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1 Introduction

It is a pleasure to acknowledge another insightful article by Sarkar. By
developing clever expressions for the FDP, FDR, and FNR, he manages
to prove fundamental properties of stepdown and stepup methods. It is
particularly important that the theory is sufficiently developed so as to apply
to what Sarkar calls adaptive BH methods. Here, the goal is to improve
upon the Benjamini Hochberg procedure by incorporating a data-dependent
estimate of the number of true null hypotheses. Theoretical justification of
such methods is vital and Sarkar’s analysis is useful for this purpose.

A perhaps more ambitious task is to develop methods which implicitly
or explicitly estimate the joint dependence structure of the test statistics (or
p-values). The focus of our discussion is to show how resampling methods
can be used to construct stepdown procedures which control the FDR or
other general measures of error control. The main benefit of using the boot-
strap or subsampling is the ability to estimate the joint distribution of the
test statistics, and thereby offer the potential of improving upon methods
based on the marginal distributions of test statistics. The procedure below
is a generalization of one we developed for FDR control, and the utility of
the bootstrap is that it can apply to essentially arbitrary measures of error
control, such as the pairwise FDR of Sarkar, the k-FWER, or the tail prob-
abilities of the false discovery proportion. However, it is important to note
that the justification of such methods is asymptotic.
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2 Setup and Notation

Our setup is as follows. Suppose data X = (X1, . . . ,Xn) is available
from some probability distribution P ∈ Ω. A hypothesis H may be viewed
as a subset ω of Ω. In this paper we consider the problem of simultaneously
testing null hypotheses Hi : P ∈ ωi, i = 1, . . . , s on the basis of X. The
alternative hypotheses are understood to be H ′

i : P 6∈ ωi, i = 1, . . . , s.

We assume that test statistics Tn,i, i = 1, . . . , s are available for testing
Hi, i = 1, . . . , s. Large values of Tn,i are understood to indicate evidence
against Hi. Let

Tn,(1) ≤ · · · ≤ Tn,(s)

denote the ordered test statistics (from smallest to largest) and let H(1),
. . . ,H(s) denote the corresponding null hypotheses. A stepdown multiple
testing procedure rejects H(s), . . . ,H(s−j∗), where j∗ is the largest integer j
that satisfies

Tn,(s) ≥ cs, . . . , Tn,(s−j) ≥ cs−j ;

if no such j exits, the procedure does not reject any null hypotheses. The
problem is how to construct the ci so as to control the given measure of error
control.

Denote by I(P ) the set of indices corresponding to true null hypotheses;
that is,

I(P ) = {1 ≤ i ≤ s : P ∈ ωi} . (2.1)

For a given multiple testing procedure, let F denote the number of false
rejections and let R denote the total number of rejections. Our goal is to
construct a stepdown procedure so that

lim sup
n→∞

EP [g(F,R)] ≤ α (2.2)

for all P ∈ Ω, where α is some fixed value, not necessarily in (0, 1). Some
choices of g are F/R · I{R > 0}, I{F ≥ k}, I{F/R · I{R > 0} > λ} and
Sarkar’s pairwise FDR defined by [F (F − 1)]/[R(R − 1)] · I{R > 1}.
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3 Motivation for Method

In order to motivate the method, first note that for any stepdown pro-
cedure based on critical values c1, . . . cs we have that

EP [g(F,R)] =
∑

1≤r≤s

EP [g(F, r)|R = r]P{R = r}

=
∑

1≤r≤s

E[g(F, r)|R = r]P{Tn,(s) ≥ cs, . . . ,

Tn,(s−r+1) ≥ cs−r+1, Tn,(s−r) < cs−r} ,

where the event Tn,s−r < cs−r is understood to be vacuously true when
r = s. Let s0 = |I(P )| and assume without loss of generality that I(P ) =
{1, . . . , s0}. Under weak assumptions, one can show that all false hypotheses
will be rejected with probability tending to one. For the time being, assume
that this is the case. Let Tn,r:t denote the rth ordered of the t test statistics
Tn,1, . . . , Tn,t, ordered from smallest to largest (here and throughout). In
particular, when t = s0, Tn,r:s0

denotes the rth ordered of the test statistics
corresponding to the true hypotheses. Then, with probability approaching
one, we have that

EP [g(F,R)] =
∑

s−s0+1≤r≤s

g(r − s + s0, r)P{Tn,s0:s0
≥ cs0

, . . . ,

Tn,s−r+1:s0
≥ cs−r+1, Tn,s−r:s0

< cs−r} , (3.1)

where the event Tn,s−r:s0
< cs−r is again understood to be vacuously true

when r = s.

