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Abstract

This paper considers identification and inference about the sign of the average effect of a binary
endogenous regressor (or treatment) on a binary outcome of interest when a binary instrument is available.
In this setting, the average effect of the endogenous regressor on the outcome is sometimes referred to
as the average treatment effect (ATE). While maintaining instrument exogeneity, we consider three
different sets of assumptions: monotonicity on the outcome equation, monotonicity on the equation
for the endogenous regressor, or monotonicity on both the outcome equation and the equation for the
endogenous regressor. For each of these sets of conditions, we characterize when (i) the distribution of
the observed data is inconsistent with the assumptions and (ii) the distribution of the observed data is
consistent with the assumptions and the sign of ATE is identified. A distinguishing feature of our results is
that they are stated in terms of a reduced form parameter from the population regression of the outcome
on the instrument. In particular, we find that the reduced form parameter being far enough, but not
too far, from zero, implies that the distribution of the observed data is consistent with our assumptions
and the sign of ATE is identified, while the reduced form parameter being too far from zero implies that
the distribution of the observed data is inconsistent with our assumptions. For each set of restrictions,
we also develop methods for simultaneous inference about the validity of the assumptions and the sign
of the ATE. We show that our inference procedures are valid uniformly over a large class of possible
distributions for the observed data that include distributions where the instrument is arbitrarily “weak.”
A novel feature of the methodology is that the null hypotheses involve unions of moment inequalities.
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1 Introduction

This paper considers identification and inference about the sign of the average effect of an endogenous re-
gressor on an outcome of interest when an instrumental variable is available. In order to obtain simple,
closed-form results and for ease of exposition, we focus on the case where the outcome of interest Y, endoge-
nous regressor D and instrumental variable Z, whose joint distribution we denote by P, are all binary. In this
setting, the endogenous regressor is sometimes referred to as the treatment and the average effect of the en-
dogenous regressor on the outcome of interest is sometimes referred to as the average treatment effect (ATE).
While maintaining instrument exogeneity, we consider three different sets of assumptions: monotonicity in
the outcome equation, monotonicity in the equation for the endogenous regressor, or monotonicity in both
the outcome equation and the equation for the endogenous regressor. Here, monotonicity in the outcome
equation requires that different individuals do not have opposite responses to the endogenous regressor,
whereas monotonicity in the equation for the endogenous regressor requires that different individuals do
not have opposite responses to the instrumental variable. These conditions generally only provide partial
identification of ATE.

For each set of assumptions, we show that the sign of the ATE is identified to be positive if and only if

the reduced form parameter

A(P) Ep[Y|Z = 1] - Ep[Y|Z = 0]

P{Y =1|Z=1} - P{Y =1|Z =0} . (1)

lies in a particular region that depends only on P and that the sign of the ATE is identified to be negative if
and only if A(P) lies in another region that, again, depends only on P. When imposing only monotonicity
in the equation for the endogenous regressor, we find it is possible to determine the sign of the ATE if A(P)
is sufficiently far from zero. When imposing monotonicity in both the outcome equation and the equation
for the endogenous regressor, we find that the sign of the ATE equals the sign of A(P). When imposing
monotonicity in only the outcome equation, however, we find that the sign of the ATE need not equal the
sign of A(P). In fact, it is possible for A(P) to be so large that one concludes the sign of the ATE is
negative. For each set of restrictions, we show further that a value for A(P) sufficiently far from zero implies
that our assumptions are false. These results may be viewed as formalizing empirical researchers’ suspicions
of empirical results using instrumental variables when the reduced form parameter is “too large” (or, by
re-scaling appropriately, when the usual linear instrumental variables estimand is “too large” — see Remark
2.1).

For each set of restrictions, we develop methods for simultaneous inference about the validity of the
assumptions and the sign of the ATE. For this purpose, we consider a multiple testing problem with three
null hypotheses, where rejection of the first null hypothesis means that P is inconsistent with the assumptions,
rejection of the second null hypothesis means that P is consistent with the assumptions and only a positive
ATE, and rejection of the third null hypothesis means that P is consistent with the assumptions and only
a negative ATE. A novel feature of the analysis is that the null hypotheses involve unions of moment
inequalities. We develop a bootstrap-based testing procedure that controls the familywise error rate — the
probability of any false rejection — uniformly over a large class of possible distributions for P that include

distributions where the instrument is arbitrarily “weak.”



In the context of monotonicity in the equation for the endogenous regressor, our analysis is most closely
related to Balke and Pearl (1997), who study partial identification of the ATE and also characterize when
P is consistent with their assumptions. A characterization of consistency that does not require Y to be
binary can be found in Kitagawa (2008), who builds upon the work of Imbens and Rubin (1997). Kitagawa
(2008) and Bhattacharya et al. (2012) also develop tests for the null hypothesis of monotonicity in the
equation for the endogenous regressor. Other related literature includes the local average treatment effect
literature (LATE) (Imbens and Angrist, 1994) and the local instrumental variables/non-parametric selection
model literature (Heckman and Vytlacil, 2001b), both of which impose monotonicity in the equation for
the endogenous regressor. In the context of monotonicity in both the outcome equation and the equation
for the endogenous regressor, our analysis is most closely related to Bhattacharya et al. (2012) and Shaikh
and Vytlacil (2005, 2011), who study partial identification of the ATE, but do not characterize when P is
consistent with the assumptions. Related results are obtained by Chiburis (2010), though under a different
instrument exogeneity assumption. See also Abrevaya et al. (2010), who focus on inference about the sign of
the average treatment effect in a semi-parametric model in a related context while allowing for the treatment
to be non-binary and allowing for covariates. In the context of monotonicity in the outcome equation, the
most closely related results are found in Chiburis (2010), though, as mentioned previously, under a different

instrument exogeneity assumption.

The remainder of the paper proceeds as follows. In Section 2, we define our notation and the assumptions
that will be used in the remainder of the paper. For each set of assumptions, we characterize in terms of A(P)
in Section 3 when (i) P is inconsistent with the assumptions, (ii) when P is consistent with the assumptions
and only a positive ATE, and (iii) when P is consistent with the assumptions and only a negative ATE. We
further explore when P is inconsistent with our assumptions in Section 4. Finally, in Section 5, methods for
inference are developed. Proofs of all results along with a numerical exploration of some of our results in

Section 4 can be found in the Appendix.

2 Notation and Assumptions

Let Y denote a binary outcome of interest, D denote a binary endogenous regressor, and Z denote a
binary instrument. For example, Y might denote mortality one year after the start of the experiment, D
might denote receipt of the medical treatment, and Z random assignment to the medical treatment, where
the randomized experiment suffers from noncompliance so that Z differs from D with positive probability.
Further denote by Y7 the potential outcome if treated, by Y, the potential outcome if not treated, by D,
the potential value of the endogenous regressor if the instrument were to be externally set to 1, and by Dy
the potential value of the endogenous regressor if the instrument were to be externally set to 0. Following
Angrist et al. (1996), we will refer to realizations with Dy > Dy as “compliers”, realizations with Dy < Dy
as “defiers”, realizations with D; = 1 and Dy = 1 as “always takers,” and realizations with D; = 0 and

Dy = 0 as “never takers.” In this notation,

Y = DYi+(1-D)Y, (2)
D ZDy + (1 — Z)Dy. (3)



Let P be the distribution of (Y, D, Z) and @ be the distribution of (Y, Y1, Do, D1, Z). Since
(KDvZ) = T(Y()?YlaDOlevZ) )
where T is characterized by (2) and (3), we have that

P=QTr'.

Below we will restrict @ € Q, where Q is a set of distributions for (Yy, Y7, Do, D1, Z) satisfying certain
restrictions. In particular, we will require Z to be an instrument in the sense that every Q@ € Q satisfies the

following exogeneity condition:

Assumption 2.1 (Instrument Ezogeneity): Z 1 (Yo, Y1, Do, D1) under Q.

We will additionally require that every @ € Q satisfy at least one of the following monotonicity conditions:
Assumption 2.2 (Monotonicity of D in Z): Q{D1 > Do} =1 or Q{D; < Do} = 1.

Assumption 2.3 (Monotonicity of Y in D): Q{Y1 > Yo} =1 or Q{Y1 <Yy} =1.

