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Abstract

This paper studies the efficient estimation of a large class of treatment effect parameters that arise in

the analysis of experiments. Here, efficiency is understood to be with respect to a broad class of treatment

assignment schemes for which the marginal probability that any unit is assigned to treatment equals a

pre-specified value, e.g., one half. Importantly, we do not require that treatment status is assigned in

an i.i.d. fashion, thereby accommodating complicated treatment assignment schemes that are used in

practice, such as stratified block randomization and matched pairs. The class of parameters considered

are those that can be expressed as the solution to a restriction on the expectation of a known function

of the observed data, including possibly the pre-specified value for the marginal probability of treatment

assignment. We show that this class of parameters includes, among other things, average treatment

effects, quantile treatment effects, local average treatment effects as well as the counterparts to these

quantities in experiments in which the unit is itself a cluster. In this setting, we establish two results.

First, we derive a lower bound on the asymptotic variance of estimators of the parameter of interest

in the form of a convolution theorem. Second, we show that the näıve method of moments estimator

achieves this bound on the asymptotic variance quite generally if treatment is assigned using a “finely

stratified” design. By a “finely stratified” design, we mean experiments in which units are divided into

groups of a fixed size and a proportion within each group is assigned to treatment uniformly at random

so that it respects the restriction on the marginal probability of treatment assignment. In this sense,

“finely stratified” experiments lead to efficient estimators of treatment effect parameters “by design”

rather than through ex post covariate adjustment.
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1 Introduction

This paper studies the efficient estimation of a large class of treatment effect parameters that arise in the

analysis of experiments. Our analysis includes a broad class of treatment assignment schemes for which the

marginal probability that any unit is assigned to treatment equals a pre-specified value, e.g., one half. In

particular, we do not require that treatment status is assigned in an i.i.d. fashion. In this way, our framework

accommodates complicated treatment assignment schemes that are used routinely throughout the sciences,

such as stratified block randomization and matched pairs. For a discussion of such treatment assignment

schemes focused on clinical trials, see Rosenberger and Lachin (2015); for reviews focused on development

economics, see Duflo et al. (2007) and Bruhn and McKenzie (2009). The class of parameters we consider

are those that can be characterized as the solution to a restriction on the expectation of a known function

of the observed data, including possibly the pre-specified value for the marginal probability of treatment

assignment. We show in Section 2 below that this class of parameters includes many treatment effect

parameters of interest: average treatment effects, quantile treatment effects, and local average treatment

effects as well as the counterparts to these quantities in experiments in which the unit is itself a cluster.

In the setting described above, we establish two results. First, we derive a lower bound on the asymptotic

variance of “regular” estimators of the parameter of interest in the form of a convolution theorem. The

richness of the possible treatment assignment schemes complicates the derivation of such a result in our

setting. As explained further in the discussion following Theorem 3.1 in Section 3, this feature precludes

the use of standard arguments which could be used in establishing versions of these results if assignment

were i.i.d.; see, for example, van der Vaart (1998). Second, we show that the näıve method of moments

estimator achieves this bound on the asymptotic variance quite generally if treatment status is assigned

using a “finely stratified” design. By a “finely stratified” design, we mean experiments in which units are

divided into groups of a fixed size and a proportion within each group is assigned to treatment uniformly

at random so that it respects the restriction on the marginal probability of treatment assignment. When

the fixed size equals two and the pre-specified value for the marginal probability of treatment assignment

equals one half, such a design is simply a matched pairs design. An attractive feature of this result is that,

in contrast to other estimators that achieve the same efficiency bound when treatment is possibly assigned

in other ways, it does not require any ex post covariate adjustment. Such adjustments frequently involve the

nonparametric estimation of conditional expectations or similar quantities; see, for example, Zhang et al.

(2008), Tsiatis et al. (2008), Jiang et al. (2022a), Jiang et al. (2022b) and Rafi (2023).1 Moreover, with the

exception of Zhang et al. (2008), these adjustments are generally developed for specific parameters of interest.

Our results show that “finely stratified” experiments remarkably lead to efficient estimators for a large class

of treatment effect parameters “by design” rather than through any such ex post covariate adjustment and,

in this way, circumvent nonparametric estimation. In this sense, our results generalize similar observations

made in Bai et al. (2022), Bai (2022), and Cytrynbaum (2023b) in the special case of estimating the average

treatment effect.

Our paper builds upon two strands of literature. The first strand of literature concerns bounds on the

1For related results in the context of observational data see Newey (1994), Hahn (1998), Heckman et al. (1998), Frolich
(2007), Firpo (2007), Farrell (2015), and Chernozhukov et al. (2017).
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efficiency with which treatment effect parameters can be estimated in experiments. Hahn (1998) estab-

lishes a lower bound on the asymptotic variance of “regular” estimators of the average treatment effect

when treatment status is assigned in an i.i.d. fashion. He finds, in particular, that the variance-minimizing

treatment assignment scheme is the i.i.d. treatment assignment scheme that assigns units according to a

conditional Neyman allocation in which units are assigned to treatment (control) with conditional probabil-

ity proportional to the conditional variance of the potential outcome under treatment (control). Armstrong

(2022) shows that this treatment assignment scheme remains variance-minimizing among a much larger

class of treatment assignment schemes. As explained further in Remark 3.4, it may, however, be desirable

to consider narrower classes of treatment assignment schemes that may not include the conditional Neyman

allocation. Motivated by such concerns, Rafi (2023) derives a lower bound on the asymptotic variance of

“regular” estimators of the average treatment effect for the class of finitely-stratified treatment assignment

schemes considered in Bugni et al. (2019) with pre-specified values for proportions of treatment within each

of the finitely many strata. As a result, neither treatment assignment schemes that implement the con-

ditional Neyman allocation nor “finely stratified” designs are permitted as possible treatment assignment

schemes. We note that results analogous to those in Hahn (1998) for the local average treatment effect

and quantile treatment effect have been derived in Frolich (2007) and Firpo (2007), respectively; results

analogous to those in Rafi (2023) for the the local average treatment effect have been derived in Jiang et al.

(2022a). Our efficiency bound differs from these prior results in two ways: first, they apply to a general class

of treatment effect parameters, including, but not limited to, those mentioned above; second, our analysis,

like Rafi (2023), rules out treatment assignment schemes that implement the conditional Neyman allocation,

but permits a richer class of treatment assignment schemes, including “finely stratified” designs that appear,

according to our results, to be useful in achieving efficiency.

The second strand of literature concerns the analysis of “finely stratified” experiments. Within this

literature, our analysis is most closely related to Bai et al. (2022), who derived the asymptotic behavior of

the difference-in-means estimator of the average treatment effect when treatment is assigned according to a

matched pairs design. Cytrynbaum (2023b) extends these results to permit the proportion of units assigned

to treatment to vary with the baseline covariates; Bai et al. (2023d) extends these results to permit multiple

treatments; finally, Bai et al. (2023c) extends these results for the analysis of different cluster-level average

treatment effects; and Jiang et al. (2021) develop results analogous to those in Bai et al. (2022) for suitable

estimators of the quantile treatment effect. As in our analysis in Section 4, the main requirement underlying

the results in these papers is that units are paired so that they are suitably “close” in terms of the observed,

baseline covariates. Finally, we note that some finite-sample optimality properties of matched pairs-designs

for estimation of the average treatment effect are developed in Bai (2022).

The remainder of this paper is organized as follows. In Section 2, we describe our setup and notation.

We emphasize in particular the way in which our framework can accommodate various treatment effect

parameters of interest. In Section 3, we develop our lower bound on the asymptotic variance of “regular”

estimators of these parameters. Section 4 derives the asymptotic behavior of the näıve method of moments

estimator of our parameter of interest when treatment is assigned using a “finely stratified” design and shows,

in particular, that its asymptotic variance achieves the bound established in the preceding section. In Section
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5, we illustrate the practical relevance of our theoretical results by comparing the mean-squared errors of the

näıve method of moments estimators of the average treatment effect and local average treatment effect when

treatment status is assigned according to a matched pairs design versus that of an estimator using ex post

covariate adjustment when treatment status is assigned in an i.i.d. fashion. Finally, we conclude in Section

6 with some recommendations for empirical practice guided by both these simulations and our theoretical

results. Proofs of all results can be found in the Appendix.

2 Setup and Motivation

Let Ai ∈ {0, 1} denote the treatment status of the ith unit, and let Xi ∈ Rdx denote their observed, baseline

covariates. For a ∈ {0, 1}, let Ri(a) ∈ Rdr denote a vector of potential responses. As we illustrate below,

considering a vector of responses allows us to accommodate certain parameters of interest. Let Ri ∈ Rdr

denote the vector of observed responses obtained from Ri(a) once treatment is assigned. As usual, the

observed responses and potential responses are related to treatment status by the relationship

Ri = Ri(1)Ai +Ri(0)(1−Ai) . (1)

We assume throughout that our sample consists of n units. For any random vector indexed by i, for example

Ai, we define A
(n) = (A1, . . . , An). Let Pn denote the distribution of the observed data (R(n), A(n), X(n)), and

Qn the distribution of (R(n)(1), R(n)(0), X(n)). We assume Qn = Qn, where Q is the marginal distribution

of (Ri(1), Ri(0), Xi). Given Qn, Pn is then determined by (1) and the mechanism for determining treatment

assignment. We assume that treatment assignment is performed such that a standard unconfoundedness

assumptions holds and such that the probability of assignment given X is some known constant for every

1 ≤ i ≤ n:

Assumption 2.1. Treatment status is assigned so that

(R(n)(1), R(n)(0)) ⊥⊥ A(n)|X(n) , (2)

and such that P{Ai = 1|Xi = x} = η, for some η ∈ (0, 1) for all 1 ≤ i ≤ n.

Note that given Assumption 2.1, (Xi, Ai, Ri) are identically distributed for 1 ≤ i ≤ n, and their marginal

distribution does not change with n (see Lemma A.5 in the Appendix). As a consequence we denote the

marginal distribution of (Xi, Ai, Ri) by P . Next we define our parameters of interest, denoted generically

by θ0 ∈ Θ ⊂ Rdθ . We consider parameters θ0 which can be defined as the solution to a set of moment

equalities. In particular, if m : Rdx ×{0, 1}×Rdr → Rdθ is a known measurable function, then we consider

parameters θ0 which uniquely solve the moment equality

EP [m(Xi, Ai, Ri, θ0)] = 0 , (3)

where we emphasize that m(·) is not a function of any unknown nuisance parameters, but may depend on
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the known value of η in Assumption 2.1. We present five examples of well-known parameters which can be

described as (functions of) solutions to a set of moment conditions as in (3).

Example 2.1 (Average Treatment Effect). Let Yi(a) = Ri(a) denote a scalar potential outcome for the ith

unit under treatment a ∈ {0, 1}, and let Yi = Ri denote the observed outcome. Let θ0 = EQ[Yi(1)− Yi(0)]

denote the average treatment effect (ATE). Under Assumption 2.1, θ0 solves the moment condition in (3)

with m(·) given by

m(Xi, Ai, Ri, θ) =
YiAi

η
− Yi(1−Ai)

1− η
− θ . (4)

For a list of papers which consider estimators based on (4), see Hirano et al. (2003).

Example 2.2 (Quantile Treatment Effect). Let Yi(a) = Ri(a) denote a scalar potential outcome for the

ith unit under treatment a ∈ {0, 1}, and let Yi = Ri denote the observed outcome. Let τ ∈ (0, 1) and

θ0 = (θ0(1), θ0(0))
′ = (qY (1)(τ), qY (0)(τ))

′, where

qY (a)(τ) = inf{λ ∈ R : Q{Yi(a) ≤ λ} ≥ τ} .

In other words, θ0 is defined to be the vector of τth quantiles of the marginal distributions of Yi(1) and Yi(0).

If we assume qY (a)(τ) is unique for a ∈ {0, 1} in the sense that Q{Y (a) ≤ qY (a)(τ)+ǫ} > Q{Y (a) ≤ qY (a)(τ)}
for all ǫ > 0, then it follows from Assumption 2.1 and Lemma 1 in Firpo (2007) that θ0 solves the moment

condition in (3) with m(·) given by

m(Xi, Ai, Ri, θ) =




Ai(τ − I{Yi ≤ θ(1)})
η

(1−Ai)(τ − I{Yi ≤ θ(0)})
1− η


 ,

for θ = (θ(1), θ(0))′. Note that the quantile treatment effect (QTE) qY (1)(τ) − qY (0)(τ) can then be defined

as h(θ0) where h : R2 → R is given by h(s, t) = s− t.

Example 2.3 (Local Average Treatment Effect). Let (Ỹi(a), Di(a)) = Ri(a) denote the vector of potential

outcomes and treatment take-up under treatment a ∈ {0, 1}, and let (Yi, Di) = Ri denote the vector of

observed outcomes and treatment take-up. Note here that Ỹi(a) corresponds to the potential outcome

under assignment a ∈ {0, 1} and not to the potential outcome for a given take-up Di = d. Suppose

EQ[Di(1)−Di(0)] 6= 0 and let

θ0 =
EQ[Ỹi(1)− Ỹi(0)]

EQ[Di(1)−Di(0)]
.

It then follows from Assumption 2.1 that θ0 solves the moment condition in (3) with m(·) given by

m(Xi, Ai, Ri, θ) =
YiAi

η
− Yi(1−Ai)

1− η
− θ

(
DiAi

η
− Di(1−Ai)

1− η

)
. (5)

If we further assume instrument monotonicity (i.e., P{Di(1) ≥ Di(0)} = 1), then θ0 could be re-interpreted

as the local average treatment effect (LATE) in the sense of Imbens and Angrist (1994).

Example 2.4 (Weighted Average Treatment Effect). Let Yi(a) = Ri(a) denote a scalar potential outcome
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for the ith unit under treatment a ∈ {0, 1}, and let Yi = Ri denote the observed outcome. Let

θ0 = EQ

[
ω(Xi)

EQ[ω(Xi)]
(Yi(1)− Yi(0))

]
,

for some known function ω : Rdx → R. It then follows from Assumption 2.1 that θ0 solves the moment

condition in (3) with m(·) given by

m(Xi, Ai, Ri, θ) = ω(Xi)

(
YiAi

η
− Yi(1−Ai)

1− η

)
− ω(Xi)θ .

Note that θ0 defined in this way can accommodate the (cluster) size-weighted and equally-weighted average

treatment effects considered in Bugni et al. (2022) and Bai et al. (2023c) in the context of cluster-level

randomized controlled trials.

