekday rejects equality at the α = 0.05 significance level for all
four groups. However, the same is not true for patients with COPD,
cirrhosis, or coma: there is no statistically significant difference,
though the point estimates suggest that weekend admissions are
less likely to result in catheterization, even in these groups. As
described in Section 5, the inferencemethodweuse is robust to the
presence of ‘‘weak’’ instruments, so we analyze all of these patient
groups.

Remark 8.1. Since the bounding analysis includes no covariates
(except for patient diagnosis), the analogous first stage regression
is a linear regression of the treatment on the instrument and
indicators for each diagnosis. The F-statistic from a test of the
null hypothesis that the coefficient on the instrument in such a
regression is zero is 14.53, which suggests that the instrument
is not ‘‘weak’’ by conventional standards. On the other hand,
if separate regressions are run for each diagnosis, then the F-
statistic does not exceed 10 for any of the regressions, which
suggests that the instrument is ‘‘weak’’ by conventional standards
for a diagnosis-by-diagnosis analysis. This fact is problematic for
standard two-stage least squares estimator in the diagnosis-by-
diagnosis analysis, but not for our approach. �

8.2. Patient health and day of week of admission

If patients admitted to the ICU on a weekday differed
systematically from patients admitted on weekends, then day-of-
the-week would be a poor instrument since it would be correlated
with unobserved determinants of ICU patient mortality such as
health status. We believe that there should be no such correlation,
since the health crises that precipitate ICU admissions are unlikely
to respect distinctions between weekdays and weekends. We now
present suggestive evidence in favor of this view.

We divide patients up on the basis of whether they were ad-
mitted on a weekend or a weekday. Unlike Tables 1–3, where
there were many statistically significant differences between
catheterized and non-catheterized patients, we find no statis-
tically significant differences between weekend and weekday
patients on the basis of the 59 variables listed in Tables 1–3
at the α = 0.05 significance level (after adjusting for the fact that
we are testing for multiple hypotheses using the Holm (1979) pro-
cedure that we outline in Remark 7.1). Importantly, there is no sta-
tistically significant difference between these groups on the basis
of laboratory tests at admission or other objectivelymeasured vari-
ables. We further examine the possibility of differences between
the two groups by regressing the instrument on all of the 59 vari-
ables, and we fail to reject the null hypothesis that the coefficients
on all of these 59 variables are zero (the corresponding F-statistic
is 1.11 and the p-value is 0.266).

Remark 8.2. Our belief that the day of week of admission is
uncorrelatedwith the unobserved determinants ofmortality relies
a great deal on the empirical fact that it is difficult for a doctor to
control the course of a very sick patient’s condition to coincidewith
a weekday. While medical providers may desire patients arrive at
the ICU at a convenient time and day, in most cases this is beyond
the ability of doctors to determine. Card et al. (2007) similarly
suggest that medical conditions for which admission rates do not
depend on the day of week of admission are exogenous to the
control of doctors. In their study of the effect of Medicare coverage
on patient mortality, they include patients in their analysis on the
basis of a test of admission rates on weekend and weekdays. We
conduct a similar test for each admitting condition in our data.
For every admitting diagnosis, we fail to reject the null hypothesis
that admission rates for the condition are equal on weekends and
weekdays at the α = 0.05 significance level. �

Remark 8.3. Even though health status at admission does not
appear to vary by the day of week of admission to the ICU,
death rates will vary if catheterization rates depend on day of
week of admission and mortality is affected by catheterization.
Figs. 2 and 3 show estimates mean mortality rates at 7, 30, 60,
90, and 180 days after ICU admission for patients admitted on
weekends andweekdays aswell as 95% confidence intervals for the
mean. Fig. 2 shows that for patients admitted for acute respiratory
failure, congestive heart failure, MOSF with malignancy, or MOSF
with sepsis, observed mortality is the same at 7 days after ICU
admission for weekend and weekday patients, but higher for
weekday patients at 30, 60, 90, and 180 days post-ICU admission.
Taken individually, none of these mortality differences between
weekend and weekday patients are statistically significant at the
α = 0.05 significance level. However, when grouped together, the
differences at 30, 60, 90, and 180 days are statistically significant
at the α = 0.05 significance level. By contrast, Fig. 3 shows
that for patients admitted with COPD, coma, or cirrhosis, patients
admitted on a weekday have a lower mortality than patients
admitted on aweekend, at nearly every time interval. This suggests
that for these patients, catheterization is protective, even after
discharge from the ICU. As before, none of the differences are
statistically significant when taken diagnosis by diagnosis, but are
statistically significant when these three groups of patients are
grouped together. �

Remark 8.4. Empirically, it is interesting to know for which
groups of patients day of the week of admission is likely to be
influential in the decision to catheterize. The threshold crossing
assumption implies that there are three different groups of
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Fig. 1. % Catheterized by day-of-week of admission by diagnosis.
Fig. 2. Mortality rates for weekend vs. weekday admissions (part I).
patients that differ on this basis: one group would be catheterized
on any day of the week, a second group would not be catheterized
on any day of the week, and a third group would be catheterized
on weekdays but not on weekends. This third group, in language
of Angrist et al. (1996), are called ‘‘compliers’’ and are interesting
because the local average treatment effect equals the average
treatment effect for them.

