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Abstract

This paper considers the problem of inference in cluster randomized trials where treatment status is

determined according to a “matched pairs” design. Here, by a cluster randomized experiment, we mean

one in which treatment is assigned at the level of the cluster; by a “matched pairs” design we mean that

a sample of clusters is paired according to baseline, cluster-level covariates and, within each pair, one

cluster is selected at random for treatment. We study the large-sample behavior of a weighted difference-

in-means estimator and derive two distinct sets of results depending on if the matching procedure does or

does not match on cluster size. We then propose a single variance estimator which is consistent in either

regime. Combining these results establishes the asymptotic exactness of tests based on these estimators.

Next, we consider the properties of two common testing procedures based on t-tests constructed from

linear regressions, and argue that both are generally conservative in our framework. We additionally

study the behavior of a randomization test which permutes the treatment status for clusters within

pairs, and establish its finite-sample and asymptotic validity for testing specific null hypotheses. Finally,

we propose a covariate-adjusted estimator which adjusts for additional baseline covariates not used for

treatment assignment, and establish conditions under which such an estimator leads to improvements in

precision. A simulation study confirms the practical relevance of our theoretical results.
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1 Introduction

This paper studies the problem of inference in cluster randomized experiments where treatment status is

determined according to a “matched pairs” design. Here, by a cluster randomized experiment, we mean one

in which treatment is assigned at the level of the cluster; by a “matched pairs” design we mean that the

sample of clusters is paired according to baseline, cluster-level covariates and, within each pair, one cluster

is selected at random for treatment. Cluster matched pair designs feature prominently in all parts of the

sciences: examples in economics include Banerjee et al. (2015) and Crépon et al. (2015).

Following recent work in Bugni et al. (2022), we develop our results in a sampling framework where

clusters are realized as a random sample from a population of clusters. Importantly, in this framework

cluster sizes are modeled as random and “non-ignorable,” meaning that “large” clusters and “small” clusters

may be heterogeneous, and, in particular, the effects of the treatment may vary across clusters of differing

sizes. The framework additionally allows for the possibility of two-stage sampling, in which a subset of units

is sampled from the set of units within each sampled cluster.

We first study the large-sample behavior of a weighted difference-in-means estimator under two distinct

sets of assumptions on the matching procedure. Specifically, we distinguish between settings where the

matching procedure does or does not match on a function of cluster size. For both cases, we establish

conditions under which our estimator is asymptotically normal and derive simple, closed-form expressions for

the asymptotic variance. Using these results, we establish formally that employing cluster size as a matching

variable in addition to baseline covariates delivers a weak (and often strict) improvement in asymptotic

efficiency relative to matching on baseline covariates alone. We then propose a variance estimator which is

consistent for either asymptotic variance depending on the nature of the matching procedure. Combining

these results establishes the asymptotic exactness of tests based on our estimators.

We then consider the asymptotic properties of two commonly recommended inference procedures based

on linear regressions of the individual-level outcomes on a constant and cluster-level treatment. The first

inference procedure clusters at the level of treatment assignment. The second inference procedure clusters

at the level of assignment pairs, as recently recommended in de Chaisemartin and Ramirez-Cuellar (2019).

We establish that both procedures are generally conservative in our framework.

Next, we study the behavior of a randomization test which permutes the treatment status for clusters

within pairs. We establish the finite-sample validity of such a test for testing a certain null hypothesis related

to the equality of potential outcome distributions under treatment and control, and then establish asymptotic

validity for testing null hypotheses about the size-weighted average treatment effect. We emphasize, however,

that the latter result relies heavily on our choice of test statistic, which is studentized using our novel variance

estimator. In simulations, we find that this randomization test controls size more reliably than any of the

other inference procedures we consider in the paper, while delivering comparable power.

Finally, we derive large-sample results for a covariate-adjusted version of our estimator, which is designed

to improve precision by exploiting additional baseline covariates which were not used for treatment assign-

ment. As discussed in Bai et al. (2023a) and Cytrynbaum (2023), standard covariate adjustments based on
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a regression using treatment-covariate interactions (see, for instance,am Negi and Wooldridge, 2021, for a

succinct treatment) are not guaranteed to improve efficiency when treatment assignment is not completely

randomized. For this reason, we consider a modified version of the estimator developed in Bai et al. (2023a)

for individual-level matched pair experiments. Our results show that our covariate-adjusted estimator is

guaranteed to improve asymptotic efficiency relative to the unadjusted estimator, whenever the matching

procedure matches on cluster size. Interestingly, we also find that this improvement in efficiency is not

guaranteed when cluster size is excluded as a matching variable, and document in a simulation study that

in fact such covariate adjustments may increase variance.

The analysis of data from cluster randomized experiments and data from experiments with matched pairs

has received considerable attention (see Donner and Klar, 2000; Athey and Imbens, 2017; Hayes and Moulton,

2017, for general overviews), but most recent work has focused on only one of these two features at a time.

Recent work on the analysis of cluster randomized experiments includes Middleton and Aronow (2015),

Su and Ding (2021), Schochet et al. (2021), and Wang et al. (2022) (see Bugni et al., 2022, for a general

discussion of this literature as well as further references). Recent work on the analysis of matched pairs ex-

periments includes Jiang et al. (2020), Cytrynbaum (2021), Bai et al. (2023b), and Bai (2022) (see Bai et al.,

2022, for a general discussion of this literature as well as further references). Two papers which focus specif-

ically on the analysis of cluster randomized experiments with matched pairs are Imai et al. (2009) and

de Chaisemartin and Ramirez-Cuellar (2019). Both papers maintain a finite-population perspective, where

the primary source of uncertainty is “design-based,” stemming from the randomness in treatment assignment.

In such a framework, both papers study the finite and large-sample behavior of difference-in-means type esti-

mators and propose corresponding variance estimators which are shown to be conservative. In contrast, our

paper maintains a “super-population” sampling framework and proposes a novel variance estimator which

is shown to be asymptotically exact in our setting.

The remainder of the paper is organized as follows. In Section 2 we describe our setup and notation.

Section 3 presents our main results. Section 4 studies the finite-sample behavior of our proposed tests via a

simulation study. We conclude with recommendations for empirical practice in Section 5.

2 Setup and Notation

In this section we introduce the notation and assumptions which are common to both matching procedures

considered in Section 3. We broadly follow the setup and notation developed in Bugni et al. (2022). Let

Yi,g ∈ R denote the (observed) outcome of interest for the ith unit in the gth cluster, Dg ∈ {0, 1} denote

the treatment received by the gth cluster, Xg ∈ Rk the observed, baseline covariates for the gth cluster,

and Ng ∈ Z+ the size of the gth cluster. In what follows we sometimes refer to the vector (Xg, Ng) as

Wg. Further denote by Yi,g(d) the potential outcome of the ith unit in cluster g, when all units in the gth

cluster receive treatment d ∈ {0, 1}. As usual, the observed outcome and potential outcomes are related to

treatment assignment by the relationship

Yi,g = Yi,g(1)Dg + Yi,g(0)(1−Dg) . (1)
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In addition, define Mg to be the (possibly random) subset of {1, 2, . . . , Ng} corresponding to the observations

within the gth cluster that are sampled by the researcher. We emphasize that a realization of Mg is a set

whose cardinality we denote by |Mg|, whereas a realization of Ng is a positive integer. For example, in

the event that all observations in a cluster are sampled, Mg = {1, . . . , Ng} and |Mg| = Ng. We assume

throughout that our sample consists of 2G clusters and denote by PG the distribution of the observed data

Z(G) := (((Yi,g : i ∈ Mg), Dg, Xg, Ng) : 1 ≤ g ≤ 2G) ,

and by QG the distribution of

(((Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng),Mg, Xg, Ng) : 1 ≤ g ≤ 2G) .

Note that PG is determined jointly by (1) together with the distribution of D(G) := (Dg : 1 ≤ g ≤ 2G) and

QG, so we will state our assumptions below in terms of these two quantities.

We now describe some preliminary assumptions on QG that we maintain throughout the paper. In order

to do so, it is useful to introduce some further notation. To this end, for d ∈ {0, 1}, define

Ȳg(d) :=
1

|Mg|
∑

i∈Mg

Yi,g(d) .

Further define RG(M(G)
g , X(G), N (G)) to be the distribution of

((Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng) : 1 ≤ g ≤ 2G)
∣

∣ M(G)
g , X(G), N (G) ,

where M(G)
g := (Mg : 1 ≤ g ≤ 2G), X(G) := (Xg : 1 ≤ g ≤ 2G) and N (G) := (Ng : 1 ≤ g ≤ 2G). Note that

QG is completely determined by RG(M(G)
g , X(G), N (G)) and the distribution of (M(G)

g , X(G), N (G)). The

following assumption states our main requirements on QG using this notation.

Assumption 2.1. The distribution QG is such that

(a) {(Mg, Xg, Ng), 1 ≤ g ≤ 2G} is an i.i.d. sequence of random variables.

(b) For some family of distributions {R(m,x, n) : (m,x, n) ∈ supp(Mg, Xg, Ng)},

RG(M(G)
g , X(G), N (G)) =

∏

1≤g≤2G

R(Mg, Xg, Ng) .

(c) P{|Mg| ≥ 1} = 1 and E[N2
g ] <∞.

(d) For some c <∞, P{E[Y 2
i,g(d)|Xg , Ng] ≤ c for all 1 ≤ i ≤ Ng} = 1 for all d ∈ {0, 1} and 1 ≤ g ≤ 2G.

(e) Mg ⊥⊥ (Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng)
∣

∣ Xg, Ng for all 1 ≤ g ≤ 2G.
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(f) For d ∈ {0, 1} and 1 ≤ g ≤ 2G,

E[Ȳg(d)|Ng] = E





1

Ng

∑

1≤i≤Ng

Yi,g(d)
∣

∣

∣
Ng



 w.p.1 .

For completeness, we reproduce some of the observations from Bugni et al. (2022) regarding these as-

sumptions. As shown in Bugni et al. (2022), an important implication of Assumptions 2.1(a)–(b) for our

purposes is that
{

(Ȳg(1), Ȳg(0), |Mg|, Xg, Ng
)

, 1 ≤ g ≤ 2G} , (2)

is an i.i.d. sequence of random variables. Assumptions 2.1.(c)–(d) impose some mild regularity on the

(conditional) moments of the distribution of cluster sizes and potential outcomes, in order to permit the

application of relevant laws of large numbers and central limit theorems. Note that Assumption 2.1.(c)

does not rule out the possibility of observing arbitrarily large clusters, but does place restrictions on the

heterogeneity of cluster sizes. For instance, two consequences of Assumptions 2.1.(a) and (c) are that

∑

1≤g≤GN
2
g

∑

1≤g≤GNg
= OP (1) ,

and
max1≤g≤GN

2
g

∑

1≤g≤GNg

P−→ 0 ,

which mirror heterogeneity restrictions imposed in the analysis of clustered data when cluster sizes are

modeled as non-random (see for example Assumption 2 in Hansen and Lee, 2019). Assumptions 2.1(e)–(f)

impose high-level restrictions on the two-stage sampling procedure. Assumption 2.1(e) allows the subset

of observations sampled by the experimenter to depend on Xg and Ng, but rules out dependence on the

potential outcomes within the cluster itself. Assumption 2.1(f) is a high-level assumption which guarantees

that we can extrapolate from the observations that are sampled to the observations that are not sampled.

It can be shown that Assumptions 2.1(e)–(f) are satisfied if Mg is drawn as a random sample without

replacement from {1, 2, . . . , Ng} in an appropriate sense (see Lemma 2.1 in Bugni et al., 2022).

Our object of interest is the size-weighted cluster-level average treatment effect, which may be expressed

in our notation as

∆(QG) = E





Ng
E[Ng]





1

Ng

Ng
∑

i=1

(Yi,g(1)− Yi,g(0))







 = E





1

E[Ng]

Ng
∑

i=1

(Yi,g(1)− Yi,g(0))



 .

This parameter, which weights the cluster-level average treatment effects proportional to cluster size, can

be thought of as the average treatment effect where individuals are the unit of interest. Note that As-

sumptions 2.1(a)–(b) imply that we may express ∆(QG) as a function of R and the common distribution of

(Mg, Xg, Ng). In particular, this implies that ∆(QG) does not depend on G. Accordingly, in what follows

we simply denote ∆ = ∆(QG).

In Sections 3.1–3.3, we study the asymptotic behavior of the following size-weighted difference-in-means

4



estimator:

∆̂G := µ̂G(1)− µ̂G(0) , (3)

where

µ̂G(d) :=
1

N(d)

2G
∑

g=1

I{Dg = d} Ng
|Mg|

∑

i∈Mg

Yi,g ,

with

N(d) :=

2G
∑

g=1

NgI{Dg = d} .

Note that this estimator may be obtained as the estimator of the coefficient of Dg in a weighted least

squares regression of Yi,g on a constant and Dg with weights equal to
√

Ng/|Mg|. In the special case that

all observations in each cluster are sampled, so that Mg = {1, 2, . . . , Ng} for all 1 ≤ g ≤ G with probability

one, this estimator collapses to the standard difference-in-means estimator. In Section 3.4 we consider a

covariate-adjusted modification of ∆̂G which is designed to incorporate additional baseline covariates which

were not used for treatment assignment.

Remark 2.1. Following the recommendations in Bruhn and McKenzie (2009) and Glennerster and Takavarasha

(2013), it is common practice to conduct inference in matched pair experiments using the standard errors

obtained from a regression of individual level outcomes on treatment and a collection of pair-level fixed

effects. We do not analyze the asymptotic properties of such an approach for two reasons. First, in the

context of individual-level randomized experiments, Bai et al. (2022) and Bai et al. (2023b) argue that such

a regression estimator is in fact numerically equivalent to the simple difference-in-means estimator, but that

the resulting standard errors are generally conservative (and in some cases possibly invalid). This result

generalizes immediately to the clustered setting in the special case where all clusters are the same size and

Mg = {1, 2, . . . , Ng}. Second, when cluster sizes vary, this numerical equivalence no longer holds, and in such

cases de Chaisemartin and Ramirez-Cuellar (2019) argue (in an alternative inferential framework) that the

corresponding regression estimator may no longer be consistent for the average treatment effect of interest.

