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Abstract

This paper considers identification and inference about the sign of the average effect of a binary

endogenous regressor (or treatment) on a binary outcome of interest when a binary instrument is available.

In this setting, the average effect of the endogenous regressor on the outcome is sometimes referred to

as the average treatment effect (ATE). While maintaining instrument exogeneity, we consider three

different sets of assumptions: monotonicity on the outcome equation, monotonicity on the equation

for the endogenous regressor, or monotonicity on both the outcome equation and the equation for the

endogenous regressor. For each of these sets of conditions, we characterize when (i) the distribution of

the observed data is inconsistent with the assumptions and (ii) the distribution of the observed data is

consistent with the assumptions and the sign of ATE is identified. A distinguishing feature of our results is

that they are stated in terms of a reduced form parameter from the population regression of the outcome

on the instrument. In particular, we find that the reduced form parameter being far enough, but not

too far, from zero, implies that the distribution of the observed data is consistent with our assumptions

and the sign of ATE is identified, while the reduced form parameter being too far from zero implies that

the distribution of the observed data is inconsistent with our assumptions. For each set of restrictions,

we also develop methods for simultaneous inference about the validity of the assumptions and the sign

of the ATE. We show that our inference procedures are valid uniformly over a large class of possible

distributions for the observed data that include distributions where the instrument is arbitrarily “weak.”

A novel feature of the methodology is that the null hypotheses involve unions of moment inequalities.
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1 Introduction

This paper considers identification and inference about the sign of the average effect of an endogenous re-

gressor on an outcome of interest when an instrumental variable is available. In order to obtain simple,

closed-form results and for ease of exposition, we focus on the case where the outcome of interest Y , endoge-

nous regressor D and instrumental variable Z, whose joint distribution we denote by P , are all binary. In this

setting, the endogenous regressor is sometimes referred to as the treatment and the average effect of the en-

dogenous regressor on the outcome of interest is sometimes referred to as the average treatment effect (ATE).

While maintaining instrument exogeneity, we consider three different sets of assumptions: monotonicity in

the outcome equation, monotonicity in the equation for the endogenous regressor, or monotonicity in both

the outcome equation and the equation for the endogenous regressor. Here, monotonicity in the outcome

equation requires that different individuals do not have opposite responses to the endogenous regressor,

whereas monotonicity in the equation for the endogenous regressor requires that different individuals do

not have opposite responses to the instrumental variable. These conditions generally only provide partial

identification of ATE.

For each set of assumptions, we show that the sign of the ATE is identified to be positive if and only if

the reduced form parameter

∆(P ) = EP [Y |Z = 1]− EP [Y |Z = 0]

= P{Y = 1|Z = 1} − P{Y = 1|Z = 0} . (1)

lies in a particular region that depends only on P and that the sign of the ATE is identified to be negative if

and only if ∆(P ) lies in another region that, again, depends only on P . When imposing only monotonicity

in the equation for the endogenous regressor, we find it is possible to determine the sign of the ATE if ∆(P )

is sufficiently far from zero. When imposing monotonicity in both the outcome equation and the equation

for the endogenous regressor, we find that the sign of the ATE equals the sign of ∆(P ). When imposing

monotonicity in only the outcome equation, however, we find that the sign of the ATE need not equal the

sign of ∆(P ). In fact, it is possible for ∆(P ) to be so large that one concludes the sign of the ATE is

negative. For each set of restrictions, we show further that a value for ∆(P ) sufficiently far from zero implies

that our assumptions are false. These results may be viewed as formalizing empirical researchers’ suspicions

of empirical results using instrumental variables when the reduced form parameter is “too large” (or, by

re-scaling appropriately, when the usual linear instrumental variables estimand is “too large” – see Remark

2.1).

For each set of restrictions, we develop methods for simultaneous inference about the validity of the

assumptions and the sign of the ATE. For this purpose, we consider a multiple testing problem with three

null hypotheses, where rejection of the first null hypothesis means that P is inconsistent with the assumptions,

rejection of the second null hypothesis means that P is consistent with the assumptions and only a positive

ATE, and rejection of the third null hypothesis means that P is consistent with the assumptions and only

a negative ATE. A novel feature of the analysis is that the null hypotheses involve unions of moment

inequalities. We develop a bootstrap-based testing procedure that controls the familywise error rate – the

probability of any false rejection – uniformly over a large class of possible distributions for P that include

distributions where the instrument is arbitrarily “weak.”
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In the context of monotonicity in the equation for the endogenous regressor, our analysis is most closely

related to Balke and Pearl (1997), who study partial identification of the ATE and also characterize when

P is consistent with their assumptions. A characterization of consistency that does not require Y to be

binary can be found in Kitagawa (2008), who builds upon the work of Imbens and Rubin (1997). Kitagawa

(2008) and Bhattacharya et al. (2012) also develop tests for the null hypothesis of monotonicity in the

equation for the endogenous regressor. Other related literature includes the local average treatment effect

literature (LATE) (Imbens and Angrist, 1994) and the local instrumental variables/non-parametric selection

model literature (Heckman and Vytlacil, 2001b), both of which impose monotonicity in the equation for

the endogenous regressor. In the context of monotonicity in both the outcome equation and the equation

for the endogenous regressor, our analysis is most closely related to Bhattacharya et al. (2012) and Shaikh

and Vytlacil (2005, 2011), who study partial identification of the ATE, but do not characterize when P is

consistent with the assumptions. Related results are obtained by Chiburis (2010), though under a different

instrument exogeneity assumption. See also Abrevaya et al. (2010), who focus on inference about the sign of

the average treatment effect in a semi-parametric model in a related context while allowing for the treatment

to be non-binary and allowing for covariates. In the context of monotonicity in the outcome equation, the

most closely related results are found in Chiburis (2010), though, as mentioned previously, under a different

instrument exogeneity assumption.

The remainder of the paper proceeds as follows. In Section 2, we define our notation and the assumptions

that will be used in the remainder of the paper. For each set of assumptions, we characterize in terms of ∆(P )

in Section 3 when (i) P is inconsistent with the assumptions, (ii) when P is consistent with the assumptions

and only a positive ATE, and (iii) when P is consistent with the assumptions and only a negative ATE. We

further explore when P is inconsistent with our assumptions in Section 4. Finally, in Section 5, methods for

inference are developed. Proofs of all results along with a numerical exploration of some of our results in

Section 4 can be found in the Appendix.

2 Notation and Assumptions

Let Y denote a binary outcome of interest, D denote a binary endogenous regressor, and Z denote a

binary instrument. For example, Y might denote mortality one year after the start of the experiment, D

might denote receipt of the medical treatment, and Z random assignment to the medical treatment, where

the randomized experiment suffers from noncompliance so that Z differs from D with positive probability.

Further denote by Y1 the potential outcome if treated, by Y0 the potential outcome if not treated, by D1

the potential value of the endogenous regressor if the instrument were to be externally set to 1, and by D0

the potential value of the endogenous regressor if the instrument were to be externally set to 0. Following

Angrist et al. (1996), we will refer to realizations with D1 > D0 as “compliers”, realizations with D1 < D0

as “defiers”, realizations with D1 = 1 and D0 = 1 as “always takers,” and realizations with D1 = 0 and

D0 = 0 as “never takers.” In this notation,

Y = DY1 + (1−D)Y0 (2)

D = ZD1 + (1− Z)D0. (3)
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Let P be the distribution of (Y,D,Z) and Q be the distribution of (Y0, Y1, D0, D1, Z). Since

(Y,D,Z) = T (Y0, Y1, D0, D1, Z) ,

where T is characterized by (2) and (3), we have that

P = QT−1 .

Below we will restrict Q ∈ Q, where Q is a set of distributions for (Y0, Y1, D0, D1, Z) satisfying certain

restrictions. In particular, we will require Z to be an instrument in the sense that every Q ∈ Q satisfies the

following exogeneity condition:

Assumption 2.1 (Instrument Exogeneity): Z ⊥⊥ (Y0, Y1, D0, D1) under Q.

We will additionally require that every Q ∈ Q satisfy at least one of the following monotonicity conditions:

Assumption 2.2 (Monotonicity of D in Z): Q{D1 ≥ D0} = 1 or Q{D1 ≤ D0} = 1.

Assumption 2.3 (Monotonicity of Y in D): Q{Y1 ≥ Y0} = 1 or Q{Y1 ≤ Y0} = 1.

We do not impose instrument relevance, i.e., we allow for P{D = 1|Z = 1} = P{D = 1|Z = 0}. Without

loss of generality, we will order Z such that P{D = 1|Z = 1} ≥ P{D = 1|Z = 0}. Given this ordering and

Assumption 2.1, we have that Assumption 2.2 is equivalent to the restriction that Q{D1 ≥ D0} = 1.

Our object of interest is the average effect of the endogenous regressor on the outcome, defined to be

EQ[Y1 − Y0] = Q{Y1 = 1} −Q{Y0 = 1} . (4)

This quantity is typically referred to in the treatment effect literature as the average treatment effect (ATE).

It will be useful to partition Q as Q = Q+ ∪Q0 ∪Q−, where

Q+ = {Q ∈ Q : Q{Y1 = 1} −Q{Y0 = 1} > 0}

Q0 = {Q ∈ Q : Q{Y1 = 1} −Q{Y0 = 1} = 0}

Q− = {Q ∈ Q : Q{Y1 = 1} −Q{Y0 = 1} < 0} ,

and define

Q0,+ = Q+ ∪Q0

Q0,− = Q− ∪Q0 .

