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Abstract

This paper studies inference for the local average treatment effect in randomized controlled trials with

imperfect compliance where treatment status is determined according to “matched pairs.” By “matched

pairs,” we mean that units are sampled i.i.d. from the population of interest, paired according to observed,

baseline covariates and finally, within each pair, one unit is selected at random for treatment. Under

weak assumptions governing the quality of the pairings, we first derive the limiting behavior of the usual

Wald (i.e., two-stage least squares) estimator of the local average treatment effect. We show further that

the conventional heteroskedasticity-robust estimator of its limiting variance is generally conservative in

that its limit in probability is (typically strictly) larger than the limiting variance. We therefore provide

an alternative estimator of the limiting variance that is consistent for the desired quantity. Finally,

we consider the use of additional observed, baseline covariates not used in pairing units to increase the

precision with which we can estimate the local average treatment effect. To this end, we derive the limiting

behavior of a two-stage least squares estimator of the local average treatment effect which includes both

the additional covariates in addition to pair fixed effects, and show that the limiting variance is always

less than or equal to that of the Wald estimator. To complete our analysis, we provide a consistent

estimator of this limiting variance. A simulation study confirms the practical relevance of our theoretical

results. We use our results to revisit a prominent experiment studying the effect of macroinsurance on

microenterprise in Egypt.
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1 Introduction

This paper studies inference for the local average treatment effect in randomized controlled trials with

imperfect compliance where treatment status is determined according to “matched pairs.” By “matched

pairs,” we mean that units are sampled i.i.d. from the population of interest, paired according to observed,

baseline covariates and finally, within each pair, one unit is selected at random for treatment. This method

is used routinely in all parts of sciences. Indeed, commands to facilitate its implementation are included

in popular software packages, such as sampsi in Stata. References to a variety of specific examples can

be found, for instance, in the following surveys of various field experiments: Glennerster and Takavarasha

(2014), Riach and Rich (2002), Rosenberger and Lachin (2015). See also Bruhn and McKenzie (2009), who,

based on a survey of selected development economists, report that 56% of researchers have used such a design

at some point. Furthermore, in many such experiments, compliance may be imperfect: some recent examples

of experiments featuring both mathched pairs and imperfect compliance are Groh and McKenzie (2016) and

Resnjanskij et al. (2021). Under weak assumptions that ensure pairs are formed so that units within pairs

are suitably “close” in terms of observed, baseline covariates, we derive a variety of results pertaining to

inference about the local average treatment effect in such experiments.

We first study the behavior of the usual Wald (i.e., two-stage least squares) estimator of the local

average treatment effect. When all observed, baseline covariates are used in forming pairs, we find that the

estimator is efficient among all estimators for the local average treatment effect in the sense that it achieves

the lower bound on the limiting variance developed in Bai et al. (2023b) over a broad class of treatment

assignment schemes that hold the marginal probability of treatment assignment equal to one half, thereby

including matched pairs, in particular, as a special case. On the other hand, we find that the conventional

heteroskedasticity-robust estimator of its limiting variance is conservative in that its limit in probability is

always weakly larger than the limiting variance and strictly larger unless heterogeneity is constrained in a

particular fashion. We provide an alternative estimator of the limiting variance and show that it is consistent

for the desired quantity. In a simulation study, we find that tests using the Wald estimator together with

the conventional heteroskedasticity-robust estimator of its limiting variance may as a consequence have very

poor power when compared to tests using the Wald estimator together with our estimator of its limiting

variance.

Next, we consider situations in which there are additional, observed, baseline covariates that are not used

when pairing units. We first derive the limiting behavior for a class of covariate-adjusted estimators indexed

by different “working models” for conditional expectations. Importantly, these working models need not be

correctly specified for the true conditional expectations in order for this estimator to remain consistent for

the local average treatment effect, but we show that the limiting variance of the estimator is minimized,

in particular, when they are correctly specified. These results are derived under a high-level assumption

governing the quality of the estimators of these working models. We therefore specialize our results for the

case of linear working models and characterize the optimal linear working model in the sense of minimizing

the limiting variance of the resulting covariate-adjusted estimator among all such working models. We find

that this limiting variance can be obtained by a familiar estimator: the two-stage least squares estimator
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using treatment assignment as an instrument of the coefficient on treatment status in a linear regression of

the outcome on the following quantities: treatment status; (functions of) the observed baseline covariates;

and pair fixed effects. We complete our analysis by providing an estimator of the limiting variance and show

that it is consistent for the desired quantity.

Our paper builds upon the analysis of Bai et al. (2022), who analyzed the behavior of the difference-in-

means estimator of the average treatment effect in context of experiments with matched pairs and perfect

compliance. Our covariate-adjusted estimator is inspired by the analysis in Bai et al. (2023a), who studied

the use of additional, observed, baseline covariates in experiments with matched pairs and perfect compliance

to improve the precision with which we can estimate the average treatment effect (similar results have also

been obtained by Cytrynbaum, 2023). We emphasize, however, that none of the aforementioned papers

permit imperfect compliance, which, as argued by Athey and Imbens (2017), is one of the most common

complications in even the most well designed experiments. We note, however, that imperfect compliance

has been studied in the context of randomized controlled trials with other treatment assignment schemes,

such as stratified block randomization: see, for example, Ansel et al. (2018), Bugni and Gao (2021), and

Jiang et al. (2022). We also emphasize that all of these papers, like ours, carry out their analysis in a

superpopulation sampling framework. In this way, our analysis differs from the analysis of experiments with

a finite population sampling framework.

The remainder of the paper is organized as follows. In Section 2 we describe our setup and notation.

In particular, there we describe the precise sense in which we require that units in each pair are “close” in

terms of their baseline covariates. Our main results concerning the Wald estimator are contained in Section

3. In Section 4, we develop our results pertaining to our covariate-adjusted estimator that exploits additional

observed, baseline covariates not used in pairing units to increase the precision with which we can estimate

the local average treatment effect. In Section 5, we examine the practical relevance of our theoretical results

via a small simulation study. In Section 6, we provide a brief empirical illustration of our proposed tests

using data from an experiment in Groh and McKenzie (2016). Finally, we conclude in Section 7 with some

recommendations for empirical practice guided by both our theoretical results and our simulation study. As

explained further in that section, we do not recommend the use of the Wald estimator with the conventional

heteroskedasticity-robust estimator of its limiting variance because it is conservative in the sense described

above; we instead encourage the use of the Wald estimator with our consistent estimator of its limiting

variance because it is asymptotically exact, and, as a result, considerably more powerful. When there are

additional, observed, baseline covariates that are not used when forming pairs, we recommend the use of our

covariate-adjusted Wald estimator with our consistent estimator of its limiting variance. Proofs of all results

are provided in the Appendix.

2 Setup and Notation

Let Yi ∈ R denote the (observed) outcome of the ith unit, Ai ∈ {0, 1} be an indicator for whether or not

unit i is assigned to treatment, Di ∈ {0, 1} be an indicator for whether or not unit i decides to take up

treatment, Xi ∈ Rkx denote observed, baseline covariates for the ith unit which are used for matching,
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and Wi ∈ Rkw denote observed, baseline covariates for the ith unit which will be used when we consider

covariate adjustment in Section 4. In contrast to the setting considered in Bai et al. (2022), we allow for

imperfect compliance, i.e. for Di 6= Ai. Further denote by Yi(d) the potential outcome of the ith unit if they

make treatment decision d ∈ {0, 1}, and by Di(a) the potential treatment decision of the ith unit if assigned

to treatment a ∈ {0, 1}. The observed treatment decision and potential treatment decision are related to

treatment assignment via the usual relationship

Di = Di(1)Ai +Di(0)(1−Ai) , (1)

and the observed outcome and potential outcome are related to treatment decision via the relationship

Yi = Yi(1)Di + Yi(0)(1−Di) . (2)

We will also often make use of the following alternative representation for the observed outcome, which is

numerically equivalent to (2):

Yi = Ỹi(1)Ai + Ỹi(0)(1−Ai) , (3)

where

Ỹi(a) = Yi(1)Di(a) + Yi(0)(1 −Di(a)) (4)

for a ∈ {0, 1}. In words, Ỹi(a) represents the “intent-to-treat” potential outcome for unit i when assigned

to treatment a ∈ {0, 1}.

Following Imbens and Angrist (1994), each participant in the experiment can be categorized into one of

four types: units for which Di(1) = 1 and Di(0) = 0 are referred to as compliers, units for which Di(1) = 1

and Di(0) = 1 are referred to as always takers, units for which Di(1) = 0 and Di(0) = 0 are referred to as

never takers, and finally units for which Di(1) = 0 and Di(0) = 1 are referred to as defiers. We use the

notation

Ci = I {Di(1) = 1, Di(0) = 0} (5)

below to indicate whether or not unit i is a complier.