Remark 2.2. Bugni et al. (2022) also define an alternative treatment effect parameter given by

∆eq(QG) = E





1

Ng

Ng
∑

i=1

(Yi,g(1)− Yi,g(0))



 .

This parameter, which weights the cluster-level average treatment effects equally regardless of cluster size,

can be thought of as the average treatment effect where the clusters themselves are the units of interest. For

this parameter, the analysis of matched-pair designs for individual-level treatments developed in Bai et al.

(2022) applies directly to the data obtained from the cluster-level averages {(Ȳg, Dg, Xg, Ng) : 1 ≤ g ≤ 2G},
where Ȳg = 1

|Mg |

∑

i∈Mg
Yi,g. As a result, we do not pursue a detailed description of inference for this

parameter in the paper.

Remark 2.3. In Appendix C, we consider a generalization of our main results to settings with multiple

treatments (i.e. “matched-tuples” designs) as considered in Bai et al. (2023b).
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3 Main Results

3.1 Asymptotic Behavior of ∆̂G for Cluster-Matched Pair Designs

In this section, we consider the asymptotic behavior of ∆̂G for two distinct types of cluster-matched pair

designs. Section 3.1.1 studies a setting where cluster size is not used as a matching variable when forming

pairs. Section 3.1.2 considers the setting where we do allow for pairs to be matched based on cluster size in

an appropriate sense made formal below.

3.1.1 Not Matching on Cluster Size

In this section, we consider a setting where cluster size is not used as a matching variable. First, we describe

our formal assumptions on the mechanism determining treatment assignment. The G pairs of clusters may

be represented by the sets

{π(2g − 1), π(2g)} for g = 1, ..., G ,

where π = πG(X
(G)) is a permutation of 2G elements. Given such a π, we assume that treatment status is

assigned as follows:

Assumption 3.1. Treatment status is assigned so that

{((Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng), Ng,Mg)}2Gg=1 ⊥⊥ D(G)|X(G) .

Conditional onX(G), (Dπ(2g−1), Dπ(2g)), g = 1, ..., G are i.i.d. and each uniformly distributed over {(0, 1), (1, 0)}.

We further require that the clusters in each pair be “close” in terms of their baseline covariates in the

following sense:

Assumption 3.2. The pairs used in determining treatment assignment satisfy

1

G

G
∑

g=1

∣

∣Xπ(2g) −Xπ(2g−1)

∣

∣

r P−→ 0 ,

for r ∈ {1, 2}.

Bai et al. (2022) provide results which facilitate the construction of pairs which satisfy Assumption 3.2.

For instance, if dim(Xg) = 1 and we order clusters from smallest to largest according to Xg and then pair

adjacent units, it follows from Theorem 4.1 in Bai et al. (2022) that Assumption 3.2 is satisfied if E[X2
g ] <∞.

Next, we state the additional assumptions on QG we require beyond those stated in Assumption 2.1:

Assumption 3.3. The distribution QG is such that

(a) E[Ȳ rg (d)N
ℓ
g |Xg = x], are Lipschitz for d ∈ {0, 1}, r, ℓ ∈ {0, 1, 2} ,

(b) For some C <∞, P{E[Ng|Xg] ≤ C} = 1 .
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Assumption 3.3(a) is a smoothness requirement analogous to Assumption 2.1(c) in Bai et al. (2022)

that ensures that units within clusters which are “close” in terms of their baseline covariates are suitably

comparable. Assumption 3.3(b) imposes an additional restriction on the distribution of cluster sizes beyond

what is stated in Assumption 2.1(c). Under these assumptions, we obtain the following result:

Theorem 3.1. Under Assumptions 2.1 and 3.1–3.3,

√
G(∆̂G −∆)

d−→ N(0, ω2) ,

as G→ ∞, where

ω2 = E[Ỹ 2
g (1)] + E[Ỹ 2

g (0)]−
1

2
E[(E[Ỹg(1) + Ỹg(0)|Xg])

2] ,

with

Ỹg(d) =
Ng

E[Ng]

(

Ȳg(d)−
E[Ȳg(d)Ng]

E[Ng]

)

.

Note that the asymptotic variance we obtain in Theorem 3.1 corresponds exactly to the asymptotic

variance of the difference-in-means estimator for matched pairs designs with individual-level assignment (as

derived in Bai et al., 2022), but with transformed cluster-level potential outcomes given by Ỹg(d). Accord-

ingly, our result collapses exactly to theirs when P{Ng = 1} = 1. Theorem 3.1 also quantifies the gain in

precision obtained from using a matched pairs design versus complete randomization (i.e., assigning half of

the clusters to treatment at random): it can be shown that the limiting distribution of ∆̂G under complete

randomization is given by √
G(∆̂G −∆)

d−→ N(0, ω2
0) ,

where ω2
0 = E[Ỹ 2

g (1)] + E[Ỹ 2
g (0)]. We thus immediately obtain that ω2 ≤ ω2

0 . Moreover, this inequality is

strict unless E[Ỹg(1) + Ỹg(0)|Xg] = 0.

3.1.2 Matching on Cluster Size

In this section, we repeat the exercise in Section 3.1.1 in a setting where the assignment mechanism matches

on baseline characteristics and (some function of) cluster size in an appropriate sense to be made formal be-

low. First, we describe how to modify our assumptions on the mechanism determining treatment assignment.

The G pairs of clusters are still represented by the sets

{π(2g − 1), π(2g)} for g = 1, ..., G ,

however, now we allow the permutation π = πG(X
(G), N (G)) = πG(W

(G)) to be a function of cluster size.

Given such a π, we assume that treatment status is assigned as follows:

Assumption 3.4. Treatment status is assigned so that

{((Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng),Mg)}2Gg=1 ⊥⊥ D(G)|W (G) .

Conditional onW (G), (Dπ(2g−1), Dπ(2g)), g = 1, ..., G are i.i.d. and each uniformly distributed over {(0, 1), (1, 0)}.

7



We also modify the assumption on how pairs are formed:

Assumption 3.5. The pairs used in determining treatment assignment satisfy

1

G

G
∑

g=1

N ℓ
π(2g)

∣

∣Wπ(2g) −Wπ(2g−1)

∣

∣

r P−→ 0 ,

for ℓ ∈ {0, 1, 2}, r ∈ {1, 2}.

Unlike for Assumption 3.2, the discussion in Bai et al. (2022) does not provide conditions for matching

algorithms which guarantee that Assumption 3.5 holds. Accordingly, in Proposition 3.1 we provide lower-

level sufficient conditions for Assumption 3.5 which can be verified using the results in Bai et al. (2022).

Proposition 3.1. Suppose E[N4
g ] <∞ and

1

G

G
∑

g=1

|Wπ(2g) −Wπ(2g−1)|r P−→ 0 ,

for r ∈ {1, 2, 3, 4}, then Assumption 3.5 holds.

We also modify the smoothness requirement as follows:

Assumption 3.6. The distribution QG is such that E[Ȳ rg (d)|Wg = w] are Lipschitz for d ∈ {0, 1}, r ∈ {1, 2}.

We then obtain the following analogue to Theorem 3.1:

Theorem 3.2. Under Assumptions 2.1 and 3.4–3.6,

√
G(∆̂G −∆)

d−→ N(0, ν2) ,

as G→ ∞, where

ν2 = E[Ỹ 2
g (1)] + E[Ỹ 2

g (0)]−
1

2
E[(E[Ỹg(1) + Ỹg(0)|Xg, Ng])

2] , (4)

with

Ỹg(d) =
Ng

E[Ng]

(

Ȳg(d)−
E[Ȳg(d)Ng]

E[Ng]

)

.

Note that the asymptotic variance ν2 has exactly the same form as ω2 from Section 3.1.1, with the only

difference being that the final term of the expression conditions on both cluster characteristicsXg and cluster

size Ng. From this result it then follows that matching on cluster size in addition to cluster characteristics

leads to a weakly lower asymptotic variance. To see this, note that by comparing ω2 and ν2 we obtain that

ω2 − ν2 = −1

2

(

E[E[Ỹg(1) + Ỹg(0)|Xg]
2]− E[E[Ỹg(1) + Ỹg(0)|Xg, Ng]

2]
)

.

It then follows by the law of iterated expectations and Jensen’s inequality that ω2 ≥ ν2.
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3.2 Variance Estimation

In this section, we construct variance estimators for the asymptotic variances ω2 and ν2 obtained in Section

3.1. In fact, we propose a single variance estimator that is consistent for both ω2 and ν2 depending on the

nature of the matching procedure. As noted in the discussion following Theorem 3.1, the expressions for ω2

and ν2 correspond exactly to the asymptotic variance obtained in Bai et al. (2022) with the individual-level

outcome replaced by a cluster-level transformed outcome. We thus follow the variance construction from

Bai et al. (2022), but replace the individual outcomes with feasible versions of these transformed outcomes.

To that end, consider the observed adjusted outcome defined as:

Ŷg =
Ng

1
2G

∑

1≤j≤2GNj

(

Ȳg −
1
G

∑

1≤j≤2G ȲjI{Dj = Dg}Nj
1
G

∑

1≤j≤2G I{Dj = Dg}Nj

)

,

where

Ȳg =
1

|Mg|
∑

i∈Mg

Yi,g .

We then propose the following variance estimator:

v̂2G = τ̂2G − 1

2
λ̂2G , (5)

where

τ̂2G =
1

G

∑

1≤j≤G

(

Ŷπ(2j) − Ŷπ(2j−1)

)2

λ̂2G =
2

G

∑

1≤j≤⌊G/2⌋

(

Ŷπ(4j−3) − Ŷπ(4j−2)

)(

Ŷπ(4j−1) − Ŷπ(4j)

)

(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j)) .

Note that the construction of v̂2G can be motivated using the same intuition as the variance estimators

studied in Bai et al. (2022) and Bai et al. (2023b): to consistently estimate quantities like (for instance)

E[E[Ỹg(1)|Xg]E[Ỹg(0)|Xg]] which appear in ω2, we average across “pairs of pairs” of clusters. As a conse-

quence, we will additionally require that the matching algorithm satisfy the condition that “pairs of pairs” of

clusters are sufficiently close in terms of their baseline covariates/cluster size, as formalized in the following

two assumptions:

Assumption 3.7. The pairs used in determining treatment status satisfy

1

G

∑

1≤j≤⌊G
2 ⌋

∣

∣Xπ(4j−k) −Xπ(4j−ℓ)

∣

∣

2 P→ 0

for any k ∈ {2, 3} and ℓ ∈ {0, 1}.

Assumption 3.8. The pairs used in determining treatment status satisfy

1

G

∑

1≤j≤⌊G
2 ⌋
N2
π(4j−k)

∣

∣Wπ(4j−k) −Wπ(4j−ℓ)

∣

∣

2 P→ 0

9



for any k ∈ {2, 3} and ℓ ∈ {0, 1}.

As noted in Bai et al. (2022), given pairs which satisfy Assumptions 3.2 or 3.5, it is frequently possible to

reorder the pairs so that Assumptions 3.7 or 3.8 are satisfied. We then obtain the following two consistency

results for the estimator v̂2G:

Theorem 3.3. Suppose Assumption 2.1 holds. If additionally Assumptions 3.1–3.3 and 3.7 hold, then

v̂2G
P−→ ω2 .

Alternatively, if Assumptions 3.4–3.6 and 3.8 hold, then

v̂2G
P−→ ν2 .

Next, we derive the limits in probability of two commonly recommended variance estimators obtained

from a (weighted) linear regression of the individual-level outcomes Yi,g on a constant and cluster-level

treatment Dg. The first variance estimator we consider, which we denote by ω̂2
CR,G, is simply the cluster-

robust variance estimator of the coefficient of Dg as defined in equation (21) in the appendix. Theorem 3.4

derives the limit in probability of ω̂2
CR,G under a matched pair design which matches on baseline covariates

as defined in Section 3.1.1, and shows that it is generally too large relative to ω2.

Theorem 3.4. Under Assumptions 2.1 and 3.1–3.3,

ω̂2
CR,G

P−→ E[Ỹg(1)
2] + E[Ỹg(0)

2] ≥ ω2 ,

with equality if and only if

E[Ỹg(1) + Ỹg(0)|Xg] = 0 . (6)

The next variance estimator we consider, which we denote by ω̂2
PCVE,G, is the variance estimator of the

coefficient of Dg obtained from clustering on the assignment pairs of clusters as defined in equation (22)

in the appendix. de Chaisemartin and Ramirez-Cuellar (2019) call this the pair-cluster variance estimator

(PCVE). Theorem 3.5 derives the limit in probability of ω̂2
PCVE,G in the special case where Ng = k for

g = 1, . . . , 2G for some fixed k and |Mg| = Ng, and shows that it is generally too large relative to ω2.

Theorem 3.5. Suppose Assumptions 2.1 and 3.1–3.3 hold. If in addition we impose that Ng = k for

g = 1, . . . , 2G for some fixed positive integer k and that |Mg| = Ng, then

ω̂2
PCVE,G

P−→ ω2 +
1

2
E
[

(E[Ỹg(1)− Ỹg(0)|Xg])
2
]

≥ ω2 ,

with equality if and only if

E[Ỹg(1)− Ỹg(0)|Xg] = 0 . (7)

Although we do not derive the limit in probability of ω̂2
PCVE,G in the general case, our simulation evidence

in Section 4 suggests that the limit of ω̂2
PCVE,G remains conservative, and that the conditions under which
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it is consistent for ω2 are the same as those in equation (7). From Theorems 3.4 and 3.5 we obtain that

neither cluster-robust standard error is consistent for ω2 unless the baseline covariates are irrelevant for the

potential outcomes in an appropriate sense. In particular, equation (7) holds when the average treatment

difference for the sampled units in a cluster are homogeneous, in the sense that Ȳg(1) − Ȳg(0) is constant.

We note that the conditions under which ω̂2
CR,G and ω̂2

PCVE,G are consistent for ω2 are exactly analogous

to the conditions under which Bai et al. (2022) derive (in the setting of an individual-level matched pairs

experiment) that the two-sample t-test and matched pairs t-test are asymptotically exact, respectively.

3.3 Randomization Tests

In this section, we study the properties of a randomization test based on the idea of permuting the treatment

assignments for clusters within pairs. In Section 3.3.1 we present some finite-samples properties of our

proposed test, and in Section 3.3.2 we establish its large sample validity for testing the null hypothesis

H0 : ∆(QG) = 0.