In other words, Q− (Q0,−) is the set of distributions for (Y0, Y1, D0, D1, Z) satisfying our restrictions and

having a (weakly) negative ATE, Q0 is the set of distributions for (Y0, Y1, D0, D1, Z) satisfying our restrictions

and having a zero ATE, and Q+ (Q0,+) is the set of distributions for (Y0, Y1, D0, D1, Z) satisfying our

restrictions and having a (weakly) positive ATE. In this notation, the ATE is identified to be positive if

P ∈ Q+T
−1 ∩ (Q0,−T

−1)c , (5)
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where Q+T
−1 = {QT−1 : Q ∈ Q+}; Q−T

−1, Q0,−T
−1 and Q0,+T

−1 are defined similarly. In other

words, we identify the ATE to be positive if the distribution of (Y,D,Z) is consistent with our restrictions

holding with a positive ATE but not consistent with our restrictions holding with a zero or negative ATE.

Symmetrically, the ATE is identified to be negative if

P ∈ Q−T
−1 ∩ (Q0,+T

−1)c . (6)

Analogously, the distribution of the observed data, P , is consistent with our restrictions if

P ∈ QT−1 . (7)

For completeness, we note that the identified set for the ATE, as a function of P , is given by

{EQ[Y1 − Y0] : Q ∈ Q and P = QT−1} .

Remark 2.1 Our results below will be stated in terms of the reduced form parameter ∆(P ), defined in

(1). In the biostatistics literature, when Z is random assignment to treatment with possible non-compliance,

∆(P ) is sometimes referred to as the “intention-to-treat” parameter. If the instrument is relevant, i.e.,

P{D = 1|Z = 1} 6= P{D = 1|Z = 0}, then, under mild regularity conditions, the usual linear instrumental

variables estimand in this setting is simply ∆(P ) divided by P{D = 1|Z = 1} − P{D = 1|Z = 0}. Under

our assumptions, the sign of ∆(P ) and the usual linear instrumental variables estimand are therefore the

same. As a result, it will be straightforward to re-scale our results to state them in terms of this quantity.

Remark 2.2 Note that Assumption 2.2 is the same monotonicity assumption found in Imbens and Angrist

(1994), who also refer to it as an assumption of “no defiers.” It follows from results in Vytlacil (2002) that

this assumption is equivalent to the selection model of Heckman and Vytlacil (2001b, 2005). In particular,

it is equivalent to assuming that there exists a representation of the model as

Dz = I{δ0 + δ1z + η ≥ 0} (8)

with δ1 being nonrandom. Similarly, Assumption 2.3 is equivalent to assuming that there exists a represen-

tation of the model as

Yd = I{β0 + β1d+ ε ≥ 0} (9)

with β1 nonrandom, and Assumptions 2.2 and 2.3 is equivalent to assuming both (8) and (9) with δ1 and β1

nonrandom.

Remark 2.3 A stronger version of Assumption 2.3 in which it is assumed further that the direction of the

monotonicity is known a priori is referred to as the “monotone treatment response” assumption by Manski

(1997) and Manski and Pepper (2000). They characterize the identified set for the ATE under this type of

restriction. As discussed by Bhattacharya et al. (2008), these results do not hold if only Assumption 2.3 is

assumed. In some settings, it may not be reasonable to assume that the direction of the effect is known a

priori. Our analysis, which focuses on the sign of the ATE, is useful in such settings.
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3 Identifying the Sign of the Average Treatment Effect from IV

In this section, for each of our three possible restrictions on Q, we characterize whether P satisfies (5), (6)

or (7) in terms of ∆(P ).

3.1 Monotonicity of D in Z

In this section, we assume that every Q ∈ Q satisfies Assumptions 2.1 and 2.2. In this case, our results

essentially follow from Balke and Pearl (1997), who characterize the identified set for the ATE under these

assumptions and also when P is consistent with these restrictions. See also Heckman and Vytlacil (2001a)

and Kitagawa (2008), who generalize these results.

In order to state our results, we require some additional notation. Define

A1(P ) = max{A1
1(P ), A2

1(P )},

A2(P ) = −P{Y = 0, D = 0|Z = 1} − P{Y = 1, D = 1|Z = 0}

A3(P ) = P{Y = 1, D = 0|Z = 1}+ P{Y = 0, D = 1|Z = 0}

A4(P ) = min{A1
4(P ), A2

4(P )} ,

where

A1
1(P ) = P{Y = 1, D = 0|Z = 1} − P{Y = 1, D = 0|Z = 0},

A2
1(P ) = P{Y = 0, D = 1|Z = 0} − P{Y = 0, D = 1|Z = 1},

A1
4(P ) = P{Y = 1, D = 1|Z = 1} − P{Y = 1, D = 1|Z = 0},

A2
4(P ) = P{Y = 0, D = 0|Z = 0} − P{Y = 0, D = 0|Z = 1} .

Note that under our assumptions A2(P ) ≤ A4(P ), A1(P ) ≤ A3(P ), and A2(P ) ≤ 0 ≤ A3(P ).

Theorem 3.1 If every Q ∈ Q satisfies Assumptions 2.1 and 2.2, then

(i) P ∈ QT−1 if and only if

∆(P ) ∈ [A1(P ), A4(P )] . (10)

(ii) P ∈ Q+T
−1 ∩ (Q0,−T

−1)c if and only if

∆(P ) ∈ (A3(P ), A4(P )] .

(iii) P ∈ Q−T
−1 ∩ (Q0,+T

−1)c if and only if

∆(P ) ∈ [A1(P ), A2(P )) .

Remark 3.1 Part (i) of Theorem 3.1 implies that P is inconsistent with our restrictions if and only if

∆(P ) 6∈ [A1(P ), A4(P )] Hence, P is inconsistent with our restrictions if and only if (a) A1(P ) > A4(P ), (b)

A1(P ) ≤ A4(P ) and ∆(P ) < A1(P ), or (c) A1(P ) ≤ A4(P ) and ∆(P ) > A4(P ). If A1(P ) ≤ A4(P ) and

6



∆(P ) < A1(P ), then it is possible to show that A1(P ) ≤ 0. Similarly, if A1(P ) ≤ A4(P ) and ∆(P ) > A4(P ),

then it is possible to show that A4(P ) ≥ 0. In this sense, part (i) of Theorem 3.1 implies that P is inconsistent

with our restrictions whenever ∆(P ) is “too far” from zero.

Remark 3.2 Parts (ii) and (iii) of Theorem 3.1 imply that we are both unable to reject our restrictions and

unable to determine the sign of the ATE whenever ∆(P ) is “too close” to zero, i.e.,

∆(P ) ∈ [A2(P ), A3(P )] .

More generally, the width of the region of indeterminacy is bounded from above by

2(P{D = 0|Z = 1}+ P{D = 1|Z = 0}) = 2(1−Q{D1 > D0}) ,

which decreases with the strength of the instrument, as measured by P{D = 1|Z = 1}−P{D = 1|Z = 0} =

Q{D1 > D0}. Using results in Imbens and Angrist (1994), we have that

∆(P ) = EQ[Y1 − Y0|D1 > D0]Q{D1 > D0}

under Assumptions 2.1 and 2.2. The reduced form parameter ∆(P ) thus combines the strength of the

instrument with the strength of the treatment on “compliers.” In this way, the sign of the ATE is easier to

determine when the instrument is stronger or the effect of the treatment on the “compliers” is stronger.

Remark 3.3 Part (i) of Theorem 3.1 is derived from results in Balke and Pearl (1997). A more general

result that does not require Y to be binary can be found in Kitagawa (2008), who builds upon the work of

Imbens and Rubin (1997). Kitagawa (2008) also develops a testing procedure. For binary Y , Bhattacharya

et al. (2012) develop a test of Assumptions 2.1 and 2.2 by comparing the bounds on the ATE in Manski

(1990) with those in Heckman and Vytlacil (2001a). The resulting conditions are in fact equivalent to part

(i) of Theorem 3.1.

3.2 Monotonicity of Y in D and Monotonicity of D in Z

In this section, we assume that every Q ∈ Q satisfies Assumptions 2.1, 2.2 and 2.3. These restrictions have

been previously considered in the literature by Bhattacharya et al. (2008, 2012) and Shaikh and Vytlacil

(2005, 2011), who find that the sign of ATE equals the sign of ∆(P ). The following theorem re-states this

result and additionally characterizes when P ∈ QT−1 in terms of ∆(P ). We emphasize that this additional

result is not found in either Bhattacharya et al. (2012) or Shaikh and Vytlacil (2005, 2011).

Theorem 3.2 If every Q ∈ Q satisfies Assumptions 2.1, 2.2 and 2.3, then

(i) P ∈ QT−1 if and only if

∆(P ) ∈ [A1(P ), A4(P )] , (11)

(ii) P ∈ Q+T
−1 ∩ (Q0,−T

−1)c if and only if

∆(P ) ∈ [A1(P ), 0) ,
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(iii) P ∈ Q−T
−1 ∩ (Q0,+T

−1)c if and only if

∆(P ) ∈ (0, A4(P )] .

Remark 3.4 Note that the conditions on ∆(P ) in (11) that determine whether or not P is consistent with

our assumptions are exactly the same as the ones in (10). It is therefore never possible to reject Assumption

2.2 without rejecting Assumptions 2.2 and 2.3 together.

Remark 3.5 In contrast to our earlier results, the only circumstance in which we are both unable to reject

our restrictions and unable to determine the sign of the ATE is if ∆(P ) = 0.