For a random variable indexed by i, say for example Ai, it will be useful to denote by A(n) the random

vector (A1, ..., A2n). Denote by Pn the distribution of the observed data (Y (n), D(n), A(n), X(n),W (n)), and

by Qn the distribution of (Y (n)(1), Y (n)(0), D(n)(1), D(n)(0), X(n),W (n)). Note that Pn is jointly determined

by (1), (2), Qn, and the mechanism for determining treatment assignment. We assume throughout that

our sample consists of 2n i.i.d. observations, so that Qn = Q2n, where Q is the marginal distribution of

(Yi(1), Yi(0), Di(1), Di(0), Xi,Wi). We therefore state our assumptions below in terms of assumptions on

Q and the mechanism for determining treatment assignment. Indeed, we will not make reference to Pn in

the sequel and all operations are understood to be under Q and the mechanism for determining treatment

assignment.
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Our object of interest is the local average treatment effect, which may be expressed in our notation as

∆(Q) = E [Yi(1)− Yi(0)|Ci = 1] . (6)

For a pre-specified choice of ∆0, the testing problem of interest is

H0 : ∆(Q) = ∆0 versus H1 : ∆(Q) 6= ∆0 (7)

at level α ∈ (0, 1).

We begin by describing our primary assumptions on the data generating process.

Assumption 2.1. The distribution Q is such that

(a) 0 < E
[

Var
[

Ỹi(a)−∆(Q)Di(a)|Xi

]]

for a ∈ {0, 1}.

(b) E
[

Yi(a)
2
]

<∞ for a ∈ {0, 1}.

(c) E[Yi(1)
rDi(a)|Xi = x] and E[Yi(0)

r(1−Di(a))|Xi = x] are Lipschitz for a = 0, 1 and r = 0, 1, 2.

(d) P{Di(1) ≥ Di(0)} = 1.

(e) P{Ci = 1} > 0.

Assumption 2.1(a)–(b) are mild restrictions imposed to rule out degenerate situations and to permit the

application of suitable laws of large numbers and central limit theorems. Assumption 2.1(c) is a smooth-

ness requirement that ensures that units that are “close” in terms of their baseline covariates are suitably

comparable. Similar smoothness requirements are also considered in Bai et al. (2022), Cytrynbaum (2023),

and generally play a key role in establishing the asymptotic exactness of our proposed tests. Assumptions

2.1(d)–(e) are the standard “monotonicity” and “relevance” conditions of Imbens and Angrist (1994) which

ensure that the probability limit of the Wald estimator which we define in Section 3 can be interpreted as

the local average treatment effect ∆(Q).

Next, we describe our assumptions on the mechanism determining treatment assignment. Following the

notation in Bai et al. (2022), the n pairs can be represented by the sets

{π(2j − 1), π(2j)} for j = 1, ..., n ,

where π = πn
(

X(n)
)

is a permutation of 2n elements. Given such a π, we assume that treatment status is

assigned as described in the following assumption:

Assumption 2.2. Treatment status is assigned so that
(

Y (n)(1), Y (n)(0), D(n)(1), D(n)(0),W (n)
)

⊥⊥ A(n)|X(n),

and conditional on X(n), (Aπ(2j−1), Aπ(2j)), j = 1, ..., n are i.i.d. and each uniformly distributed over the

values in {(0, 1), (1, 0)}.

We further require that the unts in each pair be “close” in terms of their baseline covariates in the

following sense:
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Assumption 2.3. The pairs used in determining treatment status satisfy

1

n

∑

1≤j≤n

‖Xπ(2j) −Xπ(2j−1)‖r2
P→ 0 ,

for r ∈ {1, 2}.

We will also sometimes require that the distances between units in adjacent pairs be “close” in terms of

their baseline covariates:

Assumption 2.4. The pairs used in determining treatment status satisfy

1

n

∑

1≤j≤⌊n

2
⌋

‖Xπ(4j−k) −Xπ(4j−l)‖22
P→ 0 ,

for k ∈ {2, 3} and l ∈ {0, 1}.

Bai et al. (2022) and Bai et al. (2023c) provide several examples of pairing algorithms which satisfy

Assumptions 2.3–2.4. The simplest such example is when Xi ∈ R, in which case we can order units from

smallest to largest according to Xi and pair adjacent units. It then follows from Theorem 4.1 in Bai et al.

(2022) that Assumptions 2.3–2.4 are satisfied as long as E[X2
i ] <∞.

3 Main Results

3.1 Asymptotic Behavior of the Wald Estimator

In this section, we study the asymptotic properties of the standard Wald estimator (i.e., the two-stage least

squares estimator of Yi on Di using Ai as an instrument) of ∆(Q) under a matched pairs design. In order

to introduce this estimator, define

ψ̂n(a) =
1

n

∑

1≤i≤2n:Ai=a

Yi , (8)

φ̂n(a) =
1

n

∑

1≤i≤2n:Ai=a

Di . (9)

Using this notation, the Wald estimator is defined as

∆̂n =
ψ̂n(1)− ψ̂n(0)

φ̂n(1)− φ̂n(0)
. (10)

Note that this estimator may be obtained as the ratio of the estimator of the coefficient of Ai in an ordinary

least squares regression of Yi on a constant and Ai (the “reduced-form”) to the estimator of the coefficient

of Ai in an ordinary least squares regression of Di on a constant and Ai (the “first-stage”). Theorem 3.1

establishes the limiting distribution of ∆̂n under a matched pairs design.
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Theorem 3.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.3. Then,

√
n
(

∆̂n −∆(Q)
)

d→ N
(

0, ν2
)

,

where

ν2 =
1

P{Ci = 1}2

(

Var[Y ∗
i (1)] + Var[Y ∗

i (0)]

− 1

2
E
[

((E[Y ∗
i (1)|Xi]− E[Y ∗

i (1)]) + (E[Y ∗
i (0)|Xi]− E[Y ∗

i (0)]))
2
]

)

,

with

Y ∗
i (a) = Ỹi(a)−∆(Q)Di(a) , (11)

for a ∈ {0, 1}.

Note that the expression for ν2 corresponds exactly to the limiting variance obtained in Bai et al. (2022)

with the usual potential outcomes Yi(a) replaced with the transformed outcomes Y ∗
i (a). In particular, when

there is perfect compliance, so that Di = Ai, P{Ci = 1} = 1, and Di(a) = a, the limiting variance we

obtain in Theorem 3.1 corresponds exactly to the limiting variance derived in Bai et al. (2022). Moreover,

it can be shown that our expression for ν2 attains the efficiency bound derived in Bai et al. (2023b) over a

broad class of treatment assignments which include matched pairs as a special case (it can also be shown

that this bound coincides with the bounds derived in Frölich, 2007; Hong and Nekipelov, 2010, in settings

with observational data with i.i.d assignment when P{Ai = a|Xi} = 1/2, where the local average treatment

effect is estimated non-parametrically using the covariates Xi: see Lemma A.1 for details.)

Remark 3.1. It can be shown that under our matched pairs design, the two-stage least squares estimator

of β1 in the linear regression

Yi = β0 + β1Di + γ′Xi + ǫi ,

with Ai used as an instrument for Di, is asymptotically equivalent to the Wald estimator ∆̂n. This mirrors

similar observations made in Remark 3.8 in Bai et al. (2022) for the case of perfect compliance.

3.2 Variance Estimation

In this section, we construct a consistent variance estimator for the limiting variance ν2, and then contrast

this to the asymptotic behavior of standard regression-based variance estimators. As noted in the discussion

following Theorem 3.1, the expression for ν2 corresponds exactly to the limiting variance obtained in Bai et al.

(2022) with the usual potential outcomes Yi(a) replaced with the transformed outcomes Y ∗
i (a). We thus

follow the variance construction from Bai et al. (2022), but with a feasible version of Y ∗
i (a) defined as

Ŷi = Yi − ∆̂nDi .
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This strategy leads to the following variance estimator:

ν̂2n =
τ̂2n − 1

2 (λ̂
2
n + Γ̂2

n)
(

φ̂n(1)− φ̂n(0)
)2 , (12)

where

τ̂2n =
1

n

∑

1≤j≤n

(Ŷπ(2j) − Ŷπ(2j−1))
2

λ̂2n =
2

n

∑

1≤j≤⌊n

2
⌋

(

Ŷπ(4j−3) − Ŷπ(4j−2)

)(

Ŷπ(4j−1) − Ŷπ(4j)

)

(

Aπ(4j−3) −Aπ(4j−2)

) (

Aπ(4j−1) −Aπ(4j)

)

Γ̂n =
1

n

∑

1≤i≤2n:Ai=1

Ŷi −
1

n

∑

1≤i≤2n:Ai=0

Ŷi .

Note that the construction of the numerator of ν̂2n can be motivated using a similar intuition to what has

been previously discussed in Bai et al. (2022): to consistently estimate

E[(E[Y ∗
i (1)|Xi]− E[Y ∗

i (0)|Xi])
2] ,

ideally we would like access to four different units with similar values of Xi, of which two are treated.

However, because each pair only contains two units, we need to average across “pairs of pairs” of units,

where two pairs are grouped together so that they are “close” in terms of Xi. We establish the following

consistency result for ν̂2n:

Theorem 3.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.4. Then,

ν̂2n
P→ ν2.

