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bl Abstract

(Y>) This paper considers the problem of inference in cluster randomized trials where treatment status is
determined according to a “matched pairs” design. Here, by a cluster randomized experiment, we mean

(4] g g Yy

O one in which treatment is assigned at the level of the cluster; by a “matched pairs” design we mean that

% a sample of clusters is paired according to baseline, cluster-level covariates and, within each pair, one

— cluster is selected at random for treatment. We study the large-sample behavior of a weighted difference-

Fi in-means estimator and derive two distinct sets of results depending on if the matching procedure does or

— does not match on cluster size. We then propose a single variance estimator which is consistent in either

(@\| regime. Combining these results establishes the asymptotic exactness of tests based on these estimators.

(Q\|

Next, we consider the properties of two common testing procedures based on t-tests constructed from

linear regressions, and argue that both are generally conservative in our framework. We additionally
study the behavior of a randomization test which permutes the treatment status for clusters within

pairs, and establish its finite-sample and asymptotic validity for testing specific null hypotheses. Finally,

arXiv

we propose a covariate-adjusted estimator which adjusts for additional baseline covariates not used for
treatment assignment, and establish conditions under which such an estimator leads to improvements in

precision. A simulation study confirms the practical relevance of our theoretical results.
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1 Introduction

This paper studies the problem of inference in cluster randomized experiments where treatment status is
determined according to a “matched pairs” design. Here, by a cluster randomized experiment, we mean one
in which treatment is assigned at the level of the cluster; by a “matched pairs” design we mean that the
sample of clusters is paired according to baseline, cluster-level covariates and, within each pair, one cluster
is selected at random for treatment. Cluster matched pair designs feature prominently in all parts of the

sciences: examples in economics include Banerjee et al. (2015) and Crépon et al. (2015).

Following recent work in Bugni et al. (2022), we develop our results in a sampling framework where
clusters are realized as a random sample from a population of clusters. Importantly, in this framework
cluster sizes are modeled as random and “non-ignorable,” meaning that “large” clusters and “small” clusters
may be heterogeneous, and, in particular, the effects of the treatment may vary across clusters of differing
sizes. The framework additionally allows for the possibility of two-stage sampling, in which a subset of units

is sampled from the set of units within each sampled cluster.

We first study the large-sample behavior of a weighted difference-in-means estimator under two distinct
sets of assumptions on the matching procedure. Specifically, we distinguish between settings where the
matching procedure does or does not match on a function of cluster size. For both cases, we establish
conditions under which our estimator is asymptotically normal and derive simple, closed-form expressions for
the asymptotic variance. Using these results, we establish formally that employing cluster size as a matching
variable in addition to baseline covariates delivers a weak (and often strict) improvement in asymptotic
efficiency relative to matching on baseline covariates alone. We then propose a variance estimator which is
consistent for either asymptotic variance depending on the nature of the matching procedure. Combining

these results establishes the asymptotic exactness of tests based on our estimators.

We then consider the asymptotic properties of two commonly recommended inference procedures based
on linear regressions of the individual-level outcomes on a constant and cluster-level treatment. The first
inference procedure clusters at the level of treatment assignment. The second inference procedure clusters
at the level of assignment pairs, as recently recommended in de Chaisemartin and Ramirez-Cuellar (2019).

We establish that both procedures are generally conservative in our framework.

Next, we study the behavior of a randomization test which permutes the treatment status for clusters
within pairs. We establish the finite-sample validity of such a test for testing a certain null hypothesis related
to the equality of potential outcome distributions under treatment and control, and then establish asymptotic
validity for testing null hypotheses about the size-weighted average treatment effect. We emphasize, however,
that the latter result relies heavily on our choice of test statistic, which is studentized using our novel variance
estimator. In simulations, we find that this randomization test controls size more reliably than any of the

other inference procedures we consider in the paper, while delivering comparable power.

Finally, we derive large-sample results for a covariate-adjusted version of our estimator, which is designed
to improve precision by exploiting additional baseline covariates which were not used for treatment assign-

ment. As discussed in Bai et al. (2023a) and Cytrynbaum (2023), standard covariate adjustments based on



a regression using treatment-covariate interactions (see, for instance,am Negi and Wooldridge, 2021, for a
succinct treatment) are not guaranteed to improve efficiency when treatment assignment is not completely
randomized. For this reason, we consider a modified version of the estimator developed in Bai et al. (2023a)
for individual-level matched pair experiments. Our results show that our covariate-adjusted estimator is
guaranteed to improve asymptotic efficiency relative to the unadjusted estimator, whenever the matching
procedure matches on cluster size. Interestingly, we also find that this improvement in efficiency is not
guaranteed when cluster size is excluded as a matching variable, and document in a simulation study that

in fact such covariate adjustments may increase variance.

The analysis of data from cluster randomized experiments and data from experiments with matched pairs
has received considerable attention (see Donner and Klar, 2000; Athey and Imbens, 2017; Hayes and Moulton,
2017, for general overviews), but most recent work has focused on only one of these two features at a time.
Recent work on the analysis of cluster randomized experiments includes Middleton and Aronow (2015),
Su and Ding (2021), Schochet et al. (2021), and Wang et al. (2022) (see Bugni et al., 2022, for a general
discussion of this literature as well as further references). Recent work on the analysis of matched pairs ex-
periments includes Jiang et al. (2020), Cytrynbaum (2021), Bai et al. (2023b), and Bai (2022) (see Bai et al.,
2022, for a general discussion of this literature as well as further references). Two papers which focus specif-
ically on the analysis of cluster randomized experiments with matched pairs are Imai et al. (2009) and
de Chaisemartin and Ramirez-Cuellar (2019). Both papers maintain a finite-population perspective, where
the primary source of uncertainty is “design-based,” stemming from the randomness in treatment assignment.
In such a framework, both papers study the finite and large-sample behavior of difference-in-means type esti-
mators and propose corresponding variance estimators which are shown to be conservative. In contrast, our
paper maintains a “super-population” sampling framework and proposes a novel variance estimator which

is shown to be asymptotically exact in our setting.

The remainder of the paper is organized as follows. In Section 2 we describe our setup and notation.
Section 3 presents our main results. Section 4 studies the finite-sample behavior of our proposed tests via a

simulation study. We conclude with recommendations for empirical practice in Section 5.

2 Setup and Notation

In this section we introduce the notation and assumptions which are common to both matching procedures
considered in Section 3. We broadly follow the setup and notation developed in Bugni et al. (2022). Let
Yi s € R denote the (observed) outcome of interest for the ith unit in the gth cluster, Dy € {0,1} denote
the treatment received by the gth cluster, X, € R the observed, baseline covariates for the gth cluster,
and Ny € Z, the size of the gth cluster. In what follows we sometimes refer to the vector (X,4, Ny) as
W,. Further denote by Y; 4(d) the potential outcome of the ith unit in cluster g, when all units in the gth
cluster receive treatment d € {0,1}. As usual, the observed outcome and potential outcomes are related to

treatment assignment by the relationship

Yig = Yiyg(l)Dg + Yi,g(o)(l - Dg) : (1)



In addition, define M, to be the (possibly random) subset of {1, 2, ..., N, } corresponding to the observations
within the gth cluster that are sampled by the researcher. We emphasize that a realization of M, is a set
whose cardinality we denote by |M,|, whereas a realization of N, is a positive integer. For example, in
the event that all observations in a cluster are sampled, My = {1,..., Ny} and |[M,y| = N,. We assume

throughout that our sample consists of 2G clusters and denote by Pg the distribution of the observed data
79 = (((Yig 11 € My),Dg, Xg,Ng) : 1 < g <2G) ,
and by Q¢ the distribution of
((Yig(1),Yig(0) : 1 < < Nyg), My, Xg, Ng) : 1 < g <2G) .

Note that Pg is determined jointly by (1) together with the distribution of D(@) := (D, : 1 < g < 2G) and

Qa, so we will state our assumptions below in terms of these two quantities.

We now describe some preliminary assumptions on Q¢ that we maintain throughout the paper. In order

to do so, it is useful to introduce some further notation. To this end, for d € {0, 1}, define

¥, (d) = ﬁ 3 Vig(d) |

ieM,
Further define R (M), X(©) N(©) to be the distribution of

((Yig(1),Yig(0) : 1 <i < Ng):1<g<2G) ’ M(G)aX(G)aN(G) )

g

where MEJG) = (M, :1<g<2G), X(@ :=(X,:1<g<2G) and N© = (N, : 1< g <2G). Note that
Q¢ is completely determined by Rg(MEJG),X(G),N(G)) and the distribution of (M_E,G),X(G),N(G)). The

following assumption states our main requirements on () using this notation.
Assumption 2.1. The distribution Q¢ is such that
(a) {(My, Xy, Ny),1 <g<2G} is an i.i.d. sequence of random variables.

(b) For some family of distributions {R(m,z,n) : (m,z,n) € supp(Mgy, X4, Ny)},

ReM(@ XD Ny = T R(M,, X, N,) .
1<g<2G

(c) P{IMy| > 1} =1 and E[NZ] < occ.
(d) For some ¢ < oo, P{E[Y?(d)| Xy, Ny < cforall1<i< Ny} =1forallde{0,1} and 1 < g <2G.

(e) My AL (Yig(1),Yi4(0):1<i< Ngy)| Xg,Nyforalll<g<2G.



(f) For d € {0,1} and 1 < g < 2G,

BV, (@IN] = B |5 3 Yig@)|N,| wp1.

9 1<i<N,

For completeness, we reproduce some of the observations from Bugni et al. (2022) regarding these as-
sumptions. As shown in Bugni et al. (2022), an important implication of Assumptions 2.1(a)—(b) for our
purposes is that

{(¥4(1), Yy(0), | My[, Xy, Ng) , 1 < g < 2G} (2)

is an i.i.d. sequence of random variables. Assumptions 2.1.(c)—(d) impose some mild regularity on the
(conditional) moments of the distribution of cluster sizes and potential outcomes, in order to permit the
application of relevant laws of large numbers and central limit theorems. Note that Assumption 2.1.(c)
does not rule out the possibility of observing arbitrarily large clusters, but does place restrictions on the

heterogeneity of cluster sizes. For instance, two consequences of Assumptions 2.1.(a) and (c¢) are that

Yicg<a Ny

== =0p(1),
Zlgggc Ny

and
N2
maxi<g<@G g P

Zlgggc Ny A
which mirror heterogeneity restrictions imposed in the analysis of clustered data when cluster sizes are
modeled as non-random (see for example Assumption 2 in Hansen and Lee, 2019). Assumptions 2.1(e)—(f)
impose high-level restrictions on the two-stage sampling procedure. Assumption 2.1(e) allows the subset
of observations sampled by the experimenter to depend on X, and N4, but rules out dependence on the
potential outcomes within the cluster itself. Assumption 2.1(f) is a high-level assumption which guarantees
that we can extrapolate from the observations that are sampled to the observations that are not sampled.
It can be shown that Assumptions 2.1(e)—(f) are satisfied if M, is drawn as a random sample without

replacement from {1,2,..., N,} in an appropriate sense (see Lemma 2.1 in Bugni et al., 2022).

Our object of interest is the size-weighted cluster-level average treatment effect, which may be expressed

in our notation as

N, Ny
M@e) = B | g | 5 o0 =Yg 0) | | = E | gy So000(1) = Yig(0)

This parameter, which weights the cluster-level average treatment effects proportional to cluster size, can
be thought of as the average treatment effect where individuals are the unit of interest. Note that As-
sumptions 2.1(a)—(b) imply that we may express A(Qq) as a function of R and the common distribution of
(Mg, X4, Ng). In particular, this implies that A(Q¢) does not depend on G. Accordingly, in what follows
we simply denote A = A(Qq).

In Sections 3.1-3.3, we study the asymptotic behavior of the following size-weighted difference-in-means



estimator:

Ag = fi(1) — ic(0) , (3)
where
Lyt s
fic(d) == ——= ) I{Dg=d}—~ Yig,
N(d) = M| eyvi
with

2G
N(d):=> NyI{Dy =d} .

g=1

Note that this estimator may be obtained as the estimator of the coefficient of D, in a weighted least
squares regression of ¥; , on a constant and D, with weights equal to /Ny /[Mg|. In the special case that
all observations in each cluster are sampled, so that M, = {1,2,..., Ny} for all 1 < g < G with probability
one, this estimator collapses to the standard difference-in-means estimator. In Section 3.4 we consider a
covariate-adjusted modification of Ag which is designed to incorporate additional baseline covariates which

were not used for treatment assignment.