3.3 Monotonicity of Y in D

In this section, we assume that every Q ∈ Q satisfies Assumptions 2.1 and 2.3. Note that Assumption 2.3

has not been considered without Assumption 2.2 previously in the literature. In order to state our results,

we require some additional notation. Define

B1(P ) = max{−P{Y = 1, D = 1|Z = 0},−P{Y = 0, D = 0|Z = 1}}

B2(P ) = max{P{Y = 1, D = 1|Z = 1}, P{Y = 0, D = 0|Z = 0}}

B3(P ) = max{−P{Y = 0, D = 1|Z = 1},−P{Y = 1, D = 0|Z = 0}}

B4(P ) = max{P{Y = 0, D = 1|Z = 0}, P{Y = 1, D = 0|Z = 1}} .

Note that B1(P ) ≤ 0 and B3(P ) ≤ 0, while B2(P ) ≥ 0 and B4(P ) ≥ 0. Using this notation, we have the

following theorem:

Theorem 3.3 If every Q ∈ Q satisfies Assumptions 2.1 and 2.3, then

(i) P ∈ QT−1 if and only if

∆(P ) ∈ [min{B1(P ), B3(P )},max{B2(P ), B4(P )}] , (12)

(ii) P ∈ Q+T
−1 ∩ (Q0,−T

−1)c if and only if

∆(P ) ∈ [B1(P ), B2(P )] \ [B3(P ), B4(P )] ,

(iii) P ∈ Q−T
−1 ∩ (Q0,+T

−1)c if and only if

∆(P ) ∈ [B3(P ), B4(P )] \ [B1(P ), B2(P )] .

Remark 3.6 Analogously to our earlier results, part (i) of Theorem 3.3 implies that P is inconsistent with

our assumptions if and only if ∆(P ) is “too far” from zero. Here, “too far” means ∆(P ) < min{B1(P ), B3(P )}
or ∆(P ) > max{B2(P ), B4(P )}. Since A1(P ) ≥ B3(P ) and A4(P ) ≤ B2(P ),

[A1(P ), A4(P )] ⊆ [min{B1(P ), B3(P )},max{B2(P ), B4(P )}] .
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Furthermore, the inclusion may be strict, so it is possible to reject Assumption 2.2 without rejecting As-

sumption 2.3.

Remark 3.7 Parts (ii) and (iii) of Theorem 3.3 imply that we are both unable to reject our restrictions and

unable to determine the sign of the ATE if ∆(P ) is “too close” to zero, i.e.,

∆(P ) ∈ [max{B1(P ), B3(P )},min{B2(P ), B4(P )}]

where this interval necessarily includes zero. The width of this region of indeterminacy is bounded by

2(P{D = 0|Z = 1}+ P{D = 1|Z = 0}) = 2(1−Q{D1 > D0}+Q{D1 < D0}) ,

which decreases as the instrument gets stronger, as measured by P{D = 1|Z = 1} − P{D = 1|Z = 0} =

Q{D1 > D0} − Q{D1 < D0}. In this sense, the sign of the ATE is again easier to determine when the

instrument is stronger.

Remark 3.8 A possibly counterintuitive implication of Theorem 3.3 is that it is possible for ∆(P ) to be

so large that one determines the sign of the ATE is in fact negative or for ∆(P ) to be so small that one

determines the sign of the ATE is in fact positive. The first case happens when

min{B2(P ), B4(P )} < ∆(P ) ≤ max{B2(P ), B4(P )} and max{B2(P ), B4(P )} = B4(P ) , (13)

whereas the second case happens when

min{B1(P ), B3(P )} ≤ ∆(P ) < max{B1(P ), B3(P )} and max{B1(P ), B3(P )} = B3(P ) . (14)

In order to better understand this result, it is instructive to note that

∆(P ) =

Q{Y1 > Y0, D1 > D0} −Q{Y1 > Y0, D1 < D0} if Y1 ≥ Y0

Q{Y1 < Y0, D1 < D0} −Q{Y1 < Y0, D1 > D0} if Y1 ≤ Y0

.

The first case occurs when Q{Y1 < Y0, D1 < D0} > Q{Y1 < Y0, D1 > D0}, so we require enough “defiers”

with a negative treatment effect, and the second case occurs when Q{Y1 > Y0, D1 > D0} < Q{Y1 > Y0, D1 <

D0}, so we require enough “defiers” with a positive treatment effect. Note further that

B1(P ) ≤ Q{Y1 > Y0, D1 > D0} −Q{Y1 > Y0, D1 < D0} ≤ B2(P )

B3(P ) ≤ Q{Y1 < Y0, D1 < D0} −Q{Y1 < Y0, D1 > D0} ≤ B4(P ) .

It follows that it must be the case that Y1 ≤ Y0 whenever ∆(P ) ∈ (B2(P ), B4(P )] ⊆ (0, 1] and that Y1 ≥ Y0

whenever ∆(P ) ∈ [B1(P ), B3(P )) ⊆ [−1, 0).

Remark 3.9 The counterintuitive result described in Remark 3.8 can only arise when P is inconsistent

with Assumption 2.2 but consistent with Assumption 2.3. To see this, note that (13) or (14) together

with the fact that A1(P ) ≥ B3(P ) and A4(P ) ≤ B2(P ) imply that min{B1(P ), B3(P )} ≤ ∆(P ) <

A1(P ) or A4(P ) < ∆(P ) ≤ max{B2(P ), B4(P )}, which implies that ∆(P ) 6∈ [A1(P ), A4(P )] and ∆(P ) ∈
[min{B1(P ), B3(P )},max{B2(P ), B4(P )}].
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4 Detecting Failure of the Monotonicity Restrictions

In the preceding section, we characterized when P was consistent with our restrictions in terms of the reduced

form parameter ∆(P ). In particular, we showed that in each case a value of ∆(P ) sufficiently far from zero

implied that the restrictions were violated. In this section, we maintain instrument exogeneity – Assumption

2.1 – and characterize which types of violations of Assumption(s) 2.2 (and 2.3) are detectable in the sense

that they lead to ∆(P ) to be sufficiently far from zero. To complement the analytical results in this section,

we also provide some numerical results in Appendix A, where we explore violations of the monotonicity

restrictions being detectable in the context of a parametric model for Y and D.

4.1 Monotonicity of D in Z (and Monotonicity of Y in D)

Parts (i) of Theorems 3.1 and 3.2 showed that P is consistent with Assumption(s) 2.2 (and 2.3) if and only

if ∆(P ) satisfies (10). The following proposition characterizes distributions Q satisfying Assumptions 2.1 for

which ∆(P ) fails to satisfy (10).

Proposition 4.1 If P = QT−1 for a distribution Q that satisfies Assumptions 2.1, then ∆(P ) 6∈ [A1(P ), A4(P )]

if and only if

Q{Yj = k,D1 < D0} > Q{Yj = k,D1 > D0}

for some (j, k) ∈ {0, 1}2.

Remark 4.1 Given our normalization that P{D = 1|Z = 1} ≥ P{D = 1|Z = 0} and given Assumption

2.1, we have that the fraction of “compliers,” Q{D1 > D0}, at least weakly exceeds the fraction of “defiers,”

Q{D1 < D0}, and does so by the magnitude of P{D = 1|Z = 1}−P{D = 1|Z = 0} = Q{D1 > D0}−Q{D1 <

D0}. Thus, Proposition 4.1 implies that in order to detect a violation of Assumption 2.2 it must be the case

that the fraction of “defiers” is sufficiently large (which in turn requires the instrument be sufficiently weak

in that P{D = 1|Z = 1} − P{D = 1|Z = 0} is sufficiently small) and that the distribution of potential

outcomes among “defiers” and “compliers” differs, i.e.,

Q{Yj = 1|D1 < D0} 6= Q{Yj = 1|D1 > D0}

for some j ∈ {0, 1}.

4.2 Monotonicity of Y in D

Part (i) of Theorem 3.3 showed that P is consistent with Assumption 2.3 if and only if ∆(P ) satisfies (12).

The following proposition characterizes distributions Q satisfying Assumption 2.1 for which ∆(P ) fails to
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satisfy (12). In order to state our results, we require some additional notation. Define

M1
1 = Q{Y1 > Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 1, D1 = D0 = 1}+Q{Y1 = Y0 = 1, D1 < D0}

M2
1 = Q{Y1 > Y0, D1 = D0 = 0}+Q{Y1 = Y0 = 0, D1 = D0 = 0}+Q{Y1 = Y0 = 0, D1 < D0}

M1
2 = Q{Y1 > Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 1, D1 = D0 = 1}+Q{Y1 = Y0 = 1, D1 > D0}

M2
2 = Q{Y1 > Y0, D1 = D0 = 0}+Q{Y0 = Y1 = 0, D1 = D0 = 0}+Q{Y0 = Y1 = 0, D1 > D0}

M1
3 = Q{Y1 < Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 0, D1 = D0 = 1}+Q{Y1 = Y0 = 0, D1 > D0}

M2
3 = Q{Y1 < Y0, D1 = D0 = 0}+Q{Y0 = Y1 = 1, D1 = D0 = 0}+Q{Y0 = Y1 = 1, D1 > D0}

M1
4 = Q{Y1 < Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 0, D1 = D0 = 1}+Q{Y1 = Y0 = 0, D1 < D0}

M2
4 = Q{Y1 < Y0, D1 = D0 = 0}+Q{Y1 = Y0 = 1, D1 = D0 = 0}+Q{Y1 = Y0 = 1, D1 < D0}

and, for 1 ≤ j ≤ 4, let

Mj = min{M1
j ,M

2
j } .