We thus immediately obtain the following corollary which establishes the asymptotic exactness of a t-test

for the null hypothesis (7) constructed using the variance estimator ν̂2n:

Corollary 3.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies

Assumptions 2.2–2.4. Then,

√
n
(

∆̂n −∆(Q)
)

ν̂n

d→ N (0, 1) .

Next, we consider the limiting behavior of the usual heteroskedasticity-robust variance estimator from

a standard two-stage least squares regression, which is commonly used in practice: see Groh and McKenzie

(2016), and Resnjanskij et al. (2021) for examples. Let Ûi denote the ith residual generated by the two-stage

least squares estimator in a linear regression of Yi on a constant and Di using Ai as an instrument for Di.

7



The heteroskedasticity-robust variance estimator is defined as

ω̂2
n =






n





∑

1≤i≤2n

(

1

Ai

)

(

1 Di

)





−1
∑

1≤i≤2n

Û2
i

(

1

Ai

)

(

1 Ai

)





∑

1≤i≤2n

(

1

Di

)

(

1 Ai

)





−1






2,2

, (13)

where the notation (·)2,2 denotes the (2, 2)-element of its (matrix) argument. Theorem 3.3 derives the limit

in probability of ω̂2
n.

Theorem 3.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumptions 2.2–2.3. Then,

ω̂2
n

P→ ω2 ,

where

ω2 =
1

P{Ci = 1}2 (Var[Y
∗
i (1)] + Var[Y ∗

i (0)]) .

We thus immediately obtain the following corollary which establishes the conservativness of a t-test

constructed using the variance estimator ω̂2
n for the null hypothesis (7).

Corollary 3.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies

Assumptions 2.2–2.3. Then,

√
n
(

∆̂n −∆(Q)
)

ω̂n

d→ N
(

0, ξ2
)

,

where ξ2 ≤ 1 and the inequality is strict unless

E[Ỹi(1)−∆(Q)Di(1) + Ỹi(0)−∆(Q)Di(0)|Xi] = E[Ỹi(1)−∆(Q)Di(1) + Ỹi(0)−∆(Q)Di(0)]

with probability one under Q.

4 Covariate Adjustment

In this section, we consider a generalization of the estimator ∆̂n defined in Section 3.1 that allows for covariate

adjustment using the additional, observed, baseline covariates W (n) that are not used when forming pairs.

We then show how a careful application of this covariate-adjusted estimator can ensure an improvement over

the unadjusted Wald estimator ∆̂n in terms of precision.

Following Bai et al. (2023a), note that it can be shown under Assumption 2.2 that for any a ∈ {0, 1},
ma,Ỹ : Rkx × R

kw → R, and ma,D : Rkx × R
kw → R such that E[|ma,Ỹ (Xi,Wi)|] <∞, E[|ma,D(Xi,Wi)|] <

∞,

E[2I {Ai = a} (Yi −ma,Ỹ (Xi,Wi)) +ma,Ỹ (Xi,Wi)] = E[Ỹi(a)], (14)
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E [2I {Ai = a} (Di −ma,D (Xi,Wi)) +ma,D (Xi,Wi)] = E [Di(a)] . (15)

Here, we view ma,D and ma,Ỹ as “working models” of E[Ỹi(a)|Xi,Wi] and E[Di(a)|Xi,Wi], respectively,

but we emphasize that (14)–(15) hold even if they are incorrectly specified. This observation suggests a

covariate-adjusted estimator defined as

∆̂adj
n =

ψ̂adj
n (1)− ψ̂adj

n (0)

φ̂adjn (1)− φ̂adjn (0)
,

where

ψ̂adj
n (a) =

1

2n

∑

1≤i≤2n

(2I{Ai = a}(Yi − m̂a,Ỹ (Xi,Wi)) + m̂a,Ỹ (Xi,Wi)) ,

φ̂adjn (a) =
1

2n

∑

1≤i≤2n

(2I{Ai = a}(Di − m̂a,D(Xi,Wi)) + m̂a,D(Xi,Wi)) ,

and m̂a,Ỹ and m̂a,D are suitable estimators of ma,Ỹ and ma,D. Note that if we set m̂a,Ỹ = m̂a,D = 0, then

∆̂adj
n simplifies to ∆̂n. Theorem 4.1 below establishes the limiting distribution of ∆̂adj

n for a matched-pairs

design under the following high-level assumption on the working models:

Assumption 4.1. Let ma,Ỹ D = ma,Ỹ −∆(Q)ma,D. The functions ma,Ỹ D for a ∈ {0, 1} satisfy

(a) For a ∈ {0, 1},

lim
λ→∞

E
[

ma,Ỹ D(Xi,Wi)
2I
{

|ma,Ỹ D(Xi,Wi)| > λ
}]

= 0 .

(b) E[ma,Ỹ D(Xi,Wi)|Xi = x], E[(ma,Ỹ D(Xi,Wi))
2|Xi = x], and E[ma,Ỹ D(Xi,Wi)Y

∗
i (a)|Xi = x] for d ∈

{0, 1}, and E[m1,Ỹ D(Xi,Wi)m0,Ỹ D(Xi,Wi)|Xi = x] are Lipschitz.

Before proceeding, we note that we later provide low-level sufficient conditions for this high-level assumption

for the special case in which ma,Ỹ and ma,D correspond to linear working models that are optimal in the

sense of minimizing the limiting variance of ∆̂adj
n among all linear working models.

Theorem 4.1. Suppose Q satisfies Assumption 2.1, the treatment assignment mechanism satisfies Assump-

tions 2.2–2.3, and ma,Ỹ and ma,D for a ∈ {0, 1} satisfy Assumption 4.1. Further suppose m̂a,Ỹ and m̂a,D

satisfy that
1√
2n

∑

1≤i≤2n

(2Ai − 1)(m̂a,Ỹ (Xi,Wi)−ma,Ỹ (Xi,Wi))
P→ 0 , (16)

1√
2n

∑

1≤i≤2n

(2Ai − 1)(m̂a,D(Xi,Wi)−ma,D(Xi,Wi))
P→ 0 . (17)

Then, ∆̂adj
n satisfies

√
n
(

∆̂adj
n −∆(Q)

)

d→ N
(

0, ν2adj
)

,
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where ν2adj =
1

P{Ci=1}2 (ν
2
1,adj + ν22,adj + ν23,adj) with

ν21,adj =
1

2
E[Var[E [Y ∗

i (1) + Y ∗
i (0)|Xi,Wi]− (m1,Ỹ D(Xi,Wi) +m0,Ỹ D(Xi,Wi))|Xi]] ,

ν22,adj =
1

2
Var[E[Y ∗

i (1)− Y ∗
i (0)|Xi,Wi]] ,

ν23,adj = E[Var[Y ∗
i (1)|Xi,Wi] + Var[Y ∗

i (0)|Xi,Wi]] .

Note that the expression for ν2adj corresponds exactly to the limiting variance obtained in Bai et al.

(2023a) with the usual potential outcomes Yi(a) replaced with the transformed outcomes Y ∗
i (a) and the

working models in Bai et al. (2023a) replaced with ma,Ỹ (Xi,Wi) − ∆(Q)ma,D(Xi,Wi). In general, ν2adj is

not guaranteed to be weakly smaller than ν2 for all choices of working models, but we note that ν2adj is

minimized when ν21,adj = 0, i.e., when the working models satisfy

E[Y ∗
i (1) + Y ∗

i (0)|Xi,Wi]− E[Y ∗
i (1) + Y ∗

i (0)|Xi]

= m1,Ỹ D(Xi,Wi) +m0,Ỹ D(Xi,Wi)− E[m1,Ỹ D(Xi,Wi) +m0,Ỹ D(Xi,Wi)|Xi]

with probability one. This property holds, in particular, when ma,Ỹ and ma,D are correctly specified.

We now specialize Theorem 4.1 to the case in which ma,Ỹ and ma,D are the optimal linear working

models in a sense to be described below. To that end, let ζi = ζ(Xi,Wi) be a user-specified transformation

of the baseline characteristics (Xi,Wi) given by some function ζ : Rkx × R
kw → R

p. Denote by β̂Y
n and β̂D

n

the ordinary least squares estimators of βY and βD in the following two linear regressions with pair fixed

effects:

Yi = αY Ai + ζ′iβ
Y +

∑

1≤j≤n

θYj I{i ∈ {π(2j − 1), π(2j)}}+ ǫYi (18)

Di = αDAi + ζ′iβ
D +

∑

1≤j≤n

θDj I{i ∈ {π(2j − 1), π(2j)}}+ ǫDi (19)

Using this notation, consider ∆̂adj
n with m̂a,Ỹ (Xi,Wi) = ζ′iβ̂

Y
n and m̂a,D(Xi,Wi) = ζ′iβ̂

D
n for a ∈ {0, 1}. In

order to analyze the large-sample behavior of this estimator, we introduce the following assumption:

Assumption 4.2. The function ζ(·) is such that

(a) No component of ζi is a constant and E[Var[ζi|Xi]] is nonsingular.