Example 2.5 (Log-Odds Ratio). Let Yi(a) = Ri(a) ∈ {0, 1} denote a binary potential outcome for the ith

unit under treatment a ∈ {0, 1}, and let Yi = Ri denote the observed outcome. Suppose 0 < P{Yi(a) =

0} < 1 for a ∈ {0, 1}, and let θ0 = (θ0(1), θ0(2))
′, where

θ0(1) = logit(EQ[Yi(0)]) ,

θ0(2) = logit(EQ[Yi(1)])− logit(EQ[Yi(0)]) ,

with logit(z) = log( z
1−z ), so that θ0(2) denotes the log-odds ratio of treatment 1 relative to treatment 0. It

follows from Assumption 2.1 that θ0 solves the moment condition in (3) with m(·) given by

m(Xi, Ai, Ri, θ) =

(
1−Ai

Ai

)
(Yi − expit(θ(1) + θ(2)Ai)) ,

where expit(z) = exp(z)
1+exp(z) . The log-odds ratio can then be defined as h(θ0) where h : R2 → R is given by

h(s, t) = t.

Additional examples could be obtained by considering combinations of Examples 2.1–2.5. For instance,

combining the moment functions from Examples 2.3 and 2.4 would result in a weighted LATE parameter.

Beyond these examples, certain treatment effect contrasts could also be related to the structural parameters

in, for instance, a model of supply in demand: see, for example, the model estimated in Casaburi and Reed

(2022).

Throughout the rest of the paper we consider the asymptotic properties of the method of moments

estimator θ̂n for θ0 which is constructed as a solution to the sample analogue of (3):

1

n

∑

1≤i≤n

m(Xi, Ai, Ri, θ̂n) = 0 . (6)

Note that θ̂n as defined in (6) is closely related to standard estimators of the parameter θ0 in specific
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examples. For instance, in Example 2.1,

θ̂n =
1

η

∑

1≤i≤n

YiAi −
1

1− η

∑

1≤i≤n

Yi(1−Ai) ,

so that θ̂n is a Horvitz-Thompson analogue of the standard difference-in-means estimator for the average

treatment effect. In Example 2.3,

θ̂n =

1
η

∑
1≤i≤n YiAi − 1

1−η

∑
1≤i≤n Yi(1 −Ai)

1
η

∑
1≤i≤nDiAi − 1

1−η

∑
1≤i≤nDi(1−Ai)

,

so that θ̂n is a Horvitz-Thompson analogue of the standard Wald estimator for the local average treatment

effect.

If A(n) were assigned i.i.d., independently of X(n), then it can be shown under mild conditions on m(·)
(see, for instance, Theorem 5.1 in van der Vaart, 1998) that

√
n(θ̂n − θ0)

d→ N(0,V) ,

where

V =M−1EP [m(Xi, Ai, Ri, θ0)m(Xi, Ai, Ri, θ0)
′](M−1)′ , (7)

with M = ∂
∂θEP [m(X,A,R, θ)]

∣∣∣
θ=θ0

. In Section 3, we derive an efficiency bound V∗ for estimating θ0 for

general assignment mechanisms which satisfy Assumption 2.1, and argue that in general V ≥ V∗ (see Remark

3.2). For this reason, we call θ̂n the “näıve” method of moments estimator. It is now well understood that a

more efficient estimator of θ0 can be constructed by appropriately “augmenting” the moment function, and

then considering an estimator which solves the augmented moment equation. For instance, if we consider

Example 2.1, then it is straightforward to show that the following augmented moment function identifies θ0:

m∗(Xi, Ai, Ri, θ) =

(
Ai(Yi − µ1(Xi))

η
− (1−Ai)(Yi − µ0(Xi))

1− η
+ µ1(Xi)− µ0(Xi)

)
− θ , (8)

where µa(Xi) = EQ[Yi(a)|Xi]. This choice of m∗(·) produces the well known doubly-robust moment con-

dition for estimating the ATE (Robins et al., 1995; Hahn, 1998). It can then be shown that an appropri-

ately constructed two-step estimator will achieve the efficiency bound V∗ (Tsiatis et al., 2008; Farrell, 2015;

Chernozhukov et al., 2017; Rafi, 2023). Intuitively, the estimator obtained from the augmented moment

function m∗(·) performs nonparametric regression adjustment by exploiting the information contained in

X(n) which may not have been captured in the original moment function m(·). Similar nonparametric re-

gression adjustments based on augmented moment equations have been developed for other parameters of

interest (Zhang et al., 2008; Belloni et al., 2017; Jiang et al., 2022a,b). In Section 4, we show that if we assign

A(n) using a “finely-stratified” design (i.e., a treatment assignment scheme which uses the covariates X(n) to

block units into groups of fixed size: see Assumption 4.1 below for a formal definition), then it is possible to

achieve the efficiency bound V∗ that we derive in the subsequent section using the original “näıve” estimator

θ̂n. In this sense, we show that “fine stratification” can perform nonparametric regression adjustment “by
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design” for the large class of parameters that can be expressed in terms of moment conditions of the form

given in (3); this generalizes similar observations made in Bai et al. (2022), Bai (2022), and Cytrynbaum

(2023b) in the special case of estimating the average treatment effect.

3 Efficiency Bound

In this section, we derive an efficiency bound for the class of parameters introduced in Section 2 under a

general class of treatment assignment mechanisms. In what follows, when writing expectations and variances,

we suppress the subscripts P and Q whenever doing so does not lead to confusion. We impose the following

high-level assumption on the assignment mechanism:

Assumption 3.1. The treatment assignment mechanism is such that for any integrable Lipschitz functions

γ0, γ1 : Rdx → R,

1

n

∑

1≤i≤n

∑

a∈{0,1}
I{Ai = a}γa(Xi)

P→ ηE[γ1(Xi)] + (1− η)E[γ0(Xi)] .

In other words, Assumption 3.1 requires that the assignment mechanism admits a law of large numbers

for “well-behaved” functions of the covariate values. Examples 3.1–3.2 illustrate that the assumption holds

for a large class of treatment assignment mechanisms used in practice.

Example 3.1 (Covariate-adaptive randomization). Let S : Rdx → S = {1, . . . , |S|} be a function that

maps the covariates into a set of discrete “strata.” Assume that treatment status is assigned so that

(R(n)(1), R(n)(0), X(n)) ⊥⊥ A(n)
∣∣S(n), and that for s ∈ S,

∑
1≤i≤n I{Si = s, Ai = 1}∑

1≤i≤n I{Si = s}
P→ η .

This high-level assumption subsumes stratified assignment mechanisms commonly used in empirical practice

(see, for instance, Duflo et al., 2015; Dizon-Ross, 2019). It follows from Lemma C.4 in Bugni et al. (2019)

that for any integrable functions γ0, γ1,

1

n

∑

1≤i≤n

∑

a∈{0,1}
I{Ai = a}γa(Xi)

P→
∑

s∈S
P{Si = s}(ηE[γ1(Xi)|Si = s] + (1− η)E[γ0(Xi)|Si = s]) .

Therefore, Assumption 3.1 is satisfied.

Example 3.2 (Matched pairs). Suppose n is even and consider pairing the experimental units into n/2

pairs, represented by the sets

{π(2j − 1), π(2j)} for j = 1, . . . , n/2 ,

where π = πn(X
(n)) is a permutation of n elements. Because of its possible dependence on X(n), π encom-

passes a broad variety of ways of pairing the n units according to the observed, baseline covariates X(n).

Given such a π, we assume that treatment status is assigned so that (R(n)(1), R(n)(0)) ⊥⊥ A(n)
∣∣X(n) and,
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conditional on X(n), (Aπ(2j−1), Aπ(2j)), j = 1, . . . , n/2 are i.i.d. and each uniformly distributed over the val-

ues in {(0, 1), (1, 0)}. For some examples of such an assignment mechanism being used in practice, see, for

instance, Angrist and Lavy (2009), Banerjee et al. (2015), and Bruhn et al. (2016). Assume that the pairing

algorithm πn(X
(n)) results in pairs that are “close” in the sense of Assumption 2.3 in Bai et al. (2022). It

then follows from the proof of Lemma S.1.5 of of Bai et al. (2022) that

1

n

∑

1≤i≤n

∑

a∈{0,1}
I{Ai = a}γa(Xi)

P→ 1

2
E[γ0(Xi)] +

1

2
E[γ1(Xi)] .

Therefore, Assumption 3.1 is satisfied.

Next, we impose the following high-level assumption on the distributions Q and P :

Assumption 3.2. The distributions Q and P are such that

(a) Var[m(Xi, a, Ri(a), θ0)|Xi = x] is a Lipschitz function.

(b) θ0 is uniquely determined by (3) and M = ∂
∂θE[m(Xi, Ai, Ri, θ)]

∣∣∣
θ=θ0

is invertible.

Assumption 3.2(a) is a smoothness condition that is required in settings where Xi is continuous to ensure

that the function ψ∗(·) we derive in Theorem 3.1 below is in fact the efficient influence function. Note that the

assumption is trivially satisfied if the support of Xi is discrete. Assumption 3.2(b) is a standard assumption

used when deriving the properties of Z-estimators (see, for instance, Theorem 5.1 in van der Vaart, 1989).

We now present the first main result of the paper: an efficiency bound for the parameter θ0 introduced

in Section 2. Formally, we characterize the bound via a convolution theorem which applies to all “regular”

estimators of the parameter θ0, where “regular” here should be understood in the standard sense necessary

to rule out, for instance, super-efficient estimators (see, for instance, Example 8.1 in van der Vaart, 1998).

In stating our theorem we leave the precise definition of “regular” and related assumptions to Appendix A.1.

In the paragraph following the statement of the theorem we provide some more details on the nature of our

result.

Theorem 3.1. Suppose Assumptions 2.1 and 3.1–3.2 hold, and maintain the additional regularity conditions

(16), (17) and Assumption A.1 described in Appendix A.1. Let θ̃n be any “regular” estimator of the parameter

θ0 in the sense of (20) in Appendix A.1. Then,

√
n(θ̃n − θ0)

d−→ L ,

where

L = N(0, E[ψ∗ψ∗′]) ∗B ,

for some fixed probability measure B which is specific to the estimator θ̃n, with

ψ∗(Xi, Ai, Ri, θ0)

= −M−1
(
I{Ai = 1}(m(Xi, 1, Ri, θ0)− E[m(Xi, 1, Ri(1), θ0)|Xi])

8



+ I{Ai = 0}(m(Xi, 0, Ri, θ0)− E[m(Xi, 0, Ri(0), θ0)|Xi])

+ ηE[m(Xi, 1, Ri(1), θ0)|Xi] + (1− η)E[m(Xi, 0, Ri(0), θ0)|Xi]
)
,

and M = ∂
∂θE[m(X,A,R, θ)]

∣∣∣
θ=θ0

.

Given Theorem 3.1 we call V∗ = Var[ψ∗(Xi, Ai, Ri, θ0)] the efficiency bound for θ0, since our result shows

that this is the lowest asymptotic variance attainable by any regular estimator under our assumptions. We

note that our assumptions on the assignment mechanism preclude us from applying results based on “stan-

dard” arguments (see, for instance, van der Vaart, 1998). Specifically, if we define a tangent set as the

collection of score functions of “smooth” one-dimensional parametric sub-models in an appropriate sense,

then we are not able to guarantee that the resulting tangent set is linear (or even a convex cone) while simul-

taneously verifying that the likelihood ratio process is locally asymptotically normal for arbitrary assignment

mechanisms which satisfy Assumption 3.1. Instead, we proceed by justifying an application of Corollary 3.1

in Armstrong (2022) combined with the convolution Theorem 3.11.2 in van der Vaart and Wellner (1996)

to each dθ-dimensional parametric submodel separately, and then arguing that the supremum over all such

submodels is attained by Var[ψ∗] under Assumption 3.2.

Remark 3.1. Note it follows from (3) that

ηEQ[m(Xi, 1, Ri(1), θ0)] + (1− η)EQ[m(Xi, 0, Ri(0), θ0)] = EP [m(Xi, Ai, Ri, θ0)] = 0 ,

so that E[ψ∗(Xi, Ai, Ri, θ0)] = 0. It is further straightforward to show using Assumption 2.1 that

V∗ = Var[ψ∗(Xi, Ai, Ri, θ0)] (9)

=M−1
(
E
[
ηVar[m(Xi, 1, Ri(1), θ0)|Xi] + (1 − η)Var[m(Xi, 0, Ri(0), θ0)|Xi]

]

+Var
[
ηE[m(Xi, 1, Ri(1), θ0)|Xi] + (1− η)E[m(Xi, 0, Ri(0), θ0)|Xi]

])
(M−1)′

From this we can deduce that our efficiency bound recovers well-known bounds for common parameters (like

those presented in Examples 2.1–2.3) in the setting of i.i.d. assignment. For instance, in the case of the ATE

(Example 2.1) we obtain that

Var[ψ∗(Xi, Ai, Ri, θ0)] = E

[
Var[Yi(1)|Xi]

η
+

Var[Yi(0)|Xi]

1− η
+ (E[Yi(1)− Yi(0)|Xi]− E[Yi(1)− Yi(0)])

2

]
,

which matches the efficiency bound under i.i.d. assignment derived in Hahn (1998). See Armstrong (2022)

and Rafi (2023) for related results in the context of stratified and adaptive experiments. Straightforward

calculation also implies for the QTE (Example 2.2) that

Var[ψ∗(Xi, Ai, Ri, θ0)] = E

[
1

η

F1

(
θ0(1)|X

)(
1− F1

(
θ0(1)|X

))

f1
(
θ0(1)

)2 +
1

1− η

F0

(
θ0(0)|X

)(
1− F0

(
θ0(0)|X

))

f0
(
θ0(0)

)2

+

(
F1

(
θ0(1)|X

)
− τ

f1
(
θ0(1)

) − F0

(
θ0(0)|X

)
− τ

f0
(
θ0(0)

)
)2]

,
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which matches the efficiency bound under i.i.d. assignment derived in Firpo (2007) when the propensity

score is set to η.

Remark 3.2. Note that by comparing the variance expression in (7) to the variance expression for V∗, we

obtain

V− V∗ = η(1 − η)M−1E[(E[m(X, 1, R(1)|X ]− E[m(X, 0, R(0)|X ])

× (E[m(X, 1, R(1)|X ]− E[m(X, 0, R(0)|X ])′](M−1)′ ,

which is positive semidefinite. From this we conclude that the variance of the “naive” method of moments

estimator θ̂n is generally inefficient when A(n) is assigned using i.i.d. assignment.

Remark 3.3. Although we focus on the case where ηi(Xi) = P{Ai = 1|Xi} = η is a constant, the proof of

Theorem 3.1 holds when ηi(x) = η(x) for 1 ≤ i ≤ n, where η(x) is an arbitrary known and fixed function.