We do not impose instrument relevance, i.e., we allow for P{D = 1|Z = 1} = P{D = 1|Z = 0}. Without
loss of generality, we will order Z such that P{D = 1|Z = 1} > P{D = 1|Z = 0}. Given this ordering and
Assumption 2.1, we have that Assumption 2.2 is equivalent to the restriction that Q{D; > Dy} = 1.

Our object of interest is the average effect of the endogenous regressor on the outcome, defined to be
EqlYi —Yo] =Q{Y1 =1} - Q{Yo =1} . (4)

This quantity is typically referred to in the treatment effect literature as the average treatment effect (ATE).
It will be useful to partition Q as Q = Q1+ U Qo U Q_, where

Qr = {QeQ:QMi=1}-Q{Yo=1}>0}
Q = {QeQ:R{Vi=1}-Q{Yy =1} =0}

Q. = {QeQ:Q{Vi=1}-Q{Yo =1} <0},
and define
Qo+ = QLrUQ
Qo- = Q_UQg.

In other words, Q_ (Qo,—) is the set of distributions for (Yy, Y1, Do, D1, Z) satisfying our restrictions and
having a (weakly) negative ATE, Qy is the set of distributions for (Y, Y1, Do, D1, Z) satisfying our restrictions
and having a zero ATE, and Q4 (Qo,+) is the set of distributions for (Yp, Y1, Do, Dy, Z) satisfying our
restrictions and having a (weakly) positive ATE. In this notation, the ATE is identified to be positive if

PeQiT ' N(Qy-T7)°, ()



where Q77! = {QT ! : Q € Q4}; Q-T7', Qo-T ! and Qo +T~! are defined similarly. In other
words, we identify the ATE to be positive if the distribution of (Y, D, Z) is consistent with our restrictions
holding with a positive ATE but not consistent with our restrictions holding with a zero or negative ATE.
Symmetrically, the ATE is identified to be negative if

PeQ.T'N(QusT ). (6)
Analogously, the distribution of the observed data, P, is consistent with our restrictions if
PeQT . (7)
For completeness, we note that the identified set for the ATE, as a function of P, is given by

{EglV1i—Yo]: Qe Qand P=QT '}.

Remark 2.1 Our results below will be stated in terms of the reduced form parameter A(P), defined in
(1). In the biostatistics literature, when Z is random assignment to treatment with possible non-compliance,
A(P) is sometimes referred to as the “intention-to-treat” parameter. If the instrument is relevant, i.e.,
P{D =1|Z =1} # P{D = 1|Z = 0}, then, under mild regularity conditions, the usual linear instrumental
variables estimand in this setting is simply A(P) divided by P{D = 1|Z = 1} — P{D = 1|Z = 0}. Under
our assumptions, the sign of A(P) and the usual linear instrumental variables estimand are therefore the

same. As a result, it will be straightforward to re-scale our results to state them in terms of this quantity. ®

Remark 2.2 Note that Assumption 2.2 is the same monotonicity assumption found in Imbens and Angrist
(1994), who also refer to it as an assumption of “no defiers.” It follows from results in Vytlacil (2002) that
this assumption is equivalent to the selection model of Heckman and Vytlacil (2001b, 2005). In particular,

it is equivalent to assuming that there exists a representation of the model as
D, =1I{6p+ 61z +n >0} (8)

with ; being nonrandom. Similarly, Assumption 2.3 is equivalent to assuming that there exists a represen-
tation of the model as
Ya=1I{Bo + f1d+ € >0} (9)

with 81 nonrandom, and Assumptions 2.2 and 2.3 is equivalent to assuming both (8) and (9) with §; and 5;

nonrandom. M

Remark 2.3 A stronger version of Assumption 2.3 in which it is assumed further that the direction of the

monotonicity is known a priori is referred to as the °

‘monotone treatment response” assumption by Manski
(1997) and Manski and Pepper (2000). They characterize the identified set for the ATE under this type of
restriction. As discussed by Bhattacharya et al. (2008), these results do not hold if only Assumption 2.3 is
assumed. In some settings, it may not be reasonable to assume that the direction of the effect is known a

priori. Our analysis, which focuses on the sign of the ATE, is useful in such settings. B



3 Identifying the Sign of the Average Treatment Effect from IV

In this section, for each of our three possible restrictions on Q, we characterize whether P satisfies (5), (6)
or (7) in terms of A(P).

3.1 Monotonicity of D in 7

In this section, we assume that every @@ € Q satisfies Assumptions 2.1 and 2.2. In this case, our results
essentially follow from Balke and Pearl (1997), who characterize the identified set for the ATE under these
assumptions and also when P is consistent with these restrictions. See also Heckman and Vytlacil (2001a)

and Kitagawa (2008), who generalize these results.

In order to state our results, we require some additional notation. Define

Ai(P) = max{A}(P),A}(P)},

Ay(P) = —P{Y=0D=0Z=1}—P{Y =1,D=1|Z =0}
As(P) = P{Y=1,D=0|Z=1}+P{Y =0,D=1|Z =0}
Ay(P) = min{Aj(P), A{(P)},

where

Al(P) = P{Y=1,D=0|Z=1}-P{Y =1,D=0|Z =0},
A3(P) = P{Y=0,D=1|Z=0}-P{Y =0,D=1|Z =1},
Aj(P) = P{Y=1,D=1|Z=1}-P{Y =1,D=1|Z =0},
A3(P) = P{Y=0,D=0|Z=0}-P{Y=0,D=0|Z=1}.

Note that under our assumptions Ay (P) < A4(P), A1(P) < A3(P), and Ax(P) <0 < Az(P).
Theorem 3.1 If every Q € Q satisfies Assumptions 2.1 and 2.2, then

(i) P € QT if and only if
A(P) € [A1(P), A4(P)] . (10)

(ii) P € QTN (Qo-T1) if and only if
A(P) € (A3(P), A4(P)] .
(iii) P € Q_-T 1N (Qo+T 1) if and only if
A(P) € [AL(P), A2(P)) .
Remark 3.1 Part (i) of Theorem 3.1 implies that P is inconsistent with our restrictions if and only if

A(P) & [A1(P), A4(P)] Hence, P is inconsistent with our restrictions if and only if (a) A1 (P) > A4(P), (b)
Al(P) < A4(P) and A(P) < Al(P), or (C) Al(P) < A4(P) and A(P) > A4(P) If Al(P) < A4(P) and



A(P) < A;1(P), then it is possible to show that A;(P) < 0. Similarly, if A;(P) < A4(P) and A(P) > A4(P),
then it is possible to show that A4(P) > 0. In this sense, part (i) of Theorem 3.1 implies that P is inconsistent

with our restrictions whenever A(P) is “too far” from zero. B

Remark 3.2 Parts (ii) and (iii) of Theorem 3.1 imply that we are both unable to reject our restrictions and

unable to determine the sign of the ATE whenever A(P) is “too close” to zero, i.e.,
A(P) € [A5(P), A3(P)] .
More generally, the width of the region of indeterminacy is bounded from above by
2(P{D=01Z=1}+P{D=1|Z=0}) =2(1 — Q{D1 > Dy}) ,

which decreases with the strength of the instrument, as measured by P{D =1|Z =1} - P{D =1|Z =0} =
Q{D; > Dy}. Using results in Imbens and Angrist (1994), we have that

A(P) = EQ[Yl - Y0|D1 > Do]Q{Dl > Do}

under Assumptions 2.1 and 2.2. The reduced form parameter A(P) thus combines the strength of the
instrument with the strength of the treatment on “compliers.” In this way, the sign of the ATE is easier to

determine when the instrument is stronger or the effect of the treatment on the “compliers” is stronger. ®

Remark 3.3 Part (i) of Theorem 3.1 is derived from results in Balke and Pearl (1997). A more general
result that does not require Y to be binary can be found in Kitagawa (2008), who builds upon the work of
Imbens and Rubin (1997). Kitagawa (2008) also develops a testing procedure. For binary Y, Bhattacharya
et al. (2012) develop a test of Assumptions 2.1 and 2.2 by comparing the bounds on the ATE in Manski
(1990) with those in Heckman and Vytlacil (2001a). The resulting conditions are in fact equivalent to part
(i) of Theorem 3.1. m

3.2 Monotonicity of Y in D and Monotonicity of D in Z

In this section, we assume that every @ € Q satisfies Assumptions 2.1, 2.2 and 2.3. These restrictions have
been previously considered in the literature by Bhattacharya et al. (2008, 2012) and Shaikh and Vytlacil
(2005, 2011), who find that the sign of ATE equals the sign of A(P). The following theorem re-states this
result and additionally characterizes when P € QT ! in terms of A(P). We emphasize that this additional
result is not found in either Bhattacharya et al. (2012) or Shaikh and Vytlacil (2005, 2011).