(b) Var[ζi] <∞.

(c) E[ζi|Xi = x], E[ζiζ
′
i|Xi = x], E[ζiỸi(a)|Xi = x], E[ζiDi(a)|Xi = x] are Lipschitz.

Theorem 4.2 shows that Assumption 4.2 provides low-level sufficient conditions for Assumption 4.1. In

this way, it establishes the large-sample behavior of ∆̂adj
n for the special case of these working models and

further verifies their optimality among all linear working models:
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Theorem 4.2. Suppose Q satisfies Assumption 2.1, the treatment assignment mechanism satisfies Assump-

tions 2.2–2.3, and in addition Assumption 4.2 is satisfied. Then,

β̂Y
n

P→ βỸ = (2E[Var[ζi|Xi]])
−1E[Cov[ζi, Ỹi(1) + Ỹi(0)|Xi]]

β̂D
n

P→ βD = (2E[Var[ζi|Xi]])
−1E[Cov[ζi, Di(1) +Di(0)|Xi]] .

In addition, (16)–(17) and Assumption 4.1 are satisfied for m̂a,Ỹ (Xi,Wi) = ζ′iβ̂
Y
n , m̂a,D(Xi,Wi) = ζ′iβ̂

D
n ,

m1,Ỹ (Xi,Wi) = m0,Ỹ (Xi,Wi) = ζ′iβ
Ỹ , and m1,D̃(Xi,Wi) = m0,D̃(Xi,Wi) = ζ′iβ

D. Moreover, ∆̂adj
n is

optimal in the sense of minimizing ν2adj among all choices of ma,D and ma,Ỹ that are linear in ζi.

Remark 4.1. Here, we present two equivalent expressions for ∆̂adj
n when m̂a,Ỹ (Xi,Wi) = ζ′iβ̂

Y
n and

m̂a,D(Xi,Wi) = ζ′iβ̂
D
n . Denote by α̂Y

n and α̂D
n the ordinary least squares estimators of αY and αD in

(18)–(19). The Frisch-Waugh-Lovell theorem implies that

α̂Y
n = ψ̂adj

n (1)− ψ̂adj
n (0)

α̂D
n = φ̂adjn (1)− φ̂adjn (0) .

It thus follows immediately that

∆̂adj
n =

α̂Y
n

α̂D
n

.

Next, denote by α̂IV
n estimator of α in the following linear regression

Yi = αDi + ζ′iβ +
∑

1≤j≤n

θjI{i ∈ {π(2j − 1), π(2j)}}+ ǫi . (20)

obtained by applying two-stage least squares with Ai as an instrument for Di. It can be shown that

∆̂adj
n = α̂IV

n .

See Appendix B for details. We emphasize, however, that the usual heteroskedasticity-robust estimator of the

variance of α̂IV
n is not consistent for the limiting variance derived in Theorem 4.1; Bai et al. (2023c) provide

a related discussion of when such an estimator may even be invalid. We therefore construct a consistent

estimator of the required variance in Theorem 4.3 below.

Finally, we construct a consistent variance estimator for the limiting variance ν2adj. As noted in the

discussion following Theorem 4.1, the expression for ν2adj corresponds exactly to the limiting variance obtained

in Bai et al. (2023a) with the usual potential outcomes Yi(a) replaced with the transformed outcomes Y ∗
i (a)

and working models in Bai et al. (2023a) replaced with ma,Ỹ (Xi,Wi)−∆(Q)ma,D(Xi,Wi). We thus follow

the variance construction from Bai et al. (2023a), but with a feasible version of Y ∗
i (a) defined as

Ŷi = Yi − ∆̂nDi ,

11



and a feasible version of ma,Ỹ (Xi,Wi)−∆(Q)ma,D(Xi,Wi) defined as

m̂a,Ỹ D(Xi,Wi) = m̂a,Ỹ (Xi,Wi)− ∆̂nm̂a,D(Xi,Wi) .

This strategy leads to the following variance estimator:

ν̂2n,adj =
τ̂2n,adj − 1

2 (λ̂n,adj + Γ̂2
n,adj)

(φ̂adjn (1)− φ̂adjn (0))2
, (21)

where

τ̂2n,adj =
1

n

∑

1≤j≤n

(Ŷπ(2j−1),adj − Ŷπ(2j),adj)
2 ,

λ̂n,adj =
2

n

∑

1≤j≤⌊n

2
⌋

(Ŷπ(4j−3),adj − Ŷπ(4j−2),adj)

× (Ŷπ(4j−1),adj − Ŷπ(4j),adj)(Aπ(4j−3) −Aπ(4j−2))(Aπ(4j−1) −Aπ(4j)) ,

Γ̂n,adj =
1

n

∑

1≤i≤n:Ai=1

Ŷi,adj −
1

n

∑

1≤i≤n:Ai=0

Ŷi,adj ,

Ŷi,adj = Ŷi −
1

2
(m̂1,Ỹ D(Xi,Wi) + m̂0,Ỹ D(Xi,Wi)) .

The following theorem establishes the consistency of ν̂2n,adj for ν
2
adj:

Theorem 4.3. Suppose Q satisfies Assumption 2.1, the treatment assignment mechanism satisfies Assump-

tions 2.2–2.4, and ma,Ỹ and ma,D for a ∈ {0, 1} satisfy Assumption 4.1. Further suppose m̂a,Ỹ and m̂a,D

satisfy (16)–(17) and
1

2n

∑

1≤i≤2n

(m̂a,Ỹ (Xi,Wi)−ma,Ỹ (Xi,Wi))
2 P→ 0 , (22)

1

2n

∑

1≤i≤2n

(m̂a,D(Xi,Wi)−ma,D(Xi,Wi))
2 P→ 0 . (23)

Then,

ν̂2n,adj
P→ ν2adj .

5 Simulations

In this section, we examine the finite-sample behavior of the estimation and inference procedures introduced

in Section 3. Following the simulation design in Bai et al. (2022), the potential outcomes are generated

according to the equation:

Yi(d) = µd +md(Xi) + σd(Xi)ǫd,i,

12



where µd, md(Xi), and ǫd,i are specified in each model below. In Models 1–3, we model compliance status as

being independent of potential outcomes and covariates, with each of the following three compliance types

being equally likely: compliers, always takers, and never takers. In Models 4–6, we allow the compliance

status of an individual to depend on Xi, and define Ci = 1 if individual i is a complier, ATi = 1 if individual i

is an always taker, andNTi = 1 if individual i is a never taker. We consider the following model specifications:

Model 1: Xi ∼ Unif[0, 1]; m1(Xi) = m0(Xi) = γ(Xi− 1
2 ); ǫd,i ∼ N(0, 1) for d ∈ {0, 1}; σ0(Xi) = σ0 = 1,

and σ1(Xi) = σ1. γ = 1, σ1 = 1, µ0 = 0 and µ1 = ∆, where ∆ = 0 is to study the behavior

of the tests under the null hypothesis and ∆ = 1 is to study the behavior of the tests under

the alternative hypothesis.

Model 2: As in Model 1, but m0(Xi) = 0, and m1(Xi) = 10
(

X2
i − 1

3

)

.

Model 3: As in Model 2, but σ0(Xi) = X2
i and σ1(Xi) = σ1X

2
i .

Model 4: As in Model 1, but P{Ci = 1|Xi} = Xi, and P{ATi = 1|Xi} = P{NTi = 1|Xi} = 1−Xi

2 .

Model 5: As in Model 4, but m0(Xi) = 0, and m1(Xi) = 10
(

X2
i − 1

3 − 1
6

)

.

Model 6: As in Model 5, but σ0(Xi) = X2
i and σ1(Xi) = σ1X

2
i .

Since dim(Xi) = 1, we construct pairs by sorting units according to Xi and matching adjacent units.

By Theorem 4.1 in Bai et al. (2022), this pairing algorithm ensures that both Assumptions 2.3 and 2.4 are

satisfied. Table 1 reports the rejection probabilities from 5000 Monte Carlo replications, for testing the null

hypothesis (7) using t-tests constructed using either the regression-based variance ω̂2
n (Robust and Robust-S,

where Robust-S employs a standard small sample correction) or the consistent estimator ν̂2n (MPIV). As

expected given our theoretical results, the regression-based estimator ω̂2
n is conservative, which leads to a

loss of power relative to our consistent estimator ν̂2n. Figure 1 displays the power curves for Models 1–6 with

2n = 1000.

6 Empirical Application

In this section, we illustrate our findings by revisiting the empirical application in Groh and McKenzie (2016).

Groh and McKenzie (2016) designed a matched-pair experiment in Egypt to study the effect on microen-

terprises of acquiring insurance against macroeconomic shocks.1 The eligibility to purchase macroinsurance

was offered to companies in the treatment group. The take-up rate of purchasing in the treatment group

was 37%: among 1481 companies in the treatment group, 548 of them purchased insurance. We also note

among 1480 companies in the control group, 5 of them purchased insurance as well.