Our goal is to ensure that (3.1) is bounded above by α for any P , at least
asymptotically. To this end, first consider any P such that s0 = |I(P )| = 1.
Then, (3.1) reduces to

g(1, s)P{Tn,1:1 ≥ c1} . (3.2)

A suitable choice of c1 is thus the smallest value for which (3.2) is bounded
above by α; that is,

c1 = inf{x ∈ R : P{Tn,1:1 ≥ x} ≤ α/g(1, s)} .

Note that if α/g(1, s) ≥ 1, then c1 so defined is equal to −∞. Having
determined c1, now consider any P such that s0 = 2. Then, (3.1) is simply

g(1, s − 1)P{Tn,2:2 ≥ c2, Tn,1:2 < c1} + g(2, s)P{Tn,2:2 ≥ c2, Tn,1:2 ≥ c1} .
(3.3)
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A suitable choice of c2 is therefore the smallest value for which (3.3) is
bounded above by α.

In general, having determined c1, . . . , cj−1, the jth critical value may be
determined by considering P such that s0 = j. In this case, (3.1) is simply

∑

s−j+1≤r≤s

g(r−s+j, r)P{Tn,j:j ≥ cj , . . . , Tn,s−r+1:j ≥ cs−r+1, Tn,s−r:j < cs−r} .

(3.4)
An appropriate choice of cj is thus the smallest value for which (3.4) is
bounded above by α.

Of course, the above choice of critical values is infeasible, since it depends
on the unknown P through the distribution of the test statistics. We there-
fore focus on feasible constructions of critical values based on resampling.

4 A Bootstrap Approach

We now specialize our framework to the case in which interest focuses
on a parameter vector

θ(P ) = (θ1(P ), . . . , θs(P )) .

The null hypotheses may be one-sided, in which case

Hj : θj ≤ θ0,j vs. H ′
j : θj > θ0,j (4.1)

or the null hypotheses may be two-sided, in which case

Hj : θj = θ0,j vs. H ′
j : θj 6= θ0,j . (4.2)

Test statistics will be based on an estimate θ̂n = (θ̂n,1, . . . , θ̂n,s) of θ(P )
computed using the data X. We will consider ‘studentized’ test statistics

Tn,j =
√

n(θ̂n,j − θ0,j)/σ̂n,j (4.3)

for the one-sided case (4.1) or

Tn,j =
√

n|θ̂n,j − θ0,j|/σ̂n,j (4.4)

for the two-sided case (4.2). Note that σ̂n,j may either be identically equal

to 1 or an estimate of the standard deviation of
√

n(θ̂n,j −θ0,j). This is done
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to keep the notation compact; the latter is preferable from our point of view
but may not always be available in practice.

Recall that the construction of critical values in the preceding section was
infeasible because of its dependence on the unknown P . For the bootstrap
construction, we therefore simply replace the unknown P with a suitable
estimate P̂n. To this end, let X∗ = (X∗

1 , . . . ,X∗
n) be distributed according

to P̂n and denote by T ∗
n,j, j = 1, . . . , s test statistics computed from X∗. For

example, if Tn,j is defined by (4.3) or (4.4), then

T ∗
n,j =

√
n(θ̂∗n,j − θj(P̂n))/σ̂∗

n,j (4.5)

or
T ∗

n,j =
√

n|θ̂∗n,j − θj(P̂n)|/σ̂∗
n,j , (4.6)

respectively, where θ̂∗n,j is an estimate of θj computed from X∗ and σ̂∗
n,j

is either identically equal to 1 or an estimate of the standard deviation of√
n(θ̂∗n,j − θj(P̂n)) computed from X∗. For the validity of this approach, we

require that the distribution of T ∗
n,j provides a good approximation to the

distribution of Tn,j whenever the corresponding null hypothesis Hj is true,
but, unlike Westfall and Young (1993), we do not require subset pivotality.
The exact choice of P̂n will, of course, depend on the nature of the data.
If the data X = (X1, . . . ,Xn) are i.i.d., then a suitable choice of P̂n is the
empirical distribution, as in Efron (1979). If, on the other hand, the data
constitute a time series, then P̂n should be estimated using a suitable time
series bootstrap method; see Lahiri (2003) for details.