Theorem 3.2 If every Q € Q satisfies Assumptions 2.1, 2.2 and 2.3, then

(i) P € QT if and only if
A(P) € [A1(P), Ay(P)] (11)

(ii) P € QT N (Qo,—T1)¢ if and only if

A(P) € [A1(P),0) ,



(iii) P € Q_-T~ 1N (Qo+T1)¢ if and only if
A(P) € (0,Aq(P)] .

Remark 3.4 Note that the conditions on A(P) in (11) that determine whether or not P is consistent with
our assumptions are exactly the same as the ones in (10). It is therefore never possible to reject Assumption

2.2 without rejecting Assumptions 2.2 and 2.3 together. B

Remark 3.5 In contrast to our earlier results, the only circumstance in which we are both unable to reject
our restrictions and unable to determine the sign of the ATE is if A(P) =0. m

3.3 Monotonicity of Y in D

In this section, we assume that every @ € Q satisfies Assumptions 2.1 and 2.3. Note that Assumption 2.3
has not been considered without Assumption 2.2 previously in the literature. In order to state our results,

we require some additional notation. Define

Bi(P) = max{—P{Y =1,D=1|Z=0},-P{Y =0,D=0|Z =1}}
By(P) = max{P{Y =1,D=1|Z=1},P{Y =0,D =0|Z = 0}}
Bs(P) = max{—P{Y =0,D=1Z=1},—P{Y =1,D=0|Z =0}}
By(P) = max{P{Y =0,D=1Z=0},P{Y =1,D=0Z=1}} .

Note that B;(P) < 0 and B3(P) < 0, while By(P) > 0 and B4(P) > 0. Using this notation, we have the

following theorem:
Theorem 3.3 If every Q € Q satisfies Assumptions 2.1 and 2.3, then
(i) P € QT if and only if
A(P) € [min{B;(P), Bs(P)}, max{By(P), B4(P)}] , (12)
(i) P € QLT N (Qo_T )¢ if and only if
A(P) € [B1(P), Bo(P)] \ [B3(P), Ba(P)]
(iii)) P € Q_-T~'N(Qo T~ )¢ if and only if
A(P) € [B3(P), B4(P)]\ [B1(P), Ba(P)] -

Remark 3.6 Analogously to our earlier results, part (i) of Theorem 3.3 implies that P is inconsistent with
our assumptions if and only if A(P) is “too far” from zero. Here, “too far” means A(P) < min{B;(P), Bs(P)}
or A(P) > max{By(P), B4(P)}. Since A;1(P) > B3(P) and A4(P) < By(P),

[A1(P), A4(P)] C [min{ B (P), B3(P)}, max{Ba(P), B4(P)}] .



Furthermore, the inclusion may be strict, so it is possible to reject Assumption 2.2 without rejecting As-

sumption 2.3. B

Remark 3.7 Parts (ii) and (iii) of Theorem 3.3 imply that we are both unable to reject our restrictions and

unable to determine the sign of the ATE if A(P) is “too close” to zero, i.e.,
A(P) € [max{Bi(P), B3(P)}, min{B(P), Bs(P)}]
where this interval necessarily includes zero. The width of this region of indeterminacy is bounded by
20P{D=01Z=1}+P{D=1|Z=0}) =2(1 —Q{D1 > Do} + Q{D1 < Do}) ,

which decreases as the instrument gets stronger, as measured by P{D = 1|Z = 1} — P{D = 1|Z = 0} =
Q{D; > Do} — Q{D; < Dg}. In this sense, the sign of the ATE is again easier to determine when the

instrument is stronger. ®

Remark 3.8 A possibly counterintuitive implication of Theorem 3.3 is that it is possible for A(P) to be
so large that one determines the sign of the ATE is in fact negative or for A(P) to be so small that one

determines the sign of the ATE is in fact positive. The first case happens when

min{ By (P), B4(P)} < A(P) < max{Bz(P), B4(P)} and max{Bs(P), B4(P)} = B4(P) , (13)
whereas the second case happens when

min{B;(P), B3(P)} < A(P) < max{B;(P), Bs(P)} and max{B;(P),Bs(P)} = B3(P) . (14)
In order to better understand this result, it is instructive to note that

Q{Y1 > Yy,D1 > Do} — Q{Y1 > Yy,D1 < Dy} itY; > Y

A(P) = .
Q{Yl < }/(),Dl < Do} — Q{Yl < YO,Dl > Do} if Yl < YQ

The first case occurs when Q{Y; < Yy, D1 < Do} > Q{Y1 < Yy, D1 > Dy}, so we require enough “defiers”
with a negative treatment effect, and the second case occurs when Q{Y1 > Yo, D1 > Do} < Q{Y1 > Yy, D1 <
Dy}, so we require enough “defiers” with a positive treatment effect. Note further that

Bi(P) < Q{Y1>Yy,D1 > Do} — Q{Y1>Yy,D1 < Do} < By(P)
B3(P) < Q{Yl < Yo,D1 < Do} — Q{Yl < }/(),Dl > Do} < B4(P) .

It follows that it must be the case that Y7 <Yy whenever A(P) € (Bz(P), B4(P)] C (0,1] and that Y7 > Yj
whenever A(P) € [B1(P), B3(P)) C[-1,0). m

Remark 3.9 The counterintuitive result described in Remark 3.8 can only arise when P is inconsistent
with Assumption 2.2 but consistent with Assumption 2.3. To see this, note that (13) or (14) together
with the fact that A;(P) > Bs(P) and A4(P) < By(P) imply that min{B;(P),B3(P)} < A(P) <
Ay (P) or A4(P) < A(P) < max{By(P), B4(P)}, which implies that A(P) & [A1(P), A4(P)] and A(P) €
[min{ By (P), B3(P)}, max{Bs(P), B4(P)}]. m



4 Detecting Failure of the Monotonicity Restrictions

In the preceding section, we characterized when P was consistent with our restrictions in terms of the reduced
form parameter A(P). In particular, we showed that in each case a value of A(P) sufficiently far from zero
implied that the restrictions were violated. In this section, we maintain instrument exogeneity — Assumption
2.1 — and characterize which types of violations of Assumption(s) 2.2 (and 2.3) are detectable in the sense
that they lead to A(P) to be sufficiently far from zero. To complement the analytical results in this section,
we also provide some numerical results in Appendix A, where we explore violations of the monotonicity

restrictions being detectable in the context of a parametric model for Y and D.

4.1 Monotonicity of D in Z (and Monotonicity of Y in D)

Parts (i) of Theorems 3.1 and 3.2 showed that P is consistent with Assumption(s) 2.2 (and 2.3) if and only
if A(P) satisfies (10). The following proposition characterizes distributions @ satisfying Assumptions 2.1 for
which A(P) fails to satisfy (10).

Proposition 4.1 If P = QT for a distribution Q that satisfies Assumptions 2.1, then A(P) & [A1(P), A4(P)]
if and only if
Q{Y; =k, D1 < Do} > Q{Y; =k, Dy > Do}

for some (j, k) € {0,1}2.