Using this notation, we have the following result:

Proposition 4.2 If P = QT−1 for a distribution Q that satisfies Assumptions 2.1, then

∆(P ) 6∈ [min{B1(P ), B3(P )},max{B2(P ), B4(P )}]

if and only if either

Q{Y1 > Y0, D1 > D0}+Q{Y1 < Y0, D1 < D0}

< min{Q{Y1 < Y0, D1 > D0} −M1, Q{Y1 > Y0, D1 < D0} −M3} (15)

or

Q{Y1 < Y0, D1 > D0}+Q{Y1 > Y0, D1 < D0}

< min{Q{Y1 < Y0, D1 < D0} −M2, Q{Y1 > Y0, D1 > D0} −M4} . (16)

Remark 4.2 Note that if there are no “defiers,” then it is impossible for either (15) or (16) to hold. Hence,

it is only possible to detect violations of Assumption 2.3 if Assumption 2.2 does not hold.

Remark 4.3 In order to satisfy (15), there must be strong negative dependence between Y1 − Y0 and

D1 − D0. In addition, it seems that the probability of being an “always taker” or “never taker” must be

small so that M1 and M3 will be small. For instance, (15) is satisfied when Q{Y1 < Y0|D1 > D0} = 1,

Q{Y1 > Y0|D1 < D0} = 1 and Q{D1 = D0} = 0. Analogous comments apply to (16). In this sense, it seems

that the requirements on Q in order to satisfy either (15) or (16) are rather extreme. The numerical results

in Appendix A further highlight the difficulty of detecting violations of Assumption 2.3.
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5 Inference

In this section, we let (Yi, Di, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution

P ∈ P on {0, 1}3 and, for each of the three sets of restrictions considered in the previous sections, consider

the problem of simultaneously testing the restrictions and making inferences about the sign of the ATE when

those restrictions are not rejected. More precisely, for each set of restrictions on Q, we will consider the

problem of testing the family of null hypotheses

Hj : P ∈ Pj for 1 ≤ j ≤ 3 , (17)

where

P1 = {P ∈ P : P ∈ QT−1}

P \P2 = {P ∈ P : P ∈ Q+T
−1}

P \P3 = {P ∈ P : P ∈ Q−T
−1} .

in a way that satisfies

lim sup
n→∞

sup
P∈P

FWERP ≤ α . (18)

Here,

FWERP = P{any false rejection} .

Note that P1 equals the set of distributions P ∈ P that are consistent with our restrictions, P\P2 equals the

set of distributions P ∈ P that are consistent with our restrictions and the sign of the ATE being positive,

and P \P3 equals the set of distributions P ∈ P that are consistent with our restrictions and the sign of the

ATE being negative. Note further that at most one null hypothesis may be false. Our testing procedures

below will therefore have the feature that at most one null hypothesis will be rejected. If H1 is rejected,

then we will conclude that P is inconsistent with our restrictions; if H2 is rejected, then we will conclude

that P is consistent with our restrictions and a positive ATE; if H3 is rejected, then we will conclude that

P is consistent with our restrictions and a negative ATE.

Below we will assume that that P is such that

inf
P∈P

inf
(y,d,z)∈{0,1}3

P{Y = y,D = d, Z = z} > ε

for some ε > 0. We will also denote by P̂n the empirical distribution of (Yi, Di, Zi), i = 1, . . . , n.
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5.1 Monotonicity of D in Z

In this section, we assume every Q ∈ Q satisfies Assumptions 2.1 and 2.2. For this choice of Q, it follows

from Theorem 3.1 that

P1 = {P ∈ P : A1(P ) ≤ ∆(P ) ≤ A4(P )} (19)

P2 = {P ∈ P : A3(P ) ≥ ∆(P ) ∪∆(P ) > A4(P )} (20)

P3 = {P ∈ P : A1(P ) > ∆(P ) ∪∆(P ) ≥ A2(P )} . (21)

In order to describe our testing procedure, it is useful to introduce some further notation. Define

a1(P ) = −a8(P ) = A1
1(P )−∆(P )

a2(P ) = −a9(P ) = A2
1(P )−∆(P )

a3(P ) = −a6(P ) = ∆(P )−A1
4(P )

a4(P ) = −a7(P ) = ∆(P )−A2
4(P )

a5(P ) = ∆(P )−A3(P )

a10(P ) = A2(P )−∆(P ) .

For 1 ≤ j ≤ 3, define

T 1
j,n = min

K∈K1
j

max
k∈K

ak(P̂n)

σ̂ak,n
,

where

K1
1 = {{1, 2, 3, 4}}

K1
2 = {{5}, {6}, {7}}

K1
3 = {{8}, {9}, {10}} ,

and σ̂ak,n for 1 ≤ k ≤ 10 is the usual (unpooled) estimate of the standard deviation of ak(P̂n). Note that at

most one of the T 1
j,n will be strictly positive. Define

ĉ1,n(1− α) = max
K∈K∗1

J−1
1,n(1− α,K, P̂n) , (22)

where

J1,n(x,K, P ) = P

{
max
k∈K

ak(P̂n)− ak(P )

σ̂ak,n
≤ x

}
K∗1 = {A ∪B ∪ C : A ∈ K1

1, B ∈ K1
2, C ∈ K1

3} .

Theorem 5.1 Consider testing (17) with P1, P2 and P3 given by (19), (20), and (21), respectively. The

testing procedure that rejects Hĵ whenever T 1
ĵ,n

> ĉ1,n(1− α), where ĵ = arg max1≤j≤3 T
1
j,n, satisfies (18).

Remark 5.1 The critical value ĉ1,n(1−α) in Theorem 5.1 may be larger than necessary. By exploiting the
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structure of the null hypotheses, it is in fact possible to replace K∗1 in Theorem 5.1 with

{{1, . . . , 5, 10}} ∪
⋃

5≤j≤7,8≤k≤10

{{j, k}} . (23)

To see this, it suffices to examine the proof of Theorem 5.1 in the Appendix and note that (38) continues to

hold if K∗I is replaced with

K̃∗I =
{
K̃ ∈ K∗I : PK̃ ∩ {P ∈ P : I(P ) = I} 6= ∅

}
,

where I(P ) = {1 ≤ j ≤ 3 : P ∈ Pj} ⊆ {1, 2, 3}. Using that I(P ) ∈ I, where

I = {{1, 2}, {2, 3}, {1, 3}, {1, 2, 3}} ,

it follows that we may replace K∗1 in (22) with ⋃
I∈I
K̃∗I . (24)

Since J−1
1,n(1−α, K̃, P̂n) is monotone in K̃ with respect to set inclusion, we may further restrict attention to

only those sets K̃ in (24) such that there is no strictly larger set with respect to set inclusion. The sets that

remain after doing so are given by (23).

Remark 5.2 The critical value ĉ1,n(1 − α) in (22) may be viewed as a “least favorable” critical value in

the same way that critical values based on assuming that all moments are binding in the moment inequality

literature are “least favorable.” To see this, it is useful to note that ĉ1,n(1 − α) is the same critical value

that would be used to test the null hypothesis that

P ∈
⋂

1≤j≤3

Pj =
⋃

K∈K∗1

{P ∈ P : ak(P ) ≤ 0}

at level α using the test statistic max1≤j≤3 T
1
j,n. In contrast to the moment inequality literature, where the

null hypotheses only involve a single set of inequalities, the null hypothesis involves a union of different sets

of inequalities. As a result, there is no longer a single “least favorable” critical value, but rather one for

each set of inequalities in the union. It is for this reason that the maximum appears in (22). It is possible

to construct critical values that are not “least favorable” by modifying other approaches in the moment

inequality literature, such as the recent approach by Romano et al. (2012).

5.2 Monotonicity of Y in D and D in Z

In this section, we assume every Q ∈ Q satisfies Assumptions 2.1, 2.2 and 2.3. For this choice of Q, it follows

from Theorem 3.2 that

P1 = {P ∈ P : A1(P ) ≤ ∆(P ) ≤ A4(P )} (25)

P2 = {P ∈ P : 0 ≥ ∆(P ) ∪∆(P ) > A4(P )} (26)

P3 = {P ∈ P : A1(P ) > ∆(P ) ∪∆(P ) ≥ 0} . (27)
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Recall the definitions of ak(P ) and σ̂ak,n for 1 ≤ k ≤ 10 in Section 5.1 and define

a11(P ) = −a12(P ) = ∆(P ) .

For 1 ≤ j ≤ 3, define

T 2
j,n = min

K∈K2
j

max
k∈K

ak(P̂n)

σ̂ak,n
,

where

K2
1 = {{1, 2, 3, 4}}

K2
2 = {{6}, {7}, {11}}

K2
3 = {{8}, {9}, {12}} ,

and σ̂ak,n for 11 ≤ k ≤ 12 is the usual (unpooled) estimate of the standard deviation of ak(P̂n). Note that at

most one of the T 3
j,n will be strictly positive. Define

ĉ2,n(1− α) = max
K∈K∗3

J−1
2,n(1− α,K, P̂n) ,

where

J2,n(x,K, P ) = P

{
max
k∈K

ak(P̂n)− aj(P )

σ̂ak,n
≤ x

}
K∗2 = {A ∪B ∪ C : A ∈ K2

1, B ∈ K2
2, C ∈ K2

3} .

Theorem 5.2 Consider testing (17) with P1, P2 and P3 given by (25), (26), and (27), respectively. The

testing procedure that rejects Hĵ whenever T 2
ĵ,n

> ĉ2,n(1− α), where ĵ = arg max1≤j≤3 T
2
j,n, satisfies (18).

Remark 5.3 By arguing as in Remark 5.1, it is in fact possible to show that K∗2 may be replaced by

{{1, . . . , 4, 11, 12}} ∪
⋃

j∈{6,7,11},k∈{8,9,12}

{{j, k}} .