In these settings, Lemma A.4 shows that the efficiency bound equals

V∗ = Var[ψ∗(Xi, Ai, Ri, θ0)] (10)

=M−1
(
E
[
η(Xi)Var[m(Xi, 1, Ri(1), θ0)|Xi] + (1− η(Xi))Var[m(Xi, 0, Ri(0), θ0)|Xi]

]

+Var
[
η(Xi)E[m(Xi, 1, Ri(1), θ0)|Xi] + (1− η(Xi))E[m(Xi, 0, Ri(0), θ0)|Xi]

])
(M−1)′ ,

so that the only difference from (9) is that η is replaced by η(Xi). Consider Example 2.1 and note the

moment condition for the ATE is now given by

m(Xi, Ai, Ri, θ) =
YiAi

η(Xi)
− Yi(1 −Ai)

1− η(Xi)
− θ . (11)

Straightforward calculation implies that in this example, the efficiency bound in (10) becomes

E

[
Var[Yi(1)|Xi]

η(Xi)
+

Var[Yi(0)|Xi]

1− η(Xi)
+ (E[Yi(1)− Yi(0)|Xi]− E[Yi(1)− Yi(0)])

2

]
, (12)

which again matches the efficiency bound under i.i.d. assignment in Hahn (1998). If we additionally impose

that η(Xi) = η(S(Xi)) for S taking on finitely many values as in Example 3.1, then this expression matches

the bound derived in Theorem 3.1 in Rafi (2023).

Remark 3.4. Here, we comment on how Theorem 3.1 relates to prior efficiency bounds in experiments with

general assignment mechanisms. Armstrong (2022) derives an efficiency bound for the average treatment

effect over a very large class of assignment mechanisms, which includes for instance response-adaptive designs.

However, his bound leaves the assignment proportions completely unrestricted. As a consequence, his bound

is necessarily loose whenever the assignment proportions are exogenously constrained away from the Neyman

allocation (for instance if the assignment proportions were set to one half regardless of whether or not the

conditional outcome variances across treatment and control are equal). In contrast, Rafi (2023) derives an

efficiency bound for the average treatment effect over the class of all stratified assignment mechanisms in the

sense of Bugni et al. (2019), where the stratum-level assignment proportions are restricted a priori by the

10



experimenter. Our analysis, like Rafi (2023), exogenously constrains the marginal probability of assignment,

but permits a richer class of assignment schemes, including the “finely stratified” designs that we consider in

the next section. We note, however, that this comes as the cost of requiring modestly stronger assumptions

on the class of data generating processes (via Assumption 3.1). Finally, we once again emphasize that our

analysis applies to a general class of treatment effect parameters, including the average treatment effect as

a special case.

4 The Asymptotic Variance of Finely Stratified Experiments

In this section, we derive the limiting distribution of the method of moments estimator θ̂n when treatment is

assigned by fine stratification over the baseline covariates X(n). As mentioned previously, such assignment

mechanisms use the covariates X(n) to block units with “similar” covariate values into groups of fixed size,

and then assign treatment completely at random within each block. In order to describe this assignment

mechanism formally, we require some further notation to define the blocks of units. Let ℓ and k be arbitrary

positive integers with ℓ ≤ k and set η = ℓ/k. For simplicity, assume that n is divisible by k. We then

represent blocks of units using a partition of {1, . . . , n} given by

{
λj = λj(X

(n)) ⊆ {1, . . . , n}, 1 ≤ j ≤ n/k
}
,

with |λj | = k. Because of its possible dependence on X(n), {λj : 1 ≤ j ≤ n/k} encompasses a variety of

different ways of blocking the n units according to the observed, baseline covariates. Given such a partition,

we assume that treatment status is assigned as described in the following assumption:

Assumption 4.1. Treatment status is assigned so that (R(n)(1), R(n)(0)) ⊥⊥ A(n)
∣∣X(n) and, conditional on

X(n),

{(Ai : i ∈ λj) : 1 ≤ j ≤ n/k}

are i.i.d. and each uniformly distributed over all permutations of (0, 0, . . . , 0︸ ︷︷ ︸
k−ℓ

, 1, 1, . . . , 1︸ ︷︷ ︸
ℓ

).

Remark 4.1. The assignment mechanism described in Assumptions 4.1 generalizes the definition of a

matched pair design (Example 3.2). In particular, we recover a matched pair design if we set (ℓ, k) = (1, 2),

with η = 1/2. Note that Assumption 4.1 generalizes matched pair designs along two dimensions: first, it

allows for treatment fractions other than η = 1/2. Second, it allows for choices of ℓ and k which are not

relatively prime. For instance, if we set (ℓ, k) = (2, 4), then η = 1/2 as in matched pairs, but now the

assignment mechanism blocks units into groups of size 4 and assigns two units to treatment, two units to

control. Although Theorem 4.1 below establishes that allowing for this level of flexibility has no effect on the

asymptotic properties of our estimator, in our experience we have found that designs which employ these

treatment “replicates” in each block can simplify the construction of variance estimators in practice. See

Remark 4.4 below for further discussion.

Our analysis will require some discipline on the way in which the blocks are formed. In particular, we
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will require that the units in each block be “close” in terms of their baseline covariates in the sense described

by the following assumption:

Assumption 4.2. The blocks used in determining treatment status satisfy

1

n

∑

1≤j≤n/k

max
i,i′∈λj

‖Xi −Xi′‖2 P→ 0 .

Bai et al. (2022) and Cytrynbaum (2023b) discuss blocking algorithms which satisfy Assumption 4.2.

When Xi ∈ R and E[X2
i ] < ∞, a simple algorithm which satisfies Assumption 4.2 is to simply order units

from smallest to largest and then block adjacent units into blocks of size k.

The next two sets of assumptions allow us to derive the large sample properties of θ̂n. We impose

Assumption 4.3 to establish the consistency of θ̂n, and we further impose Assumption 4.4 to establish its

limiting distribution.

Assumption 4.3. Let m(·) = (ms(·) : 1 ≤ s ≤ dθ)
′. Then the moment functions are such that

(a) For every ǫ > 0, inf
θ∈Θ:‖θ−θ0‖>ǫ

‖E[m(Xi, Ai, Ri, θ)]‖ > 0.

(b) For 1 ≤ s ≤ dθ, {ms(x, a, r, θ) : θ ∈ Θ} with a ∈ {0, 1} fixed is a VC-class of functions in (x, r).

(c) For 1 ≤ s ≤ dθ, {ms(x, a, r, θ) : θ ∈ Θ} is pointwise measurable in the sense that there exists a countable

set Θ∗ such that for each θ ∈ Θ, there exists a sequence {θm} ⊂ Θ∗ such that ms(x, a, r, θm) →
ms(x, a, r, θ) as m→ ∞ for all x, a, r.

(d) E

[
sup
θ∈Θ∗

‖m(X, a,R(a), θ)‖
]
<∞ for a ∈ {0, 1}.

(e) For some K <∞,

sup
θ∈Θ∗

‖E[m(X, a,R(a), θ)|X = x]− E[m(X, a,R(a), θ)|X = x′]‖ ≤ K‖x− x′‖

for all x, x′ ∈ Rdx .

(f) E

[
sup
θ∈Θ∗

∥∥m(X, a,R(a), θ)
∥∥
∣∣∣X = x

]
is Lipschitz for a ∈ {0, 1}.

Assumption 4.3(a) is a standard assumption to ensure the solution to (3) is “well separated.” It appears

as a condition, for instance, in Theorem 5.9 in van der Vaart (1998) . Assumption 4.3(b) can be readily

verified in Examples 2.1–2.5 because the moment conditions are either constructed as linear functions in θ

(multiplied or composed with fixed functions), or dependent on θ through indicator functions. Assumption

4.3(c) is a standard condition to guarantee the measurability of the supremum of a suitable class of functions.

In particular, it allows us to define expectations of suprema without invoking outer expectations. See

Example 2.3.4 in van der Vaart and Wellner (1996) for details. Assumption 4.3(d) guarantees the existence

of an envelope function needed to establish a uniform law of large numbers. Assumptions 4.3(e)–(f) mirror

common assumptions used when studying matched pairs designs to ensure units that are close in terms of

the baseline covariates are also close in terms of their moments.
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Assumption 4.4. Let m(·) = (ms(·) : 1 ≤ s ≤ dθ)
′. The moment functions are such that

(a) E[m(Xi, Ai, Ri, θ)] is differentiable at θ0 with a nonsingular derivative M .

(b) For Θ∗ in Assumption 4.3(c), E

[
sup
θ∈Θ∗

∥∥m(X, a,R(a), θ)
∥∥2
]
<∞ for a ∈ {0, 1}.

(c) For 1 ≤ s ≤ dθ, E[((ms(X, a,R(a), θ)−ms(X, a,R(a), θ0))
2] → 0 as θ → θ0 for a ∈ {0, 1}.

(d) For 1 ≤ s ≤ dθ, {E[(ms(X, a,R(a), θ)|X = x] : θ ∈ Θ} is a VC-class of functions for a ∈ {0, 1}.

(e) For Θ∗ in Assumption 4.3(c) and some K <∞, for 1 ≤ s ≤ dθ,

sup
θ∈Θ∗

|E[m2
s(X, a,R(a), θ)|X = x]− E[m2

s(X, a,R(a), θ)|X = x′]| ≤ K‖x− x′‖

sup
θ∈Θ∗

|E[ms(X, a,R(a), θ)ms(X, a,R(a), θ0)|X = x]

− E[ms(X, a,R(a), θ)ms(X, a,R(a), θ0)|X = x′]| ≤ K‖x− x′‖ ,

for all x, x′ ∈ Rdx , a ∈ {0, 1}

(f) For Θ∗ in Assumption 4.3(c), E

[
sup
θ∈Θ∗

∥∥m(X, a,R(a), θ)
∥∥2
∣∣∣X = x

]
is Lipschitz for a ∈ {0, 1}.

Assumption 4.4(a) subsumes Assumption 3.2(b). See, for instance, Theorem 3.1 in Newey and McFadden

(1994) and Theorem 5.21 in van der Vaart (1998). Because differentiability is imposed on their expectations

instead of the moment functions themselves, the moment functions are allowed to be nonsmooth as in

Example 2.2. Assumption 4.4(b) guarantees the existence of an envelope function needed to establish a

uniform law of large numbers. Assumption 4.4(c) implies the moment functions are mean-square continuous

in θ. Assumptions 4.4(e)–(f) again mirror common assumptions used when studying matched pairs to

ensure units that are close in terms of the baseline covariates are also close in terms of their moments.

Assumption 4.4(d) is again readily verified in Examples 2.1, 2.3–2.5 because θ enters separably in these

examples. To verify the assumption for Example 2.2, note that for any random variables Y (a), X , the

subgraphs {(x, t) : t < P{Y (a) ≤ θ(a)|X = x}} are linearly ordered in θ(a) because the conditional

distribution function is increasing in θ(a). Therefore, the class of subgraphs is VC with index 2 (see, for

instance, the last sentence of the proof of Lemma 2.6.16 in van der Vaart and Wellner, 1996).

Remark 4.2. We note that some of the assumptions imposed in Assumptions 4.3 and 4.4 are seemingly

more stringent than the low-level conditions considered in previous papers which study inference for certain

specific parameters of interest under matched pair designs (Bai et al., 2022; Jiang et al., 2021; Cytrynbaum,

2023b; Bai et al., 2023a). We suspect that, with more delicate arguments, some of these assumptions could

be weakened for specific parameters of interest, but we do not pursue this in the paper.

The following theorem establishes that the “näıve” method of moments estimator attains the efficiency

bound V∗ when the treatment assignment mechanism is finely stratified in the sense of satisfying Assumptions

4.1–4.2. This finding contrasts with the discussion in Remark 3.2 which showed that the variance of the

naive estimator is generally inefficient under i.i.d. treatment assignment.
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Theorem 4.1. Suppose the treatment assignment mechanism satisfies Assumptions 4.1–4.2 and the moment

functions satisfy Assumptions 4.3–4.4. Let θ̂n be defined as in (6). Then,

√
n(θ̂n − θ0) =

1√
n

∑

1≤i≤n

ψ∗(Xi, Ai, Ri, θ0) + oP (1) . (13)

Further, we have that
√
n(θ̂n − θ0)

d→ N(0,V∗) . (14)

Remark 4.3. Although Theorem 4.1 is focused on the case where η(Xi) = η is a constant, straightforward

modifications of the treatment assignment mechanism described in Assumptions 4.1–4.2 can attain the

efficiency bound in more general settings. For instance, suppose η(Xi) takes on a fixed discrete set of values

{η1, . . . , ηS}, we could then simply implement a finely stratified experiment over each set {i : η(Xi) = ηs} for

1 ≤ s ≤ S. In other words, separately within each stratum defined by the units for which η(Xi) = ηs, employ

the assignment mechanism described in Assumptions 4.1–4.2 with ℓ/k = ηs. For more general functions

η(Xi), we conjecture that the efficiency bound could be attained by employing the local randomization

procedure proposed in Cytrynbaum (2023b).

Remark 4.4. It is possible to construct a consistent estimator for V∗ based on the variance formula in (9).

Here, we briefly describe a construction when θ0 is a scalar and refer interested readers to Bai et al. (2022),

Bai (2022), and Bai et al. (2023d) for formal arguments which could be used to prove its validity. First note

that in certain examples (including Examples 2.1 and 2.3–2.5), the analog principle suggests that a natural

estimator for M is given by

M̂n =
1

n

∑

1≤i≤n

∂

∂θ
m(Xi, Ai, Ri, θ)

∣∣∣∣
θ=θ̂n

.