Remark 2.1. Following the recommendations in Bruhn and McKenzie (2009) and Glennerster and Takavarasha
(2013), it is common practice to conduct inference in matched pair experiments using the standard errors
obtained from a regression of individual level outcomes on treatment and a collection of pair-level fixed
effects. We do not analyze the asymptotic properties of such an approach for two reasons. First, in the
context of individual-level randomized experiments, Bai et al. (2022) and Bai et al. (2023b) argue that such
a regression estimator is in fact numerically equivalent to the simple difference-in-means estimator, but that
the resulting standard errors are generally conservative (and in some cases possibly invalid). This result
generalizes immediately to the clustered setting in the special case where all clusters are the same size and
M, ={1,2,...,N,}. Second, when cluster sizes vary, this numerical equivalence no longer holds, and in such
cases de Chaisemartin and Ramirez-Cuellar (2019) argue (in an alternative inferential framework) that the
corresponding regression estimator may no longer be consistent for the average treatment effect of interest.

|
Remark 2.2. Bugni et al. (2022) also define an alternative treatment effect parameter given by

1 Qe

eq — _ . _v
A%(Qe) =B | 5 ;(Yz,g(l) Y 4(0)
This parameter, which weights the cluster-level average treatment effects equally regardless of cluster size,
can be thought of as the average treatment effect where the clusters themselves are the units of interest. For
this parameter, the analysis of matched-pair designs for individual-level treatments developed in Bai et al.
(2022) applies directly to the data obtained from the cluster-level averages {(Y,, Dy, X4, N,) : 1 < g < 2G},
where Y, = \M—1J| D ic M, Yig- As a result, we do not pursue a detailed description of inference for this

parameter in the paper. W

Remark 2.3. In Appendix C, we consider a generalization of our main results to settings with multiple

treatments (i.e. “matched-tuples” designs) as considered in Bai et al. (2023b). ®



3 Main Results

3.1 Asymptotic Behavior of A¢ for Cluster-Matched Pair Designs

In this section, we consider the asymptotic behavior of A¢ for two distinct types of cluster-matched pair
designs. Section 3.1.1 studies a setting where cluster size is not used as a matching variable when forming
pairs. Section 3.1.2 considers the setting where we do allow for pairs to be matched based on cluster size in

an appropriate sense made formal below.

3.1.1 Not Matching on Cluster Size

In this section, we consider a setting where cluster size is not used as a matching variable. First, we describe
our formal assumptions on the mechanism determining treatment assignment. The G pairs of clusters may
be represented by the sets

{m(29g —1),7(2g)} forg=1,...,G ,

where 7 = g (X (%)) is a permutation of 2G elements. Given such a 7, we assume that treatment status is

assigned as follows:

Assumption 3.1. Treatment status is assigned so that

. G
{((Yig(1),Yig(0) : 1 <i < Ny), Ny, Mg)}2Z 1L DX

Conditional on X (¢, (Dx(29-1)> Dr(2g)), 9 = 1, ..., G areii.d. and each uniformly distributed over {(0, 1), (1,0)}.
We further require that the clusters in each pair be “close” in terms of their baseline covariates in the
following sense:

Assumption 3.2. The pairs used in determining treatment assignment satisfy

r P

G
1
5 2 Xy = Xng—n|” =0,
g=1

for r € {1,2}.

Bai et al. (2022) provide results which facilitate the construction of pairs which satisfy Assumption 3.2.
For instance, if dim(X,) = 1 and we order clusters from smallest to largest according to X, and then pair
adjacent units, it follows from Theorem 4.1 in Bai et al. (2022) that Assumption 3.2 is satisfied if E[X?] < occ.

Next, we state the additional assumptions on Q¢ we require beyond those stated in Assumption 2.1:
Assumption 3.3. The distribution Q¢ is such that
(a) E[Y](d)N}|X, = ], are Lipschitz for d € {0,1}, r,£ € {0,1,2} ,

(b) For some C < oo, P{E[Ny|X, ] <C}=1.



Assumption 3.3(a) is a smoothness requirement analogous to Assumption 2.1(c) in Bai et al. (2022)
that ensures that units within clusters which are “close” in terms of their baseline covariates are suitably
comparable. Assumption 3.3(b) imposes an additional restriction on the distribution of cluster sizes beyond

what is stated in Assumption 2.1(c). Under these assumptions, we obtain the following result:

Theorem 3.1. Under Assumptions 2.1 and 3.1-3.3,

as G — oo, where

with
LN, (o E(dN,]
Yo = Fy) (Yg(d)‘ E[N,) )

Note that the asymptotic variance we obtain in Theorem 3.1 corresponds exactly to the asymptotic
variance of the difference-in-means estimator for matched pairs designs with individual-level assignment (as
derived in Bai et al., 2022), but with transformed cluster-level potential outcomes given by ffg(d). Accord-
ingly, our result collapses exactly to theirs when P{N, = 1} = 1. Theorem 3.1 also quantifies the gain in
precision obtained from using a matched pairs design versus complete randomization (i.e., assigning half of
the clusters to treatment at random): it can be shown that the limiting distribution of A¢ under complete

randomization is given by
VG(Ag —A) L N(©0,u)

where w3 = E [1792(1)] +FE [§7g2 (0)]. We thus immediately obtain that w? < w3. Moreover, this inequality is

strict unless E[Y,(1) 4 Y,(0)|X,] = 0.

3.1.2 Matching on Cluster Size

In this section, we repeat the exercise in Section 3.1.1 in a setting where the assignment mechanism matches
on baseline characteristics and (some function of) cluster size in an appropriate sense to be made formal be-
low. First, we describe how to modify our assumptions on the mechanism determining treatment assignment.

The G pairs of clusters are still represented by the sets
{m(2g —1),7(2g)} forg=1,....G,

however, now we allow the permutation 7 = 7¢(X(@), N(@)) = 75(W(%) to be a function of cluster size.

Given such a m, we assume that treatment status is assigned as follows:

Assumption 3.4. Treatment status is assigned so that
{((Yig(1),Yig(0) : 1 <i < Ng), Mg) 551 AL D(G)|W(G) :

Conditional on W (&), (Dx(29-1)> Dr(2g)), 9 = 1, ..., G arei.i.d. and each uniformly distributed over {(0, 1), (1,0)}.



We also modify the assumption on how pairs are formed:
Assumption 3.5. The pairs used in determining treatment assignment satisfy
1< »
A T
G 2 Nrag) [Wrizg) = Waizg—n)|" =0,
g=1
for ¢ € {0,1,2}, r € {1,2}.
Unlike for Assumption 3.2, the discussion in Bai et al. (2022) does not provide conditions for matching

algorithms which guarantee that Assumption 3.5 holds. Accordingly, in Proposition 3.1 we provide lower-

level sufficient conditions for Assumption 3.5 which can be verified using the results in Bai et al. (2022).

Proposition 3.1. Suppose E[N,] < oo and

G

1 Cp

E Z |W7r(2g) - Wﬂ'(2g—1)| — 0,
g=1

forr € {1,2,3,4}, then Assumption 3.5 holds.

We also modify the smoothness requirement as follows:

Assumption 3.6. The distribution Q¢ is such that E[Y,(d)|W, = w] are Lipschitz for d € {0,1}, r € {1,2}.

We then obtain the following analogue to Theorem 3.1:

Theorem 3.2. Under Assumptions 2.1 and 3.4-3.0,
VG(Ag — A) L N(©0,2) |

as G — oo, where

with

)= N (v E[Yy(d)Ny]
5 = gy (B0~ Sy

Note that the asymptotic variance v? has exactly the same form as w? from Section 3.1.1, with the only
difference being that the final term of the expression conditions on both cluster characteristics X, and cluster
size N4. From this result it then follows that matching on cluster size in addition to cluster characteristics
leads to a weakly lower asymptotic variance. To see this, note that by comparing w? and % we obtain that

9 1

w? = v? = == (BIBIY; (1) + Y, (0)|X,)%] = E[B[Y, (1) + Y, (0)| X, NyJ?]) -

It then follows by the law of iterated expectations and Jensen’s inequality that w? > v/2.



3.2 Variance Estimation

In this section, we construct variance estimators for the asymptotic variances w? and v? obtained in Section
3.1. In fact, we propose a single variance estimator that is consistent for both w? and v? depending on the
nature of the matching procedure. As noted in the discussion following Theorem 3.1, the expressions for w?
and 12 correspond exactly to the asymptotic variance obtained in Bai et al. (2022) with the individual-level
outcome replaced by a cluster-level transformed outcome. We thus follow the variance construction from
Bai et al. (2022), but replace the individual outcomes with feasible versions of these transformed outcomes.

To that end, consider the observed adjusted outcome defined as:

v Ny Y, é Zlgjgm YjI{DJ‘ = Dg}Nj
}; -1 y} - 1 )
2G Z1§j§2G N; G Zl§j§2G I{Dj = Dg}Nj

where

4,9 -
16/\/(

We then propose the following variance estimator:

(ﬁr(zj) - Y,,(Qj,l))Q

l

G
. ) . . . .
ye e Z (Yw(4j—3) - Yw(4j72)) (Yrr(4jfl) - Yrr(4j)) (Dr(aj—3) = Dr(aj—2))(Dr(aj—1) — Dr(aj)) -
1<5<|G/2]

Note that the construction of f)é can be motivated using the same intuition as the variance estimators
studied in Bai et al. (2022) and Bai et al. (2023b): to consistently estimate quantities like (for instance)
E[E[Y,(1)|X,]E[Y,(0)|X,]] which appear in w?, we average across “pairs of pairs” of clusters. As a conse-
quence, we will additionally require that the matching algorithm satisfy the condition that “pairs of pairs” of
clusters are sufficiently close in terms of their baseline covariates/cluster size, as formalized in the following

two assumptions:

Assumption 3.7. The pairs used in determining treatment status satisfy

G Z ‘X,,(4j,k) ~ Xaajn|” 50
1<7<

for any k € {2,3} and ¢ € {0,1}.
Assumption 3.8. The pairs used in determining treatment status satisfy

1
G

2 P
Z N72r(4j—k) Wiaj—r) = Wr@j—o| — 0

1<<| ¢



for any k € {2,3} and ¢ € {0,1}.

As noted in Bai et al. (2022), given pairs which satisfy Assumptions 3.2 or 3.5, it is frequently possible to
reorder the pairs so that Assumptions 3.7 or 3.8 are satisfied. We then obtain the following two consistency

results for the estimator ﬁé:

Theorem 3.3. Suppose Assumption 2.1 holds. If additionally Assumptions 3.1-3.8 and 3.7 hold, then

~ P
0% = w? .

Alternatively, if Assumptions 3.4—5.6 and 3.8 hold, then

Next, we derive the limits in probability of two commonly recommended variance estimators obtained
from a (weighted) linear regression of the individual-level outcomes Y;, on a constant and cluster-level
treatment Dy. The first variance estimator we consider, which we denote by ‘Z’%R,G’ is simply the cluster-
robust variance estimator of the coefficient of D, as defined in equation (21) in the appendix. Theorem 3.4
derives the limit in probability of ‘:’(%R,G under a matched pair design which matches on baseline covariates

as defined in Section 3.1.1, and shows that it is generally too large relative to w?.

Theorem 3.4. Under Assumptions 2.1 and 3.1-3.3,

. P - =
Wer.a — EYy(1)°] + B[Yy(0)"] > w®
with equality if and only if

E[Yy(1) + Y4(0)|X,] =0 . (6)

The next variance estimator we consider, which we denote by @%CVE’G, is the variance estimator of the
coefficient of D, obtained from clustering on the assignment pairs of clusters as defined in equation (22)
in the appendix. de Chaisemartin and Ramirez-Cuellar (2019) call this the pair-cluster variance estimator
(PCVE). Theorem 3.5 derives the limit in probability of &foyp ¢ in the special case where N, = k for

g=1,...,2G for some fixed k and |[M,| = Ny, and shows that it is generally too large relative to w?.

Theorem 3.5. Suppose Assumptions 2.1 and 3.1-53.3 hold. If in addition we impose that Ny = k for
g=1,...,2G for some fized positive integer k and that |My| = Ny, then

with equality if and only if
E[Yy(1) = Yy(0)|X,] =0 . (7)

Although we do not derive the limit in probability of CZJ%CVEHG in the general case, our simulation evidence

in Section 4 suggests that the limit of &3y ¢ remains conservative, and that the conditions under which

10



it is consistent for w? are the same as those in equation (7). From Theorems 3.4 and 3.5 we obtain that
neither cluster-robust standard error is consistent for w? unless the baseline covariates are irrelevant for the
potential outcomes in an appropriate sense. In particular, equation (7) holds when the average treatment
difference for the sampled units in a cluster are homogeneous, in the sense that Y,(1) — Y;(0) is constant.
We note that the conditions under which GJ%RG and @%CVE’G are consistent for w? are exactly analogous
to the conditions under which Bai et al. (2022) derive (in the setting of an individual-level matched pairs

experiment) that the two-sample ¢-test and matched pairs t-test are asymptotically exact, respectively.

3.3 Randomization Tests

In this section, we study the properties of a randomization test based on the idea of permuting the treatment
assignments for clusters within pairs. In Section 3.3.1 we present some finite-samples properties of our

proposed test, and in Section 3.3.2 we establish its large sample validity for testing the null hypothesis
Hy: A(Qc) = 0.