Almond and Doyle (2008) develop a method to measure the
expected value of covariates among compliers. See Eq. (2) and the
discussion that precedes it in their paper for details. In our context,
this equation says that the expected value of covariates among
compliers is simply

πC + πA

πC


E[X |D = 1, Z = 1] −

πA

πC + πA
E[X |D = 1, Z = 0]


,

where πA = P{D = 1|Z = 0}, πN = P{D = 1|Z = 1}, and
πC = 1 − πA − πN . Using this equation, for each covariate in
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Fig. 3. Mortality rates for weekend vs. weekday admissions (part II).
Table 4
Compliers vs. overall sample: significant differences.

Variable Overall [s.d.] Compliers [s.d.] p-value

Dx: COPD 0.080 [0.004] 0.011 [0.017] <0.001
PACO2 38.757 [0.146] 35.191 [0.988] <0.001
2nd Dx: Respiratory 0.369 [0.007] 0.212 [0.043] <0.001

Note: Please see Remark 8.4. Each entry shows the mean and standard deviation
(in brackets) for each variable. For each of the 59 variables in Tables 1–3, we
conduct a test of the null hypothesis that the mean of the indicated variable
among ‘‘compliers’’ equals the mean of the indicated variable among all patients.
Here, we report the variables that show a statistically significant difference at the
α = 0.05 significance level after adjustment for multiple comparisons. Please see
Remark 7.1. After such adjustment, only three of these variables show a statistically
significantly difference – PACO2 , 2nd Dx: Respiratory, and Dx: COPD. At the α =

0.01 significance level, there is only one statistically significant difference – Dx:
COPD.

Tables 1–3, we test whether the expected value of the covariate
among compliers equals the expected value of the covariate among
compliers and non-compliers. After applying the multiple testing
procedure described in Remark 7.1, we find significant differences
(at the α = 0.05 level) for only three covariates: proportion
of patients with a primary diagnosis of COPD, proportion of
patients with adverse values of PACO2 (a measure of lung
function), and proportion of patients with a secondary diagnosis
of respiratory disease. See Table 4. At the α = 0.01 significance
level, only the proportion of patients with a diagnosis of COPD
remains statistically different between compliers and the overall
population.

For brevity, we do not show the analogous table within each
diagnosis category. These results show that for nearly every
diagnosis category, once we adjust for multiple testing, there are
no differences among compliers and non-compliers. There are only
two exceptions: Within the COPD diagnostic category, complies
differ from non-compliers in terms of the likelihood of having a
secondary diagnosis of a neurological condition, and within the
coma category, compliers differ from non-compliers in terms of
two-month predicted survival rate at admission to the ICU. �
8.3. Day of week, hospital staffing, and outcomes

Although non-specialists sometimes find it surprising, it is well
known in the health services literature that medical staffing can
have a major effect on treatment decisions, including the decision
to catheterize a patient. Rapoport et al. (2000), for example,
find that patients admitted to ICUs that staff a full time ICU
physician are two-thirds less likely to be catheterized than those
admitted to ICUs with no full time physician. Whether this fact
threatens the validity of our instrument depends upon whether
there are unobserved differences in treatment between weekday
and weekend admissions, unassociated with catheterization, that
help determine patient mortality. If so, then admission day would
not be a valid instrument.

Evaluating the importance of differences in treatment between
weekend and weekday admissions is complicated by the fact
that Swan–Ganz catheterization itself is a gateway to a large
number of other treatments. For example, ICU physicians often
use the information from catheterization to titrate the dose of
inotropic drugs, such as dopamine and dobutamine, which are
designed to improve cardiac contractility. These drugs have a
narrow therapeutic range, and thus small differences in the dosing
can be the difference between killing and inadequately treating a
patient. Since catheterization is less likely on weekends, it would
be unsurprising to find decreased use of inotropes on weekends as
well. We can accommodate such differences in treatment between
weekend and weekday admissions by simply interpreting the
treatment effect as catheterization and all the other treatments it
enables or encourages on mortality, rather than catheterization by
itself.

It is possible that weekend–weekday staffing differences,
for reasons having nothing to do with catheterization or its
downstream consequences, may lead to higher patient mortality.
If so, then our instrument would be invalid. Since staffing tends
to be sparser on weekends, one would expect that mortality rates
would be higher then. In fact, in our data mortality rates are
higher on weekdays for some diagnoses and lower for others,
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which is inconsistent with a direct mortality effect of staffing.
Furthermore, several studies have found no evidence that staffing
differences explain weekend–weekday mortality differences in
ICUs. See Ensminger et al. (2004), Wunsch et al. (2004) and
Dobkin (2003).

9. Results

In this section,we report results from the three different bounds
described in Section 4.We analyze outcomes t days after admission
to the ICU separately for five different values of t—7, 30, 60, 90,
and 180 days. Each of the bounds except one that we report
rely upon our instrumental variable—an indicator for whether the
patient was admitted to the ICU on a Tuesday through Friday.
For each of the bounds, we display 95% confidence intervals for
the average treatment effect computed as described in Section 5.
Computational details are described below in Remark 9.4.

Figs. 4 and 5 show the bounds of Manski (1990) (labeled
‘‘Manski bounds’’) for the treatment effect of catheterization
on mortality for patient groups divided up based on admitting
diagnosis. These figures also show the 95% confidence band
around these bounds. In every case, and at every time horizon,
the Manski (1990) bounds have a width of nearly one and thus
always fail to exclude zero. Apparently, our instrument plus the
fact that probabilities lie between zero and one is insufficient to
determinewhether catheterization increases or reducesmortality.
See Remark 9.1 below for further discussion.