1To most closely align the dataset with our theoretical results, we made the following modifications to the dataset: (1) for
each outcome variable, we drop pairs if at least one of the individuals in that pair has a missing outcome variable, (2) we drop
pairs if at least one of the individuals in that pair is missing treatment assignment (the eligibility of purchasing the insurance),
treatment status (whether a company actually purchased the insurance), or any baseline covariates, (3) we keep only pairs with
exactly two individuals (there were 39 pairs with only one individual and one “block” with 16 individuals), (4) if necessary, we
drop one pair from the end of the resulting dataset to ensure that the sample size is divisible by 4. (5) to construct the pairs
of pairs when computing ν̂n and ν̂n,adj, we use the R package nbpMatching to match pairs of pairs such that the conditions in
Theorem 4.3 of Bai et al. (2022) are satisfied. Modifications (1)-(5) result in an average sample size reduction of 96 observations
(3.29% of total sample size) across outcomes.
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H0 : ∆ = 0 H1 : ∆ = 1

Model Sample Size Robust Robust-S MPIV Robust Robust-S MPIV

1

200 2.72 2.64 3.36 60.76 60.46 63.36
800 4.10 4.06 5.10 99.14 99.14 99.38
1600 4.22 4.20 4.98 100.00 100.00 100.00
3200 4.42 4.38 5.10 100.00 100.00 100.00

2

200 0.48 0.46 3.50 10.60 10.34 25.80
800 0.78 0.78 4.50 53.28 53.20 73.70
1600 1.30 1.30 5.00 87.20 87.16 95.10
3200 1.14 1.14 5.14 99.52 99.52 99.96

3

200 0.36 0.34 3.14 11.46 11.14 33.50
800 0.34 0.34 4.44 61.84 61.72 85.04
1600 0.76 0.74 5.04 93.24 93.20 98.62
3200 0.72 0.72 5.16 99.94 99.94 100.00

4

200 3.58 3.46 4.56 91.64 91.52 92.58
800 4.10 4.08 4.96 100.00 100.00 100.00
1600 4.06 4.06 5.04 100.00 100.00 100.00
3200 4.00 4.00 4.84 100.00 100.00 100.00

5

200 1.36 1.30 4.80 20.80 20.42 41.58
800 1.36 1.36 4.60 90.24 90.16 96.90
1600 1.58 1.56 4.72 99.80 99.80 99.98
3200 1.32 1.32 4.82 100.00 100.00 100.00

6

200 1.02 0.98 4.86 23.64 23.20 52.04
800 0.94 0.92 4.94 95.70 95.70 99.48
1600 1.02 1.02 5.20 100.00 100.00 100.00
3200 0.78 0.78 4.38 100.00 100.00 100.00

Table 1: Rejection rates for Models 1, 2, 3, 4, 5, and 6

Table 2 reports the estimated LATEs for a collection of outcomes, using both the unadjusted Wald

estimator ∆̂n as well as the linearly adjusted estimator ∆̂adj
n which uses the same covariates as those con-

sidered in the analysis in Groh and McKenzie (2016).2 We also report the standard errors obtained from

the regression-based variance estimator ω̂2
n as well as the standard errors obtained from our consistent vari-

ance estimators ν̂2n and ν̂2n,adj (note that we do not report the standard error obtained from the standard

regression-based variance estimator when considering covariate adjustment, since as mentioned in Remark

4.1 this is not guaranteed to be valid). Our findings are consistent with the theoretical results presented in

Sections 3 and 4: for the unadjusted estimates, standard errors constructed from ν̂2n are smaller than those

constructed from ω̂2
n across all outcomes, and in fact result in significance tests for the effect on profits and

the aggregate index which reject at the 10% level. For the adjusted estimates, we find that the standard

errors constructed from ν̂2n,adj are smaller than those constructed from ν̂2n across all outcomes. However,

point estimates for profits and the aggregate index change in such a way that these are no longer significant

at the 10% level.

2We note however that we exclude the female dummy and branchid dummies, which were used in the original regression
specifications in Groh and McKenzie (2016), since these are perfectly collinear with our pair fixed effects.
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Figure 1: Power Curves

7 Recommendations for Empirical Practice

Based on our theoretical results as well as the simulation study above, we conclude with some recommenda-

tions for practitioners when conducting inference about the local average treatment effect in matched-pairs

experiments. Our findings are that the standard Wald estimator is generally consistent and asymptotically
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Table 2: Summary of Estimates Obtained from Empirical Application Groh and McKenzie (2016)

High High Number Any Owner’s Monthly Aggregate
Profits Profit Revenue Revenue Employees Worker Hours Consumption Index

∆̂n -241.602 -0.029 -2561.536 -0.063 -0.085 0.009 -1.324 -14.197 -0.104

SE from ω̂2
n (149.696) (0.022) (937.455)∗∗∗ (0.021)∗∗∗ (0.144) (0.050) (2.506) (91.237) (0.069)

SE from ν̂2n (130.946)∗ (0.021) (841.562)∗∗∗ (0.020)∗∗∗ (0.138) (0.049) (2.179) (79.273) (0.061)∗

∆̂adj
n -151.345 -0.020 -1802.829 -0.052 -0.023 0.024 -0.401 6.541 -0.069

SE from ν̂2n,adj (120.969) (0.020) (751.651)∗∗ (0.018)∗∗∗ (0.133) (0.047) (2.116) (74.388) (0.057)

Sample Size 2804 2804 2800 2800 2824 2824 2796 2880 2880

Notes: ∗: significant at 10% level. ∗∗: significant at 5% level. ∗∗∗: significant at 1% level. For each outcome listed
in Table 7 of Groh and McKenzie (2016), we report (a) the Wald estimates ∆̂n in (10), (b) the robust standard
error obtained from ω̂

2
n in (13), (c) the MPIV standard error obtained from ν̂

2
n in (12), (d) the covariate-adjusted

estimates ∆̂adj
n with pair fixed effects based on (18) and (19), (e) the standard error obtained from ν̂

2
n,adj in (21),

and (f) the sample sizes for the regression of each outcome variable.

normal under matched-pair designs, but its limiting variance is typically smaller than what would be ob-

tained under i.i.d. assignment. It follows that inferences using the usual heteroskedasticty-robust estimator

of the variance will typically be conservative. We therefore recommend that practitioners use our consistent

variance estimator ν̂2n instead. When considering covariate adjustment, our findings are that the two-stage

least squares estimator with pair fixed effects leads to an estimator that is optimal in the sense of having

smallest limiting variance among all linearly-adjusted estimators. An important caveat, however, is that the

usual heteroskedasticty-robust estimator of the variance is not consistent for its variance. As a result, we

recommend that practitioners use our consistent variance estimator ν̂2n,adj instead.
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A Proofs of Main Results

A.1 Proof of Theorem 3.1

Proof.

√
n
(

∆̂n −∆(Q)
)

=
√
n

(

ψ̂n(1)− ψ̂n(0)

φ̂n(1)− φ̂n(0)
−∆(Q)

)

=

√
n
(

ψ̂n(1)− ψ̂n(0)−∆(Q)
(

φ̂n(1)− φ̂n(0)
))

φ̂n(1)− φ̂n(0)
.

Following similar arguments to the proof of Lemma S.1.5 in Bai et al. (2022), we have

φ̂n(1)− φ̂n(0)
P→ P{Ci = 1} . (24)

Therefore, to understand the limiting distribution of ∆̂n, it suffices to show that

√
n(ψ̃n(1)− ψ̃n(0))

d→ N(0, ν2P{Ci = 1}2) , (25)

where

ψ̃n(a) =
1

n

∑

1≤i≤2n:Ai=a

Y ∗
i (a) .

We may write

√
n
(

ψ̃n(1)− ψ̃n(0)
)

= An −Bn + Cn −Dn ,

where

An =
1√
n

∑

1≤i≤2n

(

Y ∗
i (1)Ai − E[Y ∗

i (1)Ai|X(n), A(n)]
)

,

Bn =
1√
n

∑

1≤i≤2n

(

Y ∗
i (0)(1 −Ai)− E[Y ∗

i (0)(1 −Ai)|X(n), A(n)]
)

,

Cn =
1√
n

∑

1≤i≤2n

(

E[Y ∗
i (1)Ai|X(n), A(n)]−AiE[Y ∗

i (1)]
)

,

Dn =
1√
n

∑

1≤i≤2n

(

E[Y ∗
i (0)(1 −Ai)|X(n), A(n)]− (1−Ai)E[Y ∗

i (0)]
)

.