First, we construct the test. Denote by H¢ the group of all permutations on 2G elements and by He ()

the subgroup that only permutes elements within pairs defined by :
He(m) = {h € Hg : {w(29 — 1), 7(29)} = {A(n(2] — 1)), h(7(2j))} for 1 < g < G} .
Define the action of h € Hg(mr) on Z(%) as follows:
hz'@ = {(Yig : 1€ My), Dpg), Xg,Ng) : 1 < g <2G} .
The randomization test we consider is then given by

(2 ) = {Te(Z29) > R\ (1 - )},

where
. 1
Ro(t) = —— HT(hZ'D) <t}
[Hg(m)| he; |
al(m
with R
To(2(@) = VGAg
e

Remark 3.1. As is often the case for randomization tests, R (t) may be difficult to compute in situations
where [Hg(m)| = 2¢ is large. In such cases, we may replace Hg(m) with a stochastic approximation
Hg = {h1,ha,..., h}, where hi is the identity transformation and ha, ..., hp are i.i.d. uniform draws from
H¢ (). The results in Section 3.3.1 continue to hold with such an approximation; the results in Section

3.3.2 continue to hold provided B — oo as G — co. R
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3.3.1 Finite-Sample Results

In this section we present some finite-sample properties of the proposed test. Consider testing the null
hypothesis that the distribution of potential outcomes within a cluster are equal across treatment and

control conditional on observable characteristics and cluster size:
X,N . d )
Hg : (Yiyg(l) i1 SZSNQ)KXgaNg):(YLg(O) : 1§Z§Ng)|(Xg7Ng) . (8)

We then establish the following result on the finite sample validity of our randomization test for testing (8):

Theorem 3.6. Suppose Assumption 2.1 holds and that the treatment assignment mechanism satisfies As-
sumption 3.1 or 3.4. Then, for the problem of testing (8) at level o € (0,1), (bl&?“d(Z(G)) satisfies

E[¢irY(Z2( )] < o,

under the null hypothesis.

Remark 3.2. The proof of Theorem 3.6 follows classical arguments that underlie the finite sample validity
of randomization tests more generally. Accordingly, as in those arguments, the result continues to hold if

the test statistic T is replaced by any other test statistic which is a function of Z(%). m

3.3.2 Large-Sample Results

In this section, we establish the large-sample validity of the randomization test ¢E‘§“d for testing the null

hypothesis
Ho:A(Qe)=0. (9)

In Remark 3.3 we describe how to modify the test for testing non-zero null hypotheses.

Theorem 3.7. Suppose Qq satisfies Assumption 2.1, and either

o Assumption 3.3 with treatment assignment mechanism satisfying Assumption 3.1 and 3.7 ,

o Assumption 3.6 with treatment assignment mechanism satisfying Assumptions 3.4 and 3.8 .
Further, suppose that the probability limit of ﬁé 18 positive, then

sup [Ra(t) — (2(t) — @(—1)| 20,

where ®(-) is the standard normal CDF. Thus, for the problem of testing (9) at level a € (0,1), ¢ra"d(Z(%))
satisfies

lim El¢g" (29 =a,

G—o0

under the null hypothesis.
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Theorems 3.6 and 3.7 highlight that the randomization test quGa“d(Z (G)) is asymptotically valid for testing
(9) while additionally retaining the finite-sample validity described in Section 3.3.1 under the null hypothesis
(8). In Section 4.1 we illustrate the benefit of this additional robustness on the small-sample behavior of
pmd(z (@) relative to tests constructed using Gaussian critical values. We note that, unlike for the null
hypothesis considered in Section 3.3.1, the choice of test statistic T is crucial for establishing Theorem
3.7. Similar observations have been made in related contexts in Janssen (1997), Chung and Romano (2013),

Bugni et al. (2018) and Bai et al. (2022).

Remark 3.3. We briefly describe how to modify the test quGa“d for testing general null hypotheses of the

form

Hy: A(Qg) = Ao -

To this end, let
79 = ((Yig — DgAg : i € My), Dy, X4, Ny) : 1< g <2G) ,

then it can be shown that under the assumptions given in Theorem 3.7, the test ¢rand (Z(@) obtained by
replacing Z(%) with Z(©) satisfies
lim B¢ (Z D) =a,

G—o0

under the null hypothesis. B

3.4 Covariate Adjustment

In this section, we consider a linearly covariate-adjusted modification of A¢ that is designed to improve
precision by exploiting additional observed baseline covariates that were not used for treatment assignment.
To that end, we consider a setting in which we observe two sets of baseline covariates, X, and C,, where
X, € RF denotes the original set of baseline covariates used for treatment assignment, and C; € R* denotes
the covariates in addition to X, that were not used for treatment assignment. Note that C, could also
include cluster-level aggregates of individual-level outcomes, including intracluster means and quantiles.
Before proceeding, we note that for the remainder of Section 3.4, the assumptions in Section 2 should be
modified such that X, is replaced by (X, Cy) throughout. In particular, references to Assumption 2.1 below
should be understood to hold with (X4, Cy) in place of X.

Our primary focus will be on settings in which the cluster size N, is used in determining the pairs. We
comment on the case when N, is not used in determining pairs in Remark 3.4, and, importantly, note that in
such settings the adjustments we consider here are not guaranteed to improve precision). As in Section 3.1.2,
let 7 = 7o(X (@), N(©)) denote the permutation that determines the pairs. We then assume that treatment

status is assigned as follows:

Assumption 3.9. Treatment status is assigned so that
{((Yig(1),Yig(0) : 1 <i < Ng), My, Cy) 551 AL D(G)KX(G)aN(G)) :
Conditional on (X () N(&)), (Dr(29-1)> Dr(29)), 9 = 1,...,G are i.i.d. and each uniformly distributed over

13



{(0,1), (1,0}

We consider a linearly covariate-adjusted estimator of A(Q) based on a set of regressors generated by
X4, Ny, Cy. To this end, define ¢, = ¢(X,, Ny, C,), where 1 : RF x R x R® — RP. We impose the following

assumptions on

Assumption 3.10. The function v is such that

(a) No component of ¢ is a constant and E[Var[y,| X, N,|] is nonsingular.
(b) Var[y,] < .
(c) Elpg|Wy =w], Elpg}|Wy = w], and E[¢,Y] (d)|W, = w] for d € {0,1} and r € {1,2} are Lipschitz.

(d) For some ¢ < 0o, P{E[||1g||?Y?(d)| Xy, Ng] < ¢} =1 for d € {0,1}.

As discussed in Bai et al. (2023a) and Cytrynbaum (2023), standard covariate adjustments based on a
regression using treatment-covariate interactions (see, for instance, Negi and Wooldridge, 2021, for a succinct
treatment) are not guaranteed to improve efficiency when treatment assignment is not completely random-
ized. For this reason, we consider a modified version of the adjusted estimator developed in Bai et al.
(2023a) for individual-level matched pair experiments. Let B¢ denote the OLS estimator of the slope coef-
ficient in the linear regression of of (Yﬂ-(zq_l)Nﬂ-(Qg_l) — Yﬂ(Qg)Nﬂ-(Qg))(Dﬂ-(zq_l) — Dy (24)) on a constant and
(Vr(2g—1) = Yr(29)) (Dr(2g—1) — Dr(24))- We then define our covariate-adjusted estimator as

é ZISQSQG(YQNQ - (7/19 - &G)/BG)DQ é Z1ggg2G(YgNg B W’g - &G)/BG)O - Dg)

Aadj _ - , (10)
¢ e 2 1<g<26 NoDy & > 1<g<ac Ng(1 = Dy)

where

— 1
7/’6':% Z d’g-

1<g<2G@

Theorem 3.8 derives the limiting distribution of Agdj, and, importantly, it shows that the limiting variance

of Agdj is no larger than that of Ag in (3) and can be strictly smaller.

Theorem 3.8. Under Assumptions 2.1, 3.5, 3.6, 3.9, and 3.10,
VGAZT — A) S N(0,¢%)
as G — oo, where

¢* = E[Var[Y; (1) Xy, No|| + E[Var[Y;(0)| X, NoJ] + lE[(E[Y*(l) = Y, (0)| Xy, Ng] — A)7]

2 g
with
Y*(d) _ ?q(d)Nq — (wg — E[d’q])/ﬁ* Ng E[?q(d)Ng — (wg — E[d’q])/ﬁ*] v (d) o (wg — E[d’q])/ﬁ*
T E[N,] E[N,] E[N] - E[Ny| ’
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and
B* = (2E[Var[¢g|xgvNg]])_lE[COVWg’Yg(l)Ng + Yg(O)Ng|ngNgH . (11)

Moreover,
=12 K2, (12)

where v? is as in (4) and

2 _ Bl = Elbg| Xy, NoJ)'8)?
E[N]?

As a consequence, s2 < V2, with equality if and only if k? = 0.

Note that the asymptotic variance ¢? has the same form as the variance 2, but with new transformed
outcomes Y (d) which can be expressed as covariate-adjusted versions of the original transformed outcomes

2 — k2. As a consequence, we

Y, (d). Exploiting this observation is what allows us to establish that ¢ = v
find that the asymptotic variance of AaGdj is lower than that of Ag whenever the adjustment is appropriately
“relevant,” in the sense that k2 # 0.

Remark 3.4. In order to guarantee that ¢ < 12

in Theorem 3.8, it was crucial to assume that N, is
contained in the set of matching variables. If instead clusters are only matched according to X, as in Section
3.1.1, then under suitable modifications of Assumptions 3.9 and 3.10 it can be shown that the limiting

. A adj . .
variance of A" is given by

E[Var[Y](1)|Xy]] + E[Var[Y;(0)| X,]] + %E[(E[Yg*(l) =Y (0)1X,] - A)7

where in this case Y (d) = Y, (d) — W, with

B = (2E[Varw’g|Xg]])71E[COV[¢gv?q(l)Ng + Yq(o)Nq|Xq]] .

Note that this expression mirrors the expression for ¢2 but removes the conditioning on N, throughout. It
can then be shown that the decomposition obtained in (12) no longer applies, and in general the covariate-
adjusted estimator is no longer guaranteed to have a smaller limiting variance than the unadjusted estimator

A¢. We illustrate this point via simulation in Section 4.2. H

Remark 3.5. Although the estimator in (10) is closely related to the class of covariate-adjusted estimators
in Bai et al. (2023a), a direct application of the results therein is prohibited because the two denominators
in (10) are the average cluster sizes of treated and untreated clusters and are therefore random. As a result,
unlike in Bai et al. (2023a), the demeaning of ¢ in (10) is crucial for the results in Theorem 3.8 to hold. In
particular, some remainder terms in the proof of Theorem 3.8 are no longer op(1) without the demeaning.
dj

Moreover, unlike for individual-level experiments, A‘é cannot be interpreted as the intercept of a linear

regression as in Bai et al. (2023a).
For variance estimation, define

o 1 _
Y9: —N <NQ}/!]_NQ

T — — ¢y Ba
G Zlgjgzc I{Dj - Dg}Nj

é Zlgjgzc YjI{Dj = Dg}Nj A )
1
2G El§j§2G
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We then propose the following variance estimator:

1.
§é - Té - 5)‘21 ) (13)
where

o 1 . . 2
=g (Yees) = Yozsn)

1<5<G
09 2 o o o °
=g X (wafs) - Yw<4j72>) (ijfl) - Yw<4j>) (Dr(4j-3) = Dr(4j-2))(Dr(aj-1) = Dray)) -

1<j<(G/2]

The following theorem establishes the consistency of the variance estimator:
Theorem 3.9. Under Assumptions 3.5, 3.6, 3.8, 3.9, and 3.10,

2 P2
Sag S

4 Simulations

4.1 Unadjusted Estimation

In this section, we examine the finite-sample behavior of the estimation and inference procedures considered
in Sections 3.1-3.3. We further compare these procedures to tests and confidence intervals constructed using
the standard cluster-robust variance estimator (CR) and the pair cluster variance estimator (PCVE) proposed
in de Chaisemartin and Ramirez-Cuellar (2019). For d € {0,1}, 1 < g < 2G, the potential outcomes are

generated according to the equation
Yig(d) = Md(ngXéN)) + 2€4,4,q -

Where, in each specification, (X,, X{"), g =1,...,2G are i.i.d. with X,, X\V) ~ Beta(2,4), and (co..4, €1.i.4),
g=1,...,2G,i=1,...,N, are i.i.d. with €y 4,€1,4 ~ N(0,1) independently. We consider the following

two specifications for pg:
Model 1: i1 (X, X5N) = po(X,, XSN) =10(X, — 1/3) + 6(XN) —1/3) + 2 .
Model 2: 1 (Xy, XJ™V) = 10(X2 — 1/7) + 6(X") — 1/3) + 2 and po(X,, X)) = 0.

Note that Model 1 satisfies the homogeneity condition in (7) whereas Model 2 does not. In both cases,
Ny, g=1,...,2G are i.i.d. with N, ~ Binomial(R, XéN)) + (500 — R), where R determines the difference
in maximum and minimum cluster sizes. In particular R satisfies the property that Ny € [Npin, Nimaz| with

Niaz — Nimin = R and we consider R € {49,149,249,349,449} with Ny, = 500 fixed. For each model

and distribution of cluster sizes, we consider two alternative pair-matching procedures. First, we consider a
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design which matches clusters using X, only. To construct these pairs, we sort the clusters according to X,
and pair adjacent clusters. Next, we consider a design which matches clusters using both X, and N,. To
construct these pairs, we match the clusters according to their Mahalanobis distance using the non-bipartite

matching algorithm from the R package nbpMatching.