Figs. 6 and 7 show the bounds of Shaikh and Vytlacil (2011)
(labeled ‘‘SV bounds’’) for each admitting diagnosis (along with
the 95% confidence bands around these bounds). The Shaikh
and Vytlacil (2011) bounds are considerably more informative
than the Manski bounds in several cases. For instance, for
patients with acute respiratory failure, the SV bounds suggest
that catheterization increases mortality at 30 and 180 days post
ICU admission, but that one cannot rule out at the α = 0.05
significance level that it has no effect on mortality (or even
decreases mortality) at 7 days. A similar story can be told for
patients with MOSF with sepsis. For patients admitted with MOSF
with malignancy, the SV bounds show a decrease in mortality at
7 days, but an increase at 90 days (both statistically significant
at the α = 0.05 significance level). For these groups of patients,
catheterization causes a short term improvement in survival, but a
longer term loss.

For patients with an admitting diagnosis of COPD or cirrhosis,
the SV bounds in Fig. 7 suggest that catheterization reduces
mortality at 7 days (and even at 30 and 60 days for COPD patients),
but that one cannot rule out at the α = 0.05 significance level an
increase in mortality at longer intervals. Of course, one cannot rule
out a decrease inmortality or no effect onmortality at those longer
intervals.

Recall that Connors et al. (1996) found that catheteriza-
tion increases mortality even at 7 days using this same data
set that we use here, but a different statistical method that
assumes that there are no unobserved differences between
catheterized and non-catheterized patients. Their result raises
the question of why ICU doctors do not observe the in-
creased mortality from catheterization and react accordingly. The
Shaikh andVytlacil (2011) bounds provides a possible answer—ICU
doctors do not see rise inmortality which happens only aftermany
patients have been released from the ICU.

Figs. 8 and 9 show the bounds from the extension of Shaikh and
Vytlacil (2011) described in Section 4.3 (labeled ‘‘PQD bounds’’).
These bounds impose the restriction that doctors are effective at
triaging patients so that it is those patients with the worst health
who are actually catheterized. These figures show that imposing
this plausible restriction decreases the width of the treatment
effect bounds, often dramatically.

By construction, these bounds are always on the same side of
zero as the Shaikh and Vytlacil (2011) bounds. The reduction in
the width of the bounds is greatest when the average treatment
effect is positive, i.e., when catheterization increases mortality.
This is to be expected, as the PQD restriction rules out the
possibility that doctors cause great harm to large numbers of
their patients. On the other hand, the PQD bounds have a lower
upper bound than the Shaikh and Vytlacil (2011) bounds when
the average treatment effect is negative, i.e., when catheterization
decreases mortality, so it may permit researchers to conclude, for
example, that the intervention is cost-effective even as the Shaikh
and Vytlacil (2011) bounds permit the possibility that it may
not be.

Remark 9.1. Despite the evidence presented in Section 8, it is
interesting to consider how our inferences would change if we did
not rely upon our instrumental variable. One possible answer is to
rely on the bounds of Manski (1990), which may be constructed
without an instrument. In that case, the width of the bounds is
always exactly one and thus always fail to exclude zero. A second
possible answer is given by the analysis of Section 4.3, which may
also be constructed without an instrument. In that case, the PQD
assumption reduces to P{Y1 = 1 | D = 1} ≥ P{Y1 = 1 | D = 0}
and P{Y0 = 1 | D = 1} ≥ P{Y0 = 1 | D = 0}, which implies the
following bounds on the average treatment effect:

P{Y1 = 1 | D = 1}P{D = 1}
− P{Y0 = 1 | D = 0}P{D = 0} − P{D = 1}

≤ E[Y1 − Y0] ≤ P{Y1 = 1 | D = 1} − P{Y0 = 1 | D = 0}.

Figs. 10 and 11 shows these bounds and associated 95% confidence
intervals. In every case, the bounds cross zero, though their width
is substantially less than one. The PQD assumption by itself is
therefore not enough to identify the direction of the treatment
effect. �

Remark 9.2. HeckmanandVytlacil (2001) show that the threshold
crossing structure on D implies that BU

M − BL
M = 1 − P{D =

1|Z = 1} + P{D = 1|Z = 0}, where Z is ordered such that
P{D = 1|Z = 1} > P{D = 1|Z = 0}. If P{D = 1|Z = 1} is close
to one and P{D = 1|Z = 0} is close to zero, then the bounds will
have width close to zero. In contrast, if P{D = 1|Z = 1} is close
to P[D = 1|Z = 0}, then the width of the bounds will be nearly
one, i.e., almost as wide as the naive bounds that do not impose
or exploit an instrument described in Remark 9.1. Our empirical
result that the width of the bounds is close to one is a direct result
of the instrument being ‘‘weak’’ in the sense that P{D = 1|Z = 1}
is close to P{D = 1|Z = 0}. �

Remark 9.3. We also implement the test of the threshold crossing
assumption on treatment selection that is described in Section 6.
For each value of t , we fail to reject the inequalities shown in that
section at the α = 0.10 significance level. This provides at least
weak evidence in favor of the assumptions underlying the bounds
described in Sections 4.2 and 4.3. �

Remark 9.4. For the results we reported above, we used a
subsample size of b = 50. In results not reported here, we also
tried different subsample sizes ranging from 25 to 75 and found
that our results are remained similar for these values of b. Finally,
because Nn is large, we used an approximation to (6) in which we
randomly chose with replacement Bn = 1000 of the Nn possible
subsamples. It follows from Corollary 2.4.1 of Politis et al. (1999)
that critical values constructed in this way remain valid provided
that Bn tends to infinity. �
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Fig. 4. Manski (1990) bounds (part I).
Fig. 5. Manski (1990) bounds (part II).
10. Conclusion