Remark 4.1 Given our normalization that P{D = 1|Z = 1} > P{D = 1|Z = 0} and given Assumption
2.1, we have that the fraction of “compliers,” Q{D1 > Dy}, at least weakly exceeds the fraction of “defiers,”
Q{D; < Dq}, and does so by the magnitude of P{D =1|Z =1}—P{D =1|Z =0} = Q{D1 > Do }—Q{D; <
Dy}. Thus, Proposition 4.1 implies that in order to detect a violation of Assumption 2.2 it must be the case
that the fraction of “defiers” is sufficiently large (which in turn requires the instrument be sufficiently weak
in that P{D = 1|Z = 1} — P{D = 1|Z = 0} is sufficiently small) and that the distribution of potential

outcomes among “defiers” and “compliers” differs, i.e.,
Q{Y; = 11D1 < Do} # Q1Y; = 1|Dy > Do}

for some j € {0,1}. W

4.2 Monotonicity of Y in D

Part (i) of Theorem 3.3 showed that P is consistent with Assumption 2.3 if and only if A(P) satisfies (12).
The following proposition characterizes distributions @ satisfying Assumption 2.1 for which A(P) fails to

10



satisfy (12). In order to state our results, we require some additional notation. Define

M} = QYVi>Yy,Di=Dy=1}+Q{Y1=Yy=1,D; =Dy =1} + Q{Y1 =Yy, = 1,D; < Dy}
M} = QYi>Yy,Di=Dy=0}+Q{Y1=Yy=0,D; =Dy =0} +Q{Y1 =Yy, =0,D; < Dy}
My = Q{Yi>Yy,Di=Dy=1}+Q{Y1=Yy=1,D; =Dy =1} + Q{Y1 =Yy, = 1,D; > Dy}
M; = QYi>Yy,Di=Dy=0}+Q{Yo=Y1=0,D; =Dy=0}+Q{Yy =Y =0,D; > Dy}
M} = QYi<Yy,Di=Dy=1}+Q{Y1=Yy=0,D; =Dy=1} +Q{Y1 =Yy, =0,D; > Dy}
M; = QYi<Yy,Di=Dy=0}+Q{Yo=Y1=1,D; =Dy =0} +Q{Yo =Y, =1,D; > Dy}
M} = QYi<Yy,Di=Dy=1}+Q{Y1=Yy=0,D; =Dy=1} +Q{Y1 =Yy, =0,D; < Dy}
M; = QYi<Yy,Di=Dy=0}+Q{Y1=Yy=1,D; =Dy =0} +Q{Y1 =Yy, =1,D; < Dy}

and, for 1 < 5 <4, let
M; = min{M;, M} .

Using this notation, we have the following result:

Proposition 4.2 If P = QT for a distribution Q that satisfies Assumptions 2.1, then
A(P) ¢ [min{B1(P), B3(P)}, max{ B (P), Bs(P)}]

if and only if either

Q{Yl > Yo,Dl > DO} + Q{Yl < Y()7D1 < Do}
< mln{Q{Yi < YE),Dl > Do} — Ml,Q{Yi > YE),Dl < Do} — Mg} (15)

or

Q{Yl < Yo,Dl > Do} + Q{Y1 > Yo,D1 < Do}
< min{Q{Y1 <Yy, D < Do} - Mg,Q{Yl > Yy, D1 > Do} - M4} . (16)

Remark 4.2 Note that if there are no “defiers,” then it is impossible for either (15) or (16) to hold. Hence,

it is only possible to detect violations of Assumption 2.3 if Assumption 2.2 does not hold. ®

Remark 4.3 In order to satisfy (15), there must be strong negative dependence between Y; — Y, and
Dy — Dy. In addition, it seems that the probability of being an “always taker” or “never taker” must be
small so that M; and Mz will be small. For instance, (15) is satisfied when Q{Y71 < Yy|D; > Dy} = 1,
Q{Y1 > Yy|D1 < Do} =1 and Q{D; = Do} = 0. Analogous comments apply to (16). In this sense, it seems
that the requirements on @ in order to satisfy either (15) or (16) are rather extreme. The numerical results

in Appendix A further highlight the difficulty of detecting violations of Assumption 2.3. B
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5 Inference

In this section, we let (Y;, D;, Z;),i = 1,...,n be an i.i.d. sequence of random variables with distribution
P € P on {0,1}3 and, for each of the three sets of restrictions considered in the previous sections, consider
the problem of simultaneously testing the restrictions and making inferences about the sign of the ATE when
those restrictions are not rejected. More precisely, for each set of restrictions on Q, we will consider the

problem of testing the family of null hypotheses

HjiPEijOI‘lSjS?), (17)
where
P, = {PeP:PcQT '}
P\P, = {PcP:PcQ.T"}
P\P; = {PcP:PcQ.T'}.
in a way that satisfies
limsup sup FWERp < « . (18)
n—oo PcP

Here,
FWERp = P{any false rejection} .

Note that P; equals the set of distributions P € P that are consistent with our restrictions, P\ Ps equals the
set of distributions P € P that are consistent with our restrictions and the sign of the ATE being positive,
and P\ P3 equals the set of distributions P € P that are consistent with our restrictions and the sign of the
ATE being negative. Note further that at most one null hypothesis may be false. Our testing procedures
below will therefore have the feature that at most one null hypothesis will be rejected. If H; is rejected,
then we will conclude that P is inconsistent with our restrictions; if Hs is rejected, then we will conclude
that P is consistent with our restrictions and a positive ATE; if Hj3 is rejected, then we will conclude that

P is consistent with our restrictions and a negative ATE.

Below we will assume that that P is such that

inf inf P{Y=y,D=d,Z==z}>¢
PEP (y,d,z)e{0,1}3

for some € > 0. We will also denote by P, the empirical distribution of (Y, D, Z;),i=1,...,n.
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5.1 Monotonicity of D in Z

In this section, we assume every ) € Q satisfies Assumptions 2.1 and 2.2. For this choice of Q, it follows
from Theorem 3.1 that

P, = (PeP:A(P)<A(P) < AyP)) (19)
Py — {PeP:A(P)>AP)UA(P) > As(P)} . (21)

In order to describe our testing procedure, it is useful to introduce some further notation. Define

a1(P) = —as(P) = Aj(P)—A(P)
az(P) = —ag(P) = Aj(P)—A(P)
a3(P) = —ag(P) = A(P)— Ay(P)
as(P) = —ar(P) = A(P)— Aj(P)
as(P) = A(P)— A3(P)
a10(P) = As(P)—A(P).
For 1 < j < 3, define R
T, = min max @ (Pn)
P Keklkek of,
where
Ki = {{1,2,3,4}}
Ky = {{55{6}.{7}}
Ky = {{8}.{9}.{10}}

and 7 ,, for 1 <k <10 is the usual (unpooled) estimate of the standard deviation of ay (P,). Note that at
most one of the T}, will be strictly positive. Define

él,n(l - Oé) = II(TIGE}CXT Jl_ﬂlL(l - OK,K, pn) ’ (22)
where
P,) — an(P
Jin(z,K,P) = P{maxcw < x}
keK Ghn
Ky = {AUBUC:AEIC%,BEIC%,CEIC%}.

Theorem 5.1 Consider testing (17) with Py, Po and Pg given by (19), (20), and (21), respectively. The

testing procedure that rejects H; whenever le o é1n(1 — o), where J =arg Max;<;<3 le,m satisfies (18).

Remark 5.1 The critical value é1 5, (1 — o) in Theorem 5.1 may be larger than necessary. By exploiting the
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structure of the null hypotheses, it is in fact possible to replace K} in Theorem 5.1 with

{{1,...,5,10}} U U {{j,k}} . (23)

5<j<7,8<k<10

To see this, it suffices to examine the proof of Theorem 5.1 in the Appendix and note that (38) continues to
hold if K7 is replaced with

Ki={Keki Prn{PeP:I(P)=1}£0} .
where I(P) ={1<j<3:PeP,;} C{l1,2,3}. Using that I(P) € Z, where

7 ={{1,2},{2,3},{1,3},{1,2,3}} ,

it follows that we may replace K in (22) with

UK. (24)

1T

Since Jy | 7i(l -, K, 15”) is monotone in K with respect to set inclusion, we may further restrict attention to
only those sets K in (24) such that there is no strictly larger set with respect to set inclusion. The sets that

remain after doing so are given by (23). m

Remark 5.2 The critical value é; ,(1 — @) in (22) may be viewed as a “least favorable” critical value in
the same way that critical values based on assuming that all moments are binding in the moment inequality
literature are “least favorable.” To see this, it is useful to note that é; ,(1 — «) is the same critical value
that would be used to test the null hypothesis that

Pe (| Pj= |J {PeP:ayP)<0}
1<5<3 KeK:

at level o using the test statistic max;<;<3 lem' In contrast to the moment inequality literature, where the
null hypotheses only involve a single set of inequalities, the null hypothesis involves a union of different sets
of inequalities. As a result, there is no longer a single “least favorable” critical value, but rather one for
each set of inequalities in the union. It is for this reason that the maximum appears in (22). It is possible
to construct critical values that are not “least favorable” by modifying other approaches in the moment

inequality literature, such as the recent approach by Romano et al. (2012). &

5.2 Monotonicity of Y in D and D in Z

In this section, we assume every @ € Q satisfies Assumptions 2.1, 2.2 and 2.3. For this choice of Q, it follows
from Theorem 3.2 that

P, = {PeP:0>A(P)UA(P)> Ay(P)} (26)
P, = {PcP:A(P)>AP)UA(P)>0}. (27)

14



Recall the definitions of ax(P) and Ofn for 1 < k£ <10 in Section 5.1 and define

au(P) = —alg(P) = A(P) .
For 1 < j < 3, define R
P,
Tj%n = min max @ (Fn) ,

Fa
Kek? keK 07,

where

K2 = {{1,2,3,4}}
K35 = {{6},{7},{11}}
K3 = {{8},{9},{12}},

and 67, for 11 < k < 12 is the usual (unpooled) estimate of the standard deviation of ax(P,). Note that at

most one of the 7, will be strictly positive. Define

éan(l—a)= max J,, '1-a,K,P,),

KeK3
where
B,) —a;(P
JQ,n(x,K,P) = P{maxng}
keK O—k,n
Ks = {AUBUC:A€K;, BeK3 Ceks}.