5.3 Monotonicity of Y in D

In this section, we assume every Q ∈ Q satisfies Assumptions 2.1 and 2.3. For this choice of Q, it follows

from Theorem 3.3 that

P1 = {P ∈ P : min{B1(P ), B3(P )} ≤ ∆(P ) ≤ max{B2(P ), B4(P )}} (28)

P2 = {P ∈ P : B2(P ) ≤ B4(P ) ∪∆(P ) ≤ B4(P ) ∪∆(P ) > B2(P ), (29)

B3(P ) ≤ B1(P ) ∪∆(P ) < B1(P ) ∪∆(P ) ≥ B3(P )} (30)

P3 = {P ∈ P : B2(P ) ≥ B4(P ) ∪∆(P ) > B4(P ) ∪∆(P ) ≤ B2(P ), (31)

B3(P ) ≥ B1(P ) ∪∆(P ) ≥ B1(P ) ∪∆(P ) < B3(P )} . (32)
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In order to describe our testing procedure, it is useful to introduce some further notation. Define

b1(P ) = −b19(P ) = B1
1(P )−∆(P )

b2(P ) = −b20(P ) = B2
1(P )−∆(P )

b3(P ) = −b31(P ) = B1
3(P )−∆(P )

b4(P ) = −b32(P ) = B2
3(P )−∆(P )

b5(P ) = −b13(P ) = ∆(P )−B1
2(P )

b6(P ) = −b14(P ) = ∆(P )−B2
2(P )

b7(P ) = −b25(P ) = ∆(P )−B1
4(P )

b8(P ) = −b26(P ) = ∆(P )−B2
4(P )

b9(P ) = −b21(P ) = B1
2(P )−B1

4(P )

b10(P ) = −b23(P ) = B1
2(P )−B2

4(P )

b11(P ) = −b22(P ) = B2
2(P )−B1

4(P )

b12(P ) = −b24(P ) = B2
2(P )−B2

4(P )

b15(P ) = −b27(P ) = B1
3(P )−B1

1(P )

b16(P ) = −b29(P ) = B2
3(P )−B1

1(P )

b17(P ) = −b28(P ) = B1
3(P )−B2

1(P )

b18(P ) = −b30(P ) = B2
3(P )−B2

1(P ) .

For 1 ≤ j ≤ 3, define

T 3
j,n = min

K∈K3
j

max
k∈K

bk(P̂n)

σ̂bk,n
,

where

K3
1 = {A ∪B : A ∈ {{1, 2}, {3, 4}}, B ∈ {{5, 6}, {7, 8}}

K3
2 = {A ∪B : A ∈ {{13}, {14}, {7, 8}, {9, 10}, {11, 12}}, B ∈ {{19}, {20}, {3, 4}, {15, 16}, {17, 18}}

K3
3 = {A ∪B : A ∈ {{25}, {26}, {5, 6}, {21, 22}, {23, 24}}, B ∈ {{31}, {32}, {1, 2}, {27, 28}, {29, 30}} ,

and σ̂bk,n for 1 ≤ k ≤ 32 is the usual (unpooled) estimate of the standard deviation of bk(P̂n). Define

ĉ3,n(1− α) = max
K∈K∗3

J−1
3,n(1− α,K, P̂n) ,

where

J3,n(x,K, P ) = P

{
max
k∈K

bk(P̂n)− bk(P )

σ̂bk,n
≤ x

}
K∗3 = {A ∪B ∪ C : A ∈ K3

1, B ∈ K3
2, C ∈ K3

3}

Theorem 5.3 Consider testing (17) with P1, P2 and P3 given by (28), (29), and (31), respectively. The

testing procedure that rejects Hĵ whenever T 3
ĵ,n

> ĉ3,n(1− α), where ĵ = arg max1≤j≤3 T
3
j,n, satisfies (18).
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Remark 5.4 By arguing as in Remark 5.1, it is in fact possible to show that K∗3 may be replaced by

{{1, . . . , 8}} ∪ {A ∪B : A ∈ K3
2, B ∈ K3

3, C 6⊆ A ∪B for all C ∈ K̃} ,

where

K̃ = {{1, 2, 19}, {3, 4, 31}, {3, 4, 32}, {7, 8, 25}, {7, 8, 26}, {5, 6, 13}, {5, 6, 14}} .

A Detecting Failure of the Monotonicity Restrictions: Numerical

Results

Below we provide numerical results to complement the analytical results from Section 4. We consider

a parametric, latent variable model for Y and D that satisfies instrument exogeneity – Assumption 2.1

– and examine which parameterizations of the latent variable model result in detectable violations of the

monotonicity restrictions. The numerical results highlight that the ability to detect violations of Assumption

2.2 requires strong (positive or negative) dependence between treatment response to the instrument and

outcome response to the treatment, i.e., strong dependence between D1 −D0 and Y1 − Y0. The results also

highlight the difficulty of detecting violations of Assumption 2.3 in that, in addition to extremely strong

dependence between D1 −D0 and Y1 − Y0, the fraction of “always takers” and “never takers” must be close

to zero in order to be able to detect violations of Assumption 2.3.

A.1 Monotonicity of D in Z

Consider the following parametric model for Y and D:

Y = I{βD + ε ≥ 0}
D = I{δZ + η ≥ 0}

(33)

with Z ⊥⊥ (ε, η, β, δ), (ε, η, β, δ) ∼ N(µ,Σ), and E[δ] > 0. Note that this model satisfies Assumption 2.1 and

that Assumption 2.2 is violated whenever Var[δ] > 0. Corr[β, δ] measures the dependence between treatment

response to the instrument and outcome response to the treatment. Var[δ] and E[δ] measure the strength

of the instrument, which is decreasing in Var[δ] and increasing in E[δ]. From Proposition 4.1, we have that

the ability to detect violations of Assumption 2.2 is increasing in the size of the violation and decreasing in

the strength of the instrument. In addition, the ability to detect violations requires sufficient difference in

latent outcome distributions between “compliers” and “defiers.” The difference between these distributions

is increasing in |Corr[β, δ]|. We therefore examine below how the ability to detect violations of Assumption

2.2 varies with Var[δ], E[δ], and Corr[β, δ]. In particular, we consider parameterizations of (33) with

µ =


0

0

0

µδ

 , Σ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 σβ,δ σ2
δ


and vary µδ from 0.1 to 1, σ2

δ from 0.2 to 50, and σβ,δ so that Corr[β, δ] varies from −1 to 1.
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Figure 1: Detecting Violations of D Monotonic in Z: Minimum Var[δ]
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Figure 1 displays the minimum value of Var[δ] for which it is possible to detect violations of Assumption

2.2 for different values of E[δ], Corr[β, δ]. For presentation purposes, we have truncated the graph at 50 for

the minimum value of Var(δ). The minimum value of Var[δ] for which it is possible to detect violations of

Assumption 2.2 is increasing in E[δ], though not dramatically so. In contrast, the minimum value of Var[δ]

for which it is possible to detect violations of Assumption 2.2 asymptotes to infinity as Corr[β, δ] approaches

zero.

Figure 2 displays the maximum strength of the instrument, as indexed by E[δ], for which it is possible

to detect violations of Assumption 2.2 for different values of Var[δ] and Corr[β, δ]. The maximum value of

E[δ] for which it is possible to detect violations is increasing in Var[δ]: if the violation is more severe, then

the instrument can be stronger with the violation still being detectable. As Corr[β, δ] approaches zero, the

maximum value of E[δ] for which it is possible to detect violations approaches 0. For any Corr[β, δ] 6= 0,

there is a strength of instrument sufficiently weak such that the violation of Assumption 2.2 can still be

detected. On the other hand, if Corr[β, δ] = 0, then it is not possible to detect violation of Assumption 2.2

for any value of E[δ] and Var[δ].

The lefthand-side of Figure 3 displays the maximum value of Corr[β, δ] < 0 for which we can detect

violations of Assumption 2.2 for different values of E[δ] and Var[δ]; the righthand-side of Figure 3 displays

the minimum value of Corr[β, δ] > 0 for which we can detect violations of Assumption 2.2 for different values

of E[δ] and Var[δ]. The figure is plotted from an “overhead” view, with warmer colors indicating higher

values for the maximum/minumum value of Corr[β, δ] for which the violation is detectable and white space

for values of E[δ] and Var[δ] for which there is no value of Corr[β, δ] for which the violation is detectable.

The ability to detect the violation of Assumption 2.2 is increasing in |Corr(β, δ)|, but, for a fairly large range

of values of E[δ] and Var[δ], there exists no value of Corr[β, δ] for which the violation is detectable.
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Figure 2: Detecting Violations of D Monotonic in Z: Maximum E[δ]
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Figure 3: Detecting Violations of D Monotonic in Z: Minimum/Maximum Corr[β, δ]
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A.2 Monotonicity of Y in D

Extensive experimentation revealed that it is difficult to find parameterizations of (33) for which it is possible

to detect violations of Assumption 2.3. For example, with Corr[η, β] = 0, Corr[η, δ] = 0 and Corr[β, δ] ≈ ±1,

we were unable to find any parameterizations for which it is possible to detect violations Assumption 2.3.

The only parameterizations we found for which it is possible to detect violations of Assumption 2.3 involved

Corr[β, δ] ≈ 1, Corr[η, β] ≈ −1, Corr[η, δ] ≈ −1, and both Var[β] and Var[δ] large. This remained true even

for extreme violations of Assumption 2.3, such as Var[β] = 10, 000. The results suggest that in a model of

the form of (33), it is difficult to find parameterizations such that the fractions of “always takers” and “never

takers” are small enough so that it is possible to detect violations of Assumption 2.3.