While direct comparisons of the mortality of catheterized and
non-catheterized patients lead to the conclusion that catheteri-
zation increases mortality, we show evidence that this result is
due to profound differences between the catheterized and non-
catheterized patients: the former are much more severely ill than
the latter.
We provide suggestive evidence that weekday admission can
serve as an instrumental variable for catheterization. Patients ad-
mitted on a weekday are about four to eight percentage points
more likely to be catheterized than patients admitted on a week-
end. Yet, weekday and weekend patients appear similar in health
status along a large number of dimensions. Exploiting an instru-
mental variable permits us to address the unobserved differences
between catheterized and non-catheterized ICU patients.
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Fig. 6. Shaikh and Vytlacil (2011) bounds (part I).
Fig. 7. Shaikh and Vytlacil (2011) bounds (part II).
We apply different bounding approaches that exploit access to
our instrument, in particular, the recent approach introduced by
Shaikh and Vytlacil (2011), which we compare with the approach
of Manski (1990). We find that, while the bounds of Manski
(1990) always straddle zero, the bounds of Shaikh and Vytlacil
(2011) produce a clearer answer at least for some diagnoses—
catheterization reduces mortality at 7 days after admission to
the ICU. We extend the analysis of Shaikh and Vytlacil (2011)
to exploit a further nonparametric structural assumption – that
doctors catheterize individuals with systematically worse latent
health – and find that this assumption further narrows these
bounds and strengthens these conclusions.

The main theme of the paper is the trade-off induced by the
acceptance of potentially unverifiable structural assumptions. If
one is willing to accept very strong structural assumptions, such as
those underlying the bivariate probit model, then one can obtain
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Fig. 8. PQD bounds (part I).
Fig. 9. PQD bounds (part II).
point identification. At the other extreme, if the only structural
assumption one accepts is that probabilities lie between zero and
one (such as in the Manski (1990) bounds without an instrument),
then the width of the bounds on the average treatment effect
is exactly one, so it is not possible to determine the sign of the
average treatment effect. In between these two extremes, one
may accept different nonparametric, structural assumptions, such
as the validity of an instrument or threshold crossing models
on the outcome or treatment variables, which may not lead to
point identification, but may reduce the width of the bounds
considerably, as in our empirical example, and are more palatable
than the very strong parametric assumptions required for the
bivariate probit model.

Our primary substantive finding is that catheterization im-
proves mortality outcomes only in the short run, if at all, and in
most caseswe cannot rule out that it increasesmortality in the long
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Fig. 10. PQD bounds without instrument (part I).
Fig. 11. PQD bounds without instrument (part II).
run. This finding is intuitively appealing because it suggests a pos-
sible explanation for the fact that many ICU doctors are committed
to the use of the Swan–Ganz catheter. Sincemost ICUpatients leave
the ICU well before 30 days after admission have elapsed, ICU doc-
tors may never observe the increase in mortality. Our results also
suggest a second (not mutually exclusive) possibility: a simple se-
lection story. Catheterization saves the lives, in the short run, of the
most severely ill patients, but the deaths of these patient cannot
be staved off for long. Disentangling these possibilities will require
even more detailed data and further research.

Appendix A

In this appendix,we show that the confidence regions described
in Section 5 behave well uniformly over a large class of possible
distributions P for (Y ,D, Z). Ourmain result is TheoremA.1 below.
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Note that in the statement of the theorem we index the upper and
lower bounds by P ∈ P to reflect their obvious dependence on the
distribution of the observed data. The proof of the theorem utilizes
Lemma B.6, which is established in the following Appendix.

Theorem A.1. Let (Yi,Di, Zi), i = 1, . . . , n be an i.i.d. sequence of
random variables with distribution P ∈ P. Suppose P is such that

P{Y = y,D = d, Z = z} > ϵ

for some ϵ > 0 and

P{D = 1|Z = 1} > P{D = 1|Z = 0} (15)

for all (y, d, z) ∈ {0, 1}3 and P ∈ P. Let b = bn < n be a sequence of
positive integers tending to infinity, but satisfying bn/n → 0. Then,
the following statements are true:

(i) If Tn(θ) is defined as in Section 5.1, then Cn defined by
(5) satisfies

lim inf
n→∞

inf
P∈P

inf
BLM (P)≤θ≤BUM (P)

P{θ ∈ Cn} ≥ 1 − α.

(ii) If Tn(θ) is defined as in Section 5.2, then Cn defined by
(5) satisfies

lim inf
n→∞

inf
P∈P

inf
BLSV (P)≤θ≤BUSV (P)

P{θ ∈ Cn} ≥ 1 − α.

(iii) If Tn(θ) is defined as in Section 5.3, then Cn defined by
(5) satisfies

lim inf
n→∞

inf
P∈P

inf
BLPQD(P)≤θ≤BUPQD(P)

P{θ ∈ Cn} ≥ 1 − α.