Under suitable conditions, it follows directly from following arguments in each of the papers mentioned above

that M̂n
P→M .2 Therefore, it suffices to construct a consistent estimator for the “meat” in (9). By the law

of total variance, this middle component equals Σ1 +Σ2, where

Σ1 = ηVar[m(Xi, 1, Ri(1), θ0)] + (1− η)Var[m(Xi, 0, Ri(0), θ0)]

Σ2 = −η(1− η)E
[(
E[m(Xi, 1, Ri(1), θ0)|Xi]− E[m(Xi, 1, Ri(1), θ0)]

− (E[m(Xi, 0, Ri(0), θ0)|Xi]− E[m(Xi, 0, Ri(0), θ0)])
)2]

= −η(1− η)
(
E[E[m(Xi, 1, Ri(1), θ0)|Xi]

2] + E[E[m(Xi, 0, Ri(0), θ0)|Xi]
2]

− 2E[E[m(Xi, 1, Ri(1), θ0)|Xi]E[m(Xi, 0, Ri(0), θ0)|Xi]]

− (E[m(Xi, 1, Ri(1), θ0)]− E[m(Xi, 0, Ri(0), θ0)])
2
)

For a ∈ {0, 1}, define
µ̂n(a) =

1

ηan

∑

1≤i≤n

I{Ai = a}m(Xi, Ai, Ri, θ̂n) ,

2In examples including Example 2.2 where m is nonsmooth in θ, M may consist of components which require nonparametric
estimators, and in such cases bootstrap procedures may be preferable. See, for instance, Jiang et al. (2021).
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where η1 = η and η0 = 1− η. The analog principle again suggests that a natural estimator for Σ1 is

Σ̂1,n =
1

n

∑

1≤i≤n

I{Ai = 1}(m(Xi, Ai, Ri, θ̂n)− µ̂n(1))
2 +

1

n

∑

1≤i≤n

I{Ai = 0}(m(Xi, Ai, Ri, θ̂n)− µ̂n(0))
2 .

To estimate Σ2, we first define

ς̂n(0, 1) =
k

n

∑

1≤j≤n/k

1

ℓ(k − ℓ)

∑

i,i′∈λj :Ai=1,Ai′=0

m(Xi, Ai, Ri, θ̂n)m(Xi′ , Ai′ , Ri′ , θ̂n) .

Next, define

ς̂n(1, 1) =





k
n

∑
1≤j≤n/k

1

(ℓ2)

∑
i<i′∈λj :Ai=Ai′=1

m(Xi, Ai, Ri, θ̂n)m(Xi′ , Ai′ , Ri′ , θ̂n) if ℓ > 1

k
2n

∑
1≤j≤ n

2k

∑
i∈λ2j ,i′∈λ2j−1 :Ai=Ai′=1

m(Xi, Ai, Ri, θ̂n)m(Xi′ , Ai′ , Ri′ , θ̂n) if ℓ = 1 .

Similarly, define

ς̂n(0, 0) =





k
n

∑
1≤j≤n/k

1

(k−ℓ
2 )

∑
i<i′∈λj :Ai=Ai′=0

m(Xi, Ai, Ri, θ̂n)m(Xi′ , Ai′ , Ri′ , θ̂n) if k − ℓ > 1

k
2n

∑
1≤j≤ n

2k

∑
i∈λ2j ,i′∈λ2j−1:Ai=Ai′=0

m(Xi, Ai, Ri, θ̂n)m(Xi′ , Ai′ , Ri′ , θ̂n) if k − ℓ = 1 .

Finally, define

Σ̂2,n = −η(1− η)(ς̂n(1, 1) + ς̂n(0, 0)− 2ς̂n(0, 1)− (µ̂n(1)− µ̂n(0))
2) .

The estimator ς̂n(1, 1) is constructed in one of two ways depending on the number of treated units in each

block. If more than one unit in each block is treated, then we take the averages of all pairwise products of the

treated units in each block, and average them across all blocks. We call this a “within block” estimator. If

instead only one unit in each block is treated, then we take the product of two treated units in adjacent blocks.

We call this a “between block” estimator, and note that similar constructions have been used previously in

Abadie and Imbens (2008), Bai et al. (2022), Bai et al. (2023c), and Cytrynbaum (2023b). The estimator

ς̂n(0, 0) is constructed similarly. Bai et al. (2023d) compare the finite-sample properties of the “within block”

and “between block” variance estimators via simulation. Their findings are that experimental designs which

allow for a “within block” variance estimator have better small sample inferential performance, at the cost

of slightly increasing the mean-squared error of the estimator θ̂n, relative to experimental designs which

require the use of the “between block” variance estimator. Under suitable assumptions, it follows from

similar arguments to those in Bai (2022) and Bai et al. (2023d) that Σ̂1,n
P→ Σ1 and Σ̂2,n

P→ Σ2. A natural

estimator for V∗ is therefore given by

V̂n = M̂−2
n

(
Σ̂1,n + Σ̂2,n

)
.

Thus, provided M is invertible, we have that V̂n
P→ V∗.
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5 Simulations

In this section, we illustrate the results in Sections 3 and 4 with a simulation study. Specifically, we set

η = 1/2, and compare the mean-squared errors (MSE) obtained from the “naive” estimator θ̂n and various

adjusted estimators, for i.i.d. treatment assignment versus matched pairs assignment (see Example 3.2 and

Remark 4.1). In Section 5.1, we present the model specifications and estimators for estimating the ATE as

in Example 2.1. In Section 5.2, we present the model specifications and estimators for estimating the LATE

as in Example 2.3. Section 5.3 reports the simulation results.

5.1 Average Treatment Effect

In this section, we present model specifications and estimators for estimating the ATE as in Example 2.1.

Recall that in this case the moment function we consider is given by

m(Xi, Ri, Ai, θ) =
YiAi

η
− Yi(1−Ai)

1− η
− θ ,

with Ri = Yi. For a ∈ {0, 1} and 1 ≤ i ≤ n, the potential outcomes are generated according to the equation:

Yi(a) = µa(Xi) + σa(Xi)ǫi .

In each of the specifications, ((Xi, ǫi) : 1 ≤ i ≤ n) are i.i.d; for 1 ≤ i ≤ n, Xi and ǫi are independent.

Model 1: µ0(Xi) = Xi + (X2
i − 1)/3, µ1(Xi) = 0.2 + µ0(Xi), ǫi ∼ N(0, 1), Xi ∼ N(0, 1) and σa(Xi) = 2.

Model 2: As in Model 1, but µa(Xi) = 0.2I{a = 1} + γa(sin(Xi) + Xi) + (X2
i − 1)/3 where γ1 = 1 and

γ0 = −1, and σa(Xi) = (1 + a)X2
i .

Model 3: As in Model 2, but µ1(Xi) = 0.2 + 3(X2
i − 1) and µ0(Xi) = 0.

We consider the following three estimators for the ATE:

Unadjusted Estimator:

θ̂unadjn =
1

n/2

∑

1≤i≤n

(YiAi − Yi(1−Ai)) .

Adjusted Estimator 1:

θ̂adj,1n =
1

n

∑

1≤i≤n

(
2Ai(Yi − µ̂Y

1 (Xi))− 2(1−Ai)(Yi − µ̂Y
0 (Xi)) + µ̂Y

1 (Xi)− µ̂Y
0 (Xi)

)
,

where µ̂Y
a (Xi) is constructed by running a least squares regression of Yi on (1, Xi, X

2
i ) using the sample

from Ai = a.
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Adjusted Estimator 2:

θ̂adj,2n =
1

n

∑

1≤i≤n

(
2Ai(Yi − µ̂Y

1 (Xi))− 2(1−Ai)(Yi − µ̂Y
0 (Xi)) + µ̂Y

1 (Xi)− µ̂Y
0 (Xi)

)
,

where µ̂Y
a (Xi) is constructed by running a least squares regression of Yi on (1, Xi, X

2
i , Xi1{Xi > t})

where t is the sample median using the sample from Ai = a.

The first estimator θ̂unadjn is the method of moments estimator given by the solution to (6). The second and

third estimators θ̂adj,1n and θ̂adj,2n are covariate-adjusted estimators which can be obtained as two-step method

of moments estimators from solving the “augmented” moment equation (8) described in the discussion at

the end of Section 2. θ̂adj,1n and θ̂adj,2n differ in the choice of basis functions used in the construction of the

estimators µ̂a(x). Note that by the double-robustness property of the augmented estimating equation (8), it

can be shown that the adjusted estimators θ̂adj,1n , θ̂adj,2n are consistent and asymptotically normal regardless

of the choice of estimators µ̂a(x), but consistency of µ̂a(x) to µa(x) would ensure that θ̂adj,1n , θ̂adj,2n are

efficient under i.i.d. assignment (Robins et al., 1995; Tsiatis et al., 2008; Chernozhukov et al., 2017).

5.2 Local Average Treatment Effect

In this section, we present the model specifications and estimators for estimating the LATE as in Example

2.3. Recall that in this case the moment condition we consider is given by

m(Xi, Ai, Ri, θ) =
YiAi

η
− Yi(1−Ai)

1− η
− θ

(
DiAi

η
− Di(1−Ai)

1− η

)
,

with Ri = (Yi, Di). The outcome is determined by the relationship Yi = DiYi(1) + (1 − Di)Yi(0), where

Yi(d) = µd(Xi) + σa(Xi)ǫi follows the same outcome model as in the ATE setup of Section 5.1. In addition,

we have Di = AiDi(1) + (1−Ai)Di(0), where

Di(0) = I {α0 + α (Xi) > ε1,i} ,

Di(1) =




I {α1 + α (Xi) > ε2,i} if Di(0) = 0

1 otherwise
.

For each outcome model, we set α0 = 0.5, α1 = 1, α(Xi) = Xi + (X2
i − 1)/3 and ε1,i, ε2,i ∼ N(0, 4).

We consider the following three estimators for the LATE:

Unadjusted Estimator:

θ̂unadjn =

∑
1≤i≤n (YiAi − Yi(1−Ai))∑
1≤i≤n (DiAi −Di(1−Ai))

.

Adjusted Estimator 1:

θ̂adj,1n =

∑
1≤i≤n

(
2Ai(Yi − µ̂Y

1 (Xi))− 2(1−Ai)(Yi − µ̂Y
0 (Xi)) + µ̂Y

1 (Xi)− µ̂Y
0 (Xi)

)
∑

1≤i≤n

(
2Ai(Di − µ̂Y

1 (Xi))− 2(1−Ai)(Di − µ̂Y
0 (Xi)) + µ̂D

1 (Xi)− µ̂D
0 (Xi)

) ,
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where µ̂Y
a (Xi) is estimated by running a least squares regression of Yi on (1, Xi, X

2
i ) using the sample

from Ai = a, and µ̂D
a (Xi) is estimated using logistic regressions using the same set of regressors using

the sample from Ai = a.

Adjusted Estimator 2: As in Adjusted Estimator 1, but µ̂Y
a (Xi) and µ̂

D
a (Xi) are estimated respec-

tively by running a least squares and logistic regressions of Yi on (1, Xi, X
2
i , Xi1{Xi > t}) where t is

the sample median.

Similarly to Section 5.1, θ̂unadjn solves (6) for the moment condition given in (5). The second and third esti-

mators are covariate adjusted estimators which can be obtained as two-step method of moments estimators

from solving an “augmented” version of the moment condition (5) (see, for instance, Chernozhukov et al.,

2018; Jiang et al., 2022a).

5.3 Simulation Results

Table 5.3 displays the ratio of the MSE for each design/estimator pair relative to the MSE of the unadjusted

estimator under i.i.d. assignment, computed across 2000 Monte Carlo replications. As expected given our

theoretical results, we find that the empirical MSEs of the naive unadjusted estimator under a matched pair

design closely match the empirical MSEs of the covariate adjusted estimators under i.i.d. assignment.

6 Recommendations for Empirical Practice

We conclude with some recommendations for empirical practice based on our theoretical results. Overall, our

findings highlight the general benefit of fine stratification for designing efficient experiments: finely stratified

experiments “automatically” perform fully-efficient regression adjustment for a large class of interesting

parameters. This generalizes similar observations made by Bai et al. (2022), Bai (2022) and Cytrynbaum

(2023b) for the special case of estimating the average treatment effect.

One caveat to this result, however, is that it crucially hinges on the assumption that units within each

block are sufficiently “close” (Assumption 4.2), and such a condition becomes difficult to satisfy as the

dimension of Xi increases. For this reason, we recommend that practitioners construct their blocks using

a small subset of the baseline covariates which they feel are the most relevant (for instance, the baseline

level of the experimental outcome, as suggested by Bruhn and McKenzie, 2009). Regression adjustment

with additional covariates beyond those used for blocking can then be done ex post, although we caution

that care must be taken to ensure that the adjustment is performed in such a way that it guarantees a

gain in efficiency: see Bai et al. (2023b) and Cytrynbaum (2023a) for related discussions. Recent work

has developed such methods of covariate adjustment for specific parameters of interest (see, for instance,

Bai et al., 2023b,c,a; Cytrynbaum, 2023a), but we leave the development of a method of covariate adjustment

which applies at the level of generality considered in this paper to future work.
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Table 1: MSE ratios relative to unadjusted estimator under i.i.d. assignment

I.I.D. assignment Matched pairs

Model Unadjusted Adjusted 1 Adjusted 2 Unadjusted

n = 200

ATE
1 1.0 0.4574 0.4629 0.4760
2 1.0 1.0046 0.9688 0.8629
3 1.0 0.7299 0.7217 0.7542

LATE
1 1.0 0.3866 0.3970 0.3753
2 1.0 0.8065 0.8758 0.7767
3 1.0 0.5175 0.5216 0.5212

n = 400

ATE
1 1.0 0.4465 0.4699 0.4532
2 1.0 0.9732 0.9780 0.9697
3 1.0 0.7156 0.6834 0.6949

LATE
1 1.0 0.4389 0.4402 0.4184
2 1.0 0.8710 0.8683 0.7195
3 1.0 0.5328 0.5173 0.5357

n = 1000

ATE
1 1.0 0.4341 0.4703 0.4670
2 1.0 0.9787 0.9132 0.8977
3 1.0 0.7223 0.7147 0.7195

LATE
1 1.0 0.4307 0.4459 0.4369
2 1.0 0.8583 0.8536 0.8567
3 1.0 0.5147 0.5093 0.4901

n = 2000

ATE
1 1.0 0.4379 0.4444 0.4357
2 1.0 0.9805 0.9659 0.9854
3 1.0 0.6912 0.7235 0.6941

LATE
1 1.0 0.4392 0.4378 0.4378
2 1.0 0.8329 0.8499 0.8717
3 1.0 0.5386 0.5913 0.5453

Note: For each model, the MSE of the unadjusted estimator under i.i.d. assignment are normalized to one
and the other columns contain the ratios of the MSEs against that of the unadjusted estimator under i.i.d.
assignment. MSEs are calculated across 2000 replications.
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A Proofs of Main Results

A.1 Proofs for Section 3

Recall that Pn denotes the distribution of the observed data (X(n), A(n), R(n)), and Q denotes the marginal

distribution of the vector (Ri(1), Ri(0), Xi). Note that any treatment assignment mechanism satisfying

Assumption 2.1 can be represented as a function of X(n) and some additional randomization device Un ∈ R.