The decomposition holds because

E[Y ∗
i (1)]− E[Y ∗

i (0)] = E[Ỹi(1)−∆(Q)Di(1)]− E[Ỹi(0)−∆(Q)Di(0)]

= E[Ỹi(1)− Ỹi(0)]−∆(Q)E[Di(1)−Di(0)]

= E[(Yi(1)− Yi(0))(Di(1)−Di(0))]−∆(Q)E[Di(1)−Di(0)]

= 0 ,

(26)
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where the first equation follows by (27), the second equation follows by inspection, the third equation follows

by (4) two equations follow by inspection, and the last equation follows by Assumption 2.1-(d). Then the

the proof of (25) follows similarly to the proof of Lemma S.1.4 in Bai et al. (2022). Therefore, by Slutsky’s

theorem, the desired conclusion follows by (24) and (25) under Assumption 2.1-(e).

A.2 Proof of Theorem 3.2

Proof. Recall that for a ∈ {0, 1}, we denote the adjusted potential outcome as

Y ∗
i (a) = Ỹi(a)−∆(Q)Di(a) , (27)

and denote the (infeasible) adjusted observed outcome as

Y ∗
i = Yi −∆(Q)Di . (28)

With this notation, the observed adjusted outcome can be written as

Y ∗ = Y ∗
i (1)Ai + Y ∗

i (0)(1− Ai) . (29)

First note that as a consequence of Lemma S.1.5 in Bai et al. (2022) and the continuous mapping theorem,

(

φ̂n(1)− φ̂n(0)
)2 P→ P{Ci = 1}2 .

It thus suffices to show that the numerator converges to the desired quantity.

Consider the following infeasible version of the numerator, given by

τ̃2n − 1

2
(λ̃2n + Γ̃2

n) ,

where

τ̃2n =
1

n

∑

1≤j≤n

(Y ∗
π(2j) − Y ∗

π(2j−1))
2 ,

λ̃2n =
2

n

∑

1≤j≤⌊n

2
⌋

(

Y ∗
π(4j−3) − Y ∗

π(4j−2)

)(

Y ∗
π(4j−1) − Y ∗

π(4j)

)

(

Aπ(4j−3) −Aπ(4j−2)

) (

Aπ(4j−1) −Aπ(4j)

)

,

Γ̃n =
1

n

∑

1≤i≤2n:Ai=1

Y ∗
i − 1

n

∑

1≤i≤2n:Ai=0

Y ∗
i .

It follows immediately from Assumption 2.1 that (b)–(c) from Bai et al. (2022) are satisfied for the trans-

formed outcomes Y ∗
i (a), and thus it follows from Lemmas S.1.5, S.1.6, and S.1.7 in Bai et al. (2022) that

this infeasible numerator converges to the desired quantity. It thus remains to show that

τ̂2n = τ̃2n + oP (1) (30)

λ̂2n = λ̃2n + oP (1) (31)
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Γ̂n = Γ̃n + oP (1) . (32)

We begin with (30). To see this, note that

1

n

∑

1≤j≤n

{

(Y ∗
π(2j) − Y ∗

π(2j−1))
2 − (Ŷπ(2j) − Ŷπ(2j−1))

2
}

=
1

n

∑

1≤j≤n

{

(Y ∗
π(2j) − Y ∗

π(2j−1))
2 − (Ŷπ(2j) − Ŷπ(2j−1))

2
}

Aπ(2j)

+
1

n

∑

1≤j≤n

{

(Y ∗
π(2j) − Y ∗

π(2j−1))
2 − (Ŷπ(2j) − Ŷπ(2j−1))

2
}

Aπ(2j−1) .

It thus suffices to show that each component on the RHS converges in probability to zero. We only show

the first since the second follows symmetrically. From the definitions of Y ∗
i and Ŷi we obtain that

1

n

∑

1≤j≤n

{

(Y ∗
π(2j) − Y ∗

π(2j−1))
2 − (Ŷπ(2j) − Ŷπ(2j−1))

2
}

Aπ(2j)

=
1

n

∑

1≤j≤n

{

(Ỹπ(2j)(1)− Ỹπ(2j−1)(0)−∆(Q)(Dπ(2j)(1)−Dπ(2j−1)(0)))
2

− (Ỹπ(2j)(1)− Ỹπ(2j−1)(0)− ∆̂n(Dπ(2j)(1)−Dπ(2j−1)(0)))
2
}

Aπ(2j)

= −2(∆(Q)− ∆̂n)
1

n

∑

1≤j≤n

{

(Ỹπ(2j)(1)− Ỹπ(2j−1)(0))((Dπ(2j)(1)−Dπ(2j−1)(0))
}

Aπ(2j)

+ (∆(Q)2 − ∆̂2
n)

1

n

∑

1≤j≤n

{

(Dπ(2j)(1)−Dπ(2j−1)(0))
2
}

Aπ(2j)

Next, note that by the triangle inequality, Assumption 2.1(b) and the weak law of large numbers,

∣

∣

∣

∣

∣

∣

1

n

∑

1≤j≤n

{

(Ỹπ(2j)(1)− Ỹπ(2j−1)(0))((Dπ(2j)(1)−Dπ(2j−1)(0))
}

Aπ(2j)

∣

∣

∣

∣

∣

∣

≤ 1

n

∑

1≤i≤2n

|Ỹi(1)|+
1

n

∑

1≤i≤2n

|Ỹi(0)| = OP (1) ,

and since D and A are binary,

∣

∣

∣

∣

∣

∣

1

n

∑

1≤j≤n

{

(Dπ(2j)(1)−Dπ(2j−1)(0))
2
}

Aπ(2j)

∣

∣

∣

∣

∣

∣

≤ 1 ,

and hence the result follows from the fact that ∆̂n
P→ ∆(Q) by Theorem 3.1. To show (31), note that

λ̂2n − λ̃2n

= (∆̂n −∆(Q))2
2

n

∑

1≤j≤⌊ n

2
⌋

(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j))

× (Aπ(4j−3) − Aπ(4j−2))(Aπ(4j−1) −Aπ(4j))
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− (∆̂n −∆(Q))
2

n

∑

1≤j≤⌊ n

2
⌋

(Dπ(4j−3) −Dπ(4j−2))(Y
∗
π(4j−1) − Y ∗

π(4j))

× (Aπ(4j−3) − Aπ(4j−2))(Aπ(4j−1) −Aπ(4j))

− (∆̂n −∆(Q))
2

n

∑

1≤j≤⌊ n

2
⌋

(Dπ(4j−1) −Dπ(4j))(Y
∗
π(4j−3) − Y ∗

π(4j−2))

× (Aπ(4j−3) − Aπ(4j−2))(Aπ(4j−1) −Aπ(4j)) .

Note ∆̂n
P→ ∆(Q) because of Theorem 3.1. On the other hand,

∣

∣

∣

2

n

∑

1≤j≤⌊n

2
⌋

(Dπ(4j−3) −Dπ(4j−2))(Y
∗
π(4j−1) − Y ∗

π(4j))(Aπ(4j−3) −Aπ(4j−2))(Aπ(4j−1) −Aπ(4j))
∣

∣

∣

≤ 2

n

∑

1≤j≤⌊n

2
⌋

(|Y ∗
π(4j−1)|+ |Y ∗

π(4j)|)

≤ 2

n

∑

1≤i≤2n

|Y ∗
i (1)|+

2

n

∑

1≤i≤2n

|Y ∗
i (0)| ,

where the first inequality follows from the triangle inequality and the fact that D and A are binary, and the

last inequality follows trivially. And since D and A are binary,

∣

∣

∣

∣

∣

∣

2

n

∑

1≤j≤⌊n

2
⌋

(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j))(Aπ(4j−3) −Aπ(4j−2))(Aπ(4j−1) −Aπ(4j))

∣

∣

∣

∣

∣

∣

≤ 1 .

(31) then follows because
2

n

∑

1≤i≤2n

|Y ∗
i (a)| = OP (1)

for a ∈ {0, 1} because of Assumption 2.1(b) and the weak law of large numbers. Finally, (32) follows

immediately from ∆̂n
P→ ∆(Q).

A.3 Proof of Theorem 3.3

Proof. Following arguments similar to those used in the proof of Lemma S.1.5 in Bai et al. (2022), it can

be shown that

1

n

∑

1≤i≤2n

I{Ai = a}Di
P→ E[Di(a)]

1

n

∑

1≤i≤2n

I{Ai = a}Y r
i

P→ E[Ỹ r
i (a)]

for r = 1, 2. Note in addition that

Ûi = Yi −
1

2n

∑

1≤i≤2n

Yi −
(

Di −
1

2n

∑

1≤i≤2n

Di

)

∆̂n .
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It follows from direct calculation that

ω̂2
n =

1

n

∑

1≤i≤2n

Û2
i

(

2

n

∑

1≤i≤2n

AiDi −
1

n

∑

1≤i≤2n

Di

)2 .

The conclusion then follows from the above derivations, the continuous mapping theorem, and additional

direct calculations.

A.4 Proof of Theorem 4.1

Proof. Note

√
n(∆̂adj

n −∆(Q)) =

√
n(ψ̂adj

n (1)− ψ̂adj
n (0)−∆(Q)(φ̂adjn (1)− φ̂adjn (0)))

φ̂adjn (1)− φ̂adjn (0)
.