The extreme difficulty in finding parameterizations of (33) for which it is possible to detect violations of

Assumption 2.3 led us to consider the following parametric, latent variable model for Y and D:

Y = I{βD + ε ≥ 0}
D = I{αt(δ) + δt(δ)Z + η ≥ 0}

(34)

with Z ⊥⊥ (ε, η, β, δ), (ε, η, β, δ) ∼ N(µ,Σ), and

αt(δ) =

−t if δ > 0

t if δ ≤ 0

δt(δ) =

δ + 2t if δ > 0

δ − 2t if δ ≤ 0
.

Here, the parameter t > 0 is used as an index to control the fractions of “always takers” and “never takers.”

In particular, these fractions are decreasing in t. As in the analysis of the previous subsection, we consider

µ =


0

0

0

.1

 , Σ =


1 0 0 0

0 1 0 0

0 0 σ2
β 0

0 0 σβ,δ 10

 ,

Extensive experimentation again revealed that it is difficult to find parameterizations of (34) for which it

is possible to detect violations of Assumption 2.3 for small values of t, though less difficult as t gets larger

(and thus the probability of being an “always taker” or “never taker” approaches zero). For example, when

t ≥ 4, Q{D1 = D0} ≈ 0, and, for such t, it is possible to detect violations of Assumption 2.3 if Corr[β, δ]

and Var[β∗] are sufficiently large, such as Corr[β, δ] = .8 and Var[δ] ≥ 3.

B Proofs for Section 3

Proof of Theorem 3.1: First consider assertion (i). For 1 ≤ j ≤ 2, ∆(P ) = Aj1(P ) + Aj4(P ), so that

∆(P ) ≥ Aj1(P ) =⇒ Aj4(P ) ≥ 0 and ∆(P ) ≤ Aj4(P ) =⇒ Aj1(P ) ≤ 0. Thus, ∆(P ) ∈ [A1(P ), A4(P )]

if and only if A1(P ) ≤ 0 and A4(P ) ≥ 0. The result then follows from Balke and Pearl (1997). Now
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consider assertions (ii) and (iii). From Balke and Pearl (1997), the identified set for EQ[Y1 − Y0] is given by

[∆(P )−A3(P ),∆(P )−A2(P )]. Combining this result with (i) gives the stated results.

Proof of Theorem 3.2: Following the same linear programming strategy as in Balke and Pearl (1997)

except with the additional constraints on Q that

Q{Y1 > Y0, D1 = j,D0 = k} = 0

for all (j, k) ∈ {0, 1}2 and Q ∈ Q results in the restriction that ∆(P ) ∈ [A1(P ), 0]. Instead imposing the

additional constraints on Q that

Q{Y1 < Y0, D1 = j,D0 = k} = 0

for all (j, k) ∈ {0, 1}2 and Q ∈ Q results in the restriction ∆(P ) ∈ [0, A4(P )]. The result now follows.

Proof of Theorem 3.3: Following the same linear programming strategy as in Balke and Pearl (1997)

except replacing the constraint that

Q{Y1 = j, Y0 = k,D1 < D0} = 0 (35)

for all (j, k) ∈ {0, 1}2 and Q ∈ Q with the constraint that

Q{Y1 > Y0, D1 = j,D0 = k} = 0

for all (j, k) ∈ {0, 1}2 and Q ∈ Q results in the restriction that ∆(P ) ∈ [B3(P ), B4(P )]. Instead replacing

the constraint that (35) holds for all (j, k) ∈ {0, 1}2 and Q ∈ Q with the constraint that

Q{Y1 < Y0, D1 = j,D0 = k} = 0

for all (j, k) ∈ {0, 1}2 and Q ∈ Q results in the restriction that ∆(P ) ∈ [B1(P ), B2(P )]. The result now

follows.

C Proofs for Section 4

Proof of Proposition 4.1: Using (2) - (3) and Assumption 2.1, ∆(P ) may be expressed as{
Q{Y1 > Y0, D1 > D0} −Q{Y1 < Y0, D1 > D0}

}
−
{
Q{Y1 > Y0, D1 < D0} −Q{Y1 < Y0, D1 < D0}

}
. (36)

Furthermore,

A1
1(P ) = Q{Y0 = 1, D1 < D0} −Q{Y0 = 1, D1 > D0}

A2
1(P ) = Q{Y1 = 0, D1 < D0} −Q{Y1 = 0, D1 > D0}

A1
4(P ) = Q{Y1 = 1, D1 > D0} −Q{Y1 = 1, D1 < D0}

A2
4(P ) = Q{Y0 = 0, D1 > D0} −Q{Y0 = 0, D1 < D0} .
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Thus,

∆(P )−A1
1(P ) = Q{Y1 = 1, D1 > D0} −Q{Y1 = 1, D1 < D0}

∆(P )−A2
1(P ) = Q{Y0 = 0, D1 > D0} −Q{Y0 = 0, D1 < D0}

∆(P )−A1
4(P ) = −Q(Y0 = 1, D1 > D0}+Q{Y0 = 1, D1 < D0}

∆(P )−A2
4(P ) = −Q{Y1 = 0, D1 > D0}+Q{Y1 = 0, D1 < D0} .

The desired result now follows immediately.

Proof of Proposition 4.2: Using Assumption 2.1, we have that

B1(P ) = −min

{
Q{Y1 > Y0, D1 < D0}+Q{Y1 > Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 1, D0 = 1},
Q{Y1 > Y0, D1 < D0}+Q{Y1 > Y0, D1 = D0 = 0}+Q{Y1 = Y0 = 0, D1 = 0}

}
,

B2(P ) = min

{
Q{Y1 > Y0, D1 > D0}+Q{Y1 > Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 1, D1 = 1},
Q{Y1 > Y0, D1 > D0}+Q{Y1 > Y0, D1 = D0 = 0}+Q{Y0 = Y1 = 0, D0 = 0}

}
,

B3(P ) = −min

{
Q{Y1 < Y0, D1 > D0}+Q{Y1 < Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 0, D1 = 1}
Q{Y1 < Y0, D1 > D0}+Q{Y1 < Y0, D1 = D0 = 0}+Q{Y0 = Y1 = 1, D0 = 0}

}
,

B4(P ) = min

{
Q{Y1 < Y0, D1 < D0}+Q{Y1 < Y0, D1 = D0 = 1}+Q{Y1 = Y0 = 0, D0 = 1}
Q{Y1 < Y0, D1 < D0}+Q{Y1 < Y0, D1 = D0 = 0}+Q{Y1 = Y0 = 1, D1 = 0}

}
.

so that

B1(P ) = −Q{Y1 > Y0, D1 < D0} −M1

B2(P ) = Q{Y1 > Y0, D1 > D0}+M2

B3(P ) = −Q{Y1 < Y0, D1 > D0} −M3

B4(P ) = Q{Y1 < Y0, D1 < D0}+M4

The desired result now follows immediately.

D Proofs for Section 6

Proof of Theorem 5.1: Suppose by way of contradiction that (18) fails. Then there exists a subsequence

{Pnm ∈ P : m ≥ 1} and α′ > α such that

FWERPnm
→ α′ . (37)

Let

I(P ) = {1 ≤ j ≤ 3 : P ∈ Pj} ⊆ {1, 2, 3} .
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Since there are only finitely many possible values for I(P ) and FWERP = 0 when I(P ) = ∅, we may assume

further that I(Pnm) = I 6= ∅. Let

K∗I =

⋃
j∈I

Aj : Aj ∈ K1
j for j ∈ I

 .

Using this notation, we have that

{P ∈ P : I(P ) = I} ⊆
⋃

K̃∈K∗I

PK̃ , (38)

where

PK̃ =
⋂
k∈K̃

{P ∈ P : ak(P ) ≤ 0} .

Note that in (38) we have an inclusion instead of an equality due to the fact that PK̃ is always defined with

weak inequalities, whereas the null hypotheses are sometimes defined with strict inequalities. Since there

are only finitely many K̃ in K∗I , we may assume further that there is K ∈ K∗I such that

{Pnm
∈ P : m ≥ 1} ⊆ PK . (39)

Next, note that

max
j∈I

T 1
j,n = max

j∈I
min
K̃∈K1

j

max
k∈K̃

ak(P̂n)

σ̂ak,n

≤ max
k∈K

ak(P̂n)

σ̂aj,n
. (40)

To establish (40), let j ∈ I and K∗ ∈ K∗I be given. It follows that there exists K̃ ∈ K1
j such that K̃ ⊆ K∗.

Hence,

max
k∈K̃

ak(P̂n)

σ̂ak,n
≤ max
k∈K∗

ak(P̂n)

σ̂ak,n
,

which in turn implies that

min
K̃∈K1

j

max
k∈K̃

ak(P̂n)

σ̂ak,n
≤ max
k∈K∗

ak(P̂n)

σ̂ak,n
.

Since the inequality is valid for any j ∈ I and K∗ ∈ K∗I ,

max
j∈I

min
K̃∈K1

j

max
k∈K̃

ak(P̂n)

σ̂ak,n
≤ min
K∗∈K∗I

max
k∈K∗

ak(P̂n)

σ̂ak,n
,

from which (40) follows because K ∈ K∗I . Similarly,

ĉ1,n(1− α) = max
K̃∈K∗1

J−1
1,n(1− α, K̃, P̂n)

≥ J−1
1,n(1− α,K, P̂n) . (41)

23



To establish (41), note that there exists K∗ ∈ K∗1 such that K ⊆ K∗, so

J−1
1,n(1− α,K∗, P̂n) ≥ J−1

1,n(1− α,K, P̂n) .