First, we construct the test. Denote by HG the group of all permutations on 2G elements and by HG(π)

the subgroup that only permutes elements within pairs defined by π:

HG(π) = {h ∈ HG : {π(2g − 1), π(2g)} = {h(π(2j − 1)), h(π(2j))} for 1 ≤ g ≤ G} .

Define the action of h ∈ HG(π) on Z
(G) as follows:

hZ(G) = {((Yi,g : i ∈ Mg), Dh(g), Xg, Ng) : 1 ≤ g ≤ 2G} .

The randomization test we consider is then given by

φrandG (Z(G)) = I{TG(Z(G)) > R̂−1
G (1− α)} ,

where

R̂G(t) =
1

|HG(π)|
∑

h∈HG(π)

I{TG(hZ(G)) ≤ t} ,

with

TG(Z
(G)) =

∣

∣

∣

∣

∣

√
G∆̂G

v̂G

∣

∣

∣

∣

∣

.

Remark 3.1. As is often the case for randomization tests, R̂G(t) may be difficult to compute in situations

where |HG(π)| = 2G is large. In such cases, we may replace HG(π) with a stochastic approximation

ĤG = {h1, h2, . . . , hB}, where h1 is the identity transformation and h2, . . . , hB are i.i.d. uniform draws from

HG(π). The results in Section 3.3.1 continue to hold with such an approximation; the results in Section

3.3.2 continue to hold provided B → ∞ as G→ ∞.
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3.3.1 Finite-Sample Results

In this section we present some finite-sample properties of the proposed test. Consider testing the null

hypothesis that the distribution of potential outcomes within a cluster are equal across treatment and

control conditional on observable characteristics and cluster size:

HX,N
0 : (Yi,g(1) : 1 ≤ i ≤ Ng)|(Xg, Ng)

d
= (Yi,g(0) : 1 ≤ i ≤ Ng)|(Xg, Ng) . (8)

We then establish the following result on the finite sample validity of our randomization test for testing (8):

Theorem 3.6. Suppose Assumption 2.1 holds and that the treatment assignment mechanism satisfies As-

sumption 3.1 or 3.4. Then, for the problem of testing (8) at level α ∈ (0, 1), φrandG (Z(G)) satisfies

E[φrandG (Z(G))] ≤ α ,

under the null hypothesis.

Remark 3.2. The proof of Theorem 3.6 follows classical arguments that underlie the finite sample validity

of randomization tests more generally. Accordingly, as in those arguments, the result continues to hold if

the test statistic TG is replaced by any other test statistic which is a function of Z(G).

3.3.2 Large-Sample Results

In this section, we establish the large-sample validity of the randomization test φrandG for testing the null

hypothesis

H0 : ∆(QG) = 0 . (9)

In Remark 3.3 we describe how to modify the test for testing non-zero null hypotheses.

Theorem 3.7. Suppose QG satisfies Assumption 2.1, and either

• Assumption 3.3 with treatment assignment mechanism satisfying Assumption 3.1 and 3.7 ,

• Assumption 3.6 with treatment assignment mechanism satisfying Assumptions 3.4 and 3.8 .

Further, suppose that the probability limit of v̂2G is positive, then

sup
t∈R

|R̂n(t)− (Φ(t)− Φ(−t))| P−→ 0 ,

where Φ(·) is the standard normal CDF. Thus, for the problem of testing (9) at level α ∈ (0, 1), φrandG (Z(G))

satisfies

lim
G→∞

E[φrandG (Z(G))] = α ,

under the null hypothesis.
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Theorems 3.6 and 3.7 highlight that the randomization test φrandG (Z(G)) is asymptotically valid for testing

(9) while additionally retaining the finite-sample validity described in Section 3.3.1 under the null hypothesis

(8). In Section 4.1 we illustrate the benefit of this additional robustness on the small-sample behavior of

φrandG (Z(G)) relative to tests constructed using Gaussian critical values. We note that, unlike for the null

hypothesis considered in Section 3.3.1, the choice of test statistic TG is crucial for establishing Theorem

3.7. Similar observations have been made in related contexts in Janssen (1997), Chung and Romano (2013),

Bugni et al. (2018) and Bai et al. (2022).

Remark 3.3. We briefly describe how to modify the test φrandG for testing general null hypotheses of the

form

H0 : ∆(QG) = ∆0 .

To this end, let

Z̃(G) := (((Yi,g −Dg∆0 : i ∈ Mg), Dg, Xg, Ng) : 1 ≤ g ≤ 2G) ,

then it can be shown that under the assumptions given in Theorem 3.7, the test φrandG (Z̃(G)) obtained by

replacing Z(G) with Z̃(G) satisfies

lim
G→∞

E[φrandG (Z̃(G))] = α ,

under the null hypothesis.

3.4 Covariate Adjustment

In this section, we consider a linearly covariate-adjusted modification of ∆̂G that is designed to improve

precision by exploiting additional observed baseline covariates that were not used for treatment assignment.

To that end, we consider a setting in which we observe two sets of baseline covariates, Xg and Cg, where

Xg ∈ Rk denotes the original set of baseline covariates used for treatment assignment, and Cg ∈ Rℓ denotes

the covariates in addition to Xg that were not used for treatment assignment. Note that Cg could also

include cluster-level aggregates of individual-level outcomes, including intracluster means and quantiles.

Before proceeding, we note that for the remainder of Section 3.4, the assumptions in Section 2 should be

modified such that Xg is replaced by (Xg, Cg) throughout. In particular, references to Assumption 2.1 below

should be understood to hold with (Xg, Cg) in place of Xg.

Our primary focus will be on settings in which the cluster size Ng is used in determining the pairs. We

comment on the case when Ng is not used in determining pairs in Remark 3.4, and, importantly, note that in

such settings the adjustments we consider here are not guaranteed to improve precision). As in Section 3.1.2,

let π = πG(X
(G), N (G)) denote the permutation that determines the pairs. We then assume that treatment

status is assigned as follows:

Assumption 3.9. Treatment status is assigned so that

{((Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng),Mg, Cg)}2Gg=1 ⊥⊥ D(G)|(X(G), N (G)) .

Conditional on (X(G), N (G)), (Dπ(2g−1), Dπ(2g)), g = 1, ..., G are i.i.d. and each uniformly distributed over
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{(0, 1), (1, 0)}.

We consider a linearly covariate-adjusted estimator of ∆(Q) based on a set of regressors generated by

Xg, Ng, Cg. To this end, define ψg = ψ(Xg, Ng, Cg), where ψ : Rk×R×Rℓ → Rp. We impose the following

assumptions on ψ:

Assumption 3.10. The function ψ is such that

(a) No component of ψ is a constant and E[Var[ψg|Xg, Ng]] is nonsingular.

(b) Var[ψg] <∞.

(c) E[ψg|Wg = w], E[ψgψ
′
g|Wg = w], and E[ψgȲ

r
g (d)|Wg = w] for d ∈ {0, 1} and r ∈ {1, 2} are Lipschitz.

(d) For some c <∞, P{E[‖ψg‖2Ȳ 2
g (d)|Xg , Ng] ≤ c} = 1 for d ∈ {0, 1}.

As discussed in Bai et al. (2023a) and Cytrynbaum (2023), standard covariate adjustments based on a

regression using treatment-covariate interactions (see, for instance, Negi and Wooldridge, 2021, for a succinct

treatment) are not guaranteed to improve efficiency when treatment assignment is not completely random-

ized. For this reason, we consider a modified version of the adjusted estimator developed in Bai et al.

(2023a) for individual-level matched pair experiments. Let β̂G denote the OLS estimator of the slope coef-

ficient in the linear regression of of (Ȳπ(2g−1)Nπ(2g−1) − Ȳπ(2g)Nπ(2g))(Dπ(2g−1) −Dπ(2g)) on a constant and

(ψπ(2g−1) − ψπ(2g))(Dπ(2g−1) −Dπ(2g)). We then define our covariate-adjusted estimator as

∆̂adj
G =

1
G

∑

1≤g≤2G(ȲgNg − (ψg − ψ̄G)
′β̂G)Dg

1
G

∑

1≤g≤2GNgDg

−
1
G

∑

1≤g≤2G(ȲgNg − (ψg − ψ̄G)
′β̂G)(1 −Dg)

1
G

∑

1≤g≤2GNg(1 −Dg)
, (10)

where

ψ̄G =
1

2G

∑

1≤g≤2G

ψg .

Theorem 3.8 derives the limiting distribution of ∆̂adj
G , and, importantly, it shows that the limiting variance

of ∆̂adj
G is no larger than that of ∆̂G in (3) and can be strictly smaller.

Theorem 3.8. Under Assumptions 2.1, 3.5, 3.6, 3.9, and 3.10,

√
G(∆̂adj

G −∆)
d→ N(0, ς2)

as G→ ∞, where

ς2 = E[Var[Y ∗
g (1)|Xg, Ng]] + E[Var[Y ∗

g (0)|Xg, Ng]] +
1

2
E[(E[Y ∗

g (1)− Y ∗
g (0)|Xg, Ng]−∆)2] ,

with

Y ∗
g (d) =

Ȳg(d)Ng − (ψg − E[ψg])
′β∗

E[Ng]
− Ng
E[Ng]

E[Ȳg(d)Ng − (ψg − E[ψg])
′β∗]

E[Ng]
= Ỹg(d)−

(ψg − E[ψg])
′β∗

E[Ng]
,
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and

β∗ = (2E[Var[ψg|Xg, Ng]])
−1E[Cov[ψg, Ȳg(1)Ng + Ȳg(0)Ng|Xg, Ng]] . (11)

Moreover,

ς2 = ν2 − κ2 , (12)

where ν2 is as in (4) and

κ2 =
E[((ψg − E[ψg|Xg, Ng])

′β∗)2]

E[Ng]2
.

As a consequence, ς2 ≤ ν2, with equality if and only if κ2 = 0.

Note that the asymptotic variance ς2 has the same form as the variance ν2, but with new transformed

outcomes Y ∗
g (d) which can be expressed as covariate-adjusted versions of the original transformed outcomes

Ỹg(d). Exploiting this observation is what allows us to establish that ς2 = ν2 − κ2. As a consequence, we

find that the asymptotic variance of ∆̂adj
G is lower than that of ∆̂G whenever the adjustment is appropriately

“relevant,” in the sense that κ2 6= 0.

Remark 3.4. In order to guarantee that ς2 ≤ ν2 in Theorem 3.8, it was crucial to assume that Ng is

contained in the set of matching variables. If instead clusters are only matched according to Xg as in Section

3.1.1, then under suitable modifications of Assumptions 3.9 and 3.10 it can be shown that the limiting

variance of ∆̂adj
G is given by

E[Var[Y ∗
g (1)|Xg]] + E[Var[Y ∗

g (0)|Xg]] +
1

2
E[(E[Y ∗

g (1)− Y ∗
g (0)|Xg]−∆)2] ,

where in this case Y ∗
g (d) = Ỹg(d)− (ψg−E[ψg ])

′β∗

E[Ng]
, with

β∗ = (2E[Var[ψg|Xg]])
−1E[Cov[ψg, Ȳg(1)Ng + Ȳg(0)Ng|Xg]] .

Note that this expression mirrors the expression for ς2 but removes the conditioning on Ng throughout. It

can then be shown that the decomposition obtained in (12) no longer applies, and in general the covariate-

adjusted estimator is no longer guaranteed to have a smaller limiting variance than the unadjusted estimator

∆̂G. We illustrate this point via simulation in Section 4.2.

Remark 3.5. Although the estimator in (10) is closely related to the class of covariate-adjusted estimators

in Bai et al. (2023a), a direct application of the results therein is prohibited because the two denominators

in (10) are the average cluster sizes of treated and untreated clusters and are therefore random. As a result,

unlike in Bai et al. (2023a), the demeaning of ψ in (10) is crucial for the results in Theorem 3.8 to hold. In

particular, some remainder terms in the proof of Theorem 3.8 are no longer oP (1) without the demeaning.

Moreover, unlike for individual-level experiments, ∆̂adj
G cannot be interpreted as the intercept of a linear

regression as in Bai et al. (2023a).

For variance estimation, define

Y̊g =
1

1
2G

∑

1≤j≤2GNj

(

NgȲg −Ng

1
G

∑

1≤j≤2G ȲjI{Dj = Dg}Nj
1
G

∑

1≤j≤2G I{Dj = Dg}Nj
− ψ′

gβ̂G

)

.
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We then propose the following variance estimator:

ς̊2G = τ̊2G − 1

2
λ̊2G , (13)

where

τ̊2G =
1

G

∑

1≤j≤G

(

Y̊π(2j) − Y̊π(2j−1)

)2

λ̊2G =
2

G

∑

1≤j≤⌊G/2⌋

(

Y̊π(4j−3) − Y̊π(4j−2)

)(

Y̊π(4j−1) − Y̊π(4j)

)

(Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j)) .

The following theorem establishes the consistency of the variance estimator:

Theorem 3.9. Under Assumptions 3.5, 3.6, 3.8, 3.9, and 3.10,

ς̊2G
P→ ς2 .

4 Simulations

4.1 Unadjusted Estimation

In this section, we examine the finite-sample behavior of the estimation and inference procedures considered

in Sections 3.1-3.3. We further compare these procedures to tests and confidence intervals constructed using

the standard cluster-robust variance estimator (CR) and the pair cluster variance estimator (PCVE) proposed

in de Chaisemartin and Ramirez-Cuellar (2019). For d ∈ {0, 1}, 1 ≤ g ≤ 2G, the potential outcomes are

generated according to the equation

Yi,g(d) = µd(Xg, X
(N)
g ) + 2ǫd,i,g .

Where, in each specification, (Xg, X
(N)
g ), g = 1, . . . , 2G are i.i.d. withXg, X

(N)
g ∼ Beta(2, 4), and (ǫ0,i,g, ǫ1,i,g),

g = 1, . . . , 2G, i = 1, . . . , Ng are i.i.d. with ǫ0,i,g, ǫ1,i,g ∼ N(0, 1) independently. We consider the following

two specifications for µd:

Model 1: µ1(Xg, X
(N)
g ) = µ0(Xg, X

(N)
g ) = 10(Xg − 1/3) + 6(X

(N)
g − 1/3) + 2 .

Model 2: µ1(Xg, X
(N)
g ) = 10(X2

g − 1/7) + 6(X
(N)
g − 1/3) + 2 and µ0(Xg, X

(N)
g ) = 0 .