Given a choice of P̂n, define the critical values recursively as follows:
having determined ĉn,1, . . . , ĉn,j−1, compute ĉn,j according to the rule

ĉn,j = inf{c ∈ R :
∑

s−j+1≤r≤s

g(r − s + j, r)P̂n{T ∗
n,j:j ≥ c,

. . . , T ∗
n,s−r+1:j ≥ ĉn,s−r+1, T

∗
n,s−r:j < ĉn,s−r} ≤ α} . (4.7)

It is important to be clear about the meaning of the notation T ∗
n,r:t, with

r ≤ t, in (4.7). By analogy with the “real” world, it should denote the rth
ordered of the observations corresponding to the first t true null hypotheses.
However, the ordering of the true null hypotheses in the bootstrap world
is not 1, 2, . . . , s, but it is instead determined by the ordering H(1), . . . ,H(s)

from the real world. So if the permutation {k1, . . . , ks} of {1, . . . , s} is defined
such that Hk1

= H(1), . . . ,Hks
= H(s), then T ∗

n,r:t is the rth ordered of the
observations T ∗

n,k1
, . . . , T ∗

n,kt
.
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We now provide conditions under which the stepdown procedure with
critical values defined by (4.7) satisfies (2.2). The following result applies
to the case of two-sided null hypotheses, but the one-sided case can be han-
dled using a similar argument. In order to state the result, we will require
some further notation. For K ⊆ {1, . . . , s}, let Jn,K(P ) denote the joint
distribution of

(
√

n(θ̂n,j − θj(P ))/σ̂n,j : j ∈ K) .

It will also be useful to define the quantile function corresponding to a c.d.f.
G(·) on R as G−1(α) = inf{x ∈ R : G(x) ≥ α}.

Theorem 4.1. Consider the problem of testing the null hypotheses Hi, i =
1, . . . , s given by (4.2) using test statistics Tn,i, i = 1, . . . , s defined by (4.4).
Suppose that Jn,{1,...,s}(P ) converges weakly to a limit law J{1,...,s}(P ), so
that Jn,I(P )(P ) converges weakly to a limit law JI(P )(P ). Suppose further
that JI(P )(P )

(i) has continuous one-dimensinal marginal distributions;

(ii) has connected support, which is denoted by supp(JI(P )(P ));

(iii) is exchangeable.

Also, assume

σ̂n,j
P→ σj(P ) ,

where σj(P ) > 0 is nonrandom. Let P̂n be an estimate of P such that

ρ(Jn,{1,...,s}(P ), Jn,{1,...,s}(P̂n))
P→ 0 , (4.8)

where ρ is any metric metrizing weak convergence in R
s. Then, the stepdown

method with critical values defined by (4.7) satisfies

lim sup
n→∞

EP [g(F,R)] ≤ α .

The proof of the Theorem closely follows the special case of FDR con-
trol in Romano et. al. (2008), and generalizes quite easily. The power of
computer-intensive methods is evident as the bootstrap adapts easily to dif-
ferent choices of g.

Note that, in the definitions of T ∗
n,j given by (4.5) or (4.6) used in our

bootstrap method to generate the critical values, one can typically replace
θj(P̂n) by θ̂n,j; but, see Remark 5.5 of Romano et. al. (2008).
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An alternative approach can be based on subsampling, which avoids the
exchangeability assumption; see Romano et. al. (2008). The bootstrap ap-
proach performed better in simulations.

5 Concluding Remarks

We have developed a bootstrap method which provides asymptotic con-
trol of the false discovery rate, or other generalized error rates. Asymptotic
validity of the bootstrap holds under fairly weak assumptions, but we re-
quire an exchangeability assumption for the joint limiting distribution of the
test statistics corresponding to true null hypotheses. However, simulations
support the use of the bootstrap method under a wide range of dependence.
Even under independence, our bootstrap method is competitive with that
of Benjamini et. al. (2006), and outperforms it under dependence. While
the approach is a generalization of one we developed for FDR control, for
other measures of error control, other constructions may be preferable, such
as those in Romano and Wolf (2007). The method described above requires
calculation of s critical values, which may be prohibitive.

The bootstrap method succeeds in generalizing Troendle (2000) to allow
for non-normality. However, it would be useful to also consider an asymptotic
framework where the number of hypotheses is large relative to the sample
size. Furthermore, it would be useful to know that limit result is uniform in
P . Future work will address this.

There is clear tradeoff between methods based on marginal p-values and
those based on resampling which attempt to account for the entire joint dis-
tribution of the test statistics. While exact finite-sample results like those in
Sarkar are ideal, it must be pointed out that these methods may only serve
as approximations if the marginal p-values are based on large-sample appox-
imations. Ultimately, the choice of methods for a particular application will
heavily depend on the number of hypotheses and the sample size, and fur-
ther work is needed to choose among competing methods. Given that there
exists a growing number of competing methods, the situation is begging for
guidance by some kind of optimality theory. Perhaps Sarkar’s expressions
for FNR can be used towards the construction of procedures with smallest
FNR subject to the constraint of error control.
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