The inequalities (40) and (41) therefore imply that

FWERPnm
= Pnm

{
max
j∈I

T 1
j,nm

> ĉ1,nm
(1− α)

}
≤ Pnm

{
max
k∈K

ak(P̂nm
)

σ̂aj,nm

> J−1
1,nm

(1− α,K, P̂nm)

}
. (42)

Using (39) and Theorem E.1, we see that the righthand-side of (42) tends to α, contradicting (37), and

thereby establishing the desired result.

Proof of Theorem 5.2: The proof is essentially identical to the one presented for Theorem 5.1 and is

therefore omitted.

Proof of Theorem 5.3: The proof is essentially identical to the one presented for Theorem 5.1 and is

therefore omitted.

E Auxiliary Results

In this appendix, we establish the following result:

Theorem E.1 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P

on Rk ×Rk × {0, 1}. Suppose P is such that

ε < inf
P∈P

P{Z = 1} ≤ sup
P∈P

P{Z = 1} < 1− ε (43)

for some ε > 0, and for each 1 ≤ j ≤ k that

lim sup
λ→∞

sup
P∈P

EP

[(
Xj − µXj |Z=1(P )

σXj |Z=1(P )

)2

I

{∣∣∣∣Xj − µXj |Z=1(P )

σXj |Z=1(P )

∣∣∣∣ > λ

}
|Z = 1

]
= 0 (44)

and

lim sup
λ→∞

sup
P∈P

EP

[(
Yj − µYj |Z=1(P )

σYj |Z=1(P )

)2

I

{∣∣∣∣Yj − µYj |Z=1(P )

σYj |Z=1(P )

∣∣∣∣ > λ

}
|Z = 0

]
= 0 . (45)

Let

Jn(x, P ) = P

{
max

1≤j≤k
Tn,j(P ) ≤ x

}
, (46)

where

Tn,j(P ) =
1
n1

∑
1≤i≤n:Zi=1Xj,i − µXj |Z=1(P )− 1

n0

∑
1≤i≤n:Zi=0 Yj,i − µYj |Z=0(P )√

σ2
Xj |Z=1

(P̂n)

n1
+

σ2
Yj |Z=0

(P̂n)

n0

.

Then

lim sup
n→∞

sup
P∈P

P

{
max

1≤j≤k
Tn,j(P ) > J−1

n (1− α, P̂n)

}
≤ α .
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Before presenting the proof of Theorem E.1, we present a series of useful lemmata.

Lemma E.1 Let (Xi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P on

R× {0, 1}. Suppose P is such that

inf
P∈P

P{Z = 1} > ε

for some ε > 0 and that

lim sup
λ→∞

sup
P∈P

EP
[∣∣X − µX|Z=1(P )

∣∣ I {∣∣X − µX|Z=1(P )
∣∣ > λ

}
|Z = 1

]
= 0 . (47)

Then, for any {Pn ∈ P : n ≥ 1},

1

n1

∑
1≤i≤n:Zi=1

Xi − µX|Z=1(Pn)
Pn→ 0 ,

where n1 =
∑

1≤i≤n Zi.

Proof: First assume w.l.o.g. that µX|Z=1(Pn) = 0. Thus, EPn [ZX] = 0. Next, note that (47) implies that

lim sup
λ→∞

1

Pn{Z = 1}
EPn [|ZX| I {|ZX| > λ} |Z = 1] = 0 .

Since Pn{Z = 1} > ε, it follows that

lim sup
λ→∞

EPn
[|ZX| I {|ZX| > λ} |Z = 1] = 0 .

By Lemma 11.4.2 of Romano and Shaikh (2012), we therefore have that

1

n

∑
1≤i≤n

XiZi
Pn→ 0 .

Since |Z − µZ(Pn)| ≤ 1, we also have that

lim sup
λ→∞

EPn [|Z − µZ(Pn)| I {|Z − µZ(Pn)| > λ} |Z = 1] = 0 .

Thus,
1

n

∑
1≤i≤n

Zi = Pn{Z = 1}+ oPn
(1) .

To complete the argument, note that

1

n1

∑
1≤i≤n:Zi=1

Xi =

 1

n

∑
1≤i≤n

XiZi

 /

 1

n

∑
1≤i≤n

Zi

 .

The desired result now follows since Pn{Z = 1} > ε.

Lemma E.2 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P

on Rk × Rk × {0, 1}. Suppose (43) holds for some ε > 0 and for all 1 ≤ j ≤ k that (44) and (45) hold.
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Then, for any {Pn ∈ P : n ≥ 1},

||ΩX|Z=1(P̂n)− ΩX|Z=1(Pn)|| Pn→ 0 (48)

||ΩY |Z=0(P̂n)− ΩY |Z=0(Pn)|| Pn→ 0 , (49)

where || · || denotes the component-wise maximum of the absolute value of all elements.

Proof: We provide only the proof for (48), as the same argument establishes (49). To establish (48), first

note that we may assume w.l.o.g. for all 1 ≤ j ≤ k that µXj |Z=1(Pn) = 0 and σXj |Z=1(Pn) = 1. The (j, `)

element of ΩX|Z=1(Pn) is thus given by

EPn
[XjX`|Z = 1]

and the (j, `) element of ΩX|Z=1(P̂n) is given by

1
n1

∑
1≤i≤n:Zi=1Xi,jXi,` −

(
1
n1

∑
1≤i≤n:Zi=1Xi,j

)(
1
n1

∑
1≤i≤n:Zi=1Xi,`

)
σXj |Z=1(P̂n)σX`|Z=1(P̂n)

,

where n1 =
∑

1≤i≤n Zi. From Lemma B.3 in Bhattacharya et al. (2012), we see that

σXj |Z=1(P̂n)
Pn→ 1

σX`|Z=1(P̂n)
Pn→ 1 .

From Lemma E.1, we see that

1

n1

∑
1≤i≤n:Zi=1

Xi,j
Pn→ 0

1

n1

∑
1≤i≤n:Zi=1

Xi,`
Pn→ 0 .

Using the inequality

|a||b|I{|a||b| > λ} ≤ a2I{|a| >
√
λ}+ b2I{|b| >

√
λ} ,

we see that

lim sup
λ→∞

EPn
[|XjX`| I {|XjX`| > λ} |Z = 1] = 0 .

Since |EPn
[XjX`|Z = 1]| ≤ 1 by the Cauchy-Schwartz inequality, we have further that

lim sup
λ→∞

EPn
[|XjX` − EPn

[XjX`|Z = 1]| I {|XjX` − EPn
[XjX`|Z = 1]| > λ} |Z = 1] = 0 .

Thus, Lemma E.1 implies that

1

n1

∑
1≤i≤n:Zi=1

Xi,jXi,` = EPn
[XjX`|Z = 1] + oPn

(1) .

The desired result now follows immediately.

Lemma E.3 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P
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on Rk × Rk × {0, 1}. Suppose (43) holds for some ε > 0 and for all 1 ≤ j ≤ k that (44) and (45) hold.

Define

D(P ) = diag

 σ2
X1|Z=1(P )

P{Z=1}
σ2
X1|Z=1

(P )

P{Z=1} +
σ2
Y1|Z=0

(P )

P{Z=0}

, . . . ,

σ2
Xk|Z=1(P )

P{Z=1}
σ2
Xk|Z=1

(P )

P{Z=1} +
σ2
Yk|Z=0

(P )

P{Z=0}

 .

Then,

||D(P̂n)ΩX|Z=1(P̂n)−D(Pn)ΩX|Z=1(Pn)|| Pn→ 0 (50)

||(I −D(P̂n))ΩY |Z=0(P̂n)− (I −D(Pn))ΩY |Z=0(Pn)|| Pn→ 0 , (51)

where I is the k-dimensional identity matrix and || · || denotes the component-wise maximum of the absolute

value of all elements. Hence,

||V (P̂n)− V (Pn)|| Pn→ 0 , (52)

where

V (P ) = D(P )ΩX|Z=1(P ) + (I −D(P ))ΩY |Z=0(P ) . (53)

Proof: We provide only the proof for (50); the same argument establishes (51) and (52) then follows

immediately from the triangle inequality. To establish (50), first note that D(Pn) is invertible and that from

Lemma B.4 of Bhattacharya et al. (2012)

||D(Pn)−1D(P̂n)− I|| Pn→ 0 .

Next, note for a universal constant C that

||D(P̂n)ΩX|Z=1(P̂n)−D(Pn)ΩX|Z=1(Pn)||

≤ C||D(Pn)||||D(Pn)−1D(P̂n)ΩX|Z=1(P̂n)− ΩX|Z=1(Pn)||

≤ C2||D(Pn)||||ΩX|Z=1(P̂n)||
(
||D(Pn)−1D(P̂n)− I||+ ||ΩX|Z=1(P̂n)− ΩX|Z=1(Pn)||

)
Since the elements of D(Pn) and ΩX|Z=1(P̂n) are all bounded, the norm of these matrices are also bounded.

It therefore suffices to show that

||ΩX|Z=1(P̂n)− ΩX|Z=1(Pn)|| Pn→ 0 ,

which follows from Lemma E.2.

Lemma E.4 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P

on Rk × Rk × {0, 1}. Suppose (43) holds for some ε > 0 and for all 1 ≤ j ≤ k that (44) and (45) hold.