Note by similar arguments to the proof of Theorem 3.1 in Bai et al. (2023a) and (17),

φ̂adjn (1)− φ̂adjn (0)
P→ P{Ci = 1} . (33)

Therefore, to understand the limiting distribution of ∆̂adj
n , it suffices to show that

√
n(ψ̃adj

n (1)− ψ̃adj
n (0))

d→ N(0, ν21,adj + ν22,adj + ν23,adj) , (34)

where

ψ̃adj
n (a) =

1

2n

∑

1≤i≤2n

(2I{Ai = a}(Y ∗
i − m̂∗

a,Ỹ D
(Xi,Wi)) + m̂∗

a,Ỹ D
(Xi,Wi)) ,

m̂∗
a,Ỹ D

(Xi,Wi) = m̂a,Ỹ (Xi,Wi)−∆(Q)m̂a,D(Xi,Wi) .

First note that (16) and (17) imply that

1√
2n

∑

1≤i≤2n

(2Ai − 1)(m̂∗
a,Ỹ D

(Xi,Wi)−ma,Ỹ D(Xi,Wi))
P→ 0 , (35)

then we have

ψ̃adj
n (1) =

1

2n

∑

1≤i≤2n

(2Ai(Y
∗
i (1)− m̂∗

1,Ỹ D
(Xi,Wi)) + m̂∗

1,Ỹ D
(Xi,Wi))

=
1

2n

∑

1≤i≤2n

(2AiY
∗
i (1)− (2Ai − 1)m̂∗

1,Ỹ D
(Xi,Wi))

=
1

2n

∑

1≤i≤2n

(2AiY
∗
i (1)− (2Ai − 1)m1,Ỹ D(Xi,Wi)) + oP (n

−1/2)
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=
1

2n

∑

1≤i≤2n

(2AiY
∗
i (1)−Aim1,Ỹ D(Xi,Wi)− (1−Ai)m1,Ỹ D(Xi,Wi)) + oP (n

−1/2) ,

where the third equality follows from (35). Similarly,

ψ̃adj
n (0) =

1

2n

∑

1≤i≤2n

(2(1−Ai)Y
∗
i (0)−Aim0,Ỹ D(Xi,Wi)− (1 −Ai)m0,Ỹ D(Xi,Wi)) + oP (n

−1/2) .

Then

ψ̃adj
n (1)− ψ̃adj

n (0) =
1

n

∑

1≤i≤2n

Aiφ
∗
1,i −

1

n

∑

1≤i≤2n

(1 −Ai)φ
∗
0,i + oP (n

−1/2) ,

where

φ∗1,i = Y ∗
i (1)−

1

2
(m1,Ỹ D(Xi,Wi) +m0,Ỹ D(Xi,Wi)) ,

φ∗0,i = Y ∗
i (0)−

1

2
(m1,Ỹ D(Xi,Wi) +m0,Ỹ D(Xi,Wi)) .

Then we have the decomposition

√
n(ψ̃adj

n (1)− ψ̃adj
n (0)) = Aadj

n −Badj
n + Cadj

n −Dadj
n + oP (n

−1/2) ,

where

Aadj
n =

1√
n

∑

1≤i≤2n

(Aiφ
∗
1,i − E[Aiφ

∗
1,i|X(n), A(n)]) ,

Badj
n =

1√
n

∑

1≤i≤2n

((1 −Ai)φ
∗
1,i − E[(1 −Ai)φ

∗
1,i|X(n), A(n)]) ,

Cadj
n =

1√
n

∑

1≤i≤2n

Ai(E[Y ∗
i (1)|Xi]− E[Y ∗

i (1)]) ,

Dadj
n =

1√
n

∑

1≤i≤2n

(1−Ai)(E[Y ∗
i (0)|Xi]− E[Y ∗

i (0)]) .

This decomposition holds because of (26). Then the the proof of (34) follows similarly to the proof of

Theorem 3.1 in Bai et al. (2023a). Therefore, by Slutsky’s theorem, the desired conclusion follows by (33)

and (34) under Assumption 2.1-(e).

Next, in order to see that ∆̂adj
n in Theorem 4.2 is the optimal linear adjustment, note that ν2adj only de-

pends onma,Ỹ (Xi,Wi) andma,D(Xi,Wi) through ν
2
1,adj. Then for arbitrary linear adjustmentsma,Ỹ (Xi,Wi) =

ζ′iβ̃
Ỹ (a) and ma,D(Xi,Wi) = ζ′iβ̃

D(a) for a ∈ {0, 1}, ν21,adj can be re-written as

ν21,adj =
1

2
E[Var[E [Y ∗

i (1) + Y ∗
i (0)|Xi,Wi]− (m1,Ỹ D(Xi,Wi) +m0,Ỹ D(Xi,Wi))|Xi]]

=
1

2
E[Var[E [Y ∗

i (1) + Y ∗
i (0)|Xi,Wi]− ζ′i((β̃

Ỹ (1) + β̃Ỹ (0))−∆(Q)(β̃D(1) + β̃D(0)))|Xi]]
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=
1

2
E[E[(E [Y ∗

i (1) + Y ∗
i (0)|Xi,Wi]− E [Y ∗

i (1) + Y ∗
i (0)|Xi]−

(ζi − E[ζi|Xi])
′((β̃Ỹ (1) + β̃Ỹ (0))−∆(Q)(β̃D(1) + β̃D(0))))2|Xi]]

=
1

2
E[(E [Y ∗

i (1) + Y ∗
i (0)|Xi,Wi]− E [Y ∗

i (1) + Y ∗
i (0)|Xi]−

(ζi − E[ζi|Xi])
′((β̃Ỹ (1) + β̃Ỹ (0))−∆(Q)(β̃D(1) + β̃D(0))))2] ,

which minimized when

(βỸ (1) + βỸ (0))−∆(Q)(βD(1) + βD(0)) = (E[Var[ζi|Xi]])
−1E[Cov[E[Y ∗

i (1) + Y ∗
i (0)|Xi,Wi], ζi|Xi]] (36)

= (E[Var[ζi|Xi]])
−1E[Cov[Y ∗

i (1) + Y ∗
i (0), ζi|Xi]] , (37)

where the first equality follows from the first order condition of minimizing ν21,adj and the second equality

follows by the fact that

E[Cov[E[Y ∗
i (1) + Y ∗

i (0)|Xi,Wi], ζi|Xi]− Cov[Y ∗
i (1) + Y ∗

i (0), ζi|Xi]]

=E[Cov[E[Y ∗
i (1) + Y ∗

i (0)|Xi,Wi]− (Y ∗
i (1) + Y ∗

i (0)), ζi|Xi]]

=E[(E[Y ∗
i (1) + Y ∗

i (0)|Xi,Wi]− (Y ∗
i (1) + Y ∗

i (0)))ζi]

=E[E[(E[Y ∗
i (1) + Y ∗

i (0)|Xi,Wi]− (Y ∗
i (1) + Y ∗

i (0)))ζi|Xi,Wi]]

=E[(E[Y ∗
i (1) + Y ∗

i (0)|Xi,Wi]− E[Y ∗
i (1) + Y ∗

i (0)|Xi,Wi])ζi]

=0 ,

where the fourth equality follows by the fact that ζi depends only on Xi and Wi, the rest of the equalities

follows by inspection.

Finally, note that (36) holds when β̃Ỹ (a) = βỸ and β̃D(a) = βD for a ∈ {0, 1}, as desired.

A.5 Proof of Theorem 4.2

Proof. The result follows from applying the arguments in the proof of Theorem 4.2 in Bai et al. (2023a)

to β̂Y
n and β̂D

n .

A.6 Proof of Theorem 4.3

Proof. First note that (33) and continuous mapping theorem implies

(

φ̂adjn (1)− φ̂adjn (0)
)2 P→ P{Ci = 1}2 .

It thus suffices to show that the numerator converges to the desired quantity.
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Consider the following infeasible version of the numerator, given by

τ̃2n,adj −
1

2
(λ̃2n,adj + Γ̃2

n,adj) ,

where

τ̃2n,adj =
1

n

∑

1≤j≤n

(Ŷ ∗
π(2j),adj − Ŷ ∗

π(2j−1),adj)
2 ,

λ̃2n,adj =
2

n

∑

1≤j≤⌊n

2
⌋

(

Ŷ ∗
π(4j−3),adj − Ŷ ∗

π(4j−2),adj

)(

Ŷ ∗
π(4j−1),adj − Ŷ ∗

π(4j),adj

)

(

Aπ(4j−3) −Aπ(4j−2)

) (

Aπ(4j−1) −Aπ(4j)

)

,

Γ̃n,adj =
1

n

∑

1≤i≤2n:Ai=1

Ŷ ∗
i,adj −

1

n

∑

1≤i≤2n:Ai=0

Ŷ ∗
i,adj ,

Ŷ ∗
i,adj = Y ∗

i − 1

2
(m̂∗

1,Ỹ D
(Xi,Wi) + m̂∗

0,Ỹ D
(Xi,Wi)) .