Proof. We prove only part (ii) of the theorem. The arguments for
parts (i) and (iii) are very similar. To this end, suppose by way
of contradiction that (ii) fails to hold. It follows that there exists
η < 1 − α and a sequence {(Pn, θn) ∈ P × [−1, 1] : n ≥ 1} with
BL
SV (Pn) ≤ θn ≤ BU

SV (Pn) for all n ≥ 1 such that

Pn{θn ∈ Cn} = Pn{Tn(θn) ≤ ĉn(θ, 1 − α)} → η. (16)

By considering a subsequence if necessary, we may assume that
θn > 0, θn < 0, or θn = 0 for all n ≥ 1. Suppose θn > 0 for all
n ≥ 1. It follows that Tn(θn) is given by (14) and that

−(µY |Z=1(Pn)− µY |Z=0(Pn)) ≤ 0
(µY |Z=1(Pn)− µY |Z=0(Pn))− θn ≤ 0
θn − (µDY+(1−D)|Z=1(Pn)− µ(1−D)Y |Z=0(Pn)) ≤ 0.

Next, apply LemmaB.6 to ((−Y , Y−θ,−DY−(1−D)), (−Y , Y , θ−
(1 − D)Y ), Z) by identifying P in Lemma B.6 with (P, θ) in the
present context. It is straightforward to see that the conditions of
LemmaB.6 are satisfied. It follows that (16) cannot hold. In a similar
way, we reach a contradiction when θn < 0 or θn = 0 for all n ≥ 1.
The desired result thus follows. �

Remark A.1. Note that Theorem A.1 allows the equality in (15) to
be arbitrarily close to an equality. In fact, part (i) of Theorem A.1
continues to hold even if we do not require (15) to hold for all
P ∈ P. �

Appendix B

In this appendix, we derive a series of lemmas, building up to
Lemma B.6 which is used in the derivation of Theorem A.1.
Lemma B.1. Let (Xi, Zi), i = 1, . . . , n be an i.i.d. sequence of
random variables with distribution P ∈ P on R × {0, 1}. Suppose

lim sup
λ→∞

sup
P∈P

EP


X − µX |Z=1(P)
σX |Z=1(P)

2

× I
X − µX |Z=1(P)

σX |Z=1(P)

 > λ

 Z = 1


= 0 (17)

and for some ϵ > 0 that

inf
P∈P

P{Z = 1} > ϵ. (18)

Then,

lim sup
λ→∞

sup
P∈P

EP

 (X − µX |Z=1(P))Z
σ(X−µX |Z=1(P))Z (P)

2

× I

 (X − µX |Z=1(P))Z
σ(X−µX |Z=1(P))Z (P)

 > λ


= 0. (19)

Proof. Note that the lefthand-side of (19) equals

lim sup
λ→∞

sup
P∈P

EP


X − µX |Z=1(P)

σX |Z=1(P)
√
P{Z = 1}

2

× I
 X − µX |Z=1(P)
σX |Z=1(P)

√
P{Z = 1}

 > λ

 Z = 1

P{Z = 1}.

The desired result (19) now follows from (17) and (18). �

Lemma B.2. Let Zi, i = 1, . . . , n be an i.i.d. sequence of random
variables with distribution P ∈ P on {0, 1}. Then,

lim sup
λ→∞

sup
P∈P

EP [|Z − µZ (P)|I{|Z − µZ (P)| > λ}] = 0. (20)

Proof. Follows simply by noting that |Z − µZ (P)| ≤ 1. �

Lemma B.3. Let (Xi, Zi), i = 1, . . . , n be an i.i.d. sequence of
random variables with distribution P ∈ P on R × {0, 1}. Suppose
for some ϵ > 0 that (17) and (18) hold. Then, under any sequence
{Pn ∈ P : n ≥ 1},

σ̂ 2
n,X |Z=1/σ

2
X |Z=1(Pn)

Pn
→ 1.

Proof. Assume without loss of generality that µX |Z=1(P) = 0 and
σ 2
X |Z=1(P) = 1. Hence, µXZ (P) = 0 and µX2Z (P) = P{Z = 1}. Note

that

1
n1


1≤i≤n:Zi=1

Xi =


1
n


1≤i≤n

XiZi


1
n


1≤i≤n

Zi



=


1
n


1≤i≤n

XiZi

P{Zi = 1}


P{Zi = 1}

1
n


1≤i≤n

Zi

 .
From Lemma B.1, we see that (19) holds. Note that σXZ (P) =√
P{Z = 1}. It therefore follows from Lemma 11.4.2 of Lehmann

and Romano (2005) that

1
n


1≤i≤n

XiZi
√
Pn{Zi = 1}

Pn
→ 0.
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Hence,

1
n


1≤i≤n

XiZi

Pn{Zi = 1}
Pn
→ 0.

From Lemma B.2, we see that (20) holds. It therefore follows from
Lemma 11.4.2 of Lehmann and Romano (2005) that

1
n


1≤i≤n

Zi − Pn{Zi = 1}
Pn
→ 0.

Hence,

1
n


1≤i≤n

Zi

Pn{Zi = 1}
=

1
n


1≤i≤n

Zi − Pn{Zi = 1}

Pn{Zi = 1}
+ 1

Pn
→ 1.

Thus,

1
n1


1≤i≤n:Zi=1

Xi
Pn
→ 0.

Next, note that

1
n1


1≤i≤n:Zi=1

X2
i =


1
n


1≤i≤n

X2
i Zi


1
n


1≤i≤n

Zi



=


1
n


1≤i≤n

X2
i Zi

P{Zi = 1}


P{Zi = 1}

1
n


1≤i≤n

Zi

 .
It follows from Lemma 11.4.3 of Lehmann and Romano (2005) that

1
n


1≤i≤n

X2
i Zi

Pn{Zi = 1}
Pn
→ 1.