Theorem 5.2 Consider testing (17) with Py, Py and P3 given by (25), (26), and (27), respectively. The

testing procedure that rejects Hj whenever T;n > é9 (1 — @), where j = arg maxj<;<s Tj ns Satisfies (18).

Remark 5.3 By arguing as in Remark 5.1, it is in fact possible to show that K5 may be replaced by

{{1,...,4,11,12}} U U {{j,k}} .=

j€46,7,11},k€{8,9,12}

5.3 Monotonicity of Y in D

In this section, we assume every @ € Q satisfies Assumptions 2.1 and 2.3. For this choice of Q, it follows
from Theorem 3.3 that

P, = {PcP :min{B(P),Bs(P)} < A(P) < max{Bs(P), By(P)}} (28)
P, = {PcP:By(P)< Bi(P)UA(P) < By(P)UA(P) > Bo(P), (29)
B3(P) < Bi(P)UA(P) < B1(P)UA(P) > Bs(P)} (30)
P, = [PcP:By(P)> Bi(P)UA(P) > By(P)UA(P) < Bo(P), (31)
Bs(P) > Bi(P)UA(P) > By(P) UA(P) < Bs(P)} . (32)
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In order to describe our testing procedure, it is useful to introduce some further notation. Define

bi(P) = —bio(P) = B%(P) —A(P)
by(P) = —by(P) = Bi(P)—A(P)
b3(P) = —bs1(P) = Bj(P)—A(P)
bi(P) = —b3a(P) = B3(P)—A(P)
bs(P) = —bi3(P) = A(P) - B%(P)
b(P) = —b1a(P) = A(P)~— B3(P)
br(P) = —bs(P) = A(P)— By(P)
bs(P) = —bs(P) = A(P)— Bi(P)
bo(P) = —bn1(P) = By(P)— Bi(P)
blO(P) = —523(P) = B%(P) - BE(P)
bll(P):*bﬂ(P) = BS(P)*Bi(P)
bia(P) = —bau(P) = B3(P)— Bi(P)
bis(P) = —bo7(P) = B3(P)— Bi(P)
bio(P) = ~b2o(P) = B3(P)— By(P)
bi7(P) = ~bss(P) = Bs(P)— BY(P)
bis(P) = —bso(P) = B;(P)— Bi(P) .
For 1 < j <3, define K
Tj‘%n = min maxw ,

KeIC*;? keK Ok n

where
K3 = {AUB:Ac{{1,2},{3,4}},B < {{5,6},{7,8}}
K3 = {AUB:Ac {{13},{14},{7,8},{9,10},{11,12}}, B € {{19}, {20}, {3,4}, {15, 16}, {17,18}}
K3 = {AUB:Ac {{25},{26},{5,6},{21,22},{23,24}}, B € {{31}, {32}, {1, 2}, {27, 28}, {29,30}} ,

and &Z’n for 1 < k < 32 is the usual (unpooled) estimate of the standard deviation of by (P,). Define

é3n(l—a)= Ir(nea]ug J:,:,lL(l — a,K,Pn) ,
3

where
Jsn(@, K,P) = P {maxlw - x}
heK Uk,n
K3 = {AUBUC:A€K{ BeK} Ceki}

Theorem 5.3 Consider testing (17) with Py, Pa and Py given by (28), (29), and (31), respectively. The

testing procedure that rejects Hj whenever T;’n > é3.(1 — o), where j =arg maxi<;<3s

16

T3

J,m?

satisfies (18).



Remark 5.4 By arguing as in Remark 5.1, it is in fact possible to show that 5 may be replaced by
{{1,...,8}U{AUB: A€k}, BeKiCZAUBforal C K},

where
K= {{1,2,19},{3,4,31},{3,4,32},{7,8,25},{7,8,26},{5,6,13},{5,6,14}} . m

A Detecting Failure of the Monotonicity Restrictions: Numerical
Results

Below we provide numerical results to complement the analytical results from Section 4. We consider
a parametric, latent variable model for Y and D that satisfies instrument exogeneity — Assumption 2.1
— and examine which parameterizations of the latent variable model result in detectable violations of the
monotonicity restrictions. The numerical results highlight that the ability to detect violations of Assumption
2.2 requires strong (positive or negative) dependence between treatment response to the instrument and
outcome response to the treatment, i.e., strong dependence between Dy — Dy and Y; — Y. The results also
highlight the difficulty of detecting violations of Assumption 2.3 in that, in addition to extremely strong
dependence between D — Dy and Y7 — Yj, the fraction of “always takers” and “never takers” must be close

to zero in order to be able to detect violations of Assumption 2.3.

A.1 Monotonicity of D in 7

Consider the following parametric model for Y and D:

Y = I{BD+e>0}

(33)
D = I{6Z+n>0}

with Z Ul (e,n, 8,9), (e,m,5,0) ~ N(u,X), and E[6] > 0. Note that this model satisfies Assumption 2.1 and
that Assumption 2.2 is violated whenever Var[d] > 0. Corr|[3, §] measures the dependence between treatment
response to the instrument and outcome response to the treatment. Var[d] and E[§] measure the strength
of the instrument, which is decreasing in Var[d] and increasing in E[d]. From Proposition 4.1, we have that
the ability to detect violations of Assumption 2.2 is increasing in the size of the violation and decreasing in
the strength of the instrument. In addition, the ability to detect violations requires sufficient difference in
latent outcome distributions between “compliers” and “defiers.” The difference between these distributions
is increasing in |Corr[8, §]|. We therefore examine below how the ability to detect violations of Assumption

2.2 varies with Var[d], E[d], and Corr[3,d]. In particular, we consider parameterizations of (33) with

0 1 0 O 0

0 0 1 0 0
p= , X=

0 0 0 1 0

Hs 0 0 03,6 Jg

and vary ps from 0.1 to 1, o2 from 0.2 to 50, and 04,5 so that Corr[3,d] varies from —1 to 1.
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Figure 1: Detecting Violations of D Monotonic in Z: Minimum Var|[d]

Min Var@)

Corr(B,8)

Figure 1 displays the minimum value of Var[d] for which it is possible to detect violations of Assumption
2.2 for different values of E[d], Corr[8, §]. For presentation purposes, we have truncated the graph at 50 for
the minimum value of Var(4). The minimum value of Var[d] for which it is possible to detect violations of
Assumption 2.2 is increasing in E[d], though not dramatically so. In contrast, the minimum value of Var[d]
for which it is possible to detect violations of Assumption 2.2 asymptotes to infinity as Corr[3, 6] approaches

Zero.

Figure 2 displays the maximum strength of the instrument, as indexed by E[d], for which it is possible
to detect violations of Assumption 2.2 for different values of Var[§] and Corr[3,d]. The maximum value of
E[d] for which it is possible to detect violations is increasing in Var[d]: if the violation is more severe, then
the instrument can be stronger with the violation still being detectable. As Corr[3,d] approaches zero, the
maximum value of E[d] for which it is possible to detect violations approaches 0. For any Corr[8,d] # 0,
there is a strength of instrument sufficiently weak such that the violation of Assumption 2.2 can still be
detected. On the other hand, if Corr[3,d] = 0, then it is not possible to detect violation of Assumption 2.2
for any value of E[d] and Var[d].