Note that Model 1 satisfies the homogeneity condition in (7) whereas Model 2 does not. In both cases,

Ng, g = 1, . . . , 2G are i.i.d. with Ng ∼ Binomial(R,X
(N)
g ) + (500− R), where R determines the difference

in maximum and minimum cluster sizes. In particular R satisfies the property that Ng ∈ [Nmin, Nmax] with

Nmax − Nmin = R and we consider R ∈ {49, 149, 249, 349, 449} with Nmax = 500 fixed. For each model

and distribution of cluster sizes, we consider two alternative pair-matching procedures. First, we consider a
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design which matches clusters using Xg only. To construct these pairs, we sort the clusters according to Xg

and pair adjacent clusters. Next, we consider a design which matches clusters using both Xg and Ng. To

construct these pairs, we match the clusters according to their Mahalanobis distance using the non-bipartite

matching algorithm from the R package nbpMatching.

Tables 1–4 report the coverage and average length of 95% confidence intervals constructed using our vari-

ance estimator as well as the CR and PCVE estimators. For Model 1 in Table 1, we find that, in accordance

with Theorems 3.3–3.5, the CR variance estimator is extremely conservative, whereas our proposed variance

estimator (denoted v̂2G) and the PCVE variance estimator have exact coverage asymptotically. This fea-

ture translates to significantly smaller confidence intervals: on average the confidence intervals constructed

using v̂2G or PCVE are almost half the length of those constructed using CR when G ≥ 50. However, the

confidence intervals constructed using v̂2G or PCVE undercover when G < 50. We find similar results when

matching on both Xg and Ng in Table 2. Comparing across Tables 1 and 2 we find that, in line with the

discussions following Theorems 3.1 and 3.2, matching on Ng in addition to Xg results in a large reduction

in the average length of confidence intervals constructed using v̂2G (or PCVE), but no change in the average

length of confidence intervals constructed using CR.

Moving to Model 2 in Tables 3 and 4, here we find that confidence intervals constructed using CR

continue to be conservative, but now the confidence intervals constructed using PCVE are also conservative,

and numerically very similar to those constructed using CR. In contrast, the confidence intervals constructed

using v̂2G remain exact asymptotically. Once again this translates to smaller confidence intervals for v̂2G: on

average the confidence intervals constructed using v̂2G are approximately 25% smaller than those constructed

using CR or PCVE when G ≥ 50. However, once again we find that the confidence intervals constructed

using v̂2G can undercover when G < 50, with the size of the distortion growing as a function of the cluster

size heterogeneity.

Next, to further address the small-sample coverage distortions observed in Tables 1-4, we study the size

and power of 0.05-level hypothesis tests conducted using our proposed randomization test, as well as standard

t-tests constructed using the CR and PCVE estimators, in Tables 5–6 below.1 In Table 5 we find that tests

based on the CR variance estimator are extremely conservative, and this translates to having essentially no

power against our chosen alternative. Tests based on the PCVE estimator produce non-trivial power, but

also size-distortions in small samples. In contrast, since Model 1 satisfies the null hypothesis considered in

(8), our randomization test is valid in finite samples by construction, and displays comparable power to the

PCVE-based test even when the latter does not control size. When moving to Model 2 in Table 6 we are

only guaranteed that the randomization test is asymptotically valid, but we find that the test is still able

to control size in small samples as long as cluster-size heterogeneity is not too large. Importantly, in such

cases, both the CR and PCVE-based tests also fail to control size. Finally, the randomization test displays

favorable power relative to both the CR and PCVE-based tests throughout Table 6 except for some cases

when G = 12.

1Here we move to studying the properties of hypothesis tests instead of confidence intervals to avoid having to perform
test-inversion for our randomization test, but we expect that similar results would continue to hold for confidence intervals as
well.
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4.2 Covariate-Adjusted Estimation

In this section, we examine the finite-sample behavior of the covariate-adjusted estimator considered in

Section 3.4. In particular, we contrast the efficiency properties of ∆̂adj
G when matching versus not matching

on cluster size. We consider the following modification of Model 2:

Model Adj.: µ1(Xg, X
(N)
g ) = 10(X2

g − 1/7) + 6(X
(N)
g − 1/3) + 25 and µ0(Xg, X

(N)
g ) = 0 .

In addition, we introduce a new matching variable Hg, g = 1, . . . , 2G, i.i.d. with Hg ∼ U [0, 1] generated

independently of all other variables, and modify the distribution ofNg so that Ng ∼ Binomial(R, 1−X(N)
g )+

(500−R).

Table 7 reports the coverage and average length of 95% confidence intervals constructed using our variance

estimators when matching using both Hg and Ng, for ∆̂G versus ∆̂adj
G with ψg = (Xg, X

(N)
g ). In accordance

with Theorem 3.8, we find that for moderate to large samples (G ≥ 50), covariate adjustment leads to

smaller average CI lengths even as we increase the amount of cluster size heterogeneity. In contrast, Table

8 reports the coverage and average lengths of 95% confidence intervals (CIs) constructed using our variance

estimators when matching using only Hg, for ∆̂G versus ∆̂adj
G with ψg = (Xg, X

(N)
g ). In general, we find that

when cluster-size heterogeneity is low, covariate adjustment leads to smaller average CI lengths. However,

as the amount of heterogeneity increases, the average CI length for the adjusted estimator rapidly overtakes

the length for the unadjusted estimator. We emphasize that this does not seem to be a small-sample issue:

even with G = 250, the average CI length for the adjusted estimator is over two times larger than for the

unadjusted estimator in the most extreme case.

5 Recommendations for Empirical Practice

Based on our theoretical results as well as the simulation study above, we conclude with some recommen-

dations for practitioners when conducting inference about the size-weighted ATE in our super-population

framework. Our recommendations below depend on whether the number of clusters is moderately large (e.g.,

at least 50 pairs) or small (e.g., less than 50 pairs).

If the number of clusters is moderately large, then our recommendation is that practitioners should employ

either the covariate-adjusted tests based on the covariate-adjusted estimator ∆̂adj
G defined in Section 3.4 paired

with its corresponding variance estimator ς̊2G and a normal critical value or the unadjusted tests based on

the unadjusted estimator ∆̂G introduced in Section 2 paired with its corresponding variance estimator v̂2G

and a normal critical value. Whenever cluster size is used in determining the pairs, our results show that

covariate-adjusted tests are more powerful in large samples than unadjusted tests; in practice, this feature

continues to hold even when cluster size was not used in determining the pairs, provided that cluster-size

heterogeneity is not too great (i.e., in our simulations, a ratio of largest to smallest cluster size of less than

2). Outside of these circumstances, we recommend that practitioners employ the unadjusted tests.
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If, on the other hand, the number of clusters is small, then we recommend instead that practitioners

use the randomization test based on the un-adjusted estimator ∆̂G paired with its corresponding variance

estimator v̂2G outlined in Section 3.3. In our simulations, this test controlled size more reliably than any of

the other inference procedures we considered in the paper, while delivering comparable power. Note that

by modifying the test as in Remark 3.3, the test could also be inverted to construct confidence intervals if

desired.
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Table 1: Model 1 - Matching on Xg
*

Nmax/Nmin G = 12 G = 26 G = 50 G = 100 G = 150 G = 200 G = 250

Coverage

1.11
v̂2G 0.9185 0.9290 0.9420 0.9465 0.9375 0.9460 0.9515
CR 0.9985 0.9990 0.9995 1 1 1 1

PCVE 0.9230 0.9310 0.9385 0.9405 0.9395 0.9480 0.9520

1.42
v̂2G 0.9005 0.9345 0.9345 0.9480 0.9490 0.9545 0.9615
CR 0.9980 0.9995 0.9985 0.9995 0.9995 1 1

PCVE 0.9035 0.9380 0.9375 0.9490 0.9495 0.9550 0.9595

1.99
v̂2G 0.9130 0.9330 0.9380 0.9385 0.9490 0.9455 0.9365
CR 0.9985 0.9985 1 1 1 1 0.9995

PCVE 0.9095 0.9230 0.9420 0.9420 0.9495 0.9460 0.9350

3.31
v̂2G 0.9065 0.9180 0.9340 0.9415 0.9470 0.9450 0.9520
CR 0.9950 0.9980 0.9980 0.9985 1 0.9985 0.9995

PCVE 0.8980 0.9155 0.9330 0.9380 0.9465 0.9470 0.9500

9.80
v̂2G 0.9035 0.9230 0.9420 0.9340 0.9440 0.9415 0.9495
CR 0.9925 0.9940 0.9970 0.9985 0.9975 0.9995 0.9990

PCVE 0.8925 0.9100 0.9365 0.9330 0.9425 0.9385 0.9475

Average Length

1.11
v̂2G 1.72150 1.16078 0.84582 0.59830 0.48784 0.42466 0.37936
CR 3.20593 2.21689 1.61886 1.15015 0.94053 0.81591 0.73010

PCVE 1.69494 1.15171 0.84119 0.59746 0.48744 0.42415 0.37895

1.42
v̂2G 1.75019 1.18859 0.86476 0.61378 0.50112 0.43567 0.38917
CR 3.21821 2.22957 1.62982 1.15829 0.94732 0.82180 0.73543

PCVE 1.72075 1.17840 0.86140 0.61286 0.50024 0.43527 0.38897

1.99
v̂2G 1.80502 1.23175 0.89937 0.63958 0.52250 0.45322 0.40566
CR 3.24165 2.25077 1.64811 1.17207 0.95862 0.83166 0.74408

PCVE 1.77287 1.21936 0.89602 0.63843 0.52133 0.45352 0.40524

3.31
v̂2G 1.90111 1.30589 0.96060 0.68446 0.55910 0.48664 0.43505
CR 3.27892 2.28895 1.68064 1.19654 0.97928 0.84959 0.76030

PCVE 1.85679 1.29128 0.95566 0.68299 0.55824 0.48568 0.43437

9.80
v̂2G 2.09510 1.45719 1.08057 0.77340 0.63320 0.55071 0.49226
CR 3.35580 2.36729 1.75068 1.24963 1.02275 0.88759 0.79443

PCVE 2.03228 1.43576 1.07565 0.77259 0.63171 0.54976 0.49203

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each
G is 2000. Nmax = 500.
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Table 2: Model 1 - Matching on Xg and Ng
*

Nmax/Nmin G = 12 G = 26 G = 50 G = 100 G = 150 G = 200 G = 250

Coverage

1.11
v̂2G 0.9105 0.9285 0.9345 0.9430 0.9470 0.9495 0.9565
CR 1 1 1 1 1 1 1

PCVE 0.9100 0.9260 0.9360 0.9460 0.9460 0.9480 0.9555

1.42
v̂2G 0.9210 0.9410 0.9400 0.9510 0.9490 0.9300 0.9445
CR 1 1 1 1 1 1 1

PCVE 0.9215 0.9405 0.9425 0.9555 0.9465 0.9325 0.9425

1.99
v̂2G 0.9170 0.9460 0.9420 0.9505 0.9485 0.9495 0.9570
CR 1 1 1 1 1 1 1

PCVE 0.9110 0.9440 0.9395 0.9520 0.9490 0.9510 0.9555

3.31
v̂2G 0.9220 0.9280 0.9295 0.9430 0.9440 0.9480 0.9390
CR 1 1 1 1 1 1 1

PCVE 0.9150 0.9290 0.9325 0.9470 0.9435 0.9510 0.9405

9.80
v̂2G 0.9015 0.9260 0.9320 0.9505 0.9485 0.9405 0.9435
CR 1 1 1 1 1 1 1

PCVE 0.8860 0.9225 0.9380 0.9495 0.9485 0.9420 0.9475

Average Length

1.11
v̂2G 1.20496 0.64428 0.39514 0.24765 0.19157 0.16045 0.14069
CR 3.21594 2.22170 1.62079 1.15081 0.94092 0.81621 0.73031

PCVE 1.18192 0.63873 0.39376 0.24689 0.19111 0.16028 0.14062

1.42
v̂2G 1.16805 0.58866 0.34117 0.19821 0.14670 0.12020 0.10335
CR 3.23229 2.23499 1.63182 1.15901 0.94776 0.82214 0.73561

PCVE 1.14574 0.58388 0.34065 0.19783 0.14622 0.12000 0.10327

1.99
v̂2G 1.18988 0.60685 0.34699 0.19474 0.14244 0.11466 0.09729
CR 3.25786 2.25761 1.65083 1.17312 0.95917 0.83201 0.74440

PCVE 1.16373 0.59889 0.34582 0.19426 0.14229 0.11456 0.09728

3.31
v̂2G 1.27089 0.64963 0.37337 0.20857 0.15167 0.12110 0.10157
CR 3.29929 2.29885 1.68464 1.19841 0.98016 0.85013 0.76067

PCVE 1.23316 0.64188 0.37129 0.20767 0.15108 0.12084 0.10134

9.80
v̂2G 1.41981 0.75053 0.43329 0.24285 0.17464 0.13851 0.11558
CR 3.38816 2.38329 1.75642 1.25248 1.02442 0.88868 0.79508

PCVE 1.36449 0.73612 0.42992 0.24197 0.17401 0.13826 0.11549

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each
G is 2000. Nmax = 500.
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Table 3: Model 2 - Matching on Xg
*

Nmax/Nmin G = 12 G = 26 G = 50 G = 100 G = 150 G = 200 G = 250

Coverage

1.11
v̂2G 0.9260 0.9375 0.9420 0.9420 0.9460 0.9465 0.9510
CR 0.9570 0.9635 0.9755 0.9790 0.9825 0.9835 0.9800

PCVE 0.9560 0.9645 0.9750 0.9785 0.9825 0.9835 0.9805

1.42
v̂2G 0.9280 0.9395 0.9455 0.9405 0.9490 0.9495 0.9490
CR 0.9525 0.9705 0.9705 0.9715 0.9795 0.9860 0.9820

PCVE 0.9535 0.9710 0.9705 0.9735 0.9795 0.9860 0.9820

1.99
v̂2G 0.9180 0.9325 0.9385 0.9455 0.9480 0.9420 0.9465
CR 0.9415 0.9595 0.9680 0.9765 0.9770 0.9805 0.9800