Tables 1-4 report the coverage and average length of 95% confidence intervals constructed using our vari-
ance estimator as well as the CR and PCVE estimators. For Model 1 in Table 1, we find that, in accordance
with Theorems 3.3-3.5, the CR variance estimator is extremely conservative, whereas our proposed variance
estimator (denoted 9%) and the PCVE variance estimator have exact coverage asymptotically. This fea-
ture translates to significantly smaller confidence intervals: on average the confidence intervals constructed
using 9% or PCVE are almost half the length of those constructed using CR when G > 50. However, the
confidence intervals constructed using 9% or PCVE undercover when G < 50. We find similar results when
matching on both X, and N, in Table 2. Comparing across Tables 1 and 2 we find that, in line with the
discussions following Theorems 3.1 and 3.2, matching on N, in addition to X, results in a large reduction
in the average length of confidence intervals constructed using ﬁé (or PCVE), but no change in the average

length of confidence intervals constructed using CR.

Moving to Model 2 in Tables 3 and 4, here we find that confidence intervals constructed using CR
continue to be conservative, but now the confidence intervals constructed using PCVE are also conservative,
and numerically very similar to those constructed using CR. In contrast, the confidence intervals constructed
using ﬁé remain exact asymptotically. Once again this translates to smaller confidence intervals for f}é: on
average the confidence intervals constructed using 9% are approximately 25% smaller than those constructed
using CR or PCVE when G > 50. However, once again we find that the confidence intervals constructed
using 9% can undercover when G < 50, with the size of the distortion growing as a function of the cluster

size heterogeneity.

Next, to further address the small-sample coverage distortions observed in Tables 1-4, we study the size
and power of 0.05-level hypothesis tests conducted using our proposed randomization test, as well as standard
t-tests constructed using the CR and PCVE estimators, in Tables 5-6 below.! In Table 5 we find that tests
based on the CR variance estimator are extremely conservative, and this translates to having essentially no
power against our chosen alternative. Tests based on the PCVE estimator produce non-trivial power, but
also size-distortions in small samples. In contrast, since Model 1 satisfies the null hypothesis considered in
(8), our randomization test is valid in finite samples by construction, and displays comparable power to the
PCVE-based test even when the latter does not control size. When moving to Model 2 in Table 6 we are
only guaranteed that the randomization test is asymptotically valid, but we find that the test is still able
to control size in small samples as long as cluster-size heterogeneity is not too large. Importantly, in such
cases, both the CR and PCVE-based tests also fail to control size. Finally, the randomization test displays
favorable power relative to both the CR and PCVE-based tests throughout Table 6 except for some cases
when G = 12.

Here we move to studying the properties of hypothesis tests instead of confidence intervals to avoid having to perform
test-inversion for our randomization test, but we expect that similar results would continue to hold for confidence intervals as
well.
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4.2 Covariate-Adjusted Estimation

In this section, we examine the finite-sample behavior of the covariate-adjusted estimator considered in
Section 3.4. In particular, we contrast the efficiency properties of Agdj when matching versus not matching

on cluster size. We consider the following modification of Model 2:
Model Adj.: u1(Xy, X$N) = 10(X2 — 1/7) + 6(X5™) — 1/3) + 25 and po(X,, X§™V) = 0.

In addition, we introduce a new matching variable Hy, g = 1,...,2G, iid. with H, ~ U[0,1] generated
independently of all other variables, and modify the distribution of N, so that N, ~ Binomial(R,1—X _(SN))—i—
(500 — R).

Table 7 reports the coverage and average length of 95% confidence intervals constructed using our variance
estimators when matching using both H, and N, for Ag versus Agdj with ¢, = (X, Xg(N)). In accordance
with Theorem 3.8, we find that for moderate to large samples (G > 50), covariate adjustment leads to
smaller average CI lengths even as we increase the amount of cluster size heterogeneity. In contrast, Table
8 reports the coverage and average lengths of 95% confidence intervals (CIs) constructed using our variance
estimators when matching using only H,, for Ag versus Agdj with ¢, = (X4, X ;N)). In general, we find that
when cluster-size heterogeneity is low, covariate adjustment leads to smaller average CI lengths. However,
as the amount of heterogeneity increases, the average CI length for the adjusted estimator rapidly overtakes
the length for the unadjusted estimator. We emphasize that this does not seem to be a small-sample issue:

even with G = 250, the average CI length for the adjusted estimator is over two times larger than for the

unadjusted estimator in the most extreme case.

5 Recommendations for Empirical Practice

Based on our theoretical results as well as the simulation study above, we conclude with some recommen-
dations for practitioners when conducting inference about the size-weighted ATE in our super-population
framework. Our recommendations below depend on whether the number of clusters is moderately large (e.g.,

at least 50 pairs) or small (e.g., less than 50 pairs).

If the number of clusters is moderately large, then our recommendation is that practitioners should employ
either the covariate-adjusted tests based on the covariate-adjusted estimator Azdj defined in Section 3.4 paired
with its corresponding variance estimator ¢4 and a normal critical value or the unadjusted tests based on
the unadjusted estimator A¢ introduced in Section 2 paired with its corresponding variance estimator ﬁé
and a normal critical value. Whenever cluster size is used in determining the pairs, our results show that
covariate-adjusted tests are more powerful in large samples than unadjusted tests; in practice, this feature
continues to hold even when cluster size was not used in determining the pairs, provided that cluster-size
heterogeneity is not too great (i.e., in our simulations, a ratio of largest to smallest cluster size of less than

2). Outside of these circumstances, we recommend that practitioners employ the unadjusted tests.
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If, on the other hand, the number of clusters is small, then we recommend instead that practitioners
use the randomization test based on the un-adjusted estimator Ag paired with its corresponding variance
estimator 92 outlined in Section 3.3. In our simulations, this test controlled size more reliably than any of
the other inference procedures we considered in the paper, while delivering comparable power. Note that

by modifying the test as in Remark 3.3, the test could also be inverted to construct confidence intervals if

desired.
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Table 1: Model 1 - Matching on X"

Nmaz/Nmin G=12 G=26 G=50 G=100 G=150 G =200 G =250
Coverage
0% 0.9185  0.9290  0.9420 0.9465 0.9375 0.9460 0.9515
1.11 CR 0.9985  0.9990  0.9995 1 1 1 1

PCVE 09230 0.9310  0.9385 0.9405 0.9395 0.9480 0.9520

02 0.9005  0.9345  0.9345 0.9480 0.9490 0.9545 0.9615
1.42 CR 0.9980  0.9995  0.9985 0.9995 0.9995 1 1
PCVE 09035 0.9380  0.9375 0.9490 0.9495 0.9550 0.9595

0%, 0.9130  0.9330  0.9380 0.9385 0.9490 0.9455 0.9365
1.99 CR 0.9985  0.9985 1 1 1 1 0.9995
PCVE 09095 0.9230  0.9420 0.9420 0.9495 0.9460 0.9350

o, 0.9065  0.9180  0.9340 0.9415 0.9470 0.9450 0.9520
3.31 CR 0.9950  0.9980  0.9980 0.9985 1 0.9985 0.9995
PCVE 0.8980 0.9155  0.9330 0.9380 0.9465 0.9470 0.9500

02 0.9035  0.9230  0.9420 0.9340 0.9440 0.9415 0.9495
9.80 CR 0.9925  0.9940  0.9970 0.9985 0.9975 0.9995 0.9990
PCVE 0.8925 0.9100  0.9365 0.9330 0.9425 0.9385 0.9475

Average Length

0% 1.72150 1.16078 0.84582 0.59830  0.48784  0.42466  0.37936
1.11 CR 3.20693 2.21689 1.61886  1.15015  0.94053  0.81591  0.73010
PCVE 1.69494 1.15171 0.84119 0.59746  0.48744  0.42415  0.37895

0, 1.75019 1.18859 0.86476 0.61378 0.50112  0.43567  0.38917
1.42 CR 3.21821  2.22957 1.62982 1.15829  0.94732  0.82180  0.73543
PCVE 1.72075 1.17840 0.86140 0.61286  0.50024  0.43527  0.38897

o, 1.80502 1.23175 0.89937 0.63958  0.52250  0.45322  0.40566
1.99 CR 3.24165 2.25077 1.64811 1.17207  0.95862  0.83166  0.74408
PCVE 1.77287 1.21936 0.89602 0.63843  0.52133  0.45352  0.40524

02 1.90111 1.30589 0.96060 0.68446  0.55910  0.48664  0.43505
3.31 CR 3.27892  2.28895 1.68064 1.19654  0.97928  0.84959  0.76030
PCVE 185679 1.29128 0.95566 0.68299  0.55824  0.48568  0.43437

02 2.09510 1.45719 1.08057 0.77340  0.63320  0.55071  0.49226
9.80 CR 3.35680 2.36729 1.75068  1.24963  1.02275  0.88759  0.79443
PCVE 2.03228 1.43576 1.07565 0.77259  0.63171  0.54976  0.49203

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each
G is 2000. Npee = 500.
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Table 2: Model 1 - Matching on X, and N,"

Nmaz/Nmin G=12 G=26 G=50 G=100 G=150 G =200 G =250
Coverage
0% 0.9105  0.9285  0.9345 0.9430 0.9470 0.9495 0.9565
1.11 CR 1 1 1 1 1 1 1

PCVE 09100 0.9260  0.9360 0.9460 0.9460 0.9480 0.9555

02 0.9210  0.9410  0.9400 0.9510 0.9490 0.9300 0.9445
1.42 CR 1 1 1 1 1 1 1
PCVE 09215 0.9405  0.9425 0.9555 0.9465 0.9325 0.9425

o, 0.9170  0.9460  0.9420 0.9505 0.9485 0.9495 0.9570
1.99 CR 1 1 1 1 1 1 1
PCVE 09110 0.9440  0.9395 0.9520 0.9490 0.9510 0.9555

o, 0.9220  0.9280  0.9295 0.9430 0.9440 0.9480 0.9390
3.31 CR 1 1 1 1 1 1 1
PCVE 09150 0.9290 0.9325 0.9470 0.9435 0.9510 0.9405

02 0.9015  0.9260  0.9320 0.9505 0.9485 0.9405 0.9435
9.80 CR 1 1 1 1 1 1 1
PCVE 0.8860 0.9225  0.9380 0.9495 0.9485 0.9420 0.9475

Average Length

0% 1.20496 0.64428 0.39514 0.24765 0.19157  0.16045  0.14069
1.11 CR 3.21594  2.22170 1.62079 1.15081  0.94092 0.81621  0.73031
PCVE 1.18192 0.63873 0.39376 0.24689  0.19111  0.16028  0.14062

0, 1.16805 0.58866 0.34117 0.19821  0.14670  0.12020  0.10335
1.42 CR 3.23229  2.23499 1.63182 1.15901  0.94776  0.82214  0.73561
PCVE 1.14574 0.58388 0.34065 0.19783  0.14622  0.12000  0.10327

o, 1.18988 0.60685 0.34699 0.19474  0.14244  0.11466  0.09729
1.99 CR 3.25786  2.25761 1.65083 1.17312  0.95917  0.83201  0.74440
PCVE 1.16373 0.59889 0.34582 0.19426  0.14229  0.11456  0.09728

02 1.27089 0.64963 0.37337 0.20857  0.15167  0.12110  0.10157
3.31 CR 3.29929 2.29885 1.68464 1.19841  0.98016  0.85013  0.76067
PCVE 1.23316 0.64188 0.37129 0.20767  0.15108  0.12084  0.10134

02 1.41981 0.75053 0.43329 0.24285 0.17464  0.13851  0.11558
9.80 CR 3.38816  2.38329 1.75642 1.25248  1.02442  0.88868  0.79508
PCVE 1.36449 0.73612 0.42992 0.24197 0.17401  0.13826  0.11549

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each
G is 2000. Npee = 500.
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Table 3: Model 2 - Matching on X"

Nmaz/Nmin G=12 G=26 G=50 G=100 G=150 G =200 G =250
Coverage

0% 0.9260  0.9375  0.9420 0.9420 0.9460 0.9465 0.9510

1.11 CR 0.9570  0.9635  0.9755 0.9790 0.9825 0.9835 0.9800

PCVE 0.9560 0.9645  0.9750 0.9785 0.9825 0.9835 0.9805

02 0.9280  0.9395  0.9455 0.9405 0.9490 0.9495 0.9490
1.42 CR 0.9525  0.9705  0.9705 0.9715 0.9795 0.9860 0.9820
PCVE 09535 0.9710  0.9705 0.9735 0.9795 0.9860 0.9820

o, 0.9180  0.9325  0.9385 0.9455 0.9480 0.9420 0.9465
1.99 CR 0.9415  0.9595  0.9680 0.9765 0.9770 0.9805 0.9800
PCVE 09415 0.9605  0.9675 0.9770 0.9780 0.9800 0.9805

o, 0.8965  0.9290  0.9390 0.9480 0.9440 0.9400 0.9495
3.31 CR 0.9325  0.9615  0.9700 0.9750 0.9775 0.9750 0.9765
PCVE 09315 0.9615  0.9685 0.9755 0.9780 0.9745 0.9770

02 0.8850  0.9085  0.9295 0.9380 0.9360 0.9375 0.9445
9.80 CR 0.9155  0.9460  0.9640 0.9660 0.9660 0.9685 0.9755
PCVE 09175 0.9450  0.9635 0.9660 0.9665 0.9680 0.9755