The lefthand-side of Figure 3 displays the maximum value of Corr[3,d] < 0 for which we can detect
violations of Assumption 2.2 for different values of E[§] and Var[d]; the righthand-side of Figure 3 displays
the minimum value of Corr[3, §] > 0 for which we can detect violations of Assumption 2.2 for different values
of E[0] and Var[d]. The figure is plotted from an “overhead” view, with warmer colors indicating higher
values for the maximum/minumum value of Corr[3, §] for which the violation is detectable and white space
for values of F[6] and Var[d] for which there is no value of Corr[8, §] for which the violation is detectable.
The ability to detect the violation of Assumption 2.2 is increasing in |Corr(/3, )|, but, for a fairly large range

of values of E[d] and Var[d], there exists no value of Corr[3,d] for which the violation is detectable.
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Figure 2: Detecting Violations of D Monotonic in Z: Maximum E[d]

Var(3)
Corr(B,8)

Figure 3: Detecting Violations of D Monotonic in Z: Minimum/Maximum Corr[S, §]
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A.2 Monotonicity of Y in D

Extensive experimentation revealed that it is difficult to find parameterizations of (33) for which it is possible
to detect violations of Assumption 2.3. For example, with Corr[n, 8] = 0, Corr[n, §] = 0 and Corr|[, 6] = 1,
we were unable to find any parameterizations for which it is possible to detect violations Assumption 2.3.
The only parameterizations we found for which it is possible to detect violations of Assumption 2.3 involved
Corr[B,6] =~ 1, Corr[n, f] = —1, Corr[n, §] ~ —1, and both Var[3] and Var[d] large. This remained true even
for extreme violations of Assumption 2.3, such as Var[3] = 10,000. The results suggest that in a model of
the form of (33), it is difficult to find parameterizations such that the fractions of “always takers” and “never

takers” are small enough so that it is possible to detect violations of Assumption 2.3.

The extreme difficulty in finding parameterizations of (33) for which it is possible to detect violations of

Assumption 2.3 led us to consider the following parametric, latent variable model for Y and D:

Y = I{BD+e>0}

(34)
D I{o(8) + 64(0)Z +n > 0}

with Z 1L (e,n, 5,0), (¢,n,5,6) ~ N (1, %), and

—t ifdo>0
a(0) =

t iHfs<o0

0+2t ifd>0
6(0) =

§—2t ifs<0

Here, the parameter ¢t > 0 is used as an index to control the fractions of “always takers” and “never takers.”

In particular, these fractions are decreasing in ¢t. As in the analysis of the previous subsection, we consider

0 10 0 0

0 01 0 0
p= ; 2= 5 ;

0 00 of O

1 0 0 ogs 10

Extensive experimentation again revealed that it is difficult to find parameterizations of (34) for which it
is possible to detect violations of Assumption 2.3 for small values of ¢, though less difficult as t gets larger
(and thus the probability of being an “always taker” or “never taker” approaches zero). For example, when
t >4, Q{Dy = Do} =~ 0, and, for such ¢, it is possible to detect violations of Assumption 2.3 if Corr|S, d]
and Var[5*] are sufficiently large, such as Corr[f,d] = .8 and Var[d] > 3.

B Proofs for Section 3
PROOF OF THEOREM 3.1: First consider assertion (i). For 1 < j < 2, A(P) = AJ(P) + A)(P), so that

AP) = Al(P) = AL(P) = 0 and A(P) < Aj(P) — A{(P) < 0. Thus, A(P) € [Ai(P), As(P)]
if and only if A;(P) < 0 and A4(P) > 0. The result then follows from Balke and Pearl (1997). Now
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consider assertions (ii) and (iii). From Balke and Pearl (1997), the identified set for Eq[Y: — Yp] is given by
[A(P) — A3(P), A(P) — A3(P)]. Combining this result with (i) gives the stated results. B

PRrROOF OF THEOREM 3.2: Following the same linear programming strategy as in Balke and Pearl (1997)
except with the additional constraints on Q that

QY1 >Yo,D1 =j,Do =k} =0

for all (j,k) € {0,1}? and Q € Q results in the restriction that A(P) € [A;(P),0]. Instead imposing the
additional constraints on Q that
QY1 <Yo,D1=j,Do =k} =0

for all (j,k) € {0,1}? and Q € Q results in the restriction A(P) € [0, A4(P)]. The result now follows.

PROOF OF THEOREM 3.3: Following the same linear programming strategy as in Balke and Pearl (1997)

except replacing the constraint that

QY1 =j,Yo =k, D1 < Do} =0 (35)
for all (j,k) € {0,1}? and Q € Q with the constraint that

QY1 >Yo,D1=j,Do=k} =0

for all (j,k) € {0,1}? and @ € Q results in the restriction that A(P) € [Bs(P), B4(P)]. Instead replacing
the constraint that (35) holds for all (j,k) € {0,1}* and Q € Q with the constraint that

Q{Y1 <Y0,D1=j,Do =k} =0

for all (j,k) € {0,1}% and Q € Q results in the restriction that A(P) € [B1(P), B2(P)]. The result now
follows. W

C Proofs for Section 4
PROOF OF PROPOSITION 4.1: Using (2) - (3) and Assumption 2.1, A(P) may be expressed as

{Q{Y1 > Yy, D1 > Do} — Q{Y1 < Yo, Dy > Do}}

{Q{Yl > Yy, D1 < Do} — Q{}/l <Yy, D1 < DO}} . (36)
Furthermore,
A{(P) = Q{Yo=1,Dy < Do} — Q{Yy=1,D; > Dy}
A2(P) = Q{Yi=0,D; < Do} — Q{Y:1 =0,D; > Dy}
AY(P) = Q{Yi=1,D; > Dy} —Q{Yy =1,D; < Dy}
AAQL(P) = Q{YO =0,D; > DO} - Q{Yb =0,D; < Do} .
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Thus,

A(P)—A[(P) = Q{Yi=1,D1> Dy} —Q{Y1=1,D; < Dy}
AP)—A}(P) = Q{Yo=0,D1> Do} —Q{Yo=0,D; < Do}
A(P) - A{(P) = —Q(Yo=1,D1 > Do} +Q{Yo=1,D1 < Do}
A(P) - A3(P) = -Q{Y1=0,D1 > Do} + Q{Y1=0,D; < Dy} .

The desired result now follows immediately. B

PROOF OF PROPOSITION 4.2: Using Assumption 2.1, we have that

B(p) = —minf o e L
1 - B )
Q{Y1 > Yo, D1 < Do} + Q{Y1 > Yy, D1 = Dy = 0} + Q{Y1 = Y5 = 0,D; = 0}
By(P) = mm{ Q{Yl>Y0,D1>Do}+Q{Y1>YO7D1:D0:1}+Q{Y1:YO:17D1:1}7}
2 - b
Q{Yl>YQ,D1>D0}+Q{Y1>Y0,D1:DOZO}+Q{%:Y1:O,D():O}
By(P) — min{ Q{Y1 <Yo,D1 > Do} + Q{1 <Y0,D1:D0:1}+Q{Y1:Y0:0,D1:1}}
3 - o 9
Q{Y1 <Yy,D1 > Do} +Q{Y1 <Yy,D1 =Dy =0} +Q{Yo =Y1 =1,D¢ = 0}
B(P) _ min{ Q{Yi<Y0aD1<DO}+Q{Y1<Y07D1:D0:1}+Q{Y1:Y0=0,D0=1}}
4 - .
Q{Y1 <Yy,D1 < Do} +Q{Y1 <Yy,D1 = Dy =0} +Q{Y1 =Yy =1,D; =0}
so that
Bi(P) = —-Q{Y1>Yy,Dy<Do}— M
By(P) = Q{Y1>Yy,D1 > Do} + M,
B3(P) = —Q{Y1 <Yy, D1 > Do} — M3
By(P) = Q{Y1<Yy,D1 < Do}+ M,

The desired result now follows immediately. ®

D Proofs for Section 6

PROOF OF THEOREM 5.1: Suppose by way of contradiction that (18) fails. Then there exists a subsequence
{P,,, € P:m >1} and o > « such that

FWERp, —a . (37)

Let
I(P)={1<j<3:PeP,;} C{1,2,3}.
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Since there are only finitely many possible values for I(P) and FW ERp = 0 when I(P) = (), we may assume
further that I(P, ) =1 # 0. Let

Ki=<JA4;:4;eKjforjer
JeI

Using this notation, we have that

{peP:1(P)=1I}C ] Py, (38)
KeKks

where
Pip=[|{PeP:ap(P)<0}.
keRK
Note that in (38) we have an inclusion instead of an equality due to the fact that P is always defined with
weak inequalities, whereas the null hypotheses are sometimes defined with strict inequalities. Since there

are only finitely many K in K7, we may assume further that there is K € Kj such that

{Pn,,, eP:m>1} CPg. (39)
Next, note that
P
max len = max min max a]i(a n)
jer ”» i€l KeKl keK Op
< may %) (40)
T keK 6%,

To establish (40), let j € I and K* € K be given. It follows that there exists K e lel» such that K C K*.