PCVE 0.9415 0.9605 0.9675 0.9770 0.9780 0.9800 0.9805

3.31
v̂2G 0.8965 0.9290 0.9390 0.9480 0.9440 0.9400 0.9495
CR 0.9325 0.9615 0.9700 0.9750 0.9775 0.9750 0.9765

PCVE 0.9315 0.9615 0.9685 0.9755 0.9780 0.9745 0.9770

9.80
v̂2G 0.8850 0.9085 0.9295 0.9380 0.9360 0.9375 0.9445
CR 0.9155 0.9460 0.9640 0.9660 0.9660 0.9685 0.9755

PCVE 0.9175 0.9450 0.9635 0.9660 0.9665 0.9680 0.9755

Average Length

1.11
v̂2G 1.64579 1.11414 0.80852 0.57317 0.46677 0.40525 0.36269
CR 1.88285 1.31397 0.96438 0.68747 0.56044 0.48713 0.43634

PCVE 1.88367 1.31373 0.96432 0.68752 0.56044 0.48718 0.43636

1.42
v̂2G 1.67055 1.13171 0.81934 0.58015 0.47436 0.41154 0.36739
CR 1.90602 1.32885 0.97303 0.69262 0.56755 0.49258 0.44032

PCVE 1.90579 1.32897 0.97283 0.69257 0.56751 0.49262 0.44026

1.99
v̂2G 1.67377 1.14094 0.83413 0.59068 0.48377 0.41909 0.37493
CR 1.90337 1.33455 0.98635 0.70162 0.57506 0.49879 0.44584

PCVE 1.90395 1.33471 0.98606 0.70146 0.57506 0.49874 0.44586

3.31
v̂2G 1.69386 1.16940 0.85636 0.61062 0.49954 0.43424 0.38770
CR 1.91395 1.35515 1.00133 0.71846 0.58755 0.51145 0.45702

PCVE 1.91241 1.35461 1.00137 0.71861 0.58755 0.51149 0.45699

9.80
v̂2G 1.74999 1.23124 0.90607 0.64424 0.52971 0.45990 0.41091
CR 1.95803 1.40591 1.04446 0.74668 0.61421 0.53318 0.47665

PCVE 1.95767 1.40633 1.04420 0.74671 0.61422 0.53315 0.47665

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each
G is 2000. Nmax = 500.
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Table 4: Model 2 - Matching on Xg and Ng
*

Nmax/Nmin G = 12 G = 26 G = 50 G = 100 G = 150 G = 200 G = 250

Coverage

1.11
v̂2G 0.9420 0.9480 0.9545 0.9495 0.9455 0.9530 0.9530
CR 0.9670 0.9845 0.9875 0.9900 0.9915 0.9950 0.9935

PCVE 0.9680 0.9850 0.9865 0.9900 0.9910 0.9950 0.9935

1.42
v̂2G 0.9315 0.9475 0.9515 0.9530 0.9515 0.9580 0.9510
CR 0.9665 0.9850 0.9850 0.9895 0.9915 0.9955 0.9955

PCVE 0.9660 0.9850 0.9845 0.9900 0.9915 0.9960 0.9955

1.99
v̂2G 0.9270 0.9430 0.9510 0.9520 0.9480 0.9575 0.9520
CR 0.9650 0.9825 0.9885 0.9905 0.9930 0.9970 0.9945

PCVE 0.9670 0.9815 0.9880 0.9900 0.9930 0.9970 0.9945

3.31
v̂2G 0.9160 0.9365 0.9525 0.9480 0.9510 0.9525 0.9485
CR 0.9580 0.9795 0.9890 0.9885 0.9930 0.9955 0.9940

PCVE 0.9580 0.9800 0.9890 0.9890 0.9930 0.9955 0.9940

9.80
v̂2G 0.9065 0.9330 0.9430 0.9510 0.9515 0.9495 0.9510
CR 0.9410 0.9765 0.9845 0.9890 0.9880 0.9955 0.9915

PCVE 0.9430 0.9755 0.9830 0.9890 0.9875 0.9955 0.9915

Average Length

1.11
v̂2G 1.57502 1.02869 0.73036 0.51031 0.41388 0.35765 0.31902
CR 1.89796 1.31976 0.96665 0.68810 0.56233 0.48793 0.43636

PCVE 1.89800 1.31982 0.96657 0.68813 0.56236 0.48790 0.43634

1.42
v̂2G 1.58361 1.03237 0.73193 0.50975 0.41335 0.35758 0.31856
CR 1.91602 1.33100 0.97594 0.69418 0.56753 0.49302 0.44052

PCVE 1.91549 1.33128 0.97597 0.69423 0.56756 0.49301 0.44049

1.99
v̂2G 1.61080 1.04567 0.74313 0.51722 0.41903 0.36217 0.32297
CR 1.93406 1.34395 0.98875 0.70392 0.57534 0.49967 0.44684

PCVE 1.93403 1.34409 0.98881 0.70388 0.57529 0.49964 0.44680

3.31
v̂2G 1.63660 1.07550 0.76774 0.53170 0.43114 0.37227 0.33175
CR 1.94629 1.37114 1.01341 0.72038 0.58976 0.51183 0.45771

PCVE 1.94802 1.37098 1.01337 0.72047 0.58984 0.51198 0.45771

9.80
v̂2G 1.70687 1.13039 0.80947 0.55966 0.45337 0.39151 0.34801
CR 1.98400 1.41410 1.05392 0.75111 0.61528 0.53484 0.47768

PCVE 1.98403 1.41488 1.05356 0.75103 0.61532 0.53482 0.47769

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each
G is 2000. Nmax = 500.
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Table 5: Model 1 - Randomization Test (RT) vs. CR/PCVE *

Size under H0 Power under H1 : ∆0 + 1/4
Nmax/Nmin G = 12 G = 26 G = 50 G = 12 G = 26 G = 50

Matching on Xg

1.11
RT 0.0395 0.0560 0.0505 0.0755 0.1220 0.2030
CR 0.0015 0.0010 0.0005 0.0095 0.0105 0.0160

PCVE 0.0770 0.0690 0.0615 0.1195 0.1410 0.1995

1.42
RT 0.0610 0.0445 0.0540 0.0935 0.1055 0.1970
CR 0.0020 0.0005 0.0015 0.0105 0.0105 0.0210

PCVE 0.0965 0.0620 0.0625 0.1365 0.1220 0.1955

1.99
RT 0.0505 0.0505 0.0505 0.0770 0.1130 0.1820
CR 0.0015 0.0015 0 0.0130 0.0100 0.0195

PCVE 0.0905 0.0770 0.0580 0.1195 0.1260 0.1825

3.31
RT 0.0570 0.0595 0.0555 0.0745 0.1130 0.1670
CR 0.0050 0.0020 0.0020 0.0145 0.0190 0.0270

PCVE 0.1020 0.0845 0.0670 0.1220 0.1340 0.1760

9.80
RT 0.0455 0.0500 0.0475 0.0715 0.1105 0.1410
CR 0.0075 0.0060 0.0030 0.0280 0.0230 0.0305

PCVE 0.1075 0.0900 0.0635 0.1335 0.1380 0.1605

Matching on Xg and Ng

1.11
RT 0.0490 0.0535 0.0585 0.1165 0.3050 0.6760
CR 0 0 0 0 0 0

PCVE 0.0900 0.0740 0.0640 0.1540 0.2395 0.5015

1.42
RT 0.0440 0.0475 0.0480 0.1290 0.3595 0.7820
CR 0 0 0 0 0 0

PCVE 0.0785 0.0595 0.0575 0.1635 0.2810 0.5705

1.99
RT 0.0510 0.0400 0.0480 0.1255 0.3380 0.7795
CR 0 0 0 0 0 0

PCVE 0.0890 0.0560 0.0605 0.1580 0.2630 0.5785

3.31
RT 0.0440 0.0500 0.0555 0.1185 0.3370 0.7075
CR 0 0 0 0 0 0

PCVE 0.0850 0.0710 0.0675 0.1590 0.2825 0.5220

9.80
RT 0.0525 0.0550 0.0500 0.1180 0.2780 0.5965
CR 0 0 0 0.0005 0 0

PCVE 0.1140 0.0775 0.0620 0.1750 0.2540 0.4625

* Number of clusters= 2G with G = 12, 26, 50. Number of replications for each G
is 2000. Nmax = 500.
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Table 6: Model 2 - Randomization Test (RT) vs. CR/PCVE*

Size under H0 Power under H1 : ∆0 + 1/4
Nmax/Nmin G = 12 G = 26 G = 50 G = 12 G = 26 G = 50

Matching on Xg

1.11
RT 0.0345 0.0425 0.0480 0.0305 0.0790 0.1650
CR 0.0430 0.0365 0.0245 0.0540 0.0645 0.1120

PCVE 0.0440 0.0355 0.0250 0.0550 0.0655 0.1115

1.42
RT 0.0370 0.0365 0.0445 0.0370 0.0675 0.1685
CR 0.0475 0.0295 0.0295 0.0575 0.0560 0.1125

PCVE 0.0465 0.0290 0.0295 0.0560 0.0540 0.1145

1.99
RT 0.0465 0.0445 0.0490 0.0385 0.0785 0.1485
CR 0.0585 0.0405 0.0320 0.0620 0.0675 0.1005

PCVE 0.0585 0.0395 0.0325 0.0615 0.0675 0.1005

3.31
RT 0.0565 0.0495 0.0520 0.0390 0.0660 0.1360
CR 0.0675 0.0385 0.0300 0.0610 0.0620 0.1010

PCVE 0.0685 0.0385 0.0315 0.0595 0.0625 0.1025

9.80
RT 0.0700 0.0660 0.0600 0.0405 0.0550 0.1140
CR 0.0845 0.0540 0.0360 0.0585 0.0600 0.0895

PCVE 0.0825 0.0550 0.0365 0.0595 0.0580 0.0895

Matching on Xg and Ng

1.11
RT 0.0250 0.0310 0.0370 0.0195 0.0735 0.1800
CR 0.0330 0.0155 0.0125 0.0240 0.0365 0.0765

PCVE 0.0320 0.0150 0.0135 0.0235 0.0360 0.0790

1.42
RT 0.0295 0.0290 0.0345 0.0205 0.0730 0.1740
CR 0.0335 0.0150 0.0150 0.0245 0.0385 0.0640

PCVE 0.0340 0.0150 0.0155 0.0250 0.0365 0.0675

1.99
RT 0.0345 0.0325 0.0415 0.0200 0.0665 0.1655
CR 0.0350 0.0175 0.0115 0.0225 0.0310 0.0600

PCVE 0.0330 0.0185 0.0120 0.0230 0.0320 0.0610

3.31
RT 0.0390 0.0390 0.0340 0.0150 0.0590 0.1415
CR 0.0420 0.0205 0.0110 0.0220 0.0295 0.0610

PCVE 0.0420 0.0200 0.0110 0.0210 0.0310 0.0595

9.80
RT 0.0555 0.0445 0.0415 0.0260 0.0405 0.1180
CR 0.0590 0.0235 0.0155 0.0295 0.0270 0.0505

PCVE 0.0570 0.0245 0.0170 0.0295 0.0265 0.0510

* Number of clusters= 2G with G = 12, 26, 50. Number of replications for each G
is 2000. Nmax = 500.
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Table 7: Covariate Adjustment - Matching on Hg and Ng
*

Nmax/Nmin ψg G = 12 G = 26 G = 50 G = 100 G = 150 G = 200 G = 250

Coverage

1.11 - 0.9120 0.9275 0.9475 0.9395 0.9425 0.9510 0.9425

(Xg, X
(N)
g ) 0.8625 0.8970 0.9360 0.9405 0.9440 0.9495 0.9495

1.42 - 0.9135 0.9245 0.9415 0.9445 0.9495 0.9425 0.9425

(Xg, X
(N)
g ) 0.8990 0.9195 0.9375 0.9515 0.9470 0.9515 0.9455

1.99 - 0.9085 0.9250 0.9420 0.9470 0.9455 0.9545 0.9520

(Xg, X
(N)
g ) 0.9175 0.9355 0.9500 0.9520 0.9505 0.9505 0.9470

3.31 - 0.9090 0.9265 0.9340 0.9515 0.9465 0.9465 0.9535

(Xg, X
(N)
g ) 0.9335 0.9365 0.9480 0.9515 0.9510 0.9525 0.9550

9.80 - 0.9070 0.9245 0.9330 0.9375 0.9510 0.9455 0.9440

(Xg, X
(N)
g ) 0.9325 0.9340 0.9475 0.9470 0.9575 0.9500 0.9555

Average Length

1.11 - 1.77556 1.21499 0.88201 0.62584 0.51123 0.44346 0.39699

(Xg, X
(N)
g ) 1.30671 0.93116 0.68816 0.49242 0.40372 0.35104 0.31400

1.42 - 1.74117 1.20501 0.87067 0.62002 0.50712 0.43888 0.39274

(Xg, X
(N)
g ) 1.46021 0.96656 0.69879 0.49479 0.40412 0.35025 0.31292

1.99 - 1.72916 1.19588 0.86887 0.61669 0.50509 0.43677 0.39112

(Xg, X
(N)
g ) 1.81983 1.09008 0.74580 0.50919 0.41110 0.35398 0.31603

3.31 - 1.71004 1.19463 0.86708 0.61577 0.50301 0.43573 0.39127

(Xg, X
(N)
g ) 2.36813 1.30774 0.83203 0.54137 0.42815 0.36460 0.32354

9.80 - 1.72505 1.19952 0.86484 0.61768 0.50429 0.43672 0.39197

(Xg, X
(N)
g ) 3.06889 1.60986 0.97620 0.59917 0.46025 0.38545 0.33953

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each G is
2000. Nmax = 500.
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Table 8: Covariate Adjustment - Matching on Hg
*

Nmax/Nmin ψg G = 12 G = 26 G = 50 G = 100 G = 150 G = 200 G = 250

Coverage

1.11 - 0.9015 0.9235 0.9435 0.9395 0.9365 0.9445 0.9485

(Xg, X
(N)
g ) 0.8485 0.9060 0.9275 0.9425 0.9420 0.9510 0.9430

1.42 - 0.9070 0.9315 0.9365 0.9405 0.9455 0.9490 0.9525

(Xg, X
(N)
g ) 0.9005 0.9230 0.9465 0.9510 0.9430 0.9475 0.9520

1.99 - 0.9050 0.9310 0.9450 0.9450 0.9480 0.9530 0.9465

(Xg, X
(N)
g ) 0.9190 0.9395 0.9485 0.9470 0.9520 0.9495 0.9515

3.31 - 0.9100 0.9340 0.9410 0.9535 0.9520 0.9490 0.9485

(Xg, X
(N)
g ) 0.9155 0.9325 0.9475 0.9485 0.9435 0.9535 0.9510

9.80 - 0.8975 0.9305 0.9410 0.9435 0.9420 0.9430 0.9545

(Xg, X
(N)
g ) 0.9190 0.9440 0.9345 0.9455 0.9405 0.9490 0.9410

Average Length

1.11 - 1.86744 1.31289 0.95830 0.68388 0.55761 0.48368 0.43289

(Xg, X
(N)
g ) 1.30222 0.94977 0.70427 0.50804 0.41405 0.36055 0.32280

1.42 - 1.86822 1.30105 0.95121 0.67677 0.55462 0.48111 0.43046

(Xg, X
(N)
g ) 1.76667 1.22571 0.89458 0.63665 0.52213 0.45247 0.40482

1.99 - 1.85639 1.29289 0.94626 0.67421 0.55160 0.47822 0.42849

(Xg, X
(N)
g ) 2.54781 1.72304 1.25092 0.87988 0.72210 0.62598 0.55911

3.31 - 1.83716 1.29155 0.94173 0.67099 0.54871 0.47588 0.42645

(Xg, X
(N)
g ) 3.56010 2.39697 1.73381 1.22024 0.99619 0.86635 0.77370

9.80 - 1.83555 1.28894 0.93697 0.66756 0.54602 0.47402 0.42411

(Xg, X
(N)
g ) 4.86067 3.24720 2.34399 1.64604 1.34678 1.16835 1.04106

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each G is
2000. Nmax = 500.
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A Proofs of Main Results

A.1 Proof of Proposition 3.1

Proof. By the Cauchy-Schwarz inequality
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g = OP (1) by the law of large numbers, 1

G

∑

g |Wπ(2g)−Wπ(2g−1)|2r
p−→ 0 by assumption, hence

the result follows.