Thus,

1
n1


1≤i≤n:Zi=1

X2
i

Pn
→ 1.

The desired result now follows. �

Lemma B.4. Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of
random variables with distribution P ∈ P on R×R× {0, 1}. Suppose
that for some ϵ > 0

ϵ < inf
P∈P

P{Z = 1} ≤ sup
P∈P

P{Z = 1} < 1 − ϵ (21)

and that

lim sup
λ→∞

sup
P∈P

EP


X − µX |Z=1(P)
σX |Z=1(P)

2

× I
X − µX |Z=1(P)

σX |Z=1(P)

 > λ

 Z = 1


= 0

and

lim sup
λ→∞

sup
P∈P

EP


Y − µY |Z=0(P)
σY |Z=0(P)

2

× I
Y − µY |Z=0(P)

σY |Z=0(P)

 > λ

 Z = 0


= 0.

Then, the following are true:
(i) For any sequence {Pn ∈ P : n ≥ 1},
σ 2
X |Z=1(Pn)

Pn{Zi = 1}
+
σ 2
Y |Z=0(Pn)

Pn{Zi = 0}


 σ 2

X |Z=1
1
n


1≤i≤n

Zi
+

σ 2
Y |Z=0

1
n


1≤i≤n

(1 − Zi)

 Pn
→ 1.

(ii) For any sequence {Pn ∈ P : n ≥ 1},
σ 2
X |Z=1(Pn)

Pn{Zi = 1}
+
σ 2
Y |Z=0(Pn)

Pn{Zi = 0}


 σ̂ 2

n,X |Z=1
1
n


1≤i≤n

Zi
+

σ̂ 2
n,Y |Z=0

1
n


1≤i≤n

(1 − Zi)

 Pn
→ 1.

(iii) For any sequence {Pn ∈ P : n ≥ 1},
σ 2
X |Z=1(Pn)

n1
+
σ 2
Y |Z=0(Pn)

n0


σ̂ 2
n,X |Z=1

n1
+
σ̂ 2
n,Y |Z=0

n0


Pn
→ 1.

Proof. To establish (i), note from Lemma B.2 and Lemma 11.4.2
of Lehmann and Romano (2005) that

σ 2
X |Z=1(Pn)

Pn{Zi = 1}


σ 2
X |Z=1(Pn)
1
n


1≤i≤n

Zi

Pn
→ 1

σ 2
Y |Z=0(Pn)

Pn{Zi = 0}


σ 2
Y |Z=0(Pn)

1
n


1≤i≤n

(1 − Zi)
Pn
→ 1.

Note further that for any positive real numbers a, b, c and d, thata + b
c + d

− 1
 ≤

a
c

− 1
+ bd − 1

 .
The desired result thus follows. A similar argument establishes
(ii) and (iii). �

Lemma B.5. Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of
random variables with distribution P ∈ P on Rk

× Rk
× {0, 1}.

Suppose (21) holds for some ϵ > 0 and for each 1 ≤ j ≤ k that

lim sup
λ→∞

sup
P∈P

EP

Xj − µXj|Z=1(P)

σXj|Z=1(P)

2

× I

Xj − µXj|Z=1(P)

σXj|Z=1(P)

 > λ

 Z = 1


= 0 (22)

and

lim sup
λ→∞

sup
P∈P

EP

Yj − µYj|Z=0(P)

σYj|Z=0(P)

2

× I

Yj − µYj|Z=0(P)

σYj|Z=0(P)

 > λ

 Z = 0


= 0. (23)

Define Wn(P) to be the vector whose jth element for 1 ≤ j ≤ k is
given by
1
n1


1≤i≤n:Zi=1

Xj,i − µXj|Z=1(P)−
1
n0


1≤i≤n:Zi=0

Yj,i − µYj|Z=0(P)
σ 2
Xj |Z=1(P)

n1
+

σ 2
Yj |Z=0(P)

n0



J. Bhattacharya et al. / Journal of Econometrics 168 (2012) 223–243 241
and

V (P) = D(P)ΩX |Z=1(P)+ (I − D(P))ΩY |Z=0(P), (24)

whereΩX |Z=1(P) is the correlation matrix of X conditional on Z = 1
under P, ΩY |Z=0(P) is the correlation matrix of Y conditional on
Z = 0 under P,

D(P) = diag

 σ 2
X1 |Z=1(P)

P{Zi=1}

σ 2
X1 |Z=1(P)

P{Zi=1} +
σ 2
Y1 |Z=0(P)

P{Zi=0}

, . . . ,

σ 2
Xk |Z=1(P)

P{Zi=1}

σ 2
Xk |Z=1(P)

P{Zi=1} +
σ 2
Yk |Z=0(P)

P{Zi=0}

 ,
and I is the k-dimensional identity matrix. Let {Pn ∈ P : n ≥ 1} be
such that V (Pn) → V ∗ for some matrix V ∗. Then,

Wn(Pn)
d

→ ΦV∗(x) (25)

under Pn.