It then follows from the arguments in the proof of Theorem 3.2 in Bai et al. (2023a) that this infeasible

numerator converges to the desired quantity. It thus remains to show that

τ̂2n,adj = τ̃2n,adj + oP (1) (38)

λ̂2n,adj = λ̃2n,adj + oP (1) (39)

Γ̂n,adj = Γ̃n,adj + oP (1) . (40)

The rest of the proof is similar to that of Theorem 3.2 and is omitted.

A.7 Auxiliary Results

Lemma A.1. ν2 in Theorem 3.1 matches the expression of the efficiency bound in Theorem 2 of Frölich

(2007).

Proof: The efficiency bound in Theorem 2 of Frölich (2007) is

V =
1

P{Ci = 1}2E
[

Var[Yi|Xi, Ai = 1]− 2∆(Q)Cov[Yi, Di|Xi, Ai = 1] + ∆(Q)2 Var[Di|Xi, Ai = 1]

P{Ai = 1|Xi}

+
Var[Yi|Xi, Ai = 0]− 2∆(Q)Cov[Yi, Di|Xi, Ai = 0] + ∆(Q)2 Var[Di|Xi, Ai = 0]

P{Ai = 0|Xi}

]

+
1

P{Ci = 1}2E[(E[Yi|Xi, Ai = 1]− E[Yi|Xi, Ai = 0]

−∆(Q)E[Di|Xi, Ai = 1] + ∆(Q)E[Di|Xi, Ai = 0])2]

=
2

P{Ci = 1}2E
[

Var[Ỹi(1)|Xi]− 2∆(Q)Cov[Ỹi(1), Di(1)|Xi] + ∆(Q)2 Var[Di(1)|Xi]

+Var[Ỹi(0)|Xi]− 2∆(Q)Cov[Ỹi(0), Di(0)|Xi] + ∆(Q)2 Var[Di(0)|Xi]
]

+
1

P{Ci = 1}2E
[

(

E[Ỹi(1)|Xi]− E[Ỹi(0)|Xi]−∆(Q)E[Di(1)|Xi] + ∆(Q)E[Di(0)|Xi]
)2
]
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=
2

P{Ci = 1}2E
[

Var[Ỹi(1)|Xi] + Var[Ỹi(0)|Xi] +
1

2
E2[Ỹi(1)− Ỹi(0)|Xi]

−2∆(Q)

(

Cov[Ỹi(1), Di(1)|Xi] + Cov[Ỹi(0), Di(0)|Xi] +
1

2
E[Ỹi(1)− Ỹi(0)|Xi]E[Di(1)−Di(0)|Xi]

)

+∆(Q)2
(

Var[Di(1)|Xi] + Var[Di(0)|Xi] +
1

2
E2[Di(1)−Di(0)|Xi]

)]

=
2

P{Ci = 1}2E
[

Var[Y ∗
i (1)|Xi] + Var[Y ∗

i (0)|Xi] +
1

2
E2[Y ∗

i (1)− Y ∗
i (0)|Xi]

]

,

where the first equality follows by Theorem 2 in Frölich (2007), the second equality follows by (4) and

Assumption 2.2, the third equality follows by direct calculation, and the fourth equality follows by (11).

Then we have

V

2
− ν2

=
1

P{Ci = 1}2
(

E

[

Var[Y ∗
i (1)|Xi] + Var[Y ∗

i (0)|Xi] +
1

2
E2[Y ∗

i (1)− Y ∗
i (0)|Xi]

]

−Var[Y ∗
i (1)]−Var[Y ∗

i (0)] +
1

2
Var[E[Y ∗

i (1) + Y ∗
i (0)|Xi]]

)

=
1

2P{Ci = 1}2
(

−2Var[E[Y ∗
i (1)|Xi]]− 2Var[E[Y ∗

i (0)|Xi]] + E[E2[Y ∗
i (1)− Y ∗

i (0)|Xi]] + Var[E[Y ∗
i (1) + Y ∗

i (0)|Xi]]
)

=
1

2P{Ci = 1}2
(

E[E2[Y ∗
i (1)− Y ∗

i (0)|Xi]]−Var[E[Y ∗
i (1)− Y ∗

i (0)|Xi]]
)

=
1

2P{Ci = 1}2E
2[Y ∗

i (1)− Y ∗
i (0)]

= 0 ,

where the first three equalities follow by inspection, and the fourth equation follows Assumption 2.1(e), and

the fact that Assumption 2.1(d) implies E[Y ∗
i (1)− Y ∗

i (0)] = 0.

B Details for Remark 4.1

The subvector formula for IV says that

α̂IV
n =





1

n

∑

1≤i≤2n

ÃiDi





−1



1

n

∑

1≤i≤2n

ÃiYi



 ,

where Ãi is the residual in the projection of A on ζ and fixed effects. Formally, consider the projection

Ai = ζ′iγ +
∑

1≤j≤n

τjI{i ∈ {π(2j − 1), π(2j)}}+ Ui .

Let γ̂n and τ̂j,n denote the OLS estimators of γ and τj . We first calculate γ̂n. To do so, use the subvector

formula and note the residual of projection of ζπ(2j−1) on the fixed effects is (ζπ(2j−1)−ζπ(2j))/2 and similarly
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for 2j. It then follows that

γ̂n =





∑

1≤j≤n

(ζπ(2j−1) − ζπ(2j))(ζπ(2j−1) − ζπ(2j))
′





−1
∑

1≤j≤n

(ζπ(2j−1) − ζπ(2j))(Aπ(2j−1) −Aπ(2j)) .

Given this, it follows from the orthogonality condition

∑

1≤i≤2n



Ai −
∑

1≤i≤2n

ζ′i γ̂n −
∑

1≤j≤n

τ̂j,nI{i ∈ {π(2j − 1), π(2j)}})



 I{i ∈ {π(2j − 1), π(2j)}} = 0

that

τ̂j,n =
1

2
− 1

2
(ζπ(2j−1) + ζπ(2j))

′γ̂n .

Therefore,

Ãπ(2j−1) =

(

Aπ(2j−1) −
1

2

)

− 1

2
(ζπ(2j−1) − ζπ(2j))

′γ̂n

and similarly for Ãπ(2j). We then have

∑

1≤i≤2n

ÃiDi

=
1

2

∑

1≤i≤2n

(Dπ(2j−1) −Dπ(2j))(Aπ(2j−1) −Aπ(2j))−
1

2

∑

1≤j≤n

(Dπ(2j−1) −Dπ(2j))(ζπ(2j−1) − ζπ(2j))
′γ̂n

=
1

2

∑

1≤i≤2n

(Di − ζ′iβ̂
D
n )(2Ai − 1)

where the last step follows because

∑

1≤j≤n

(Dπ(2j−1) −Dπ(2j))(ζπ(2j−1) − ζπ(2j))
′γ̂n = β̂D′

n

∑

1≤j≤n

(ζπ(2j−1) − ζπ(2j))(Aπ(2j−1) −Aπ(2j)) ,

where β̂D
n is the OLS estimator for βD in (19) and equivalently that in the regression of pairwise difference of

D on pairwise difference in ζ (see Section 4.2 in Bai et al. (2023a)). We therefore have α̂D
n =

∑

1≤i≤2n ÃiDi

by direct calculation and similarly for α̂Y
n .
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Frölich, M. (2007). Nonparametric iv estimation of local average treatment effects with covariates. Journal

of Econometrics, 139 35–75.

Glennerster, R. and Takavarasha, K. (2014). Running randomized evaluations: A practical guide.

Princeton University Press.

Groh, M. and McKenzie, D. (2016). Macroinsurance for microenterprises: A randomized experiment in

post-revolution egypt. Journal of Development Economics, 118 13–25.

Hong, H. and Nekipelov, D. (2010). Semiparametric efficiency in nonlinear late models. Quantitative

Economics, 1 279–304.

Imbens, G. W. and Angrist, J. D. (1994). Identification and estimation of local average treatment effects.

Econometrica, 62 467–475.

Jiang, L., Linton, O. B., Tang, H. and Zhang, Y. (2022). Improving estimation efficiency via

regression-adjustment in covariate-adaptive randomizations with imperfect compliance. arXiv preprint

arXiv:2201.13004.

Resnjanskij, S., Ruhose, J., Wiederhold, S. and Woessmann, L. (2021). Can mentoring alleviate

family disadvantage in adolscence? a field experiment to improve labor-market prospects. Working paper.

27

http://arxiv.org/abs/2206.04157


Riach, P. A. and Rich, J. (2002). Field experiments of discrimination in the market place. The economic

journal, 112 F480–F518.

Rosenberger, W. F. and Lachin, J. M. (2015). Randomization in clinical trials: theory and practice.

John Wiley & Sons.

28


	Introduction
	Setup and Notation
	Main Results
	Asymptotic Behavior of the Wald Estimator
	Variance Estimation

	Covariate Adjustment
	Simulations
	Empirical Application
	Recommendations for Empirical Practice
	Proofs of Main Results
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Auxiliary Results

	Details for Remark 4.1