Hence,

which in turn implies that

a ar(P
min max kA(a n) < max kA(a n)
KeKl keK Opp keK* O p
Since the inequality is valid for any j € I and K* € K7,
Qg (Pn) Qg (Pn)

max min max — < min max —
J€l Kek! keR O), ~ K e€KjkeK oy,
; ;

)

from which (40) follows because K € K7. Similarly,

én(l—a) = max J;}L(l - oz,f(,ﬁn)
Keky
> Jia(l—o, K, P,). (41)



To establish (41), note that there exists K* € K} such that K C K*, so
Jia(l—a, K" P) > Jr (1 - o, K, P,) .

The inequalities (40) and (41) therefore imply that

FWERp, = Po{maxTh, > a,.0-a)
m ]GI »tm
k( nm) -1 >
< P, {r]?ea% o >J17nm(1—a,K,an)}. (42)

Using (39) and Theorem E.1, we see that the righthand-side of (42) tends to «, contradicting (37), and
thereby establishing the desired result. ®

PrROOF OF THEOREM 5.2: The proof is essentially identical to the one presented for Theorem 5.1 and is

therefore omitted. W

ProOF orF THEOREM 5.3: The proof is essentially identical to the one presented for Theorem 5.1 and is
therefore omitted. m

E Auxiliary Results

In this appendix, we establish the following result:

Theorem E.1 Let (X;,Y;,Z;),i =1,...,n be an i.i.d. sequence of random variables with distribution P € P
on RF x R¥ x {0,1}. Suppose P is such that

e< inf P{Z=1}<supP{Z=1}<1—c¢ (43)
PeP PeP

for some € > 0, and for each 1 < j < k that

Xj —ux,1z=1(P)\* | — px; 21 (P)
limsup sup £ ( J 2 1 2 >Ap|Z=1|=0 44
Asoo PEP ox;1z=1(P) ox;z=1(P) | 4
and )
Y, — py. 1 z=1(P Y, — puy.1z=1(P
lim sup sup Ep <]MYJ|21()> [{JMYJ'“()‘>/\}|Z:0 —0. (45)
Asoo PEP oy, 1z=1(P) oy;|z=1(F)
Let
= ; <
Ju(a, P) P{gﬁﬁﬂwﬁﬁ_x}7 (16)
where ) L
T,.;(P) = ni Zléién:Zizl Xji— ”Xj|Z=1(P) ~ o Z1§i§n:zizo Yii— /~LYJ\Z=0(P) .
) \/Ui(jZl(P") n Uf/j\Z:O(P")
ni no
Then

i , 11l-a,P)}<a.
lim sup SuPP{f?ffkT”vJ(P)>Jn (1 a,Pn)}_a

n—oo PcP
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Before presenting the proof of Theorem E.1, we present a series of useful lemmata.

Lemma E.1 Let (X;,7;),i=1,...,n be an i.i.d. sequence of random variables with distribution P € P on
R x {0,1}. Suppose P is such that
lyelf;’ P{Z=1}>¢

for some € > 0 and that

lim sup sup Ep HX —MX|Z:1(P)|I{|X —,ux‘zzl(P)| >AHZ=1]=0. (47)
A—oo PeP

Then, for any {P, € P:n > 1},

1 P,
- > Xi—pxiz=1(Pa) 30,
L i<i<nz,=1

where nv =21, Zi-

PROOF: First assume w.l.o.g. that px|z—1(FP,) = 0. Thus, Ep, [ZX] = 0. Next, note that (47) implies that

Ep, [

lim sup ZX|I{|ZX|> A} |Z=1]=0.

1
Since P,{Z =1} > ¢, it follows that
limsup Ep, [|ZX|I{|ZX|>A}|Z=1]=0.
A—00

By Lemma 11.4.2 of Romano and Shaikh (2012), we therefore have that

Since |Z — pz(Pp)| < 1, we also have that

limsup Ep, [1Z — pz(P)| T{1Z = pz(Py)| > A} Z = 1] = 0.

A—00

Thus,
1
=3 Zi=PudZ =1} +on, (1)

1<i<n

To complete the argument, note that

1 1 1
— Z Xi:EZXiZi/EZZi

n
Li<i<nizi=1 1<i<n 1<i<n

The desired result now follows since P,{Z =1} >¢. B

Lemma E.2 Let (X;,Y;,7Z;),i=1,...,n be an i.i.d. sequence of random variables with distribution P € P
on R¥ x R¥ x {0,1}. Suppose (43) holds for some € > 0 and for all 1 < j < k that (44) and (45) hold.
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Then, for any {P, € P :n > 1},

> Py
[[Qx)z=1(Pn) — Qxjz=1(Pn)|| =* 0 (48)
A PTL
Qv z=0(Pn) — Qyiz=o(Pu)ll = 0, (49)
where || - || denotes the component-wise mazimum of the absolute value of all elements.

PRrROOF: We provide only the proof for (48), as the same argument establishes (49). To establish (48), first
note that we may assume w.l.o.g. for all 1 < j <k that pux;|z=1(P,) = 0 and ox,z=1(F,) = 1. The (j,)
element of Qx| z—1(P,) is thus given by

Ep, [X;X(|Z = 1]

and the (j,¢) element of QX|Z:1(]5n) is given by

1 Cox., (L (L )
1 Zlgign:Zizl Xi,j Xie (nl Z1gi§nzzi:1 X J) (m Zlgign:ziﬂ XM)

)

i
ij\zzl(Pn)UXAZ:l(Pn)

where ny = ), .;-,, Z;- From Lemma B.3 in Bhattacharya et al. (2012), we see that

—_

UXj|Z=1(Pn)

UL

UXZ|Z:1(P71)

From Lemma E.1, we see that

1 X B oo

ny )
1<i<n:Z;=1

Ly x, B oo,

ny . _.
1<i<n:Z;=1

Using the inequality
lal[bl7{lal[b] > A} < @*I{]a] > VA} + b I{[b| > VA},

we see that

limsup Ep, [|X; X I{|X;Xe| >A}|Z=1]=0.

A—o0

Since |Ep, [X;X¢|Z = 1]| < 1 by the Cauchy-Schwartz inequality, we have further that

limsup Ep, [|X;X; — Ep, [X;X|Z = 1| I{|X; X, — Ep,[X;X,|Z=1]| > A\}|Z=1] =0

A—00

Thus, Lemma E.1 implies that

1
— > Xi;jXiy=Ep,[X;X)|Z =1]+0p,(1) .

™M ciinizi—
<i<n:Z;=1

The desired result now follows immediately. B

Lemma E.3 Let (X;,Y;,7Z;),i=1,...,n be an i.i.d. sequence of random variables with distribution P € P

26



on RF x R* x {0,1}. Suppose (43) holds for some € > 0 and for all 1 < j < k that (44) and (45) hold.
Define

7%y 7=1(P) Txy1z=1(P)

D(P) = diag | — P{Z=1} P{Z=1}

CHET ST SHET + ThE
Then,
IDPn)x1z-1(Bn) = D(Pa)xiza (Bl =5 0 (50)
I = D(E)Qyiz=0(Pa) = (I = D(Pa)yiz=o(Po)l| 75 0, (51)
where I is the k-dimensional identity matriz and || - || denotes the component-wise mazimum of the absolute
value of all elements. Hence,
V(B = V(P 50, (52)
where
V(P) = D(P)Qx|z=1(P) + (I — D(P))Qy|z=0(P) . (53)

PrROOF: We provide only the proof for (50); the same argument establishes (51) and (52) then follows
immediately from the triangle inequality. To establish (50), first note that D(P,,) is invertible and that from
Lemma B.4 of Bhattacharya et al. (2012)

ID(Py) " D(Py) = 1| %3
Next, note for a universal constant C' that

ID(P) 21721 (Pa) = D(Pa)Qx| 71 (Pa)|
ClIDPINID(Pa) ™ D(P)Qx 721 (Pa) = Qxi 71 (Pa)
CHIDP NI 21 (Pa) | (1D(P) T D(Pa) = 11| + (121721 (P) = 2ix 21 (Pa))