Let pUn
n denote the density function for Un with respect to a dominating measure µU . In what follows,

we consider a family {Qt : t ∈ Rdθ} of marginal distributions indexed by t, and let qXt denote the density

function for Xi with respect to a dominating measure µX , q
R(a)|X
t (r|x) denote the conditional density of

Ri(a) given Xi with respect to a dominating measure µR. Further let Pt,n denote the distribution of Z(n)

and note it is jointly determined by Qt and the distribution of Un. We require that Q0 = Q and P0,n = Pn

and define qX = qX0 and qR(a)|X = q
R(a)|X
0 . As a consequence, the density function of Pt,n is given by

ℓn = pUn (Un)
∏

1≤i≤n

qXt (Xi)
∏

1≤i≤n

∏

a∈{0,1}
q
R(a)|X
t (Ri|Xi)

I{Ai=a} . (15)

Because the density pUn
n does not depend on t, and in general we will only concern ourselves with the ratio

of likelihoods at different values of t (so that pUn
n in the ratio will cancel), in what follows we suppress

the dependence on n and simply identify the distribution Pt,n with its corresponding marginal distribution

Pt. We consider a parametric submodel {Pt : t ∈ Rdθ}, where P0 = P , such that the following holds for

g = (gX , gR(1)|X , gR(0)|X), each component of which is a dθ-dimensional function:

(a) As t→ 0, ∫
1

‖t‖2
(
qXt (x)1/2 − qX(x)1/2 − 1

2
qX(x)1/2t′gX(x)

)2
dµX(x) → 0 . (16)

(b) For a ∈ {0, 1}, EQ[g
R(a)|X(R(a)|X)gR(a)|X(R(a)|X)′|X = x] is Lipschitz and for Q-almost every x, as

t→ 0,

1

‖t‖2
∫∫ (

q
R(a)|X
t (r|x)1/2 − qR(a)|X(r|x)1/2 − 1

2
qR(a)|X(r|x)1/2t′gR(a)|X(r|x)

)2

dµR(r)qX (x)dµX(x) → 0 . (17)

In what follows, we will further index a parametric submodel by its associated function g, denoted by Pt,g,

to emphasize the role of g. Similarly we denote the density of Qt,g by qt,g.

Define the information of X as IX = EQ[g
X(X)gX(X)′]. Define the conditional information of R(a)

given X = x as

IR(a)|X(x) = EQ[g
R(a)|X(R(a)|X)gR(a)|X(R(a)|X)′|X = x] .

Lemma A.1. For a parametric submodel {Pt,g : t ∈ Rdθ} with P0,g = P that satisfies (16)–(17),

(a) IX <∞.
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(b) EQ[g
X(X)] = 0.

(c) EQ[g
R(a)|X(R(a)|X)gR(a)|X(R(a)|X)′] <∞ and hence IR(a)|X(X) <∞ with probability one under Q.

(d) EQ[g
R(a)|X(R(a)|X)|X ] = 0 with probability one under Q.

Proof. (a) and (b) follow from Lemma 14.2.1 in Lehmann and Romano (2022). (c) follows from the same

lemma. In order to show (d), fix tn → 0. Note (17) and Markov’s inequality imply that along a subsequence

tnk
,

1

‖tnk
‖2
∫ (

q
R(a)|X
tnk

(r|x)1/2 − qR(a)|X(r|x)1/2 − 1

2
qR(a)|X(r|x)1/2t′nk

gR(a)|X(r|x)
)2
dµR(r) → 0

forQ-almost every x. Along that subsequence, another application of Lemma 14.2.1 in Lehmann and Romano

(2022) implies (d).

For t ∈ Rdθ , the log-likelihood ratio between Pt/
√
n,g and P0 = P is

Ln,t(g) =
1

n

∑

1≤i≤n

log
qX
t/

√
n,g

(Xi)

qX(Xi)
+

1

n

∑

1≤i≤n

∑

a∈{0,1}
I{Ai = a} log

q
R(a)|X
t/

√
n,g

(Ri|Xi)

qR(a)|X(Ri|Xi)
.

The following lemma establishes an expansion of the log-likelihood ratio and local asymptotic normality of

{Pt/
√
n,g}.

Lemma A.2. Suppose the treatment assignment mechanism satisfies Assumption 2.1 and g satisfies (16)–

(17). Then,

Ln,t(g) =
1√
n

∑

1≤i≤n

t′sg(Xi, Ai, Ri)−
1

2
t′IXt− 1

2n

∑

1≤i≤n

∑

a∈{0,1}
I{Ai = a}t′IR(a)|X(Xi)t+ oP (1) ,

where

sg(x, a, r) = gX(x) + I{a = 1}gR(1)|X(r|x) + I{a = 0}gR(0)|X(r|x) (18)

and I = IX + ηEQ[I
R(1)|X(Xi)]+ (1− η)EQ[I

R(0)|X(Xi)]. If in addition the assignment mechanism satisfies

Assumption 3.1, then, under P0,

Ln,t(g)
d→ N

(
− 1

2
t′It, t′It

)
,

Proof. The first result follows from Theorem 3.1 of Armstrong (2022). The second result follows from

Corollary 3.1 of Armstrong (2022) given Assumption 3.1 and the assumption that IR(a)|X(x) is Lipschitz.

We emphasize that Lemma A.5 implies

∑

1≤i≤n

sg(Xi, Ai, Ri)

is the sum of n identically distributed, despite possibly dependent, random variables. Therefore, in what

follows, quantities like EP [sg] are well defined.
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Let the following condition collect the properties of the functions g that are of interest to us:

Condition A.1. The function g satisfies that EP [g
X(X)] = 0, EP [g

X(X)gX(X)′] < ∞, EP [g
R(a)|X(R|X)

gR(a)|X(R|X)′] <∞, EP [g
R(a)|X(R|X)|X ] = 0 with probability one, andEP [g

R(a)|X(R|X)gR(a)|X(R|X)′|X =

x] is Lipschitz for a ∈ {0, 1}. In addition, I is nonsingular.

We note that for any g that satisfies Condition A.1, there exists a parametric submodel {Pt,g : t ∈ Rdθ}
such that (16)–(17) hold. Such a construction follows from the construction on p.69 in Tsiatis (2006) and

can be done separately for g1(x) and g
a
2(r|x) for each x separately so that they satisfy (16)–(17).

Let θ(P ) ∈ Rdθ be a parameter of interest. Further suppose that for each g satisfying Condition A.1,

there exists a dθ × 1 vector of functions ψ∗ ∈ L2(P ) such that for all t ∈ Rdθ , as n→ ∞,

√
n(θ(Pt/

√
n,g)− θ(P )) → EP [ψ

∗s′gt] . (19)

We provide explicit conditions which guarantee this is possible when θ(P ) is defined by (3), in Lemma A.4

below.

We recall an estimator θ̃n for θ(P ) is regular if for all g and t ∈ Rdθ ,

√
n(θ̃n − θ(Pt/

√
n,g))

Pt/
√

n,g

−−−−−→ L (20)

for a fixed probability measure L.

The following lemma establishes a convolution theorem for regular estimators:

Lemma A.3. Suppose θ satisfies (19). Let θ̃n be a regular estimator for θ. Further suppose that ψ∗ = sg

for some function g satisfying Condition A.1. Then,

L = N(0, EP [ψ
∗ψ∗′]) ∗B ,

where B is a fixed probability measure.

Proof. In what follows, for each g satisfying Condition A.1, we consider the linear subspace given by

Mg = {t′sg : t ∈ Rdθ} .

Note that t′sg appears in the expansion of the log-likelihood ratio between Pt/
√
n,g and P . We first derive

the Riesz representer along the parametric subspace Mg. In particular, for each b ∈ Rdθ , we solve for

w(b) ∈ Rdθ via the property that,

b′EP [ψ
∗s′gt] = EP [w(b)

′sgs
′
gt]

needs to hold for all t ∈ Rdθ and get

w(b) = E[sgs
′
g]

−1E[sgψ
∗′]b .
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Therefore, the Riesz representer is

EP [ψ
∗s′g]E[sgs

′
g]

−1sg .

It then follows from the local asymptotic normality established in Lemma A.2 and Theorem 3.11.2 in

van der Vaart and Wellner (1996) that

L = N(0, Vg) ∗Bg ,

where

Vg = EP [ψ
∗s′g]EP [sgs

′
g]

−1E[sgψ
∗′]

and Bg is a fixed probability measure. Furthermore, by a standard projection argument, in particular the

fact that the second moment of ψ∗ − EP [ψ
∗s′g]EP [sgs

′
g]

−1sg is positive semi-definite, it can be shown that

Vg is maximized in the matrix sense when sg = ψ∗. Note this maximum is attained by our assumption that

ψ∗ = sg for some g satisfying Condition A.1. The conclusion then follows.

To apply Lemma A.3 to the setting in Section 3, we we establish the form of ψ∗ in (19) for the parameter

θ0 = θ(P ) defined by (3). Define η(Xi) = P{Ai = 1|Xi}. Note that

0 = EP [m(Xi, Ai, Ri, θ(P ))] = EQ[m(X, 1, R(1), θ(P ))η(X)] + EQ[m(X, 0, R(0), θ(P ))(1− η(X))] . (21)

Lemma A.4. Suppose the treatment assignment mechanism satisfies Assumptions 2.1 and 3.1. Fix a func-

tion g that satisfies Condition A.1. Suppose (16)–(17) holds. Fix t ∈ Rdθ and consider a one-dimensional

submodel {Pt/
√
n,g} such that

EQt/
√

n
[m(X, a,R(a), θ(P ))2] = O(1)

EQX [E
Q

R(a)|X
t/

√
n

[m(X, a,R(a), θ(P ))2|X ]] = O(1)

EQX
t/

√
n
[EQR(a)|X [m(X, a,R(a), θ(P ))2|X ]] = O(1)

(22)

as n→ ∞ and θ(Pt/
√
n,g) is uniquely determined by (21). Then, θ(Pt/

√
n,g) defined by (21) satisfies

√
n(θ(Pt/

√
n,g)− θ(P ))

→ M−1EP [m(Xi, Ai, Ri, θ(P ))(g
X(Xi) + I{Ai = 1}gR(1)|X(Ri|Xi) + I{Ai = 0}gR(0)|X(Ri|Xi))

′]t

= EP [ψ
∗(Xi, Ai, Ri, θ(P ))(g

X(Xi) + I{Ai = 1}gR(1)|X(Ri|Xi) + I{Ai = 0}gR(0)|X(Ri|Xi))
′]t ,

where

ψ∗(Xi, Ai, Ri, θ(P ))

=M−1
(
η(Xi)EQ[m(Xi, 1, Ri(1), θ(P ))|Xi] + (1 − η(Xi))EQ[m(Xi, 0, Ri(0), θ(P ))|Xi]

+ I{Ai = 1}(m(Xi, 1, Ri, θ(P ))− EQ[m(Xi, 1, Ri(1), θ(P ))|Xi])

+ I{Ai = 0}(m(Xi, 0, Ri, θ(P ))− EQ[m(Xi, 0, Ri(0), θ(P ))|Xi])
)
.
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Proof. In what follows, we only use the property that the quadratic mean derivative of Pt/
√
n,g is given

by s′gt. Therefore, for ease of notation we consider a generic one-dimensional submodel {Pν : ν ∈ [−ǫ, ǫ]}
that satisfies (16)–(17) for some g = (gX , gR(1)|X , gR(0)|X), each component of which is a one-dimensional

function. (21) implies

0 =

∫
m(x, 1, r, θ(Pν))q

R(1)|X
ν (r|x)dµR(r)η(x)qXν (x)dµX (x)

+

∫
m(x, 0, r, θ(Pν))q

R(0)|X
ν (r|x)dµR(r)(1 − η(x))qXν (x)dµX(x)

Note that

∫
m(x, 1, r, θ(P ))qR(1)|X

ν (r|x)dµR(r)η(x)qXν (x)dµX(x)

−
∫
m(x, 1, r, θ(P ))qR(1)|X(r|x)dµR(r)η(x)qX (x)dµX(x) = γ1(ν) + γ2(ν) + γ3(ν) + γ4(ν) ,

where

γ1(ν) =

∫
m(x, 1, r, θ(P ))

(
qR(1)|X
ν (r|x)1/2 − qR(1)|X(r|x)1/2

)
qR(1)|X
ν (r|x)1/2dµR(r)η(x)qXν (x)dµX (x)

γ2(ν) =

∫
m(x, 1, r, θ(P ))

(
qR(1)|X
ν (r|x)1/2 − qR(1)|X(r|x)1/2

)
qR(1)|X(r|x)1/2dµR(r)η(x)qXν (x)dµX (x)

γ3(ν) =

∫
m(x, 1, r, θ(P ))qR(1)|X(r|x)dµR(r)η(x)

(
qXν (x)1/2 − qX(x)1/2

)
qXν (x)1/2dµX(x)

γ4(ν) =

∫
m(x, 1, r, θ(P ))qR(1)|X(r|x)dµR(r)η(x)

(
qXν (x)1/2 − qX(x)1/2

)
qX(x)1/2dµX(x) .

It follows from the Cauchy-Schwarz inequality that

1

ν
γ4(ν)−

∫
m(x, 1, r, θ(P ))qR(1)|X(r|x)dµR(r)η(x)

1

2
gX(x)qX(x)1/2 × qX(x)1/2dµX(x)

≤
∫ (

m(x, 1, r, θ(P ))2qR(1)|X(r|x)dµR(r)η(x)2qX(x)dµX (x)

)1/2

×
(∫

qR(1)|X(r|x)dµR(r)
( 1
ν
(qXν (x)1/2 − qX(x)1/2)− 1

2
gX(x)qX(x)1/2

)2
dµX(x)

)1/2

→ 0

by the assumption that EP [m(X, a,R(a), θ(P ))2] <∞, the facts that 0 ≤ η(x) ≤ 1,
∫
qR(1)|X(r|x)dµR(r) =

1, and (16). Similar arguments implies as ν → 0,

1

ν
γ1(ν)−

∫
m(x, 1, r, θ(P ))

1

2
gR(1)|X(r|x)qR(1)|X (r|x)dµR(r)η(x)qX (x)dµX (x) → 0

because EPν [m(X, a,R(a), θ(P ))2] = O(1) as ν → 0. The limits of γ2(ν) and γ3(ν) can be derived following

similar arguments using the last two conditions in (22). Combining all previous results yields

∂

∂ν
EPν [m(X,A,R, θ(P ))]

∣∣∣
ν=0

= EQ[m(X, 1, R(1), θ(P ))(gX(X) + gR(1)|X(R|X))η(X)]
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+ EQ[m(X, 0, R(0), θ(P ))(gX(X) + gR(0)|X(R|X))(1− η(X))]

= EP [m(X,A,R, θ(P ))(gX(X) + I{A = 1}gR(1)|X(R) + I{A = 0}gR(0)|X(R))] .