Average Length

0% 1.64579 1.11414 0.80852 0.57317  0.46677  0.40525  0.36269
1.11 CR 1.88285 1.31397 0.96438 0.68747  0.56044  0.48713  0.43634
PCVE 1.88367 1.31373 0.96432 0.68752  0.56044  0.48718  0.43636

0, 1.67055 1.13171 0.81934 0.58015 0.47436  0.41154  0.36739
1.42 CR 1.90602 1.32885 0.97303 0.69262 0.56755  0.49258  0.44032
PCVE 190579 1.32897 0.97283 0.69257  0.56751  0.49262  0.44026

o, 1.67377 1.14094 0.83413 0.59068  0.48377  0.41909  0.37493
1.99 CR 1.90337 1.33455 0.98635 0.70162  0.57506  0.49879  0.44584
PCVE 190395 1.33471 0.98606 0.70146  0.57506  0.49874  0.44586

02 1.69386 1.16940 0.85636 0.61062  0.49954  0.43424  0.38770
3.31 CR 1.91395 1.355615 1.00133 0.71846  0.58755  0.51145  0.45702
PCVE 191241 1.35461 1.00137 0.71861  0.58755 0.51149  0.45699

02 1.74999 1.23124 0.90607 0.64424  0.52971  0.45990  0.41091
9.80 CR 1.95803 1.40591 1.04446 0.74668 0.61421  0.53318  0.47665
PCVE 195767 1.40633 1.04420 0.74671 0.61422  0.53315  0.47665

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each
G is 2000. Npee = 500.
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Table 4: Model 2 - Matching on X, and N,"

Nmaz/Nmin G=12 G=26 G=50 G=100 G=150 G =200 G =250
Coverage

0% 0.9420  0.9480  0.9545 0.9495 0.9455 0.9530 0.9530

1.11 CR 0.9670  0.9845  0.9875 0.9900 0.9915 0.9950 0.9935

PCVE 0.9680 0.9850  0.9865 0.9900 0.9910 0.9950 0.9935

02 0.9315  0.9475  0.9515 0.9530 0.9515 0.9580 0.9510
1.42 CR 0.9665  0.9850  0.9850 0.9895 0.9915 0.9955 0.9955
PCVE 0.9660 0.9850  0.9845 0.9900 0.9915 0.9960 0.9955

o, 0.9270  0.9430  0.9510 0.9520 0.9480 0.9575 0.9520
1.99 CR 0.9650  0.9825  0.9885 0.9905 0.9930 0.9970 0.9945
PCVE 0.9670 0.9815  0.9880 0.9900 0.9930 0.9970 0.9945

o, 0.9160  0.9365  0.9525 0.9480 0.9510 0.9525 0.9485
3.31 CR 0.9580  0.9795  0.9890 0.9885 0.9930 0.9955 0.9940
PCVE 0.9580 0.9800  0.9890 0.9890 0.9930 0.9955 0.9940

02 0.9065  0.9330  0.9430 0.9510 0.9515 0.9495 0.9510
9.80 CR 0.9410 09765  0.9845 0.9890 0.9880 0.9955 0.9915
PCVE 09430 0.9755  0.9830 0.9890 0.9875 0.9955 0.9915

Average Length

0% 1.57502 1.02869 0.73036 0.51031 0.41388  0.35765  0.31902
1.11 CR 1.89796 1.31976 0.96665 0.68810  0.56233  0.48793  0.43636
PCVE 1.89800 1.31982 0.96657 0.68813 0.56236  0.48790  0.43634

0, 1.58361 1.03237 0.73193 0.50975 0.41335 0.35758  0.31856
1.42 CR 1.91602 1.33100 0.97594 0.69418 0.56753  0.49302  0.44052
PCVE 191549 1.33128 0.97597 0.69423 0.56756  0.49301  0.44049

o, 1.61080 1.04567 0.74313 0.51722  0.41903  0.36217  0.32297
1.99 CR 1.93406 1.34395 0.98875 0.70392 0.57534  0.49967  0.44684
PCVE 193403 1.34409 0.98881 0.70388  0.57529  0.49964  0.44680

02 1.63660 1.07550 0.76774 0.53170 0.43114  0.37227  0.33175
3.31 CR 1.94629 1.37114 1.01341 0.72038 0.58976  0.51183  0.45771
PCVE 194802 1.37098 1.01337 0.72047  0.58984  0.51198  0.45771

02 1.70687 1.13039 0.80947 0.55966  0.45337  0.39151  0.34801
9.80 CR 1.98400 1.41410 1.05392 0.75111 0.61528 0.53484  0.47768
PCVE 198403 1.41488 1.05356 0.75103 0.61532  0.53482  0.47769

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each
G is 2000. Npee = 500.
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Table 5: Model 1 - Randomization Test (RT) vs. CR/PCVE "

Size under Hy Power under Hy : Ay +1/4
Nimaz/Nmin G=12 G=26 G=50|G=12 G=26 G=50

Matching on X,

RT 0.0395  0.0560  0.0505 | 0.0755  0.1220  0.2030
1.11 CR 0.0015 0.0010  0.0005 | 0.0095 0.0105  0.0160
PCVE 0.0770  0.0690 0.0615 | 0.1195 0.1410  0.1995

RT 0.0610  0.0445  0.0540 | 0.0935 0.1055  0.1970
1.42 CR 0.0020  0.0005 0.0015 | 0.0105 0.0105  0.0210
PCVE 0.0965 0.0620 0.0625 | 0.1365 0.1220  0.1955

RT 0.0505  0.0505  0.0505 | 0.0770  0.1130  0.1820
1.99 CR 0.0015  0.0015 0 0.0130 0.0100  0.0195
PCVE 0.0905 0.0770  0.0580 | 0.1195 0.1260  0.1825

RT 0.0570  0.0595  0.0555 | 0.0745 0.1130  0.1670
3.31 CR 0.0050  0.0020  0.0020 | 0.0145 0.0190  0.0270
PCVE 0.1020 0.0845 0.0670 | 0.1220 0.1340  0.1760

RT 0.0455  0.0500  0.0475 | 0.0715 0.1105  0.1410
9.80 CR 0.0075  0.0060  0.0030 | 0.0280  0.0230  0.0305
PCVE 0.1075 0.0900 0.0635 | 0.1335 0.1380  0.1605

Matching on X, and N,

g
RT 0.0490  0.0535  0.0585 | 0.1165 0.3050  0.6760

1.11 CR 0 0 0 0 0 0
PCVE 0.0900 0.0740 0.0640 | 0.1540 0.2395 0.5015

RT 0.0440  0.0475 0.0480 | 0.1290 0.3595  0.7820
1.42 CR 0 0 0 0 0 0
PCVE 0.0785 0.0595 0.0575 | 0.1635 0.2810  0.5705

RT 0.0510  0.0400  0.0480 | 0.1255  0.3380  0.7795
1.99 CR 0 0 0 0 0 0
PCVE 0.0890 0.0560  0.0605 | 0.1580  0.2630  0.5785

RT 0.0440  0.0500  0.0555 | 0.1185  0.3370  0.7075
3.31 CR 0 0 0 0 0 0
PCVE 0.0850 0.0710 0.0675 | 0.1590  0.2825  0.5220

RT 0.0525  0.0550  0.0500 | 0.1180  0.2780  0.5965
9.80 CR 0 0 0 0.0005 0 0
PCVE 0.1140 0.0775 0.0620 | 0.1750  0.2540  0.4625

* Number of clusters= 2G with G' = 12, 26,50. Number of replications for each G
is 2000. Nyyq. = 500.

24



Table 6: Model 2 - Randomization Test (RT) vs. CR/PCVE"

Size under Hy Power under Hy : Ay +1/4
Nimaz/Nmin G=12 G=26 G=50|G=12 G=26 G=50

Matching on X,

RT 0.0345 0.0425 0.0480 | 0.0305 0.0790  0.1650
1.11 CR 0.0430  0.0365 0.0245 | 0.0540 0.0645 0.1120
PCVE 0.0440 0.0355  0.0250 | 0.0550  0.0655  0.1115

RT 0.0370  0.0365  0.0445 | 0.0370  0.0675  0.1685
1.42 CR 0.0475  0.0295  0.0295 | 0.0575 0.0560  0.1125
PCVE 0.0465 0.0290 0.0295 | 0.0560 0.0540  0.1145

RT 0.0465  0.0445 0.0490 | 0.0385 0.0785  0.1485
1.99 CR 0.0585  0.0405  0.0320 | 0.0620 0.0675  0.1005
PCVE 0.0585 0.0395 0.0325 | 0.0615 0.0675  0.1005

RT 0.0565  0.0495  0.0520 | 0.0390 0.0660  0.1360
3.31 CR 0.0675 0.0385 0.0300 | 0.0610 0.0620  0.1010
PCVE 0.0685 0.0385 0.0315 | 0.0595 0.0625  0.1025

RT 0.0700  0.0660  0.0600 | 0.0405 0.0550  0.1140
9.80 CR 0.0845  0.0540  0.0360 | 0.0585  0.0600  0.0895
PCVE 0.0825 0.0550  0.0365 | 0.0595 0.0580  0.0895

Matching on X, and N,

g
RT 0.0250 0.0310 0.0370 | 0.0195 0.0735  0.1800

1.11 CR 0.0330  0.0155  0.0125 | 0.0240 0.0365  0.0765
PCVE 0.0320 0.0150 0.0135 | 0.0235 0.0360  0.0790

RT 0.0295 0.0290 0.0345 | 0.0205 0.0730  0.1740
1.42 CR 0.0335 0.0150 0.0150 | 0.0245 0.0385  0.0640
PCVE 0.0340 0.0150 0.0155 | 0.0250 0.0365  0.0675

RT 0.0345 0.0325  0.0415 | 0.0200 0.0665  0.1655
1.99 CR 0.0350  0.0175 0.0115 | 0.0225 0.0310  0.0600
PCVE 0.0330 0.0185 0.0120 | 0.0230 0.0320  0.0610

RT 0.0390  0.0390  0.0340 | 0.0150  0.0590  0.1415
3.31 CR 0.0420  0.0205 0.0110 | 0.0220 0.0295  0.0610
PCVE 0.0420 0.0200 0.0110 | 0.0210 0.0310  0.0595

RT 0.0555  0.0445 0.0415 | 0.0260 0.0405  0.1180
9.80 CR 0.0590 0.0235 0.0155 | 0.0295 0.0270  0.0505
PCVE 0.0570 0.0245 0.0170 | 0.0295 0.0265 0.0510

* Number of clusters= 2G with G' = 12, 26,50. Number of replications for each G
is 2000. Nyyq. = 500.
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Table 7: Covariate Adjustment - Matching on H, and N,

Niaz/Nmin g G=12 G=26 G=50 G=100 G=150 G =200 G =250
Coverage
1.11 0.9120  0.9275  0.9475 0.9395 0.9425 0.9510 0.9425

(X, XSV 08625  0.8970  0.9360  0.9405  0.9440  0.9495  0.9495

1.42 - 0.9135 09245  0.9415 0.9445 0.9495 0.9425 0.9425
(Xg,XéN)) 0.8990  0.9195  0.9375 0.9515 0.9470 0.9515 0.9455

1.99 - 0.9085  0.9250  0.9420 0.9470 0.9455 0.9545 0.9520
(Xg,XéN)) 0.9175  0.9355  0.9500 0.9520 0.9505 0.9505 0.9470

3.31 - 0.9090  0.9265  0.9340 0.9515 0.9465 0.9465 0.9535
(Xg,XéN)) 0.9335 0.9365  0.9480 0.9515 0.9510 0.9525 0.9550

9.80 - 0.9070  0.9245  0.9330 0.9375 0.9510 0.9455 0.9440
(Xg, XéN)) 0.9325  0.9340  0.9475 0.9470 0.9575 0.9500 0.9555

Average Length

111 - 177556 1.21499 0.88201 0.62584 0.51123 0.44346  0.39699
(X, XSV 130671 0.93116 0.68816  0.49242  0.40372  0.35104  0.31400

1.42 - 1.74117 1.20501 0.87067 0.62002 0.50712  0.43888  0.39274
(Xg,XéN)) 1.46021 0.96656 0.69879  0.49479  0.40412  0.35025  0.31292

1.99 - 1.72916 1.19588 0.86887 0.61669  0.50509  0.43677  0.39112
(Xg,XéN)) 1.81983 1.09008 0.74580 0.50919  0.41110 0.35398  0.31603

3.31 - 1.71004 1.19463 0.86708 0.61577 0.50301  0.43573  0.39127
(X, XSV)) 236813 1.30774 0.83203 054137  0.42815  0.36460  0.32354

9.80 - 1.72505 1.19952 0.86484 0.61768  0.50429  0.43672  0.39197
(Xg,X_(SN)) 3.06889 1.60986 0.97620 0.59917  0.46025  0.38545  0.33953

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each G is
2000. Nyaz = 500.
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Table 8: Covariate Adjustment - Matching on H,"

Niaz/Nmin g G=12 G=26 G=50 G=100 G=150 G =200 G =250
Coverage
1.11 0.9015  0.9235  0.9435 0.9395 0.9365 0.9445 0.9485