A.2 Proof of Theorem 3.1

Proof. We have that
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In particular, for h(x, y, z, w) = x
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, observe that
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Ȳg(0)Ng(1−Dg),
1

G

∑

1≤g≤2G

Ng(1−Dg)





and the Jacobian is

Dh(x, y, z, w) =
( 1

y
,− x

y2
,− 1

w
,
z

w2

)

.

By Assumption 3.1,

√
G
( 1

G

∑

1≤g≤2G

ȲgNgDg − E[Ȳg(1)Ng ]
)

=
1√
G

∑

1≤g≤2G

(Ȳg(1)NgDg −E[Ȳg(1)Ng ]Dg)

and similarly for the other three terms. The desired conclusion then follows from Lemma A.1 together with an application of

the delta method. To see this, note by the laws of total variance and total covariance that V in Lemma A.1 is symmetric with

entries

V11 = Var[Ȳg(1)Ng ]−
1

2
Var[E[Ȳg(1)Ng |Xg]]

V12 = Cov[Ȳg(1)Ng , Ng]−
1

2
Cov[E[Ȳg(1)Ng |Xg], E[Ng|Xg]]

V13 =
1

2
Cov[E[Ȳg(1)Ng |Xg], E[Ȳg(0)Ng |Xg]]

V14 =
1

2
Cov[E[Ȳg(1)Ng |Xg], E[Ng|Xg]]

V22 = Var[Ng]−
1

2
Var[E[Ng|Xg]]

V23 =
1

2
Cov[E[Ng|Xg], E[Ȳg(0)Ng |Xg]]

V24 =
1

2
Cov[E[Ng|Xg], E[Ng|Xg]]

V33 = Var[Ȳg(0)Ng ]−
1

2
Var[E[Ȳg(0)Ng |Xg]]

V34 = Cov[Ȳg(0)Ng , Ng]−
1

2
Cov[E[Ȳg(0)Ng |Xg], E[Ng|Xg]]

V44 = Var[Ng]−
1

2
Var[E[Ng|Xg]] .
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We separately calculate the variance terms involving conditional expectations and those that don’t. The terms not involving

conditional expectations are

Var[Ȳg(1)Ng ]

E[Ng]2
+

Var[Ng]E[Ȳg(1)Ng ]2

E[Ng]4
+

Var[Ȳg(0)Ng ]

E[Ng]2
+

Var[Ng]E[Ȳg(0)Ng ]2

E[Ng]4

− 2Cov[Ȳg(1)Ng , Ng]E[Ȳg(1)Ng ]

E[Ng]3
− 2Cov[Ȳg(0)Ng , Ng]E[Ȳg(0)Ng ]

E[Ng]3

=
E[Ȳ 2

g (1)N2
g ]− E[Ȳg(1)Ng ]2

E[Ng]2
+
E[N2

g ]E[Ȳg(1)Ng ]2 −E[Ng]2E[Ȳg(1)Ng ]2

E[Ng]4

+
E[Ȳ 2

g (0)N2
g ]− E[Ȳg(0)Ng ]2

E[Ng]2
+
E[N2

g ]E[Ȳg(0)Ng ]2 − E[Ng]2E[Ȳg(0)Ng ]2

E[Ng]4

−
2E[Ȳg(1)N2

g ]E[Ȳg(1)Ng ]

E[Ng]3
+

2E[Ȳg(1)Ng ]E[Ng]E[Ȳg(1)Ng ]

E[Ng]3

−
2E[Ȳg(0)N2

g ]E[Ȳg(0)Ng ]

E[Ng]3
+

2E[Ȳg(0)Ng ]E[Ng]E[Ȳg(0)Ng ]

E[Ng]3

=
E[Ȳ 2

g (1)N2
g ]

E[Ng]2
+
E[Ȳ 2

g (0)N2
g ]

E[Ng]2
+
E[N2

g ]E[Ȳg(1)Ng ]2

E[Ng]4
+
E[N2

g ]E[Ȳg(0)Ng ]2

E[Ng]4

−
2E[Ȳg(1)N2

g ]E[Ȳg(1)Ng ]

E[Ng]3
−

2E[Ȳg(0)N2
g ]E[Ȳg(0)Ng ]

E[Ng]3

= E[Ỹ 2
g (1)] +E[Ỹ 2

g (0)] ,

where

Ỹg(d) =
Ng

E[Ng]

(

Ȳg(d) −
E[Ȳg(d)Ng ]

E[Ng]

)

for d ∈ {0, 1}.

Next, the terms involving conditional expectations are

− Var[E[Ȳg(1)Ng |Xg]]

2E[Ng]2
− Var[E[Ng|Xg]]E[Ȳg(1)Ng ]2

2E[Ng]4

− Var[E[Ȳg(0)Ng |Xg]]

2E[Ng]2
− Var[E[Ng|Xg]]E[Ȳg(0)Ng ]2

2E[Ng]4

+
Cov[E[Ȳg(1)Ng |Xg], E[Ng|Xg]]E[Ȳg(1)Ng ]

E[Ng]3
+

Cov[E[Ȳg(0)Ng |Xg], E[Ng|Xg]]E[Ȳg(0)Ng ]

E[Ng]3

− Cov[E[Ȳg(1)Ng |Xg], E[Ȳg(0)Ng |Xg]]

E[Ng]2
+

Cov[E[Ȳg(1)Ng |Xg], E[Ng|Xg]]E[Ȳg(0)Ng ]

E[Ng]E[Ng]2

+
Cov[E[Ng|Xg], E[Ȳg(0)Ng |Xg]]E[Ȳg(1)Ng ]

E[Ng]2E[Ng]

− Cov[E[Ng|Xg], E[Ng|Xg]]E[Ȳg(1)Ng ]E[Ȳg(0)Ng ]

E[Ng]2E[Ng]2

= −E[E[Ȳg(1)Ng |Xg]2]− E[Ȳg(1)Ng ]2

2E[Ng]2
− (E[E[Ng|Xg]2]−E[Ng]2)E[Ȳg(1)Ng ]2

2E[Ng]4

− E[E[Ȳg(0)Ng |Xg]2]− E[Ȳg(0)Ng ]2

2E[Ng]2
− (E[E[Ng|Xg]2]−E[Ng]2)E[Ȳg(0)Ng ]2

2E[Ng]4

+
(E[E[Ȳg(1)Ng |Xg]E[Ng|Xg]]−E[Ȳg(1)Ng ]E[Ng])E[Ȳg(1)Ng ]

E[Ng]3

+
(E[E[Ȳg(0)Ng |Xg]E[Ng|Xg]]−E[Ȳg(0)Ng ]E[Ng])E[Ȳg(0)Ng ]

E[Ng]3

− E[E[Ȳg(1)Ng |Xg]E[Ȳg(0)Ng |Xg]]−E[Ȳg(1)Ng ]E[Ȳg(0)Ng ]

E[Ng]E[Ng]

+
(E[E[Ȳg(1)Ng |Xg]E[Ng|Xg]]−E[Ȳg(1)Ng ]E[Ng])E[Ȳg(0)Ng ]

E[Ng]E[Ng]2

+
(E[E[Ȳg(0)Ng |Xg]E[Ng|Xg]]−E[Ȳg(0)Ng ]E[Ng])E[Ȳg(1)Ng ]

E[Ng]2E[Ng]
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− (E[E[Ng|Xg]E[Ng|Xg]]− E[Ng]E[Ng])E[Ȳg(1)Ng ]E[Ȳg(0)Ng ]

E[Ng]2E[Ng]2

= −E[E[Ȳg(1)Ng |Xg]2]

2E[Ng]2
− E[E[Ng|Xg]2]E[Ȳg(1)Ng ]2

2E[Ng]4
− E[E[Ȳg(0)Ng |Xg]2]

2E[Ng]2
− E[E[Ng|Xg]2]E[Ȳg(0)Ng ]2

2E[Ng]4

+
E[E[Ȳg(1)Ng |Xg]E[Ng|Xg]]E[Ȳg(1)Ng ]

E[Ng]3
+
E[E[Ȳg(0)Ng |Xg]E[Ng|Xg]]E[Ȳg(0)Ng ]

E[Ng]3

− E[E[Ȳg(1)Ng |Xg]E[Ȳg(0)Ng |Xg]]

E[Ng]2
+
E[E[Ȳg(1)Ng |Xg]E[Ng|Xg]]E[Ȳg(0)Ng ]

E[Ng]3

+
E[E[Ȳg(0)Ng |Xg]E[Ng|Xg]]E[Ȳg(1)Ng ]

E[Ng]3
− E[E[Ng|Xg]2]E[Ȳg(1)Ng ]E[Ȳg(0)Ng ]

E[Ng]4

= −1

2
E[E[Ỹg(1)|Xg ]

2]− 1

2
E[E[Ỹg(0)|Xg ]

2]−E[E[Ỹg(1)|Xg ]E[Ỹg(0)|Xg ]]

= −1

2
E[(E[Ỹg(1) + Ỹg(0)|Xg ])

2] .

Lemma A.1. Suppose Q satisfies Assumptions 2.1 and 3.3 and the treatment assignment mechanism satisfies Assumptions

3.1–3.2. Define

L
YN1
G =

1√
G

∑

1≤g≤2G

(Ȳg(1)NgDg −E[Ȳg(1)Ng ]Dg)

L
N1
G =

1√
G

∑

1≤g≤2G

(NgDg −E[Ng]Dg)

L
YN0
G =

1√
G

∑

1≤g≤2G

(Ȳg(0)Ng(1−Dg)− E[Ȳg(0)Ng ](1−Dg))

L
N0
G =

1√
G

∑

1≤g≤2G

(Ng(1−Dg)− E[Ng](1−Dg)) .

Then, as G→ ∞,

(LYN1
G ,LN1

G ,LYN0
G ,LN0

G )′
d→ N(0,V) ,

where

V = V1 + V2

for

V1 =

(

V
1
1 0

0 V0
1

)

V
1
1 =

(

E[Var[Ȳg(1)Ng |Xg]] E[Cov[Ȳg(1)Ng , Ng|Xg]]

E[Cov[Ȳg(1)Ng , Ng|Xg]] E[Var[Ng|Xg]]

)

V
0
1 =

(

E[Var[Ȳg(0)Ng |Xg]] E[Cov[Ȳg(0)Ng , Ng|Xg]]

E[Cov[Ȳg(0)Ng , Ng|Xg]] E[Var[Ng|Xg]]

)

V2 =
1

2
Var[(E[Ȳg(1)Ng |Xg], E[Ng|Xg], E[Ȳg(0)Ng |Xg], E[Ng|Xg])

′] .

Proof of Lemma A.1. Note

(LYN1
G ,LN1

G ,LYN0
G ,LN0

G ) = (LYN1
1,G ,LN1

1,G,L
YN0
1,G ,LN0

1,G) + (LYN1
2,G ,LN1

2,G,L
YN0
2,G ,LN0

2,G) ,

where

L
YN1
1,G =

1√
G

∑

1≤g≤2G

(Ȳg(1)NgDg − E[Ȳg(1)NgDg |X(G),D(G)])

L
YN1
2,G =

1√
G

∑

1≤g≤2G

(E[Ȳg(1)NgDg|X(G),D(G)]− E[Ȳg(1)Ng ]Dg)
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and similarly for the rest. Next, note (LYN1
1,G ,LN1

1,G,L
YN0
1,G ,LN0

1,G), G ≥ 1 is a triangular array of normalized sums of random

vectors. Conditional on X(G), D(G), (LYN1
1,G ,LN1

1,G) ⊥⊥ (LYN0
1,G ,LN0

1,G). Moreover, it follows from QG = Q2G and Assumption 3.1

that

Var

[(

LYN1
1,G

L
N1
1,G

)∣
∣
∣
∣
∣
X(G),D(G)

]

=

(
1
G

∑

1≤g≤2G Var[Ȳg(1)Ng |Xg]Dg
1
G

∑

1≤g≤2G Cov[Ȳg(1)Ng , Ng |Xg]Dg

1
G

∑

1≤g≤2G Cov[Ȳg(1)Ng , Ng|Xg]Dg
1
G

∑

1≤g≤2G Var[Ng|Xg]Dg

)

.