IN

IN

Since the elements of D(FP,) and Qx|z—; (P,) are all bounded, the norm of these matrices are also bounded.
It therefore suffices to show that

~ PTL
[Qx12=1(F) — Qx)z=1(F)|| = 0,

which follows from Lemma E.2. &

Lemma E.4 Let (X;,Y;,7Z;),i=1,...,n be an i.i.d. sequence of random variables with distribution P € P
on RF x R* x {0,1}. Suppose (43) holds for some € > 0 and for all 1 < j < k that (44) and (45) hold.
Then, for any {P, € P :n > 1},

o0 . Pn

@@{ /O |rj()\,Pn)—rj(/\,P)d)\} g (54)
oo . Pn

1@%{/0 |sj()\,Pn)—sj()\,P)d)\} Py, (55)
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where

B X — px;)z=1(P) ? Xj — px;)z=1(P) _

ri(\,P) = Ep ( (P ) I{ G > /\} Z=1 (56)
. Yg - MY_]-|Z:O(P) ? YJ - MmZ:O(P) N

sj(\,P) = Ep ( O—Y]-|Z=O(P) ) I{ 0Yj|Z=O(P) > )\} |Z =0 (57)

PROOF: We provide only the proof for (54); the same argument establishes (55). To establish (54), consider
any 1 < j < k. First note that we may assume w.l.o.g. that px,|z—1(P,) = 0 and ox,z=1(P,) = 1. Next,
note for any 1 < j < k that r;(, ]5”) = A, — 2B, + C,, where

1 1 : P
A, = — D XLHIX; - pxgz—(Pa)l > Aoz (Pa))
ox,1z=1(Pn) M 1<i<n:Z;=1
fix;1z=1(Pn) 1 £ P
B, = SIS N XKy = iz (Pl > Ao iz (P)
ox,1z=1(Pn) ™ o 57
px,1z=1(Pn)? 1 : P
Cn = 2XlZ= ) - Z H|Xij — px;1z=1(FPn)| > Aox;z=1(Fa)} -
0X,|Z= 1(Pn) m 1<i<n: Z;=1

From Lemma E.1, we see that uXHZ:l(Pn) % 0. From Lemma B.3 in Bhattacharya et al. (2012), we see

that JXHZ:l(Pn) P 1. From Lemma E.1, we also see that

1
- > IXisl = Er,[1X5]] +0p,(1) .

Li<i<nizi=1

Since Ep,[|X,|] < 1 by the Cauchy-Schwartz inequality, it follows that B,, = op, (1) uniformly in A. A

similar argument establishes that C,, = op, (1) uniformly in A. In summary,

1 1 » 2
R = LS X X~ s (B > o a(P) +
ox;1z=1(FPn) M 5

uniformly in A, where A,, = op, (1).

For § > 0, define the events

En(6) = {lpx,jz=1(Pu)l <6N1=0<ox,z21(Pa) <1+ 6}
1
E, () = qsup|— > XLI{|Xi;| >t} - Ep [X;H{|X;| > t}|Z2 =1]| <6
teR |\ 2
E (0) = {lAn[<d}.

We now argue that P,{F,(6) N E/ (6) N E!(§)} — 1. Since MX_,-\Z:l(Pn) B, UX].|Z:1(Pn) D1, and

A, =op, (1), it suffices to argue that
PAEL@®)} = 1. (58)
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To see this, note that

1
- Yo XXl > 6} - Ep [XFIH{IX;| > t}]1Z = 1]

1<i<n:Z;=1
; nZXQ I{X; | >t 1
_ P Xasis {Xii[ > 8 Ep [ZX2I{|X;| > t}]
_Zn P{Z =1} "7
Pn{z:1}
= 1-— _ Z; X7 | X 5] >t
(1- =) i PIREHIENEY
S Z; X2 I{|Xi 5| >t} — Ep, [ZXZT{|X;| > t
P{Z_l} Z {IXi ;] >t} = Ep, [ZXFI{|X;] > t}]
1<i<n
Pn{Zl}> Z, 1 )
= [1- _ - X2 I{|X; | >t 59
< Zn PAZ=1}m 19;&:1 Tl > 1) (59)
S Z; X2 I{|Xi 5| >t} — Ep, [ZXZT{|X;| > t )
P{Z_l} - Z {IXi ] >t} = Ep, [ZXFI{|X;] > t}] (60)
1<i<n
From Lemma E.1, we see that ~
In___ Pyy
Pn{Zzl}

and

1
— > XP Xl >t} = Ep, [XJI{|X,| > t}|Z =1] + op, (1) .

n
L <i<n:zi=1

The Cauchy-Schwartz inequality implies that Ep, [X7I{|X;| > t}|Z = 1] < 1. Hence, (59) is op, (1) uniformly

in . Note further that the class of functions
{z2?I{|z| >t} : t € R} (61)

is a VC class of functions. Therefore, by Theorem 2.6.7 and Theorem 2.8.1 of van der Vaart and Wellner
(1996), we see that the class of functions (61) is Glivenko-Cantelli uniformly over P. Since P,{Z = 1} > ¢, it
follows that the supremum over ¢t € R of (60) tends in probability to zero under P,,. The desired conclusion
(58) follows.

To complete the argument, it now suffices to argue as in the proof of Lemma S.12.2 in Romano and
Shaikh (2012). =

Lemma E.5 Let (X;,Y;,7Z;),i=1,...,n be an i.i.d. sequence of random variables with distribution P € P

on RF x R* x {0,1}. Suppose (43) holds for some € > 0 and for all 1 < j < k that (44) and (45) hold.
Then, for any {P, € P :n > 1},
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where
p(Q, P) = maX{llV(Q) —V(P)|,|Q{Z =1} = P{Z =1}],

max, {/0 (0 Q) — rj()\,P)d)\} ,1?%{/0 15,00 Q) — sj()\,P)d)\}} . (62)
Here, V(P), rj(\, P), and sj(\, P) are defined as in (53), (56), and (57), respectively, and || -|| denotes the

component-wise mazximum of the absolute value of all elements.

PROOF: By arguing as in the proof of Lemma E.2, we have that
P{Z=1}-P{z=1}=2,-P{Zz=1}330.
The desired result now follows from Lemmas E.3 and E.4. &

Lemma E.6 Let P be a set of distributions on R¥ x R¥ x {0,1} such that (43) holds for some € > 0 and
for all 1 < j <k that (44) and (45) hold. Let P’ be the set of all distributions on R* x R¥ x {0,1}. Define
p(Q,P) as in (62) and J,(z,P) as in (46). Then, for any {@Qn, € P’ : n > 1} and {P, € P : n > 1}
satisfying p(Qn, Pn) — 0,

limsup sup |Jn(x, @Qn) — Jn(z, Pp)| = 0. (63)
n—oo PeP

PROOF: Consider sequences {@Q, € P’ : n > 1} and {P, € P : n > 1} satisfying p(Qn, P,) — 0. By arguing
as in the proof of Lemma S.12.1 in Romano and Shaikh (2012), we see that

lim limsupr;(A, Py,

—00 n—oo

lim limsupr;(A, @Qn
—00 n—oo

)
)

lim limsups;(A\, P,) = 0
)

A—=00 pooo

lim limsups;(\, @y

A—00 p—oo

We now establish (63). Suppose by way of contradiction that (63) fails. It follows that there exists a
subsequence such that n,, such that V(P, ) — V*, V(Q, ) = V*, and either

sup |Jn,, (2, Pp,,) — ®v-(z)| /0 (64)
zeR
or
sup |Jn,, (%, Qn,,) = Pv= ()] 4 0. (65)
z€R

Let W,,(P,,) be the vector whose jth element for 1 < j < k is given by

n% Z1§i§nzz,;:1 Xij— MXj\Zzl(P) - n%, Elgign:ZiZO Yij— MleZ:O(P)
\/oiﬂzmﬁn) L Thiz=oP)

ny no
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From Lemmas B.4 and B.5 in Bhattacharya et al. (2012) and Slutsky’s Lemma, we see that
W, (Pp. )% @y (2)

under P, . It therefore follows from Polya’s Theorem that (64) can not hold. Similarly, we see that (65)
can not hold. The desired conclusion thus follows. ®

PrROOF OF THEOREM E.1: The desired result follows immediately from Lemmas E.5 and E.6 and Theorem
2.4 in Romano and Shaikh (2012). m
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