On the other hand, by definition

Mθ(P ) =
∂

∂θ
EP [m(X,A,R, θ)]

∣∣∣
θ=θ(P )

.

The formula for the derivative therefore follows from the implicit function theorem (in particular, because

we have assumed the existence of θ(Pν) along the path, it follows from the last part of the proof of Theorem

3.2.1 in Krantz and Parks (2013)). The second equality follows from Lemma A.5 together with Condition

A.1.

Finally, to prove Theorem 3.1 we require the following additional regularity condition:

Assumption A.1. For every function g satisfying Condition A.1 and every t ∈ Rdθ there exists a submodel

Pt/
√
n,g for which (22) holds as n→ ∞, and θ(Pt/

√
n,g) is uniquely determined by (21).

This assumption guarantees that every element satisfying Condition A.1 has a corresponding path for

which we can apply Lemma A.4. A similar assumption appears in Chen and Santos (2018) (see their As-

sumption 4.1(iv)). Note that a simple sufficient condition for the first part of Assumption A.1 is that

m(x, a, r, θ(P )) is a bounded function in (x, r) on the support of (X,R(a)). The second part of Assumption

A.1 can be verified easily in specific examples (see, for instance, Examples 2.1–2.5 in the main text). Al-

ternatively, Assumption A.1 could be avoided by assuming that we can differentiate under the integral in

the final step of the proof of Lemma A.4, from which we would immediately obtain the expression for the

pathwise derivative. See, for instance, Newey (1994) and Chen et al. (2008).

Proof of Theorem 3.1. First note θ satisfies (19) because of Lemma A.4 and Assumption A.1. The result

then follows from Lemma A.3 upon noting that ψ∗ = sg for some g that satisfies Condition A.1 because of

Assumption 3.2.

A.2 Proof of Theorem 4.1

First note (14) follows from (13) and the same proof as that of Lemma B.3 in Bai (2022). To establish (13),

we follow the proof of Theorem 5.21 in van der Vaart (1998). We start by noting that because Assumptions

4.1–4.2, 4.3(e), and 4.4(b) hold, it follows from the same proof as that of Lemma B.3 in Bai (2022) that

1√
n

∑

1≤i≤n

m(Xi, Ai, Ri, θ0) =
1√
n

∑

1≤i≤n

∑

a∈{0,1}
I{Ai = a}(m(Xi, a, Ri(a), θ0)− EQ[m(Xi, a, Ri(a), θ0)|Xi])

+
η√
n

∑

1≤i≤n

(EQ[m(Xi, 1, Ri(1), θ0)|Xi]− EQ[m(Xi, 1, Ri(1), θ0)])

+
(1− η)√

n

∑

1≤i≤n

(EQ[m(Xi, 0, Ri(0), θ0)|Xi]− EQ[m(Xi, 0, Ri(0), θ0)]) + oP (1) .
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where we note ηEQ[m(Xi, 1, Ri(1), θ0)] + (1 − η)EQ[m(Xi, 0, Ri(0), θ0)] = EP [m(Xi, Ai, Ri, θ0)] = 0 by (3).

Therefore, by the proof of Theorem 5.21 in van der Vaart (1998), it suffices to show

Ln(θ̂n)
P→ 0 , (23)

where

Ln(θ) =
1√
n

∑

1≤i≤n

(m(Xi, Ai, Ri, θ)− EP [m(Xi, Ai, Ri, θ)])

− 1√
n

∑

1≤i≤n

(m(Xi, Ai, Ri, θ0)− EP [m(Xi, Ai, Ri, θ0)]) .

To accomplish this, we study ms for 1 ≤ s ≤ dθ separately. It follows from Assumption 4.3(c), (d), and the

proof of Proposition 8.11 in Kosorok (2008) that

sup
θ∈Θ:‖θ−θ0‖<δ

∣∣∣ 1√
n

∑

1≤i≤n

(ms(Xi, Ai, Ri, θ)− EP [ms(Xi, Ai, Ri, θ)])

− 1√
n

∑

1≤i≤n

(ms(Xi, Ai, Ri, θ0)− EP [ms(Xi, Ai, Ri, θ0)])
∣∣∣

= sup
θ∈Θ∗:‖θ−θ0‖<δ

∣∣∣ 1√
n

∑

1≤i≤n

(ms(Xi, Ai, Ri, θ)− EP [ms(Xi, Ai, Ri, θ)])

− 1√
n

∑

1≤i≤n

(ms(Xi, Ai, Ri, θ0)− EP [ms(Xi, Ai, Ri, θ0)])
∣∣∣ ,

and thus since θ̂n
P→ θ0 by Lemma A.6, to show (23) it suffices to argue that for every ǫ > 0,

lim
δ↓0

lim sup
n→∞

P

{
sup

θ∈Θ∗:‖θ−θ0‖<δ

∣∣L(s)
n (θ)

∣∣ > ǫ

}
= 0 , (24)

where

L
(s)
n (θ) =

1√
n

∑

1≤i≤n

(ms(Xi, Ai, Ri, θ)− EP [ms(Xi, Ai, Ri, θ)])

− 1√
n

∑

1≤i≤n

(ms(Xi, Ai, Ri, θ0)− EP [ms(Xi, Ai, Ri, θ0)]) .

Consider the following decomposition:

∣∣L(s)
n (θ)

∣∣ ≤
∑

a∈{0,1}

(
L
(s)
1,a,n(θ) + L

(s)
2,a,n(θ) + L

(s)
3,a,n(θ)

)
,

where

L
(s)
1,a,n(θ) =

∣∣∣ 1√
n

∑

1≤i≤n

I{Ai = a}(ms(Xi, a, Ri(a), θ)− EQ[ms(Xi, a, Ri(a), θ)|Xi])
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− 1√
n

∑

1≤i≤n

I{Ai = a}(ms(Xi, a, Ri(a), θ0)− EQ[ms(Xi, a, Ri(a), θ0)|Xi])
∣∣∣

L
(s)
2,a,n(θ) =

∣∣∣ 1√
n

∑

1≤i≤n

(
I{Ai = a} − ηa

)

× (EQ[ms(Xi, a, Ri(a), θ)|Xi]− EQ[ms(Xi, a, Ri(a), θ0)|Xi])
∣∣∣

L
(s)
3,a,n(θ) =

∣∣∣ ηa√
n

∑

1≤i≤n

(
EQ[ms(Xi, a, Ri(a), θ)|Xi]− EQ[ms(X, a,R(a), θ)])

− (EQ[ms(Xi, a, Ri(a), θ0)|Xi]− EQ[ms(X, a,R(a), θ0)])
)∣∣∣ ,

where η1 = η and η0 = 1− η. Then to establish (24), it suffices to establish that

lim
δ↓0

lim sup
n→∞

P

{
sup

θ∈Θ∗:‖θ−θ0‖<δ

L
(s)
ℓ,a,n(θ) > ǫ

}
= 0 . (25)

for ℓ ∈ {1, 2, 3} and a ∈ {0, 1}.

Step 1. First we consider L
(s)
3,a,n. It follows from Assumption 4.4(d) and Theorems 2.5.2 and 2.6.7 in

van der Vaart and Wellner (1996) that the class of functions

{EQ[ms(X, a,R(a), θ)|X = x] : θ ∈ Θ∗} ,

is Donsker, and thus we obtain by Theorem 3.34 in Dudley (2014) that

lim
δ↓0

lim sup
n→∞

P

{
sup

θ∈Θ∗:ρQ(θ,θ0)<δ

L
(s)
3,a,n(θ) > ǫ

}
= 0 ,

where ρQ(θ, θ0) = EQ[(EQ[ms(X, a,R(a), θ)|X ]−EQ[ms(X, a,R(a), θ0)|X ])2]. We then obtain (25) for ℓ = 3

since, by Assumption 4.4(c) as θ → θ0,

ρQ(θ, θ0) = EQ[(EQ[ms(X, a,R(a), θ)|X ]− EQ[ms(X, a,R(a), θ0)|X ])2]

≤ EQ[(ms(X, a,R(a), θ)−ms(X, a,R(a), θ0))
2] → 0 . (26)

Step 2. Next, we study L
(s)
2,a,n. Define

f(X, θ) = E[ms(X, a,R(a), θ)|X ]− E[ms(X, a,R(a), θ0)|X ] .

Note

L
(s)
2,a,n(θ) = C

∣∣∣ 1√
n/k

∑

1≤j≤n/k

αj(θ)
∣∣∣ ,

for some constant C > 0, where αj(θ) ∈ { 1
ℓ

∑
i∈I f(Xi, θ) − 1

k−ℓ

∑
i∈λj\I f(Xi, θ) : I ⊂ λj , |I| = ℓ},

E[αj(θ)|X(n)] = 0, and αj(θ), 1 ≤ j ≤ n/k are independent conditional on X(n).
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Define

h(x1, . . . , xk, θ) = sup
I⊂{1,...,k},|I|=ℓ

(1
ℓ

∑

i∈I

f(xi, θ)−
1

k − ℓ

∑

i∈{1,...,k}\I
f(xi, θ)

)

− inf
I⊂{1,...,k},|I|=ℓ

(1
ℓ

∑

i∈I

f(xi, θ)−
1

k − ℓ

∑

i∈{1,...,k}\I
f(xi, θ)

)

and the classes of functions

Hδ = {h(x1, . . . , xk, θ) : θ ∈ Θ∗, ‖θ − θ0‖ < δ}

H∞ = {h(x1, . . . , xk, θ) : θ ∈ Θ∗} .

Let P †
n denote a measure that puts mass k

n on each of (Xi : i ∈ λj), 1 ≤ j ≤ n/k. It follows from a generalized

version of Hoeffding’s inequality (see, for instance, Theorem 2.2.6 in Vershynin, 2018) that conditional on

X(n), {
1√
n/k

∑

1≤j≤n/k

αj(θ) : θ ∈ Θ∗, ‖θ − θ0‖ < δ

}

is sub-Gaussian for the seminorm

‖h‖P †
n
=
(∫

h2dP †
n

)1/2
.

Let N(ǫ,Hδ, L2(P
†
n)) denote the covering number of Hδ with respect to ‖ · ‖P †

n
. Let δn ↓ 0 be an arbitrary

decreasing sequence. It follows from the maximal inequality in Corollary 2.2.8 in van der Vaart and Wellner

(1996) (note αj(θ0) = 0) that

E

[
sup

θ∈Θ∗:‖θ−θ0‖<δn

L
(s)
2,a,n(θ)

∣∣∣∣X(n)

]
.

∫ ∞

0

√
logN(ǫ,Hδn , L2(P

†
n))dǫ . (27)

The upper limit of the integral is in fact cn, where

c2n = sup
θ∈Θ∗:‖θ−θ0‖<δn

4k

n

∑

1≤j≤n/k

sup
I∈λj ,|I|=ℓ

(1
ℓ

∑

i∈I

f(Xi, θ)−
1

k − ℓ

∑

i∈λj\I
f(Xi, θ)

)2
(28)

.
1

n

∑

1≤j≤n/k

max
i,i′∈λj

‖Xi −Xi′‖2 P→ 0

by Assumptions 4.2 and 4.3(e) and the inequality (a+ b)2 ≤ 2(a2 + b2). Moreover,

H(x1, . . . , xk) =
∑

1≤i≤k

E

[
sup
θ∈Θ∗

|ms(X, a,R(a), θ)|+ |ms(X, a,R(a), θ0)|
∣∣∣∣X = xi

]

is an envelope function for H∞ (and thus Hδ for all δ) and E[H2] <∞ by Assumption 4.4(b). A change of

variable in (27) implies

E

[
sup

θ∈Θ∗:‖θ−θ0‖<δn

L
(s)
2,a,n(θ)

∣∣∣∣X(n)

]
.

∫ cn
‖H‖

P
†
n

0

√
logN(ǫ‖H‖P †

n
,Hδn , L2(P

†
n))dǫ‖H‖P †

n
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≤
∫ cn

‖H‖
P

†
n

0

sup
ν

√
logN(ǫ‖H‖ν,H∞, L2(ν))dǫ‖H‖P †

n
,

where the supremum for ν is over probability measures with discrete support such that ‖H‖ν > 0. Also note

that if ‖H‖P †
n
= 0 then the conditional expectation on the left-hand side is trivially zero, so we can without

loss of generality assume ‖H‖P †
n
> 0. The Cauchy-Schwarz inequality implies

E

[ ∫ cn
‖H‖

P
†
n

0

sup
ν

√
logN(ǫ‖H‖ν,H∞, L2(ν))dǫ‖H‖P †

n

]

≤ E

[(∫ cn
‖H‖

P
†
n

0

sup
ν

√
logN(ǫ‖H‖ν,H∞, L2(ν))dǫ

)2]1/2
E
[
‖H‖2

P †
n

]1/2
,

where the supremum is over all measures ν with discrete support such that ‖H‖ν > 0. It follows from

Assumption 4.4(b), the inequality (a+ b)2 ≤ 2(a2 + b2), and the conditional Jensen’s inequality that

E
[
‖H‖2

P †
n

]
. E

[
1

n

∑

1≤i≤n

E
[
sup
θ∈Θ∗

|ms(Xi, a, Ri(a), θ)|
∣∣∣Xi

]2]
≤ E

[
sup
θ∈Θ∗

|ms(X, a,R(a), θ)|2
]
<∞ .

On the other hand,

‖H‖2
P †

n
≥ 1

n

∑

1≤i≤n

E

[
sup
θ∈Θ∗

|ms(Xi, a, Ri(a), θ)|
∣∣∣∣Xi

]2
P→ E

[
E
[
sup
θ∈Θ∗

|ms(X, a,R(a), θ)|
∣∣∣Xi

]2]
, (29)

the right-hand side of which can be assumed to be strictly positive, because otherwise supθ∈Θ∗:‖θ−θ0‖<δn L
(s)
2,a,n(θ) =

0. Therefore, it follows from (28) and (29) that

cn
‖H‖P †

n

P→ 0 . (30)

From Assumption 4.4(d), Lemma A.7, Theorem 2.6.7 in van der Vaart and Wellner (1996), and Lemma 9.13

in Kosorok (2008), we know

∫ 1

0

sup
ν

√
logN(ǫ‖H‖ν,H∞, L2(ν))dǫ <∞ .