For the upper left component, we have

1

G

∑

1≤g≤2G

Var[Ȳg(1)Ng |Xg]Dg =
1

G

∑

1≤g≤2G

E[Ȳ 2
g (1)N2

g |Xg]Dg − 1

G

∑

1≤g≤2G

E[Ȳg(1)Ng |Xg]
2Dg . (14)

Note

1

G

∑

1≤g≤2G

E[Ȳ 2
g (1)N2

g |Xg]Dg

=
1

2G

∑

1≤g≤2G

E[Ȳ 2
g (1)N2

g |Xg] +
1

2

( 1

G

∑

1≤g≤2G:Dg=1

E[Ȳ 2
g (1)N2

g |Xg]−
1

G

∑

1≤g≤2G:Dg=0

E[Ȳ 2
g (1)N2

g |Xg]
)

.

It follows from the weak law of large numbers, the application of which is permitted by Lemma B.1, that

1

2G

∑

1≤g≤2G

E[Ȳ 2
g (1)N2

g |Xg]
P→ E[Ȳ 2

g (1)N2
g ] .

On the other hand, it follows from Assumptions 3.2 and 3.3(a) that

∣
∣
∣
1

G

∑

1≤g≤2G:Dg=1

E[Ȳ 2
g (1)N2

g |Xg]−
1

G

∑

1≤g≤2G:Dg=0

E[Ȳ 2
g (1)N2

g |Xg]
∣
∣
∣

≤ 1

G

∑

1≤j≤G

|E[Ȳ 2
π(2j−1)(1)N

2
π(2j−1) |Xπ(2j−1)]−E[Ȳ 2

π(2j)(1)N
2
π(2j) |Xπ(2j)]|

.
1

G

∑

1≤j≤G

|Xπ(2j−1) −Xπ(2j)|
P→ 0 .

Therefore,
1

G

∑

1≤g≤2G

E[Ȳ 2
g (1)N2

g |Xg]Dg
P→ E[Ȳ 2

g (1)N2
g ] .

Meanwhile,

1

G

∑

1≤g≤2G

E[Ȳg(1)Ng |Xg]
2Dg

=
1

2G

∑

1≤g≤2G

E[Ȳg(1)Ng |Xg]
2 +

1

2

( 1

G

∑

1≤g≤2G:Dg=1

E[Ȳg(1)Ng |Xg]
2 − 1

G

∑

1≤g≤2G:Dg=0

E[Ȳg(1)Ng |Xg]
2
)

.

It follows from the weak law of large numbers (the application of which is permitted by Lemma B.1) that

1

2G

∑

1≤g≤2G

E[Ȳg(1)Ng |Xg]
2 P→ E[E[Ȳg(1)Ng |Xg]

2] .

Next,

∣
∣
∣
1

G

∑

1≤g≤2G:Dg=1

E[Ȳg(1)Ng |Xg]
2 − 1

G

∑

1≤g≤2G:Dg=0

E[Ȳg(1)Ng |Xg]
2
∣
∣
∣

≤ 1

G

∑

1≤j≤G

|E[Ȳπ(2j−1)(1)Nπ(2j−1) |Xπ(2j−1)]−E[Ȳπ(2j)(1)Nπ(2j) |Xπ(2j)]|

× |E[Ȳπ(2j−1)(1)Nπ(2j−1) |Xπ(2j−1)] + E[Ȳπ(2j)(1)Nπ(2j) |Xπ(2j)]|

.
( 1

G

∑

1≤j≤G

|Xπ(2j−1) −Xπ(2j)|2
)1/2( 1

G

∑

1≤j≤G

(|E[Ȳπ(2j−1)(1)Nπ(2j−1) |Xπ(2j−1)] +E[Ȳπ(2j)(1)Nπ(2j) |Xπ(2j)]|)2
)1/2

.
( 1

G

∑

1≤j≤G

|Xπ(2j−1) −Xπ(2j)|2
)1/2( 1

G

∑

1≤j≤G

(|E[Ȳπ(2j−1)(1)Nπ(2j−1) |Xπ(2j−1)]|2 + |E[Ȳπ(2j)(1)Nπ(2j) |Xπ(2j)]|2)
)1/2
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≤
( 1

G

∑

1≤j≤G

|Xπ(2j−1) −Xπ(2j)|2
)1/2( 1

G

∑

1≤g≤2G

E[Ȳg(1)Ng |Xg]
2
)1/2 P→ 0 ,

where the first inequality follows by inspection, the second follows from Assumption 3.3(a) and the Cauchy-Schwarz inequality,

the third follows from (a+ b)2 ≤ 2a2 +2b2, the last follows by inspection again and the convergence in probability follows from

Assumption 3.2 and the law of large numbers. Therefore,

1

G

∑

1≤g≤2G

E[Ȳg(1)Ng |Xg]
2Dg

P→ E
[
E[Ȳg(1)Ng |Xg]

2
]
,

and hence it follows from (14) that

1

G

∑

1≤g≤2G

Var[Ȳg(1)Ng |Xg]Dg
P→ E[Var[Ȳg(1)Ng |Xg]] .

An identical argument establishes that

1

G

∑

1≤g≤2G

Var[Ng|Xg]Dg
P→ E[Var[Ng|Xg]] .

To study the off-diagonal components, note that

1

G

∑

1≤g≤2G

Cov[Ȳg(1)Ng , Ng|Xg]Dg =
1

G

∑

1≤g≤2G

E[Ȳg(1)N
2
g |Xg]Dg − 1

G

∑

1≤g≤2G

E[Ȳg(1)Ng |Xg]E[Ng|Xg]Dg . (15)

By a similar argument to that used above, it can be shown that

1

G

∑

1≤g≤2G

E[Ȳg(1)N
2
g |Xg]Dg

P→ E[Ȳg(1)N
2
g ] .

Meanwhile,

1

G

∑

1≤g≤2G

E[Ȳg(1)Ng |Xg]E[Ng|Xg]Dg

=
1

2G

∑

1≤g≤2G

E[Ȳg(1)Ng |Xg]E[Ng|Xg] +
1

2

( 1

G

∑

1≤g≤2G:Dg=1

E[Ȳg(1)Ng |Xg]E[Ng|Xg]−
1

G

∑

1≤g≤2G:Dg=0

E[Ȳg(1)Ng |Xg]E[Ng|Xg]
)

.

Note that

E[E[Ȳg(1)Ng |Xg]E[Ng|Xg]] = E[[NgE[Ȳg(1)|Wg]|Xg]E[Ng|Xg]] . E[N2
g ] <∞ ,

where the equality follows by the law of iterated expectations and the inequality by Lemma B.1 and Jensen’s inequality, and

the law of iterated expectations. Thus by the weak law of large numbers,

1

2G

∑

1≤g≤2G

E[Ȳg(1)Ng |Xg]E[Ng|Xg]
P→ E[E[Ȳg(1)Ng |Xg]E[Ng|Xg]] .

Next, by the triangle inequality

∣
∣
∣
1

G

∑

1≤g≤2G:Dg=1

E[Ȳg(1)Ng |Xg]E[Ng|Xg]−
1

G

∑

1≤g≤2G:Dg=0

E[Ȳg(1)Ng |Xg]E[Ng|Xg]
∣
∣
∣

≤ 1

G

∑

1≤j≤G

∣
∣E[Ȳπ(2j−1)(1)Nπ(2j−1) |Xπ(2j−1)]E[Nπ(2j−1)|Xπ(2j−1)]−E[Ȳπ(2j)(1)Nπ(2j) |Xπ(2j)]E[Nπ(2j)|Xπ(2j)]

∣
∣ ,

and for each j,

∣
∣E[Ȳπ(2j−1)(1)Nπ(2j−1) |Xπ(2j−1)]E[Nπ(2j−1)|Xπ(2j−1)]−E[Ȳπ(2j)(1)Nπ(2j) |Xπ(2j)]E[Nπ(2j)|Xπ(2j)]

∣
∣

=
∣
∣
∣(E[Ȳπ(2j−1)(1)Nπ(2j−1) |Xπ(2j−1)]−E[Ȳπ(2j)(1)Nπ(2j) |Xπ(2j)])E[Nπ(2j)|Xπ(2j)]

+ (E[Nπ(2j−1)|Xπ(2j−1)]−E[Nπ(2j)|Xπ(2j)])E[Ȳπ(2j−1)(1)Nπ(2j−1) |Xπ(2j−1)]
∣
∣
∣

.
∣
∣E[Ȳπ(2j−1)(1)Nπ(2j−1) |Xπ(2j−1)]−E[Ȳπ(2j)(1)Nπ(2j) |Xπ(2j)]

∣
∣+
∣
∣E[Nπ(2j−1)|Xπ(2j−1)]− E[Nπ(2j)|Xπ(2j)]

∣
∣ ,

where the final inequality follows from the triangle inequality, Assumption 3.3(b) and Lemma B.1.
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Thus we have that

∣
∣
∣
1

G

∑

1≤g≤2G:Dg=1

E[Ȳg(1)Ng |Xg]E[Ng|Xg]−
1

G

∑

1≤g≤2G:Dg=0

E[Ȳg(1)Ng |Xg]E[Ng|Xg]
∣
∣
∣

.
1

G

∑

1≤j≤G

∣
∣E[Ȳπ(2j−1)(1)Nπ(2j−1) |Xπ(2j−1)]−E[Ȳπ(2j)(1)Nπ(2j) |Xπ(2j)]

∣
∣+
∣
∣E[Nπ(2j−1)|Xπ(2j−1)]− E[Nπ(2j)|Xπ(2j)]

∣
∣

.
1

G

∑

1≤j≤G

|Xπ(2j−1) −Xπ(2j)|
P→ 0 ,

where the final inequality follows from Assumptions 3.3 and the convergence in probability follows from Assumption 3.1.

Proceeding as in the case of the upper left component, we obtain that

1

G

∑

1≤g≤2G

Cov[Ȳg(1)Ng , Ng|Xg]Dg
P→ E[Cov[Ȳg(1)Ng , Ng |Xg]] .

Thus we have established that

Var

[(

L
YN1
1,G

LN1
1,G

)∣
∣
∣
∣
∣
X(G),D(G)

]

P→ V
1
1 .

Similarly,

Var

[(

L
YN0
1,G

LN0
1,G

)∣
∣
∣
∣
∣
X(G),D(G)

]

P→ V
0
1 .

It thus follows from similar arguments to those used in Lemma A.2 that

ρ(L((LYN1
1,G ,LN1

1,G,L
YN0
1,G ,LN0

1,G)′|X(G),D(G)), N(0,V1))
P→ 0 , (16)

where L(·) denotes the law of a random variable and ρ is any metric that metrizes weak convergence.

Next, we study (LYN1
2,G ,LN1

2,G,L
YN0
2,G ,LN0

2,G). It follows from QG = Q2G and Assumption 3.1 that









L
YN1
2,G

LN1
2,G

LYN0
2,G

L
N0
2,G









=










1√
G

∑

1≤g≤2G Dg(E[Ȳg(1)Ng |Xg]−E[Ȳg(1)Ng ])

1√
G

∑

1≤g≤2GDg(E[Ng|Xg]−E[Ng])

1√
G

∑

1≤g≤2G(1 −Dg)(E[Ȳg(0)Ng |Xg]− E[Ȳg(0)Ng ])

1√
G

∑

1≤g≤2G(1−Dg)(E[Ng|Xg]− E[Ng])










.

For LYN1
2,G , note it follows from Assumption 3.1 that

Var[LYN1
2,G |X(G)] =

1

4G

∑

1≤j≤G

(E[Ȳπ(2j−1)(1)Nπ(2j−1) |Xπ(2j−1)]−E[Ȳπ(2j)(1)Nπ(2j) |Xπ(2j)])
2

.
1

G

∑

1≤j≤G

|Xπ(2j−1) −Xπ(2j)|2
P→ 0 .

Therefore, it follows from Markov’s inequality conditional on X(G) and D(G), and the fact that probabilities are bounded and

hence uniformly integrable, that

L
YN1
2,G = E[LYN1

2,G |X(G)] + oP (1) .

Applying a similar argument to each of LN1
2,G, LYN0

2,G , LN0
2,G allows us to conclude that









L
YN1
2,G

L
N1
2,G

LYN0
2,G

LN0
2,G









=










1
2
√

G

∑

1≤g≤2G(E[Ȳg(1)Ng |Xg]− E[Ȳg(1)Ng ])

1
2
√

G

∑

1≤g≤2G(E[Ng|Xg]− E[Ng])

1

2
√

G

∑

1≤g≤2G(E[Ȳg(0)Ng |Xg]− E[Ȳg(0)Ng ])

1
2
√

G

∑

1≤g≤2G(E[Ng|Xg]− E[Ng])










+ oP (1) .

It thus follows from the central limit theorem (the application of which is justified by Jensen’s inequality combined with

Assumption 2.1(b), and Lemma B.1) that

(LYN1
2,G ,LN1

2,G,L
YN0
2,G ,LN0

2,G)′
d→ N(0,V2) .
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Because (16) holds and (LYN1
2,G ,LN1

2,G,L
YN0
2,G ,LN0

2,G) is deterministic conditional on X(G),D(G), the conclusion of the theorem

follows from Lemma S.1.3 in Bai et al. (2022).

A.3 Proof of Theorem 3.2

Proof. We have that

∆̂G =

1
G

∑

1≤g≤2G Ȳg(1)NgDg

1
G

∑

1≤g≤2GNgDg
−

1
G

∑

1≤g≤2G Ȳg(0)Ng(1−Dg)
1
G

∑

1≤g≤2GNg(1 −Dg)
.

In particular, for h(x, y, z, w) = x
y
− z

w
, observe that

∆̂G = h




1

G

∑

1≤g≤2G

Ȳg(1)NgDg,
1

G

∑

1≤g≤2G

NgDg,
1

G

∑

1≤g≤2G

Ȳg(0)Ng(1−Dg),
1

G

∑

1≤g≤2G

Ng(1−Dg)





and the Jacobian is

Dh(x, y, z, w) =
( 1

y
,− x

y2
,− 1

w
,
z

w2

)

.