(X, XSV 08485 0.9060  0.9275  0.9425  0.9420  0.9510  0.9430

1.42 - 0.9070  0.9315  0.9365 0.9405 0.9455 0.9490 0.9525
(X XéN)) 0.9005  0.9230  0.9465 0.9510 0.9430 0.9475 0.9520

9>

1.99 - 0.9050  0.9310  0.9450 0.9450 0.9480 0.9530 0.9465
(Xg,XéN)) 0.9190  0.9395  0.9485 0.9470 0.9520 0.9495 0.9515

3.31 - 0.9100  0.9340  0.9410 0.9535 0.9520 0.9490 0.9485
(Xg,XéN)) 0.9155  0.9325  0.9475 0.9485 0.9435 0.9535 0.9510

9.80 - 0.8975  0.9305  0.9410 0.9435 0.9420 0.9430 0.9545
(X XéN)) 0.9190  0.9440  0.9345 0.9455 0.9405 0.9490 0.9410

g5

Average Length

111 - 1.86744 1.31289 0.95830 0.68388 0.55761 0.48368  0.43289
(X, XSV 130222 0.94977 070427 050804  0.41405  0.36055  0.32280

g

1.42 - 1.86822 1.30105 0.95121 0.67677  0.55462  0.48111  0.43046
(Xg,XéN)) 1.76667 1.22571 0.89458 0.63665  0.52213  0.45247  0.40482

1.99 - 1.85639 1.29289 0.94626 0.67421  0.55160 0.47822  0.42849
(X, XSV)) 254781 1.72304 1.25092 0.87988  0.72210  0.62598  0.55911

3.31 - 1.83716 1.29155 0.94173 0.67099  0.54871  0.47588  0.42645
(X, XSV 356010 2.39697 1.73381 1.22024  0.99619  0.86635  0.77370

9.80 - 1.83555 1.28894 0.93697 0.66756  0.54602  0.47402  0.42411
(X, XN) 486067 3.24720 234399 1.64604 1.34678  1.16835  1.04106

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each G is
2000. Nyaz = 500.
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A Proofs of Main Results

A.1 Proof of Proposition 3.1

PrOOF. By the Cauchy-Schwarz inequality

1< 1< 1< v
44 20 2r
5 2 Nrag)Wa(2) = Wazg-1)|" < [(5 > Nﬂ<zg>> (5 > We(zg) = Wriag—1)| >] :
g=1 g=1 g=1
el Z 7r(2g) <a 22G1 N% Op(1) by the law of large numbers, é 20 1Wa2g) = Wr(2g-1) |27 25 0 by assumption, hence

the result follows. W

A.2 Proof of Theorem 3.1

PrROOF. We have that L B L ~
Ay = @ 2129226 Yo (WONeDg G2 o1cgzac Yo(ONo(1 — Dy)
& Yi<g<26 NeDy & Yi<g<aa No(1 = Dy)

— =, observe that

In particular, for h(z,y, z,w) = %

AG:h( > v Nng, > Nng,G > Yy(0)Ny(1 = Dy), Z Ng1—Dg)>

1<g<2G 1<g<2G 1<g<2G 1<g<2G

and the Jacobian is

1 T 1 =z
Dh(xvyvsz) = (77_727_7772> .
y oy w w
By Assumption 3.1,

VG(L ST Y,N,D, - BIY,(1)N,)) = S (y(1)Ny Dy — E[Y,(1)N,]Dy)
G \/_

1<g<2G@ 1<g<2G

and similarly for the other three terms. The desired conclusion then follows from Lemma A.1 together with an application of
the delta method. To see this, note by the laws of total variance and total covariance that V in Lemma A.1 is symmetric with

entries
V11 = Var[Y(1)Ng] — —Var[ [Yg(1)Ng|Xg]]
V12 = Cov[Fy(1)Ny, Ny] — & CovlBIF, (11N, X,), EINGIX, ]
Viz = —COV[ [Yg(1)Ng|Xg], E[Yg(0)Ng| Xg]]
Via = —COV[ [V ( )Ng|Xg], E[Ng| X,]]
Va2 = Var[Ny] -  Var B[N, X, ]
Va3 = %COV[E[N9|X91,E[Yg(o)Ng\xgu
Va = 3 CovlBIN,|X,], B[N X,]]
V33 = Var[V(0)Ng] — —Var[ [Yg(0)Ng|Xg]]
Vs = CovlFy(O)Ny, Ny] — & CovlBIF, 00Ny X,), EINGIX, ]

1
V44 = Var[Ng] — 5 Var[E[Ng| X,]] .
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We separately calculate the variance terms involving conditional expectations and those that don’t. The terms not involving

conditional expectations are

Var[Yg(l)Ng] Var[Ng}E[Yg(l)Ng}z Var[Yg(O)Ng] Var[Ng]E[Yg(O)Ng]Z
E[Ng]? E[Ng]* E[Ng]? E[Ng]*
_ 2 Cov[Yy(1)Ng, Ng] E[Yg(1)Ng] _ 2 Cov[Yy(0) Ny, Ng] E[Yg(0)N]
E[Ng]? E[Ng]?
E[Y7(1)N7] — E[Yg(1)Ng]? N E[NZ1E[Yg(1)Ng]? — E[Ng]* E[Y,(1)Ng]?
E[Ng]? E[Ng]*
E[YF (0)N7] — E[Yg(0)Ng]* N E[NZ]E[Yg(0)Ng]? — E[Ng]*E[Y4(0)Ng]?
E[N,]? E[Ng]*
 2B[Yg()NZ]E[Yy(1)N,] N 2B[Yy(1)Ng] E[Ng| E[Y,(1)Ny]
E[Ng]? E[Ng]?
 2B[Y4(0) N7 E[Yg(0)Ng] N 2E[Y(0)Ng] E[Ng] E[Yg(0)N]
E[Ng]? E[Ng]?
E[Y;(1)Ng] | E[YF(0)N7] EINJIE[Yg(1)Ng]* = E[NJ]E[Yg(0)N,]?
E[Ng]? E[Ng]? E[Ng]* E[Ng]*
 2B[Y,(1)NF1E[Yg(1)Ng]  2E[Yg(0)NZ]E[Y(0)N,]
E[Ng]? E[N,]?
= BIY2(1)] + EIV200)] ,

where

7@ = gy (o0 - S0

for d € {0,1}.
Next, the terms involving conditional expectations are

_ Var[E[Yy(1)Ng| Xg]] _ Var[E[Ng| Xg]] E[Yy(1)Ng]?
2E[N,]? 2E[N,]*
_ Var[E[Yg(O)NﬂXg” _ Var[E[Ng|Xg”E[Yg(O)Ng]2
2E[Ng]? 2E[Ng]*
+ COV[ED_/Q(:L)NQ‘XQLE[NQ‘XQHED_/Q(DNQ} + COV[ED_/Q(O)NQ‘XQLE[NQ‘XQHED_/Q(O)NQ}
E[Ng]? E[Ng]?
_ COV[E[?g(l)Ng‘XgLE[YQ(O)NMXQ” + COV[E[Yg(l)NﬂXg]vE[Ng|Xg”E[Yg(O)Ng]
E[Ng]? E[Ng|E[Ng]?
+ COV[E[Ng|XgLE[YQ(O)NQ‘XQHEWQ(UNQ}
E[Ng]*E[N,]
_ Cov[E[Ng|X,], E[Ng| Xg]] E[Yq(1)Ng] E[Yy(0) Ng]
E[Ng]?E[N,]?
E[E[Yy(1)Ny|Xg]?] — E[Yy(1)Ng]*  (E[E[Ng|Xg]?] — E[Ng]*)E[Y,(1)Ng]?
2E[N,]2 2E[Ng]*
_ BIE[Yy(0)Ng|Xo]?] — E[Yg(0)Ng]* _ (E[E[Ny|X,]°] — E[Ng|*)E[Yy(0)Nog]?
2E[Ny|? 2E([Ng]*
(B[E[Yg(1)Ng|X 4] E[Ng|X,]] — E[Yy(1)Ng] E[Ng]) E[Y(1)N]
E[Ng]?
(B[E[Yg(0)Ng | X4]E[Ng|X,]] — E[Yy(0)Ng] E[Ng]) E[Y (0)Ny]
E[Ng]?
_ BIE[Yy(1)Ng| Xo| E[Yg(0)Ng| X]] — E[Yy(1)Ng| E[Yy(0)N]
E[Ng]E[N,]
(B[E[Yg(1)Ng|X 4] E[Ng|X,]] — E[Yy(1)Ng] E[Ng]) E[Y(0)Ny]
E[Ng]E[Ng]?
(B[E[Yg(0)Ng|X 4] E[Ng|X,]] — E[Yy(0)Ng] E[Ng]) E[Y(1)N]
E[Ng]*E[N,]

_l’_

_l’_

_l’_

_l’_
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_ (B[E[Ng|Xg|E[Ng|X,]] — E[Ng] E[Ng]) E[Yy(1)Ng] E[Y,(0)Ny]

B[N, 2E[N,J2
BBV ()Ng|X,]?]  BIEINGIX 2BV, ()N,J2  EIE[Vs(0)Ng| X2 EIEING|X,)2E[Yy(0)N,]?
2E[N,]? 2E[N,)! 2E[N,]? 2E[N,*
. BIETy()Ny| X BN X ETa()Ny] , ELE(Y5(0)Ny|Xo) EIN| Xl BT (0)Ny]
B[N,J3 B[N,J3
_ BB ()N, | X EYy(O)Ns [ Xol] | EIE(To(1)Ny|X) EINo| Xl E (Yo (0)Ng]
EN,J? E[N,J3
. EIE[T3(0)Ny| X EINs X | E[T5(1)No] _ EIE[NglXg]*) E[Vy(1)No] E[Ys (0)No]
E[N,J3 B[N,

= — BB, (D1X,1?] — | BIET5(0)|X,1%] ~ BIE[T (11X, BIF,0)1%,]
_ _%E[(E[Yg(l) +Y5(0)1Xg])%] -
|

Lemma A.1. Suppose Q satisfies Assumptions 2.1 and 3.3 and the treatment assignment mechanism satisfies Assumptions
3.1-8.2. Define

LM = X oD, = B (DN0,)
LY = % 1§ém(Nng — E[Ng4]Dy)

L&Y = % 139326(% (0)Ng(1 — Dyg) — E[Yg(0)Ng](1 — Dg))
LY = % 1S;zc(zvg(l — Dg) — E[Ng](1 — Dy)) .

Then, as G — oo,
LIV, LY LN, LYY 5 N (o, V)
where

V=V +Vs

Vi oo
Vi =
0o V9

for

Vi ( B[Var[¥y (1) Ny | X, E[Cov[?g<1>Ng,Ng|Xgn>
E[Cov[yg(l)NngﬂXg” E[Var[Ng|Xg”

0 _ ( E[Var[¥, (0)Ng| X]] E[Cov[?g<o>Ng,Ng|Xgn>
E[COV[?g(O)NngﬂXg” E[Var[Ng|Xg”

1 _ _
Vo = 5 Var[(E[Yg(l)NﬂXg]vE[N9|Xg]vE[Yg(O)Ng‘XgLE[Ng‘XgD/} .
PrOOF OF LEMMA A.1. Note

YN1 7 NI 7 YNO 1 NOy _ (1 YN1 1 NL 7 YNO 1 NO YN1 N1 7YNO 1 NO
Le™Le L Lg) = Wi g Lig bighlig) + Ly g o g o s Lo i)

where
1 _ _
L}{,gl = T Z (Yg(1)NgDg — E[Yg(l)Nng‘X(G)yD(G)])
G 1<g<2G
1 - .
]L;(,Iél = ﬁ Z (E[Yg(l)Nng‘X(G)vD(G)] - E[Yg(l)Ng]Dg)

1<g9<2G
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and similarly for the rest. Next, note (LE%RL?E,L{%OJLIE%L G > 1 is a triangular array of normalized sums of random

vectors. Conditional on X (&) D(G), (]L}’gl,]l}l\flc) ain (]L}{goﬂLll\I%). Moreover, it follows from Q¢ = Q2¢ and Assumption 3.1

that

Var [(LKE}) ‘X(G) D(c)] _ ( % Z1§ggzc Var[Yg(1)Ng|Xg] Dy é ZISgSZG COV[Yg(l)NmNng]Dg)
H—'Il\uc é Zl§g§2G Cov[Yy(1)Ng, Ng| X 4] Dy é Z1gggzc Var[Ng|X¢]Dg

For the upper left component, we have

1 - 1 - 1 _
= Z Var[Yy(1)Ng|Xg]Dg = a E[Y;(l)Ng‘Xg}Dg -G Z E[Yg(l)Ng|Xg]2Dg . (14)
1<g=<2G 1<g=<2G 1<g=<2G
Note
1 2 2
5 E[Yg (I)Ng |X9]D9
1<g=<2G
1 - 1,1 5 1 -
=06 X EVONIX+ (5 0 X BIVONIX] -5 > ENJONIX) .
1<g<2G 1<g<2G:Dg=1 1<g<2G:Dy=0

It follows from the weak law of large numbers, the application of which is permitted by Lemma B.1, that
1

e ST E[V2Z()N2|X,) B E[YZ(1)NZ] .