Proof. Assumewithout loss of generality thatµX |Z=1(P) = µY |Z=0
(P) = 0. It follows from Lemma B.2, Lemma 11.4.2 of Lehmann and
Romano (2005), and part (i) of Lemma B.4 that for any 1 ≤ j ≤ k

1
n1


1≤i≤n:Zi=1

Xj,i
σ 2
Xj |Z=1(P)

n1
+

σ 2
Yj |Z=0(P)

n0

= (1 + δ1,n(P))


σ 2
Xj |Z=1(P)

P{Zi=1}
σ 2
Xj |Z=1(P)

P{Zi=1} +
σ 2
Yj |Z=0(P)

P{Zi=0}

1
√
n


1≤i≤n

Xj,iZi
P{Zi=1}

σ 2
Xj |Z=1(P)

P{Zi=1}

(26)

1
n0


1≤i≤n:Zi=0

Yj,i
σ 2
Xj |Z=1(P)

n1
+

σ 2
Yj |Z=0(P)

n0

= (1 + δ0,n(P))


σ 2
Yj |Z=0(P)

P{Zi=0}
σ 2
Xj |Z=1(P)

P{Zi=1} +
σ 2
Yj |Z=0(P)

P{Zi=0}

1
√
n


1≤i≤n

Yj,i(1−Zi)
P{Zi=0}

σ 2
Yj |Z=0(P)

P{Zi=0}

, (27)

where

δ1,n(Pn)
Pn
→ 0

δ0,n(Pn)
Pn
→ 0.

Define W ∗
n (P) to be the vector whose first k elements are given by

(26) for 1 ≤ j ≤ k and whose second k elements are given by (27)
for 1 ≤ j ≤ k.

Suppose by way of contradiction that (25) fails. Then, there
exists a subsequence {Pnm ∈ P : m ≥ 1} and x ∈ Rk such that

Pnm{Wnm(Pnm) ≤ x} ↛ ΦV∗(x).

By considering a further subsequence if necessary, wemay assume
that

D(Pnm) → D∗

ΩY |Z=0(Pnm) → Ω∗

0

ΩX |Z=1(Pnm) → Ω∗

1

for matrices D∗,Ω∗

0 andΩ∗

1 such that

V ∗
= D∗Ω∗

1 + (I − D∗)Ω∗

0 .
It suffices to show that

W ∗

nm(Pnm)
d

→ N(0, V̄ ) (28)

under Pnm , where

V̄ = diag(D∗Ω∗

1 , (I − D∗)Ω∗

0 ).

From Lemma B.1, we see that

lim sup
λ→∞

sup
P∈P

EP

XjZ − µXjZ (P)

σXjZ (P)

2

× I

XjZ − µXjZ (P)

σXjZ (P)

 > λ

 = 0 (29)

and

lim sup
λ→∞

sup
P∈P

EP

Yj(1 − Z)− µYj(1−Z)(P)

σYj(1−Z)(P)

2

× I

Yj(1 − Z)− µYj(1−Z)(P)

σYj(1−Z)(P)

 > λ

 = 0. (30)

Furthermore, (29) and (30) continue to hold if XjZ and Yj(1−Z) are
replaced with XjZ

P{Zi=1} and Yj(1−Z)
P{Zi=0} , respectively. Finally, note that

σ 2
XjZ

P{Z=1}

(P) =

σ 2
Xj|Z=1(P)

P{Z = 1}

σ 2
Yj(1−Z)
P{Z=0}

(P) =

σ 2
Yj|Z=0(P)

P{Z = 0}

and

N(0, V̄nm)
d

→ N(0, V̄ ),

where

V̄n = diag(D(Pn)ΩX |Z=1(Pn), (I − D(Pn))ΩY |Z=0(Pn)).

The desired conclusion (28) now follows from Lemma 3.1
of Romano and Shaikh (2008) and Slutsky’s Theorem. �

Lemma B.6. Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of
random variables with distribution P ∈ P on Rk

× Rk
× {0, 1}.

Suppose (21) holds for some ϵ > 0 and for each 1 ≤ j ≤ k that

µXj|Z=1(P)− µYj|Z=0(P) ≤ 0

for all P ∈ P and that (22) and (23) hold. Define

Tn =


1≤j≤k


1
n1


1≤i≤n:Zi=1

Xj,i −
1
n0


1≤i≤n:Zi=0

Yj,i
σ̂ 2
n,Xj |Z=1

n1
+

σ̂ 2
n,Yj|Z=0

n0


2

+

and Jn(x, P) = P{Tn ≤ x}. Let b = bn < n be a sequence of
positive integers tending to infinity, but satisfying b/n → 0. Index
by i = 1, . . . ,Nn =

 n
b


the different subsets of {1, . . . , n} of size b.

Denote by Tn,b,i the test statistic Tn computed using only the ith subset
of data of size b. Let

ĉn(1 − α) = inf


x ∈ R :

1
Nn


1≤i≤Nn

I{Tn,b,i ≤ x} ≤ 1 − α


.

Then,

lim inf
n→∞

inf
P∈P

P{Tn ≤ ĉn(1 − α)} ≥ 1 − α.
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Proof. From Theorem 2.1 of Romano and Shaikh (2010b), it
suffices to show that

lim sup
n→∞

sup
P∈P

sup
x∈R

{Jb(x, P)− Jn(x, P)} ≤ 0. (31)

In order to establish (31), first note that because Tn ≥ 0, it is enough
to consider the supremum over x ≥ 0. For 1 ≤ j ≤ k, define

Tn,j =

1
n1


1≤i≤n:Zi=1

Xj,i −
1
n0


1≤i≤n:Zi=0

Yj,i
σ̂ 2
n,Xj |Z=1

n1
+

σ̂ 2
n,Yj |Z=0

n0

T ∗

n,j(P) =

1
n1


1≤i≤n:Zi=1

Xj,i − µXj|Z=1(P)−
1
n0


1≤i≤n:Zi=0

Yj,i − µYj|Z=0(P)
σ̂ 2
n,Xj |Z=1

n1
+

σ̂ 2
n,Yj |Z=0

n0

.