Therefore,

E

[(∫ cn
‖H‖

P
†
n

0

sup
ν

√
logN(ǫ‖H‖ν,H∞, L2(ν))dǫ

)2]
→ 0

by Lemma A.8 combined with (30) and the continuous mapping theorem. Therefore, it follows from Markov’s

inequality that

sup
θ∈Θ∗:‖θ−θ0‖<δn

L
(s)
2,a,n(θ)

P→ 0 ,

as n→ ∞, from which (25) follows (see, for instance, Section 2.1.2 in van der Vaart and Wellner, 1996).
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Step 3. Finally, we study L
(s)
1,a,n(θ). Define

Bn(θ) =
1√
ηan

∑

1≤i≤n

I{Ai = a}(ms(Xi, a, Ri(a), θ)− EQ[ms(Xi, a, Ri(a), θ)|Xi]) ,

Let δn ↓ 0 be an arbitrary decreasing sequence. To establish our result we will show

sup
θ∈Θ∗:‖θ−θ0‖<δn

|Bn(θ)− Bn(θ0)| P→ 0 , (31)

as n→ ∞. As in the proof of Lemma A.6, we define

P̃n =
1

ηan

∑

1≤i≤n:Ai=a

δ(Xi,Ri(a)) .

Define the classes of functions

Fθ0,∞ = {ms(x, a, r(a), θ) : θ ∈ Θ∗} .

Pick an envelope function for Fθ0,∞ as

F = sup
θ∈Θ∗

|ms(X, a,R(a), θ)| .

and define

ζ2n = sup
θ∈Θ∗:‖θ−θ0‖<δn

∫
(ms(X, a,R(a), θ)−ms(X, a,R(a), θ0))

2dP̃n .

Step 3(a). Our next goal is to show for every ξ > 0,

P
{
ζ2n > ξ|X(n), A(n)

} P→ 0 . (32)

To do so, first note by triangle inequality that ζ2n ≤ C1,n + C2,n + C3,n, where

C1,n = sup
θ∈Θ∗

∣∣∣
∫
(ms(X, a,R(a), θ)−ms(X, a,R(a), θ0))

2dP̃n

− E

[∫
(ms(X, a,R(a), θ)−ms(X, a,R(a), θ0))

2dP̃n

∣∣∣∣X(n), A(n)

]∣∣∣∣

C2,n = sup
θ∈Θ∗

∣∣∣∣E
[ ∫

(ms(X, a,R(a), θ)−ms(X, a,R(a), θ0))
2dP̃n

∣∣∣∣X(n), A(n)

]

− E[(ms(X, a,R(a), θ)−ms(X, a,R(a), θ0))
2]

∣∣∣∣

C3,n = sup
θ∈Θ∗:‖θ−θ0‖<δn

E[(ms(X, a,R(a), θ)−ms(X, a,R(a), θ0))
2] .

Assumption 4.4(c) implies

C3,n = sup
θ∈Θ∗:‖θ−θ0‖<δn

E[(ms(X, a,R(a), θ)−ms(X, a,R(a), θ0))
2] → 0 . (33)
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Next, Assumption 4.4(b), (f) and similar arguments to those used to show (52) and (53) are oP (1) imply

C2,n = sup
θ∈Θ∗

∣∣∣∣E
[∫

(ms(X, a,R(a), θ)−ms(X, a,R(a), θ0))
2dP̃n

∣∣∣∣X(n), A(n)

]

− E[(ms(X, a,R(a), θ)−ms(X, a,R(a), θ0))
2]

∣∣∣∣
P→ 0 . (34)

Further define

G = {(ms(x, a, r(a), θ) −ms(x, a, r(a), θ0))
2 : θ ∈ Θ∗} .

We then study C1,n. We will establish for every ξ > 0,

P

{
sup
f∈G

∣∣∣
∫
fdP̃n − E

[ ∫
fdP̃n

∣∣∣X(n), A(n)
]∣∣∣ > ξ

∣∣∣∣X(n), A(n)

}
P→ 0 (35)

as n → ∞. It follows the symmetrization Lemma 6.2 in Ledoux and Talagrand (1991) applied conditional

on X(n), A(n) for the distribution ⊗

1≤i≤n:Ai=1

P{Xi, Ri(1)|Xi}

that

E

[
sup
f∈G

∣∣∣
∫
fdP̃n − E

[ ∫
fdP̃n

∣∣∣X(n), A(n)
]∣∣∣
∣∣∣∣X(n), A(n)

]

≤ 2EP

[
Eτ

[
sup
f∈G

∣∣∣ 1

ηan

∑

1≤i≤n

τif(Xi, Ri(a))
∣∣∣
]∣∣∣∣X(n), A(n)

]
, (36)

where Eτ [·] should be understood as the expectation with respect to (τi, 1 ≤ i ≤ n), holding all else fixed.

Note Assumption 4.3(b) and Theorem 2.6.7 in van der Vaart and Wellner (1996) imply Fθ0,∞ is totally

bounded in L2(P̃n). Accordingly, for ǫ > 0, let N(ǫ,Fθ0,∞, L2(P̃n)) denote the covering number of Fθ0,∞

with respect to L2(P̃n). Let f1, f2 be any pair of functions in G, where we denote

fj = (ms(x, a, r(a), θj)−ms(x, a, r(a), θ0))
2, j = 1, 2 ,

then the Cauchy-Schwarz inequality implies

∫
|f1 − f2|dP̃n ≤

∫
|ms(x, a, r(a), θ1)−ms(x, a, r(a), θ2)|2FdP̃n ≤ ‖ms(·, θ1)−ms(·, θ2)‖P̃n

2‖F‖P̃n

where ‖ · ‖P̃n
denotes the L2(P̃n)-norm. Therefore

N(2ǫ‖F‖2
P̃n
,G, L1(P̃n)) ≤ N(ǫ‖F‖P̃n

,Fθ0,∞, L2(P̃n)). (37)

For every ǫ > 0, the right-hand side is uniformly bounded across n by Assumption 4.3(b) and Theorem

2.6.7 in van der Vaart and Wellner (1996). Note it follows from Assumptions 4.1–4.2, 4.4(b), (f), and similar
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arguments to those in the first part of the proof of Lemma S.1.5 in Bai et al. (2022) that

E
[
‖F‖2

P̃n
|X(n), A(n)

]
=

1

ηan

∑

1≤i≤n

I{Ai = a}E[F 2|Xi]
P→ E[F 2] . (38)

We can assume without loss of generality E[F 2] > 0 because otherwise ms(x, a, r(a), θ) ≡ 0. Therefore,

P
{
E
[
‖F‖2

P̃n
|X(n), A(n)

]
≤ 1

2
E[F 2]

}
→ 0 . (39)

On the other hand, Assumptions 4.1–4.2, 4.4(b), (f), and similar arguments to those in the last part of the

proof of Lemma S.1.5 in Bai et al. (2022) that

P
{∣∣∣‖F‖2P̃n

− E
[
‖F‖2

P̃n
|X(n), A(n)

]∣∣∣ > 1

4
E[F 2]

∣∣∣X(n), A(n)
}

P→ 0 . (40)

(35) now follows from (39)–(40) and similar arguments to those used in the last step of the proof of Lemma

A.6.

To conclude (32) holds, note C3,n is a sequence of constants and C2,n is a function of X(n), A(n), and

hence

P
{
P
{
ζ2n > ξ|X(n), A(n)

}
> ǫ
}

≤ P
{
C2,n >

ξ

3

}
+ P

{
C3,n >

ξ

3

}

+ P
{
P
{
C1,n + C2,n + C3,n > ξ|X(n), A(n)

}
> ǫ,C2,n ≤ ξ

3
,C3,n ≤ ξ

3

}

≤ P
{
C2,n >

ξ

3

}
+ P

{
C3,n >

ξ

3

}
+ P

{
P
{
C1,n >

ξ

3

∣∣∣X(n), A(n)
}
> ǫ
}

P→ 0 ,

where the convergence follows from (33), (34), and (35).

Step 3(b). Next, we show for every ξ > 0,

P

{
ζ2n

‖F‖2
P̃n

> ξ

∣∣∣∣X(n), A(n)

}
P→ 0 . (41)

For every ǫ > 0,

P

{
P

{
ζ2n

‖F‖2
P̃n

> ξ

∣∣∣∣X(n), A(n)

}
> ǫ

}

≤ P
{
E
[
‖F‖2

P̃n
|X(n), A(n)

]
≤ 1

2
E[F 2]

}

+ P

{
P

{
ζ2n

‖F‖2
P̃n

> ξ

∣∣∣∣X(n), A(n)

}
> ǫ,E

[
‖F‖2

P̃n
|X(n), A(n)

]
>

1

2
E[F 2]

}

≤ P
{
E
[
‖F‖2

P̃n
|X(n), A(n)

]
≤ 1

2
E[F 2]

}
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+ P

{
P

{
{ζ2n >

1

4
ξE[F 2]} ∪ {|‖F‖2

P̃n
− E

[
‖F‖2

P̃n
|X(n), A(n)

]
| > 1

4
E[F 2]}

∣∣∣∣X(n), A(n)

}
> ǫ ,

E
[
‖F‖2

P̃n
|X(n), A(n)

]
>

1

2
E[F 2]

}

≤ P
{
E
[
‖F‖2

P̃n
|X(n), A(n)

]
≤ 1

2
E[F 2]

}

+ P
{
P
{
ζ2n >

1

4
ξE[F 2]

∣∣∣X(n), A(n)
}
>
ǫ

2

}

+ P
{
P
{∣∣∣‖F‖2P̃n

− E
[
‖F‖2

P̃n
|X(n), A(n)

]∣∣∣ > 1

4
E[F 2]

∣∣∣X(n), A(n)
}
>
ǫ

2

}
P→ 0 ,

where we use the fact that E
[
‖F‖2

P̃n
|X(n), A(n)

]
is a function of X(n), A(n) and the convergence follows from

(32) and (39)–(40).

Step 3(c). Fix ǫ > 0. Following almost verbatim the first part of the proof of Theorem 2.5.2 in

van der Vaart and Wellner (1996), with P̃n replacing the empirical measure, we obtain

P

{
sup

θ∈Θ∗:‖θ−θ0‖<δn

|Bn(θ)− Bn(θ0)| > ǫ

∣∣∣∣X(n), A(n)

}

≤ 1

ǫ
E

[(∫ ζn
‖F‖

P̃n

0

sup
ν

√
logN(ǫ‖F‖ν,Fθ0,∞, L2(ν))dǫ

)2∣∣∣∣X(n), A(n)

]1/2
E
[
‖F‖2

P̃n
||X(n), A(n)

]1/2
, (42)

where the supremum for ν is over probability measures with discrete supports. Also note that if ‖F‖P̃n
= 0

then the conditional expectation on the left-hand side is trivially zero, so we can without loss of generality

assume ‖F‖P̃n
> 0. Assumption 4.3(b) implies

E

[(∫ ζn
‖F‖

P̃n

0

sup
ν

√
logN(ǫ‖F‖ν,Fθ0,∞, L2(ν))dǫ

)2∣∣∣∣X(n), A(n)

]

≤
( ∫ ∞

0

sup
ν

√
logN(ǫ‖F‖ν,Fθ0,∞, L2(ν))dǫ

)2
<∞ . (43)

We now argue

E

[( ∫ ζn
‖F‖

P̃n

0

sup
ν

√
logN(ǫ‖F‖ν,Fθ0,∞, L2(ν))dǫ

)2∣∣∣∣X(n), A(n)

]
P→ 0 . (44)

Note the last inequality in (43) and the dominated convergence theorem implies that for every ǫ > 0, there

exists a ξ > 0 such that
(∫ ξ

0

sup
ν

√
logN(ǫ‖F‖ν,Fθ0,∞, L2(ν))dǫ

)2
< ǫ . (45)

Then consider the following decomposition:

E

[(∫ ζn
‖F‖

P̃n

0

sup
ν

√
logN(ǫ‖F‖ν,Fθ0,∞, L2(ν))dǫ

)2∣∣∣∣X(n), A(n)

]

= E

[(∫ ζn
‖F‖

P̃n

0

sup
ν

√
logN(ǫ‖F‖ν,Fθ0,∞, L2(ν))dǫ

)2
I
{ ζn
‖F‖P̃n

≤ ξ
}∣∣∣∣X(n), A(n)

]
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+ E

[( ∫ ζn
‖F‖

P̃n

0

sup
ν

√
logN(ǫ‖F‖ν,Fθ0,∞, L2(ν))dǫ

)2
I
{ ζn
‖F‖P̃n

> ξ
}∣∣∣∣X(n), A(n)

]

. ǫ+ P

{
ζn

‖F‖P̃n

> ξ

∣∣∣∣X(n), A(n)

}
P→ ǫ ,

where the inequality follows from (43) and (45) and the convergence follows from (41). Because ǫ > 0 was

arbitrary, (44) follows.

It thus follows from (38), (42), and (44) that

P

{
sup

θ∈Θ∗:‖θ−θ0‖<δn

|Bn(θ)− Bn(θ0)| > ǫ

∣∣∣∣X(n), A(n)

}
P→ 0 .

By the law of iterated expectations and the dominated convergence theorem we thus obtain

P

{
sup

θ∈Θ∗:‖θ−θ0‖<δn

|Bn(θ)− Bn(θ0)| > ǫ

}
→ 0 ,

as desired.

A.3 Auxiliary Lemmas

Lemma A.5. Suppose (2) holds and Pr{Ai = 1|Xi = x} as a function is identical across 1 ≤ i ≤ n. Then,

(Ri(1), Ri(0)) ⊥⊥ Ai|Xi . (46)

Moreover, (Xi, Ai, Ri) is identically distributed across 1 ≤ i ≤ n.

Proof. Fix a ∈ {0, 1} and any Borel sets B ∈ Rdr ×Rdr and C ∈ Rdx .

E[Pr{(Ri(1), Ri(0)) ∈ B,Ai = a|Xi}I{Xi ∈ C}]

= E[E[Pr{(Ri(1), Ri(0)) ∈ B,Ai = a|X(n)}|Xi]I{Xi ∈ C}]

= E[E[Pr{(Ri(1), Ri(0)) ∈ B|X(n)}Pr{Ai = a|X(n)}|Xi]I{Xi ∈ C}]

= E[Pr{(Ri(1), Ri(0)) ∈ B|Xi}Pr{Ai = a|Xi}I{Xi ∈ C}] ,

where the first equality follows from the law of iterated expectations, the second equality follows from (2),

the third equality follows from the law of iterated expectation as well as the facts that Qn = Qn and

Pr{Ai = 1|Xi = x} as a function is identical across 1 ≤ i ≤ n . The first statement of the lemma then

follows from the definition of a conditional expectation.