1<g9<2G

On the other hand, it follows from Assumptions 3.2 and 3.3(a) that

1 - 1 -
= > E[Yy (1)Ng|Xg] — el > E[Y;(1)NF1Xq]
1<g<2G:Dy=1 1<g<2G:Dy=0
1 - _
<5 Z ‘E[Yg(zjfn(l)Ngr(zjfU‘Xw(2j71)] - E[Yf(zj)(l)N?r(zj)|X7r(2j)”
1<j<G
1 P
N rel Z [ Xr(2j—1) — Xr(2jl = 0.
1<5<@
Therefore, L
— P —
e E[YZ(1)N;|X4]Dg — E[YZ(1)NZ] .
1<g<2G
Meanwhile,
1 _
& > ENIXD,
1<g<2G
1 - 1,1 - 1 _
—se 3 ENONIXE+ (5 X ENONIXE -5 Y ENONYE).
1<g<2G@ 1<g<2G:Dg=1 1<g<2G:Dgy=0

It follows from the weak law of large numbers (the application of which is permitted by Lemma B.1) that

= 3 EWONIXE S BETONIX?) .

1<g<2G
Next,
1 _ 1 _
o X ENMNIXP- > B N|X)
1<g<2G:Dy=1 1<g<2G:Dy=0
1 _ _
< IE Z | E[Yr(25—1) (D) Nr2j—1) [ Xr2j—1)] = E[Yr(25) (1) Na2jy | X 2]l
1<5<G
X |E[Yr(2j-1) (D Nr2;-1) | X (25-1)] + B[V (25) (1) Nax(25) | X 25|
1 1/2 /1 - _ 1/2
s Ie Z [ Xr(2j—1) — X‘n‘(2j)|2) (5 Z (IE[Yr(2i—1) (D Nr2j—1) [ Xr2j—1)] + E[Yr(25) (1) Nr(2jy \Xfr(zj)]|)2)
1$5<6 1$5<6
1 1/2 /1 - _ 1/2
S (5 > X1 — X‘rr(2j)|2> (5 > (EVr@i—1) (D Nr(2j—1) [ Xn2j—1))1* + [E[Vr(25) (1) N2y ‘X‘rr(2j)H2)>
1<5<G 1<5<G
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1 /2,1 _ /
<(g X Wewon-XeP) (5 X EGONIXE) T Bo,
1<5<G 1<g<2G

where the first inequality follows by inspection, the second follows from Assumption 3.3(a) and the Cauchy-Schwarz inequality,
the third follows from (a + b)? < 2a? 4 2b2, the last follows by inspection again and the convergence in probability follows from

Assumption 3.2 and the law of large numbers. Therefore,

= Y BLONIXPED, BB [ETONIX,?]
1<g<2G

and hence it follows from (14) that

1 _ P _
a Var[Yy(1)Ng|X¢]Dg — E[Var[Yg(1)Ng| Xg]] .
1<g<2G
An identical argument establishes that
1 P
Ie Var[Ny|X4|Dy — E[Var[Ng|Xg4]] .
1<g<2G

To study the off-diagonal components, note that

> CovlVa Ny, Nal XDy = & 3 BIYONZIXID — & Y BN X BINIX,ID, . (15)

1<g<2G 1<g<2G 1<g9<2G

1
G

By a similar argument to that used above, it can be shown that

1 _ P
a Z E[Yg(l)Ngz‘Xg}Dg*E[Yg(l)Ngz}-
1<g<2G
Meanwhile,
1 _
G X ElY()Ne|X,IE[N,|X,]D,
1<g<2G
1 S 1,1 5 1 .
=06 2 EWMNIXENX (5 X BlYONIXEWNGIXg = o >0 B[V ()N | X BINg|X,)) -
1<g<2G 1<g<2G:Dg=1 1<g<2G:Dg=0
Note that

E[E[Yg(1)Ng|Xg] E[Ng| Xg]] = E[[NgE[Yg(1)|W,]|Xg] E[Ng| Xg]] S E[N] < 00,
where the equality follows by the law of iterated expectations and the inequality by Lemma B.1 and Jensen’s inequality, and
the law of iterated expectations. Thus by the weak law of large numbers,

1

Yel > B[Yy(1)Ng| Xg)EINg| Xg] 5 E[E[Ys(1)Ng | Xg] E[Ng| X]] -

1<g<2G

Next, by the triangle inequality

1 _ 1 _
’5 > E[Yg(1)Ng|Xg]E[Ng| Xg] — — > E[Yg(1)Ng|Xg]E[Ng|Xg]
1<g<2G:Dy=1 1<g<2GiDy=0
1 _ _
< a Z |E[Yr(25—1) (D Nx2j—1)| Xr(2j— )] E[Nr 25— 1)| X (2j—1)] — E[Ya(2j) (D Nx(2j) 1 X 25) ] B[N 25) | X 2)]]
1<5<G

and for each j,
|E[Vr(2j-1) (D Nr(2j—1) | X (2j— 1) B[N (25— 1) | X (2j-1)] = BV (25) (DN (2) | X (25) B[N (25) | X (2)]]
= ’(E[?ﬂ(ijl)(l)Nﬂ(ijl)|X7r(2j71)} — E[Yr 25y () N2y | Xr2))) E[Nx 25y | X r(2)]
+ (B[Nx(2j— 1)1 Xr2j—1)] = EINz @) | Xr@ih D E[Ya(2j—1) (1) Nr2-1) |X7r(2j71)}‘

SEYr(2j—1) (DN 2j—1) 1 Xn2j—1)] = ElVa(2j) (DN 2j) [ Xr@n)]| + [ ENr25-1) | Xn2j—1)] = ENz(2))| Xr2p]]

where the final inequality follows from the triangle inequality, Assumption 3.3(b) and Lemma B.1.
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Thus we have that

1 _ 1 _
5 X ENOMNIXIBNIXI - > ElYa()Nel Xl EINg|X]|
1<g<2G:Dy=1 1<g<2G:Dy=0
1 _ _
S rel Z |E[Yr(25-1) (DN 2j—1)| Xr(2j—1)] = ElVr(2j) DNz 2j) [ Xr2p)]| + | ENr25-1)| Xr(2j—1)] = ENx(25)| Xx(2)]]
1<5<6
1 P
S IE Z | Xr2j—1) — Xr2jyl = 0,
1<5<G

where the final inequality follows from Assumptions 3.3 and the convergence in probability follows from Assumption 3.1.

Proceeding as in the case of the upper left component, we obtain that

1 _ P _
a Z Cov[Yg(1)Ny, Ng| Xg]Dg = E[Cov[Yy(1)Ng, Ng|X,]] .
1<g<2G

Thus we have established that

LYN1
Var || 16 ) |x(@ p@| Byl
LNL )
1,G
Similarly,
YNO
Var [(LLG > ‘X(G) D@ | Byo
]LNO ’
1,G
It thus follows from similar arguments to those used in Lemma A.2 that
P(L(LYE LG LY, L) 1X (D), D), N (0, V1)) 5 0, (16)

where L£(-) denotes the law of a random variable and p is any metric that metrizes weak convergence.

Next, we study (L;gl,]l‘gf’lc,]]_,;go,]l‘g%). It follows from Qg = Q2S and Assumption 3.1 that

L;gl % Z1gggzc DQ(E[Yg(l)Ng‘Xg} - E[Yg(l)NgD
LYe | _ T Ci<g<ac Do(E[Ng| Xo] — E[Ng])
L& = Ticgeac(l = Do)(E[Y(0)Ng| Xg] — E[Yy(0)Ng])
LG = Yi<geaa(l — Do) (EINg| Xg] — E[Ng))
For ]L%qgl, note it follows from Assumption 3.1 that
1 _ _
Var[LY ¥ | X (D] = e D (BlYr(2j—1)(DNr(2j-1) [ Xn(2j-1)] = ElVr(25) (1) N2y [ X (2)])°
1<5<@
1 P
S IE Z | Xr(2i—1) — Xw(zj)\z —0.
1<5<G

Therefore, it follows from Markov’s inequality conditional on X (&) and D(Y) | and the fact that probabilities are bounded and

hence uniformly integrable, that
LYF = BILYFHX D]+ 0p(1) .

Applying a similar argument to each of LEUG, L;{go, LZN% allows us to conclude that

LYN 398 Li<g<ac (ElVs(1)Ng| Xo] — E[Yg(1)Ng])

Lo | _ 306 Ti<g<ac (BN Xg] — EINg)) on(l).
Ly 396 i<g<26(EYg(0)Ng|Xg) = E[Yg(0)Ng))

L% 595 T1<g<2a(BINg| Xg] — E[N])

It thus follows from the central limit theorem (the application of which is justified by Jensen’s inequality combined with

Assumption 2.1(b), and Lemma B.1) that

d
YR LY L, LYRO LYY % N (0, Va) .
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Because (16) holds and (ngl7L2N1G7L%’g07LNO ) is deterministic conditional on X&) D) the conclusion of the theorem

follows from Lemma S.1.3 in Bai et al. (2022). B

A.3 Proof of Theorem 3.2

Proor. We have that L B L B
G 2i<g<ec Yo(WDNgDg G 2 1<g<ag Yo(0)Ng(1 = Dyg)

& Yi<g<26 NoDyg & Si<g<ag No(1 = Dy)

In particular, for h(z,y, 2, w) = 7 — Z, observe that

Ag =

A 1 - 1
Ag=h|Z E Yo(1) Nng, E Nng, a E Y (0)Ng(1 — Dy), G E Ng(1 = Dg)
1<g<2G 1<g<2G 1<g<2G 1<g<2G

and the Jacobian is

1 1
Dh(mvy,sz) = <_7_i7__7 i) .
Yy Yy
By Assumption 3.4,

‘@<l Y VoNgDg = E[Yg(1)N] ) Y. (Ya(1))NgDg — E[Yy(1)Ng]Dy)
1<g<2G \/_ 1<gg2G

and similarly for the other three terms. The desired conclusion then follows from Lemma A.2 together with an application of
the Delta method. To see this, note by the laws of total variance and total covariance that V in Lemma A.2 is symmetric with

entries

Vit = VarlVy (1)Ny] = 5 Var[B¥, ()N [ W]

Vig = COV[E[Yg(l)NﬂWg]ng} - % COV[E[?g(l)Ng‘WgLNg]

Vig = 3 Cov[BI¥y ()N, |Wol, B[¥4(0)Ny W, ]

Via = 5 Cov[BI¥, ()N, Wy, Ny]
1

Va2 = Var[Ng] — 5 Var[Ng|

Van = 3 CovlNy, BIT5 (0)Ny X,

1

Vou4 = 5 Var[Ng]

Vag = Var(¥ (0)Ny] — | Var[B[¥(0)Ny W, ]

Vsa = Cov[E[Yy(0)Ng| W], Ng] — % Cov[E[Y(0)Ng|Wg], Ng]
1

Va4 = Var[Ng] — 5 Var[Ng] .

We proceed by mirroring the algebra in Theorem 3.1. Expanding and simplifying the first half of the expression:

Var[Yg(l)Ng] Var[Ng}E[Yg(l)NgP Var[Yg(O)Ng} Var[Ng]E[Yg(O)NgF

E[N,]? E[Ng]* E[N,]? E[Ng|*
_ 2COV[E[Yg(l)Ng‘WgLNg]E[Yg(l)Ng] _ 2COV[E[Yg(O)Ng|Wg]vNg}E[yg(O)Ng]
E[Ng]? E[Ng]3
B[Y7(1)Ng] — E[Yy(1)N,)? N E[NG|E[Yg(1)Ng]* — E[Ng]* E[Y,(1)N,]?
a E[N,]? E[Ng]*
B[Y7 (0)Ng] — E[Y,4(0)N,]? N E[NFE[Yy(0)Ng]* — E[Ng]*E[Yy(0)N,]?
E[N,]? E[Ng]*
_ 2E[Y,()NF1E[Yg(1)Ng] 4 2EYs(1)No ]| BN E[Yy (1) Ny
E[Ng]? E[Ng]?
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_ 2B[Yg(0)NF]E[Yy(0)N,] . 2E[Yy(0)Ng | E[Ng|E[Yg(0) No]

E[Ng]® E[Ng]®
_ E[Y2()NZ] | E[YZ(0)N2] = E[NZE[Y4(1)Ng]? = E[N2]E[Y,(0)N,]?
E[Ng]2 E[Ng]2 E[NgJ* E[Ng*
_ 2B[Y()NZE[Yg (N, 2E[Y,(0)NZ]E[Y,(0)N]
E[NgJ3 E[N,3

= B[V} (1)] + E[Y;(0)] ,

where

Yo(d) = Eﬁég] (Yg(d) - E[g[(fi)]]v])

for d € {0,1}.
Expanding the second half of the expression:

_ Var[E[Yg(1)Ng|Wy]] _ Var[Ng] E[Yg(1)Ng]?
2E[N, ]2 2E[N,]1
_ Var[E[?g(O)Ng‘Wg” _ Var[Ng}E[?g(o)NgP
2E[Ng|? 2E[Ng]*
+ COV[E[Yg(l)NﬂWg]vNg]E[Yg(l)Ng] + COV[E[Yg(O)NﬂWgLNg]E[Yg(O)Ng]
E[Ng]3 E[Ng]3
_ COV[E[Yg(l)NﬂWg]vE[yg(o)NﬂWg” + COV[E[Yg(l)NﬂWgLNg]E[Yg(O)Ng]
E[Ng]? E[Ng]E[N]?
+ Cov[Ng, E[yg(o)NﬂWg”E[Yg(l)Ng]
E[Ng]? E[N]
_ COV[NgvNg}E[yg(l)Ng}E[yg(O)Ng]
E[Ng]?E[N,]?
_ EBIE[Yy(1)Ng|Wy]?] — E[Yy(1)Ng)? _ (B[NG] — E[Ng]*)E[Yy(1)Ny]?
2E[Ng]? 2B[Ng]*
_ E[E[Yy(0)Ng|W,)?] — E[Yg(0)Ng]*  (EIN] — E[N]*) E[Y,(0)N,]®
2E[Ng]? 2E[Ng]*
n (E[E[Yy(1)Ng|Wy|Ng| — E[Yg(1) Nl E[Ng)) E[Yg(1)No]
E[Ng]?
n (E[E[Yg(0)Ng|Wy|Ng| — E[Yg(0)Ng| E[Ng)) E[Yg(0) No]
E[Ng]?
BE[Yy(1)Ng W] E[Yy(0)Ng [Wyl] — E[Ys(1)Ng] E[Y(0)Ny]
E[Ng]E[N,]
n (E[E[Yy(1)Ng|WyINg| — E[Yy(1) Nl E[Ng)) E[Yg(0) o]
E[Ng]E[N,]?
n (E[E[Yy(0)Ng|Wy|Ng| — E[Yg(0)Ngl E[Ng)) E[Yg(1)No]
E[Ng]? E[N]
(E[N3] = E[Ng]*)E[Yq(1)Ng] E[Yq(0)Ng]
E[Ng|?E[Ng]?
_ EIE[Y,(1)Ng|Wy]2]  EINJIE[Yg()Ng|*>  E[E[Y4(0)Ny|W]?]  EINJIE[Y4(0)Ng]?

: 2E[Ng]? 2E[Ng]* 2E[Ng]? 2B[N,]*
n B[E[Yy(1)Ng|W]Ngl E[Yy(1) N n E[E[Yg(0)Ng W] Ng| E[Yy(0)N]
E[Ng]? E[N,]?
_ E[E[Yy(1)Ng|Wg] E[Y(0)Ng|Wo]] n E[E[Yy(1)Ng W] Nl E[Yy(0)N]
E[Ng]? E[N,]?
E[E[Yy(0)Ng|Wg]Ng E[Yy(1)Ng]  EINFIE[Y,(1)Ng] E[Y,(0)Ny]
E[Ng]? E[Ng]*

J’_

= —%E[E[f’g(l)le}Q] - %E[E[?g(o)\wg]2} — E[B[Yy(1)|W,) E[Yy(0)|W,]]

- _%E[(E[f/g(l) +Y(0)[W,))?] -

35



Lemma A.2. Suppose Q satisfies Assumptions 2.1 and 3.6 and the treatment assignment mechanism satisfies Assumptions
3.4-8.5. Define

LENI = (?g(l)Nng - E[?g(l)Ng]Dg)

L& (NgDg — E[Ng|Dg)

(Yg(0)Ng(1 = Dg) — E[Yg(0)Ng](1 — Dy))

NO _
Lg" =

1
7
e
VG
yNo _ 1
LEN = —=
% (Ny(1 = Dy) = E[Ng](1 - Dy)) -

Then, as G — o,
(]L\G(Nl , ]Lgl , ]L\G(NO7 ]LgO)/ i ]\7(07 V) ,
where

V=V +V,

Vi oo
Vy =
0 V9

vl = (E[Var[ygu)zvgwgn o)
b 0 0

for

Vo — E[Var[?g(O)NﬂWgH 0
! 0 0
Vo = %Var[(E[Y/g(l)NﬂWg]ngvE[VQ(O)NQ‘Wg]ng),} .

PrOOF OF LEMMA A.2. Note

(]L\G(N17]ngl7 ]L\G(NO7]LI§0) — ( }(}ga 0, ]L;(yléq 0) 4 (]LYNI ]Lgl,]LYNO ]LgO) ,

2,G 2,G >
where
1 - .
Lid = 75 (Yo (1)Ng Dy = B[Y(1)Ng Dg | N(?, X (), DD
1<g=<2G
1 - -
Lis' = 7= (E[Vy(1)Ny Dg| N9, X(D, D] — B[V, (1)Ny] Dy)
Ve 1<g<2G

and similarly for ]LENO. Next, note (L}igl,O,ngo,OL G > 1 is a triangular array of normalized sums of random vectors.

Conditional on N(G),X(G),D(G)7 ]L}{E;l 1 ]L}{go. Moreover, it follows from Q¢ = Q2% and Assumption 3.4 that

Var [L}igl

N(G),X(G),D(G)] = Var[Vy (1) Ny |[W,] Dy .

We have L L .
a Z Var[Yy(1)Ng|Wg]Dg = a Z E[V;(l)NgQ‘Wg}Dg G Z E[Yg(l)Ng|Wg}2Dg : (17
1<g<2G 1<g<2G 1<g9<2G
Note
1 2 2
5 E[Yg (1)Ng ‘WQ]DQ
1<g<2G
1 - 1,1 = 1 _
=26 BY;ONWo +5(5 X BYPONWo -5 Y BIVFNIW]) .
1<g<2@ 1<g<2G:Dy=1 1<g<2G:Dy=0
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It follows from the weak law of large numbers, the application of which is permitted by Lemma B.1,

1

S ST EVZONZ|W,) B EV2(1)NZ .

1<g<2G
On the other hand,

& X ERONIWI-L Y EFONIW

1<g<2G:Dy=1 1<g<2G-Dy=0
1 _ _
<G > INZ 1) BV 221y DI Wa(2j—1)] = NZ(0j) BV (25 D)Wzl
1<j<G
1 2 o2 2 1 2 2 o2
<z ZGN‘rr@j)|E[Y7r(2j71)(1)|W"f(2j*1)] = EY 0 (WIWrepll + el ZG INZ 25y = Naej— ) 1BV (25— 1) (DIWar2j—n)]l
1<5< 1<5<
1 2 1 2 2 P
G 2 NeepWrai-v =Wrenl+5 D0 INZep = Nig;—nl =0,
1<5<G 1<5<G

where the first inequality follows from Assumption 3.4 and the triangle inequality, the second inequality by some algebraic ma-

nipulations, the final inequality by Assumption 3.6 and Lemma B.1, and the convergence in probability follows from Assumption

3.5 and Lemma B.2. Therefore,
1 . P _
G > EVJ(1)N;|W4|Dy = E[Y;(1)Ng] .

1<g=<2G
Meanwhile,
1 _
G X BV ()NeW*Dy
1<g<2@
1 _ 5 11 _ 5 1 - 5
=06 2 ENMNWP (5 X BGONWP - L > B NWl)
1<g<2G 1<g<2G:Dg=1 1<g<2G:Dg=0

It follows from the weak law of large numbers, the application of which is permitted by Lemma B.1 and Assumption 2.1(c) that

LS BTN W2 B BB, ()N, W,

1<g<2G
Next,
1 _ 1 _
& X BNONWP - Y BN
1<g<2G:Dy=1 1<g<2G:Dy=0
1 _ _
< = > IEVr@i—1) (D Nagzj—1) [Wr2j—1)] = E[Vr(2) (D) Nr(2g) [Wa(2p)]l
1<5<6

X |EY25-1) (D) Nr(2j—1) [ Wa(2j—1)] + ElVr(25) (D) N (2) [Wr25]l

1 _ _ 1/2
<(= Z | E[Yr(25—1) (1) Nr2j—1) [Warzj—1)] = E[Yw(2j)(1)N7r(2j)|W7r(2j)”2>
1<5<G
1 — _ 9\ 1/2
= Z | E[Yr(25—1) (D) Nr2j—1) [Wr2j—1)] + E[Yr(25) (1) Na2j) [Wa 2]l )
1<j<G
1 _ _ 12,1 _ 172 p
N Z |E[Yr(2i—1) (D) Nr2j—1) [Wari2j—1)] —E[Yw(zj)(l)Nn(zj)\Ww(zj)ﬂz) (5 Z E[Yg(l)Ng|Wg}2) =0,
1<j<G 1<g<2G

where the first inequality follows by inspection, the second follows from Cauchy-Schwarz, the third follows from (a + b)? <

2a2 + 2b2, and the convergence in probability follows from Assumptions 3.6, 3.5 and the law of large numbers. Therefore,

D B A ATADIES I ACRAAT
1<g<2G
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and hence it follows from (17) that

1 _ P _
a Var[Yg(1)Ng|[Wg|Dg — E[Var[Yg(1)Ng|Wy]] .
1<g<2G
Similarly,
1 _ P _
a Var[Yy(0)Ng|Wg]|Dg — E[Var[Yg(0)Ng|Wq]] .
1<g<2G
‘We now establish
P
p(L(LYE 0, LY E,0)[W D, D) N (0, V1)) =0, (18)

where £(+) is used to denote the law of a random variable and p is any metric that metrizes weak convergence. For that purpose

note that we only need to show that for any subsequence {G}} there exists a further subsequence {G, } along which
G k . .
p(ﬁ((]l‘}igil ,0, L}igil ,0)|W( kl)7 DG l),N(O,Vl)) — 0 with probability one . (19)

In order to extract such a subsequence, we verify the conditions in the Lindeberg central limit theorem in Proposition 2.27 of

van der Vaart (1998). First note that by the results proved so far,

Var[(LY¥!, 0,LYRC, 0)|[W(@, D@)] By,

{

l Y. El(Dg(Yg(1)Ng = E[Yg(1)Ng|Wy)))* + (1 = Dg)(Yg(0)Ng — E[Yq(0)Ng|Wy)))?
1<9<2G

x I{(Dg(Yy(1)Ng — E[Y(1)Ng|Ws]))* + (1 = Dg) (Y4 (0)Ng — E[Yg(0)Ng|Wy)))* > G}HW (D), DID]

Next, We will use the inequality

D

1<j<k

>

1<j<k

aj >E}< 3 k|aj|1{|aj\>£} . (20)

1<j<k

It follows from (20) that

$G X EIDTN, ~ BN DTN ~ ET )N Wal)* > 262§, D)
RS
g X PO D500 ~ BT ONIWa)) T~ Dy (00N, — ETaONs Wal)* > 22}, D)
9=
= é 1%2(; E[(Yy(1)Ng — E[Yy(1)Ng|Wo))2I{|Yy(1)Ng — E[Yy(1)Ng|Wy]| > eV'G/vVZ} W,
n é 1§gS2GE[(Yg(O)Ng — B[Yg(0)Ng|Wg])2I{| Yy (0)Ng — E[Yg(0)Ng|Wgl| > eVG/V2}|Wy] .

Fix any m > 0. For G large enough, the previous line
1 . _ _ _
<= 3 BUVa(N, — BT ()N W *HI¥y (DN, — [Ty (1)Ng [ Woll > m} W]
1<g<2G

+ é Y. El(Yy(0)Ng — E[Yy(0)Ng|Wy])*I{[¥a(0)Ng — E[Y(0)Ng|Wg]| > m| W]
1<g<2G

P — — — —
= 2B[(Yg(1)Ng — E[Yg(1)Ng|Wg])2I{|¥(1)Ng — E[Yg(1)Ng|Wo]| > m}]
+ E[(Yg(1)Ng — E[Y(1)Ng|Wg])* I{|¥g(1)Ng — E[Y(1)Ng|Wg]| > m}] .
because E[(Yy(1)Ny — E[Yy(1)Ng|W4])?] < 0o and E[(Y4(0)Ng — E[Yy(0)Ng|W4])?] < co. As m — oo, the last expression goes
to 0. Therefore, it follows from similar arguments to those in the proof of Lemma B.3 of Bai (2022) that both conditions in

Proposition 2.27 of van der Vaart (1998) hold in probability, and therefore there must be a subsequence along which they hold
almost surely, so (19) and hence (18) holds.
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Next, we study (L;gl,]l‘gl,ﬂ_,;go,]l‘go). It follows from Q¢ = Q2C and Assumption 3.4 that

L;gl % Z1gggzc DQ(E[?g(l)NﬂWg} - E[yg(l)NgD
1L2ng _ %Zgggzc Dy(Ng — E[Ng])

LYXO | | J5 Ticgcac(l — Do) (B4 (0)Ng|Wq] — E[Y4(0)Nq))
LYY, S S yeac (1~ Do)(Ny — EING)

For ]Lg”él, it follows from similar arguments to those used above that Var []L;”él |W(G)] Eo. Therefore, it follows from Markov’s

inequality conditional on W (&) and D(&) and the fact that probabilities are bounded and hence uniformly integrable, that
LYN! = BILYS W] + op(1) .

Applying a similar argument to each of Lgl, Lg(é\lo and Lgo allows us to conclude that

ng} % Zl§g§2G(ED_/9(1)NQIWQ] — B[Yy(1)Ng))

LY _ ﬁ21§g§2G(NQ_E[NgD +