Note that

Tn,j = T ∗

n,j(P)+ ∆̂n,j(P),

where

∆̂n,j(P) =
µXj|Z=1(P)− µYj|Z=0(P)

σ̂ 2
n,Xj |Z=1

n1
+

σ̂ 2
n,Yj |Z=0

n0

.

Further note that

∆̂n,j(P) = δn,j(P)∆n,j(P),

where

δn,j(P) =

σ 2
Xj|Z=1(P)

P{Zi = 1}
+

σ 2
Yj|Z=0(P)

P{Zi = 0}



 σ̂ 2

n,Xj|Z=1
1
n


1≤i≤n

Zi
+

σ̂ 2
n,Yj|Z=0

1
n


1≤i≤n

(1 − Zi)

 .
∆n,j(P) =

√
n
µXj|Z=1(P)− µYj|Z=0(P)

σ 2
Xj |Z=1(P)

P{Zi=1} +
σ 2
Yj |Z=0(P)

P{Zi=0}

.

Wemay therefore write

Jn(x, P) = P{Tn ≤ x}

= P


1≤j≤k

(Tn,j)2+ ≤ x



= P


1≤j≤k

(T ∗

n,j(P)+ ∆̂n,j(P))2+ ≤ x



= P


1≤j≤k

(T ∗

n,j(P)+ δn,j(P)∆n,j(P))2+ ≤ x


.

Since b ≤ n andµXj|Z=1(P)−µYj|Z=0(P) ≤ 0, we see that∆n,j(P) ≤

0 and

∆b,j(P) ≥ ∆n,j(P).

Since δn,j(P) ≥ 0, it follows that

Jb(x, P) ≤ J∗b (x, P),

where

J∗b (x, P) = P


1≤j≤k

(T ∗

b,j(P)+ δb,j(P)∆n,j(P))2+ ≤ x


.

It therefore suffices to show that

sup
P∈P

sup
x≥0

| J∗b (x, P)− Jn(x, P)| → 0. (32)

Suppose by way of contradiction that (32) fails to hold. It follows
that there exists η > 0 and a sequence {Pn ∈ P : n ≥ 1} such that

sup
x≥0

| J∗b (x, Pn)− Jn(x, Pn)| → η. (33)

By extracting a further subsequence if necessary, we may assume
that

V (Pn) → V ∗,

where V (P) is given by (24), for some matrix V ∗. Define Ŵn(P) to
be the vector whose jth element for 1 ≤ j ≤ k is given by T ∗

n,j(P).
It follows from part (iii) of Lemma B.4, Lemma B.5 and Slutsky’s
Theorem that

Ŵn(Pn)
d

→ N(0, V ∗)

under Pn. Similarly, we see that

Ŵb(Pn)
d

→ N(0, V ∗)

under Pn. There are two cases to consider. First consider the case
where there is a subsequence {Pnm ∈ P : m ≥ 1} such that for all
1 ≤ j ≤ k

∆nm,j(Pnm) → −∞.

By Lemma B.4, for all 1 ≤ j ≤ k,

δnm,j(Pnm)
Pnm
→ 1

δbnm ,j(Pnm)
Pnm
→ 1.

Hence,

sup
x≥0

| J∗bnm (x, Pnm)− 1| → 0

sup
x≥0

| Jnm(x, Pnm)− 1| → 0.

It therefore follows from the triangle inequality that

sup
x≥0

| J∗bnm (x, Pnm)− Jnm(x, Pnm)| → 0. (34)

If this is not the case, then there is a subsequence {Pnm ∈ P : m ≥ 1}
and ∅ ≠ J ⊆ {1, . . . , k} such that for all j ∉ J

∆nm,j(Pnm) → −∞

and for all j ∈ J

∆nm,j(Pnm) → −cj

for some cj > 0. It follows that
1≤j≤k

(T ∗

bnm ,j
(Pnm)+ δbnm ,j(Pnm)∆nm,j(Pnm))

2
+

d
→


j∈J

(Zj − cj)2+ (35)

under Pnm , where Z ∼ N(0, V ∗). Note that the distribution of the
righthand-side of (35) is continuous everywhere except possibly at
zero. It is straightforward to check that

Pnm


1≤j≤k

(T ∗

bnm ,j
(Pnm)+ δbnm ,j(Pnm)∆nm,j(Pnm))

2
+

≤ 0



→ P


j∈J

(Zj − cj)2+ ≤ 0


.
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Hence,

sup
x≥0

 J∗bnm (x, Pnm)− P


j∈J

(Zj − cj)2+ ≤ x


= sup

x≥0

Pnm


1≤j≤k

(T ∗

bnm ,j
(Pnm)+ δbnm ,j(Pnm)∆nm,j(Pnm))

2
+

≤ x



− P


j∈J

(Zj − cj)2+ ≤ x

 → 0,

where the convergence to zero follows from LemmaA.2 of Romano
and Shaikh (2010a). Similarly, we see that

sup
x≥0

 Jnm(x, Pnm)− P


j∈J

(Zj − cj)2+ ≤ x

 → 0.

From the triangle inequality, we see again that (34) holds. We
thus reach a contradiction to (33), from which the desired result
follows. �
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