Then, for any {Pn ∈ P : n ≥ 1},

max
1≤j≤k

{∫ ∞
0

|rj(λ, P̂n)− rj(λ, P )|dλ
}

Pn→ 0 (54)

max
1≤j≤k

{∫ ∞
0

|sj(λ, P̂n)− sj(λ, P )|dλ
}

Pn→ 0 , (55)
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where

rj(λ, P ) = EP

[(
Xj − µXj |Z=1(P )

σXj |Z=1(P )

)2

I

{
Xj − µXj |Z=1(P )

σXj |Z=1(P )
> λ

}
|Z = 1

]
(56)

sj(λ, P ) = EP

[(
Yj − µYj |Z=0(P )

σYj |Z=0(P )

)2

I

{
Yj − µYj |Z=0(P )

σYj |Z=0(P )
> λ

}
|Z = 0

]
. (57)

Proof: We provide only the proof for (54); the same argument establishes (55). To establish (54), consider

any 1 ≤ j ≤ k. First note that we may assume w.l.o.g. that µXj |Z=1(Pn) = 0 and σXj |Z=1(Pn) = 1. Next,

note for any 1 ≤ j ≤ k that rj(λ, P̂n) = An − 2Bn + Cn, where

An =
1

σXj |Z=1(P̂n)

1

n1

∑
1≤i≤n:Zi=1

X2
i,jI{|Xi,j − µXj |Z=1(P̂n)| > λσXj |Z=1(P̂n)}

Bn =
µXj |Z=1(P̂n)

σXj |Z=1(P̂n)

1

n1

∑
1≤i≤n:Zi=1

Xi,jI{|Xi,j − µXj |Z=1(P̂n)| > λσXj |Z=1(P̂n)}

Cn =
µXj |Z=1(P̂n)2

σXj |Z=1(P̂n)

1

n1

∑
1≤i≤n:Zi=1

I{|Xi,j − µXj |Z=1(P̂n)| > λσXj |Z=1(P̂n)} .

From Lemma E.1, we see that µXj |Z=1(P̂n)
Pn→ 0. From Lemma B.3 in Bhattacharya et al. (2012), we see

that σXj |Z=1(P̂n)
Pn→ 1. From Lemma E.1, we also see that

1

n1

∑
1≤i≤n:Zi=1

|Xi,j | = EPn
[|Xj |] + oPn

(1) .

Since EPn [|Xj |] ≤ 1 by the Cauchy-Schwartz inequality, it follows that Bn = oPn(1) uniformly in λ. A

similar argument establishes that Cn = oPn(1) uniformly in λ. In summary,

rj(λ, Pn) =
1

σXj |Z=1(P̂n)

1

n1

∑
1≤i≤n:Zi=1

X2
i,jI{|Xi,j − µXj |Z=1(P̂n)| > λσXj |Z=1(P̂n)}+ ∆n

uniformly in λ, where ∆n = oPn(1).

For δ > 0, define the events

En(δ) = {|µXj |Z=1(P̂n)| < δ ∩ 1− δ < σXj |Z=1(P̂n) < 1 + δ}

E′n(δ) =

sup
t∈R

∣∣∣∣∣∣ 1

n1

∑
1≤i≤n:Zi=1

X2
i,jI{|Xi,j | > t} − EPn

[X2
j I{|Xj | > t}|Z = 1]

∣∣∣∣∣∣ < δ


E′′n(δ) = {|∆n| < δ} .

We now argue that Pn{En(δ) ∩ E′n(δ) ∩ E′′n(δ)} → 1. Since µXj |Z=1(P̂n)
Pn→ 0, σXj |Z=1(P̂n)

Pn→ 1, and

∆n = oPn
(1), it suffices to argue that

Pn{E′n(δ)} → 1 . (58)
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To see this, note that

1

n1

∑
1≤i≤n:Zi=1

X2
i,jI{|Xi,j | > t} − EPn [X2

j I{|Xj | > t}|Z = 1]

=

1
Pn{Z=1}

1
n

∑
1≤i≤n ZiX

2
i,jI{|Xi,j | > t}

Z̄n

Pn{Z=1}

− 1

Pn{Z = 1}
EPn [ZX2

j I{|Xj | > t}]

=

(
1− Pn{Z = 1}

Z̄n

)
1

Pn{Z = 1}
1

n

∑
1≤i≤n

ZiX
2
i,jI{|Xi,j | > t}

1

Pn{Z = 1}

 1

n

∑
1≤i≤n

ZiX
2
i,jI{|Xi,j | > t} − EPn

[ZX2
j I{|Xj | > t}]


=

(
1− Pn{Z = 1}

Z̄n

)
Z̄n

Pn{Z = 1}
1

n1

∑
1≤i≤n:Zi=1

X2
i,jI{|Xi,j | > t} (59)

1

Pn{Z = 1}

 1

n

∑
1≤i≤n

ZiX
2
i,jI{|Xi,j | > t} − EPn

[ZX2
j I{|Xj | > t}]

 . (60)

From Lemma E.1, we see that
Z̄n

Pn{Z = 1}
Pn→ 1

and
1

n1

∑
1≤i≤n:Zi=1

X2
i,jI{|Xi,j | > t} = EPn [X2

j I{|Xj | > t}|Z = 1] + oPn(1) .

The Cauchy-Schwartz inequality implies that EPn [X2
j I{|Xj | > t}|Z = 1] ≤ 1. Hence, (59) is oPn(1) uniformly

in t. Note further that the class of functions

{zx2I{|x| > t} : t ∈ R} (61)

is a VC class of functions. Therefore, by Theorem 2.6.7 and Theorem 2.8.1 of van der Vaart and Wellner

(1996), we see that the class of functions (61) is Glivenko-Cantelli uniformly over P. Since Pn{Z = 1} > ε, it

follows that the supremum over t ∈ R of (60) tends in probability to zero under Pn. The desired conclusion

(58) follows.

To complete the argument, it now suffices to argue as in the proof of Lemma S.12.2 in Romano and

Shaikh (2012).

Lemma E.5 Let (Xi, Yi, Zi), i = 1, . . . , n be an i.i.d. sequence of random variables with distribution P ∈ P

on Rk × Rk × {0, 1}. Suppose (43) holds for some ε > 0 and for all 1 ≤ j ≤ k that (44) and (45) hold.

Then, for any {Pn ∈ P : n ≥ 1},
ρ(P̂n, Pn)

Pn→ 0 ,
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where

ρ(Q,P ) = max

{
||V (Q)− V (P )||, |Q{Z = 1} − P{Z = 1}|,

max
1≤j≤k

{∫ ∞
0

|rj(λ,Q)− rj(λ, P )|dλ
}
, max
1≤j≤k

{∫ ∞
0

|sj(λ,Q)− sj(λ, P )|dλ
}}

. (62)

Here, V (P ), rj(λ, P ), and sj(λ, P ) are defined as in (53), (56), and (57), respectively, and || · || denotes the

component-wise maximum of the absolute value of all elements.

Proof: By arguing as in the proof of Lemma E.2, we have that

P̂n{Z = 1} − Pn{Z = 1} = Z̄n − Pn{Z = 1} Pn→ 0 .

The desired result now follows from Lemmas E.3 and E.4.

Lemma E.6 Let P be a set of distributions on Rk ×Rk × {0, 1} such that (43) holds for some ε > 0 and

for all 1 ≤ j ≤ k that (44) and (45) hold. Let P′ be the set of all distributions on Rk ×Rk × {0, 1}. Define

ρ(Q,P ) as in (62) and Jn(x, P ) as in (46). Then, for any {Qn ∈ P′ : n ≥ 1} and {Pn ∈ P : n ≥ 1}
satisfying ρ(Qn, Pn)→ 0,

lim sup
n→∞

sup
P∈P
|Jn(x,Qn)− Jn(x, Pn)| → 0 . (63)

Proof: Consider sequences {Qn ∈ P′ : n ≥ 1} and {Pn ∈ P : n ≥ 1} satisfying ρ(Qn, Pn)→ 0. By arguing

as in the proof of Lemma S.12.1 in Romano and Shaikh (2012), we see that

lim
λ→∞

lim sup
n→∞

rj(λ, Pn) = 0

lim
λ→∞

lim sup
n→∞

rj(λ,Qn) = 0

lim
λ→∞

lim sup
n→∞

sj(λ, Pn) = 0

lim
λ→∞

lim sup
n→∞

sj(λ,Qn) = 0 .

We now establish (63). Suppose by way of contradiction that (63) fails. It follows that there exists a

subsequence such that nm such that V (Pnm
)→ V ∗, V (Qnm

)→ V ∗, and either

sup
x∈R
|Jnm(x, Pnm)− ΦV ∗(x)| 6→ 0 (64)

or

sup
x∈R
|Jnm

(x,Qnm
)− ΦV ∗(x)| 6→ 0 . (65)

Let Wn(Pn) be the vector whose jth element for 1 ≤ j ≤ k is given by

1
n1

∑
1≤i≤n:Zi=1Xi,j − µXj |Z=1(P )− 1

n0

∑
1≤i≤n:Zi=0 Yi.j − µYj |Z=0(P )√

σ2
Xj |Z=1

(P̂n)

n1
+

σ2
Yj |Z=0

(P̂n)

n0

.
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From Lemmas B.4 and B.5 in Bhattacharya et al. (2012) and Slutsky’s Lemma, we see that

Wnm
(Pnm

)
d→ ΦV ∗(x)

under Pnm
. It therefore follows from Polya’s Theorem that (64) can not hold. Similarly, we see that (65)

can not hold. The desired conclusion thus follows.

Proof of Theorem E.1: The desired result follows immediately from Lemmas E.5 and E.6 and Theorem

2.4 in Romano and Shaikh (2012).
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