To prove the second statement, fix units i and i′. Clearly Xi and Xi′ are identically distributed. Condi-

tional on Xi, for any Borel set C ∈ Rdr and a ∈ {0, 1}, it follows (a) that

Pr{Ri ∈ C,Ai = a|Xi} = Pr{Ai = a|Xi}Pr{Ri(a) ∈ C|Xi} .
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The conclusion then follows because Pr{Ai = 1|Xi = x} is identical across 1 ≤ i ≤ n and Qn = Qn.

Lemma A.6. Suppose the treatment assignment mechanism satisfies Assumptions 4.1–4.2 and the moment

functions satisfy Assumption 4.3. Then, θ̂n
P→ θ0.

Proof of Lemma A.6. It follows from Assumption 4.3(a) and Theorem 5.9 in van der Vaart (1998) that

we only need to establish for each 1 ≤ s ≤ dθ,

sup
θ∈Θ

∣∣∣∣
1

n

∑

1≤i≤n

ms(Xi, Ai, Ri, θ)− EP [ms(Xi, Ai, Ri, θ)]

∣∣∣∣
P→ 0 . (47)

To begin, note it follows from Assumption 4.3(d) and the dominated convergence theorem that ifms(x, a, r, θm)

→ ms(x, a, r, θ) as m → ∞ for {θm} ⊂ Θ∗, then EP [ms(Xi, Ai, Ri, θm)] → EP [ms(Xi, Ai, Ri, θ)]. Assump-

tion 4.3(c) then implies

sup
θ∈Θ

∣∣∣∣
1

n

∑

1≤i≤n

ms(Xi, Ai, Ri, θ)− EP [ms(Xi, Ai, Ri, θ)]

∣∣∣∣

= sup
θ∈Θ∗

∣∣∣∣
1

n

∑

1≤i≤n

ms(Xi, Ai, Ri, θ)− EP [ms(Xi, Ai, Ri, θ)]

∣∣∣∣ , (48)

which is measurable. Next, note that

m(Xi, Ai, Ri, θ) = Aim(Xi, 1, Ri(1), θ) + (1−Ai)m(Xi, 0, Ri(0), θ) . (49)

and it follows from Lemma A.5 that

EP [m(Xi, Ai, Ri, θ)] =
ℓ

k
EQ[m(Xi, 1, Ri(1), θ)] +

k − ℓ

k
EQ[m(Xi, 0, Ri(0), θ)] , (50)

which implies that

sup
θ∈Θ∗

∣∣∣∣
1

n

∑

1≤i≤n

ms(Xi, Ai, Ri, θ)− EP [ms(Xi, Ai, Ri, θ)]

∣∣∣∣

≤ sup
θ∈Θ∗

∣∣∣∣
1

n

∑

1≤i≤n

Aims(Xi, 1, Ri(1), θ)−
ℓ

k
E[ms(Xi, 1, Ri(1), θ)]

∣∣∣∣

+ sup
θ∈Θ∗

∣∣∣∣
1

n

∑

1≤i≤n

(1−Ai)ms(Xi, 0, Ri(0), θ)−
k − ℓ

k
E[ms(Xi, 0, Ri(0), θ)]

∣∣∣∣ .

We study the first term on the right-hand side and similar arguments apply to the second term.

sup
θ∈Θ∗

∣∣∣∣
1

n

∑

1≤i≤n

Aims(Xi, 1, Ri(1), θ)−
ℓ

k
E[ms(Xi, 1, Ri(1), θ)]

∣∣∣∣

≤ sup
θ∈Θ∗

∣∣∣∣
1

n

∑

1≤i≤n

Ai(ms(Xi, 1, Ri(1), θ)− E[ms(Xi, 1, Ri(1), θ)|Xi])

∣∣∣∣ (51)
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+ sup
θ∈Θ∗

∣∣∣∣
1

n

∑

1≤i≤n

(Ai −
ℓ

k
)E[ms(Xi, 1, Ri(1), θ)|Xi]

∣∣∣∣ (52)

+ sup
θ∈Θ∗

∣∣∣∣
ℓ

kn

∑

1≤i≤n

(E[ms(Xi, 1, Ri(1), θ)|Xi]− E[ms(Xi, 1, Ri(1), θ)])

∣∣∣∣ . (53)

We study each term separately. First note (52) is bounded by

sup
θ∈Θ∗

1

n

∑

1≤j≤n/k

|ζ∗j (θ)| ,

where

ζ∗j (θ) = sup
I⊂λj




k − ℓ

k

∑

i∈I

E[ms(Xi, 1, Ri(1), θ)|Xi]−
ℓ

k

∑

i∈λj\I
E[ms(Xi, 1, Ri(1), θ)|Xi] : |I| = ℓ



 .

By Assumption 4.3(e) and Assumption 4.2 we then obtain

sup
θ∈Θ∗

1

n

∑

1≤j≤n/k

|ζ∗j (θ)| .
1

n

∑

1≤j≤n/k

max
i,i′∈λj

‖Xi −Xi′‖ P→ 0 .

For (53), note the class of functions

{E[ms(X, 1, R(1), θ)|X = x] : θ ∈ Θ∗}

are Lipschitz continuous in x with a uniform Lipschitz constant. It therefore follows from Corollary 4.1 in

van der Vaart (1994), applied with Ijs being hypercubes, that (53) converges in probability to 0.

To analyze (51), we apply the arguments in the proof of Theorem 2.4.3 in van der Vaart and Wellner

(1996) conditional on X(n), A(n). Define F = supθ∈Θ∗ ms(X, 1, R(1), θ), which is measurable because Θ∗ is

countable by Assumption 4.3(c). Define for any K > 0

FK
s (1) = {ms(X, 1, R(1), θ)I{F ≤ K} : θ ∈ Θ∗} ,

and

Fs(1) = {ms(X, 1, R(1), θ) : θ ∈ Θ∗} .

Next, let τi, 1 ≤ i ≤ n be a sequence of i.i.d. Rademacher random variables independent of all other

variables. It follows from Markov’s inequality and the symmetrization Lemma 6.3 in Ledoux and Talagrand

(1991) applied conditional on X(n), A(n) for the distribution

⊗

1≤i≤n:Ai=1

P{Xi, Ri(1)|Xi}
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that for every ǫ > 0,

P

{
sup
θ∈Θ∗

∣∣∣ 1
n

∑

1≤i≤n

Ai(ms(Xi, 1, Ri(1), θ)− E[ms(Xi, 1, Ri(1), θ)|Xi])
∣∣∣ > ǫ

∣∣∣∣X(n), A(n)

}
(54)

≤ 1

ǫ
E

[
sup
θ∈Θ∗

∣∣∣ 1
n

∑

1≤i≤n

Ai(ms(Xi, 1, Ri(1), θ)− E[ms(Xi, 1, Ri(1), θ)|Xi])
∣∣∣
∣∣∣∣X(n), A(n)

]

≤ 2

ǫ
EP

[
Eτ

[
sup
θ∈Θ∗

∣∣∣ 1
n

∑

1≤i≤n

τiAims(Xi, 1, Ri(1), θ)
∣∣∣
]∣∣∣∣X(n), A(n)

]

≤ 2

ǫ
EP

[
Eτ

[
sup
θ∈Θ∗

∣∣∣ 1
n

∑

1≤i≤n

τiAi min{ms(Xi, 1, Ri(1), θ),K}
∣∣∣
]∣∣∣∣X(n), A(n)

]

+ 2E[FI{F > K}] , (55)

where Eτ [·] should be understood as the expectation with respect to (τi, 1 ≤ i ≤ n), holding all else fixed.

The last term could be made as small as possible by choosing K large because of Assumption 4.3(d). Next,

define

P̃n =
1

ηn

∑

1≤i≤n:Ai=1

δ(Xi,Ri(1)) ,

where δ denotes the Dirac measure. Note that Fs(1) is a VC class by Assumption 4.3(b) and soFK
s (1) is a VC-

class by Lemma 2.6.18(vi) in van der Vaart and Wellner (1996), and thus both totally bounded in L1(P̃n)

by Theorem 2.6.7 in van der Vaart and Wellner (1996) (note that if ‖F‖L1(P̃n)
= 0 then the conditional

expectation immediately below is trivially zero, so we can without loss of generality assume ‖F‖L1(P̃n)
> 0).

Accordingly, define G to be an ǫ-net in L1(P̃n) for FK
s (1) with cardinality N(ǫ,FK

s (1), L1(P̃n)). We have

Eτ

[
sup
θ∈Θ∗

∣∣∣ 1
ηn

∑

1≤i≤n

τiAi min{ms(Xi, 1, Ri(1), θ),K}
∣∣∣
]

≤ Eτ

[
sup
f∈G

∣∣∣ 1
ηn

∑

1≤i≤n

τiAif(Xi, Ri(1))
∣∣∣
]
+ ǫ

≤
√
1 + logN(ǫ,FK

s (1), L1(P̃n))

√
12

n
sup
f∈G

(∫
f2dP̃n

)1/2

+ ǫ

≤ (

√
1 + logN(ǫ,FK

s (1), L1(P̃n))

√
12

n
K + ǫ

≤ (

√
1 + logN(ǫ,Fs(1), L1(P̃n))

√
12

n
K + ǫ

.



√
1 + (V − 1) log

(‖F‖L1(P̃n)

ǫ

)√
12

n
K + ǫ


 ∧K , (56)

where the second inequality follows from Lemma 2.2.2 in van der Vaart and Wellner (1996) applied with

exp(x2)−1 and Hoeffding’s lemma, the third follows because |f | ≤ K for f ∈ G, the fourth inequality follows

from the fact that N(ǫ,FK
s (1), L1(P̃n)) ≤ N(ǫ,Fs(1), L1(P̃n)) because

∫
|f1I{F ≤ K} − f2I{F ≤ K}|dP̃n =

∫
|f1 − f2|I{F ≤ K}dP̃n ≤

∫
|f1 − f2|dP̃n , (57)
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and the last inequality follows from Theorem 2.6.7 in van der Vaart and Wellner (1996) and Assumption

4.3(b).

Note it follows from Assumptions 4.1–4.2, 4.3(d)–(f), and similar arguments to those in the first part of

the proof of Lemma S.1.5 in Bai et al. (2022) that

E
[
‖F‖L1(P̃n)

|X(n), A(n)
]
=

1

ηn

∑

1≤i≤n

I{Ai = 1}E[|F ||Xi]
P→ E[|F |] . (58)

We can assume without loss of generality E[|F |] > 0 because otherwise ms(x, 1, r(1), θ) ≡ 0. Therefore,

P
{
E
[
‖F‖L1(P̃n)

|X(n), A(n)
]
> E[|F |] + E[|F |]

2

}
→ 0 . (59)

On the other hand, Assumptions 4.1–4.2, 4.3(d)–(f) and similar arguments to those in the last part of the

proof of Lemma S.1.5 in Bai et al. (2022) that

P
{∣∣∣‖F‖L1(P̃n)

− E
[
‖F‖L1(P̃n)

|X(n), A(n)
]∣∣∣ > E[|F |]

2

∣∣∣X(n), A(n)
}

P→ 0 . (60)

Let

Ln = P



 sup

θ∈Θ∗

∣∣∣∣
1

n

∑

1≤i≤n

Ai(ms(Xi, 1, Ri(1), θ)− E[ms(Xi, 1, Ri(1), θ)|Xi])

∣∣∣∣ > ǫ
∣∣∣X(n), A(n)



 .

To conclude the proof, note for every η > 0, for n large enough,

P {Ln > η}

≤ P
{
E
[
‖F‖L1(P̃n)

|X(n), A(n)
]
>

3

2
E[|F |]

}

+ P
{
Ln > η,E

[
‖F‖L1(P̃n)

|X(n), A(n)
]
≤ 3

2
E[|F |]

}

≤ P
{
E
[
‖F‖L1(P̃n)

|X(n), A(n)
]
>

3

2
E[|F |]

}

+ P

{
E





√
1 + (V − 1) log

(‖F‖L1(P̃n)

ǫ

)√
12

n
K + ǫ


 ∧K

∣∣∣∣X(n), A(n)


 > η′ ,

E
[
‖F‖L1(P̃n)

|X(n), A(n)
]
≤ 3

2
E[|F |]

}

≤ P
{
E
[
‖F‖L1(P̃n)

|X(n), A(n)
]
>

3

2
E[|F |]

}

+ P
{
P
{∣∣∣‖F‖L1(P̃n)

− E
[
‖F‖L1(P̃n)

|X(n), A(n)
]∣∣∣ > E[|F |]

2

∣∣∣X(n), A(n)
}
> η′′,

E
[
‖F‖L1(P̃n)

|X(n), A(n)
]
≤ 3

2
E[|F |]

}
P→ 0 ,

where η′, η′′ are suitably chosen constants, the last line follows from the law of total expectation combined

with the fact that the quantity in the expectation is bounded by K, and the convergence follows from

(59)–(60).
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Lemma A.7. For f : Rdx → R, define

hf (x1, . . . , xk) = sup
I⊂{1,...,k},|I|=ℓ

(1
ℓ

∑

i∈I

f(xi)−
1

k − ℓ

∑

i∈{1,...,k}\I
f(xi)

)

− inf
I⊂{1,...,k},|I|=ℓ

(1
ℓ

∑

i∈I

f(xi)−
1

k − ℓ

∑

i∈{1,...,k}\I
f(xi)

)
.

Then,

|hf (x1, . . . , xk)− hg(x1, . . . , xk)|2 .
∑

1≤i≤k

|f(xi)− g(xi)|2

Proof. Suppose the supremum and infimum in the definition of hf are attained at I∗ and I∗. Then,

hf − hg ≤
(1
ℓ

∑

i∈I∗

f(xi)−
1

k − ℓ

∑

i∈{1,...,k}\I∗

f(xi)
)
−
(1
ℓ

∑

i∈I∗

g(xi)−
1

k − ℓ

∑

i∈{1,...,k}\I∗

g(xi)
)

+
(1
ℓ

∑

i∈I∗

f(xi)−
1

k − ℓ

∑

i∈{1,...,k}\I∗

f(xi)
)
−
(1
ℓ

∑

i∈I∗

g(xi)−
1

k − ℓ

∑

i∈{1,...,k}\I∗

g(xi)
)
,

and the result follows from repeated applications of the inequality (a+ b)2 ≤ 2(a2 + b2).

Lemma A.8. If Xn
P→ 0 and |Xn| ≤ X with E[X ] <∞, then E[Xn] → 0.

Proof. Suppose not. Then along a subsequence {nk}, E[|Xnk
|] → δ > 0. Because Xn

P→ 0, there exists a

further subsequence along which Xnkℓ
→ 0 with probability one, and by the dominated convergence theorem

E[Xnkℓ
] → 0, a contradiction.
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