By Assumption 3.4,

√
G
( 1

G

∑

1≤g≤2G

ȲgNgDg − E[Ȳg(1)Ng ]
)

=
1√
G

∑

1≤g≤2G

(Ȳg(1)NgDg −E[Ȳg(1)Ng ]Dg)

and similarly for the other three terms. The desired conclusion then follows from Lemma A.2 together with an application of

the Delta method. To see this, note by the laws of total variance and total covariance that V in Lemma A.2 is symmetric with

entries

V11 = Var[Ȳg(1)Ng ]−
1

2
Var[E[Ȳg(1)Ng |Wg]]

V12 = Cov[E[Ȳg(1)Ng |Wg], Ng]−
1

2
Cov[E[Ȳg(1)Ng |Wg], Ng]

V13 =
1

2
Cov[E[Ȳg(1)Ng |Wg], E[Ȳg(0)Ng |Wg]]

V14 =
1

2
Cov[E[Ȳg(1)Ng |Wg], Ng]

V22 = Var[Ng]−
1

2
Var[Ng]

V23 =
1

2
Cov[Ng, E[Ȳg(0)Ng |Xg]]

V24 =
1

2
Var[Ng]

V33 = Var[Ȳg(0)Ng ]−
1

2
Var[E[Ȳg(0)Ng |Wg]]

V34 = Cov[E[Ȳg(0)Ng |Wg], Ng]−
1

2
Cov[E[Ȳg(0)Ng |Wg], Ng]

V44 = Var[Ng]−
1

2
Var[Ng] .

We proceed by mirroring the algebra in Theorem 3.1. Expanding and simplifying the first half of the expression:

Var[Ȳg(1)Ng ]

E[Ng]2
+

Var[Ng]E[Ȳg(1)Ng ]2

E[Ng]4
+

Var[Ȳg(0)Ng ]

E[Ng]2
+

Var[Ng]E[Ȳg(0)Ng ]2

E[Ng]4

− 2Cov[E[Ȳg(1)Ng |Wg], Ng]E[Ȳg(1)Ng ]

E[Ng]3
− 2Cov[E[Ȳg(0)Ng |Wg], Ng]E[Ȳg(0)Ng ]

E[Ng]3

=
E[Ȳ 2

g (1)N2
g ]− E[Ȳg(1)Ng ]2

E[Ng]2
+
E[N2

g ]E[Ȳg(1)Ng ]2 −E[Ng]2E[Ȳg(1)Ng ]2

E[Ng]4

+
E[Ȳ 2

g (0)N2
g ]− E[Ȳg(0)Ng ]2

E[Ng]2
+
E[N2

g ]E[Ȳg(0)Ng ]2 − E[Ng]2E[Ȳg(0)Ng ]2

E[Ng]4

−
2E[Ȳg(1)N2

g ]E[Ȳg(1)Ng ]

E[Ng]3
+

2E[Ȳg(1)Ng ]E[Ng]E[Ȳg(1)Ng ]

E[Ng]3
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−
2E[Ȳg(0)N2

g ]E[Ȳg(0)Ng ]

E[Ng]3
+

2E[Ȳg(0)Ng ]E[Ng]E[Ȳg(0)Ng ]

E[Ng]3

=
E[Ȳ 2

g (1)N2
g ]

E[Ng]2
+
E[Ȳ 2

g (0)N2
g ]

E[Ng]2
+
E[N2

g ]E[Ȳg(1)Ng ]2

E[Ng]4
+
E[N2

g ]E[Ȳg(0)Ng ]2

E[Ng]4

−
2E[Ȳg(1)N2

g ]E[Ȳg(1)Ng ]

E[Ng]3
−

2E[Ȳg(0)N2
g ]E[Ȳg(0)Ng ]

E[Ng]3

= E[Ỹ 2
g (1)] +E[Ỹ 2

g (0)] ,

where

Ỹg(d) =
Ng

E[Ng]

(

Ȳg(d) −
E[Ȳg(d)Ng ]

E[Ng]

)

for d ∈ {0, 1}.

Expanding the second half of the expression:

− Var[E[Ȳg(1)Ng |Wg]]

2E[Ng]2
− Var[Ng]E[Ȳg(1)Ng ]2

2E[Ng]4

− Var[E[Ȳg(0)Ng |Wg]]

2E[Ng]2
− Var[Ng]E[Ȳg(0)Ng ]2

2E[Ng]4

+
Cov[E[Ȳg(1)Ng |Wg], Ng ]E[Ȳg(1)Ng ]

E[Ng]3
+

Cov[E[Ȳg(0)Ng |Wg], Ng]E[Ȳg(0)Ng ]

E[Ng]3

− Cov[E[Ȳg(1)Ng |Wg], E[Ȳg(0)Ng |Wg]]

E[Ng]2
+

Cov[E[Ȳg(1)Ng |Wg], Ng]E[Ȳg(0)Ng ]

E[Ng]E[Ng]2

+
Cov[Ng, E[Ȳg(0)Ng |Wg]]E[Ȳg(1)Ng ]

E[Ng]2E[Ng]

− Cov[Ng, Ng]E[Ȳg(1)Ng ]E[Ȳg(0)Ng ]

E[Ng]2E[Ng]2

= −E[E[Ȳg(1)Ng |Wg]2]−E[Ȳg(1)Ng ]2

2E[Ng]2
−

(E[N2
g ]−E[Ng]2)E[Ȳg(1)Ng ]2

2E[Ng]4

− E[E[Ȳg(0)Ng |Wg]2]−E[Ȳg(0)Ng ]2

2E[Ng]2
−

(E[N2
g ]−E[Ng]2)E[Ȳg(0)Ng ]2

2E[Ng]4

+
(E[E[Ȳg(1)Ng |Wg]Ng]−E[Ȳg(1)Ng ]E[Ng])E[Ȳg(1)Ng ]

E[Ng]3

+
(E[E[Ȳg(0)Ng |Wg]Ng]−E[Ȳg(0)Ng ]E[Ng])E[Ȳg(0)Ng ]

E[Ng]3

− E[E[Ȳg(1)Ng |Wg]E[Ȳg(0)Ng |Wg]]−E[Ȳg(1)Ng ]E[Ȳg(0)Ng ]

E[Ng]E[Ng]

+
(E[E[Ȳg(1)Ng |Wg]Ng]−E[Ȳg(1)Ng ]E[Ng])E[Ȳg(0)Ng ]

E[Ng]E[Ng]2

+
(E[E[Ȳg(0)Ng |Wg]Ng]−E[Ȳg(0)Ng ]E[Ng])E[Ȳg(1)Ng ]

E[Ng]2E[Ng]

−
(E[N2

g ]−E[Ng]2)E[Ȳg(1)Ng ]E[Ȳg(0)Ng ]

E[Ng]2E[Ng]2

= −E[E[Ȳg(1)Ng |Wg]2]

2E[Ng]2
−
E[N2

g ]E[Ȳg(1)Ng ]2

2E[Ng]4
− E[E[Ȳg(0)Ng |Wg]2]

2E[Ng]2
−
E[N2

g ]E[Ȳg(0)Ng ]2

2E[Ng]4

+
E[E[Ȳg(1)Ng |Wg]Ng]E[Ȳg(1)Ng ]

E[Ng]3
+
E[E[Ȳg(0)Ng |Wg]Ng]E[Ȳg(0)Ng ]

E[Ng]3

− E[E[Ȳg(1)Ng |Wg]E[Ȳg(0)Ng |Wg]]

E[Ng]2
+
E[E[Ȳg(1)Ng |Wg]Ng]E[Ȳg(0)Ng ]

E[Ng]3

+
E[E[Ȳg(0)Ng |Wg]Ng]E[Ȳg(1)Ng ]

E[Ng]3
−
E[N2

g ]E[Ȳg(1)Ng ]E[Ȳg(0)Ng ]

E[Ng]4

= −1

2
E[E[Ỹg(1)|Wg]

2]− 1

2
E[E[Ỹg(0)|Wg]

2]−E[E[Ỹg(1)|Wg]E[Ỹg(0)|Wg ]]

= −1

2
E[(E[Ỹg(1) + Ỹg(0)|Wg])

2] .
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Lemma A.2. Suppose Q satisfies Assumptions 2.1 and 3.6 and the treatment assignment mechanism satisfies Assumptions

3.4–3.5. Define

L
YN1
G =

1√
G

∑

1≤g≤2G

(Ȳg(1)NgDg −E[Ȳg(1)Ng ]Dg)

L
N1
G =

1√
G

∑

1≤g≤2G

(NgDg −E[Ng]Dg)

L
YN0
G =

1√
G

∑

1≤g≤2G

(Ȳg(0)Ng(1−Dg)− E[Ȳg(0)Ng ](1−Dg))

L
N0
G =

1√
G

∑

1≤g≤2G

(Ng(1−Dg)− E[Ng](1−Dg)) .

Then, as G→ ∞,

(LYN1
G ,LN1

G ,LYN0
G ,LN0

G )′
d→ N(0,V) ,

where

V = V1 + V2

for

V1 =

(

V1
1 0

0 V
0
1

)

V
1
1 =

(

E[Var[Ȳg(1)Ng |Wg]] 0

0 0

)

V
0
1 =

(

E[Var[Ȳg(0)Ng |Wg]] 0

0 0

)

V2 =
1

2
Var[(E[Ȳg(1)Ng |Wg], Ng, E[Ȳg(0)Ng |Wg], Ng)

′] .

Proof of Lemma A.2. Note

(LYN1
G ,LN1

G ,LYN0
G ,LN0

G ) = (LYN1
1,G , 0,LYN0

1,G , 0) + (LYN1
2,G ,LN1

G ,LYN0
2,G ,LN0

G ) ,

where

L
YN1
1,G =

1√
G

∑

1≤g≤2G

(Ȳg(1)NgDg − E[Ȳg(1)NgDg |N(G),X(G),D(G)])

L
YN1
2,G =

1√
G

∑

1≤g≤2G

(E[Ȳg(1)NgDg|N(G),X(G), D(G)]− E[Ȳg(1)Ng ]Dg)

and similarly for LYN0
G . Next, note (LYN1

1,G , 0,LYN0
1,G , 0), G ≥ 1 is a triangular array of normalized sums of random vectors.

Conditional on N(G),X(G),D(G), LYN1
1,G ⊥⊥ L

YN0
1,G . Moreover, it follows from QG = Q2G and Assumption 3.4 that

Var

[

L
YN1
1,G

∣
∣
∣
∣
∣
N(G), X(G),D(G)

]

= Var[Ȳg(1)Ng |Wg]Dg .

We have
1

G

∑

1≤g≤2G

Var[Ȳg(1)Ng |Wg]Dg =
1

G

∑

1≤g≤2G

E[Ȳ 2
g (1)N2

g |Wg]Dg − 1

G

∑

1≤g≤2G

E[Ȳg(1)Ng |Wg]
2Dg . (17)

Note

1

G

∑

1≤g≤2G

E[Ȳ 2
g (1)N2

g |Wg]Dg

=
1

2G

∑

1≤g≤2G

E[Ȳ 2
g (1)N2

g |Wg] +
1

2

( 1

G

∑

1≤g≤2G:Dg=1

E[Ȳ 2
g (1)N2

g |Wg]−
1

G

∑

1≤g≤2G:Dg=0

E[Ȳ 2
g (1)N2

g |Wg]
)

.
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It follows from the weak law of large numbers, the application of which is permitted by Lemma B.1,

1

2G

∑

1≤g≤2G

E[Ȳ 2
g (1)N2

g |Wg]
P→ E[Ȳ 2

g (1)N2
g ] .

On the other hand,

∣
∣
∣
1

G

∑

1≤g≤2G:Dg=1

E[Ȳ 2
g (1)N2

g |Wg]−
1

G

∑

1≤g≤2G:Dg=0

E[Ȳ 2
g (1)N2

g |Wg]
∣
∣
∣

≤ 1

G

∑

1≤j≤G

|N2
π(2j−1)E[Ȳ 2

π(2j−1)(1)|Wπ(2j−1) ]−N2
π(2j)E[Ȳ 2

π(2j)(1)|Wπ(2j) ]|

≤ 1

G

∑

1≤j≤G

N2
π(2j)|E[Ȳ 2

π(2j−1)(1)|Wπ(2j−1)]−E[Ȳ 2
π(2j)(1)|Wπ(2j)]|+

1

G

∑

1≤j≤G

|N2
π(2j) −N2

π(2j−1)||E[Ȳ 2
π(2j−1)(1)|Wπ(2j−1) ]|

.
1

G

∑

1≤j≤G

N2
π(2j)|Wπ(2j−1) −Wπ(2j)|+

1

G

∑

1≤j≤G

|N2
π(2j) −N2

π(2j−1)|
P→ 0 ,

where the first inequality follows from Assumption 3.4 and the triangle inequality, the second inequality by some algebraic ma-

nipulations, the final inequality by Assumption 3.6 and Lemma B.1, and the convergence in probability follows from Assumption

3.5 and Lemma B.2. Therefore,
1

G

∑

1≤g≤2G

E[Ȳ 2
g (1)N2

g |Wg]Dg
P→ E[Ȳ 2

g (1)N2
g ] .

Meanwhile,

1

G

∑

1≤g≤2G

E[Ȳg(1)Ng |Wg]
2Dg

=
1

2G

∑

1≤g≤2G

E[Ȳg(1)Ng |Wg]
2 +

1

2

( 1

G

∑

1≤g≤2G:Dg=1

E[Ȳg(1)Ng |Wg]
2 − 1

G

∑

1≤g≤2G:Dg=0

E[Ȳg(1)Ng |Wg]
2
)

.

It follows from the weak law of large numbers, the application of which is permitted by Lemma B.1 and Assumption 2.1(c) that

1

2G

∑

1≤g≤2G

E[Ȳg(1)Ng |Wg]
2 P→ E[E[Ȳg(1)Ng |Wg]

2] .

Next,

∣
∣
∣
1

G

∑

1≤g≤2G:Dg=1

E[Ȳg(1)Ng |Wg]
2 − 1

G

∑

1≤g≤2G:Dg=0

E[Ȳg(1)Ng |Wg]
2
∣
∣
∣

≤ 1

G

∑

1≤j≤G

|E[Ȳπ(2j−1)(1)Nπ(2j−1) |Wπ(2j−1)]−E[Ȳπ(2j)(1)Nπ(2j) |Wπ(2j)]|

× |E[Ȳπ(2j−1)(1)Nπ(2j−1) |Wπ(2j−1)] +E[Ȳπ(2j)(1)Nπ(2j) |Wπ(2j)]|

≤
( 1

G

∑

1≤j≤G

|E[Ȳπ(2j−1)(1)Nπ(2j−1) |Wπ(2j−1)]−E[Ȳπ(2j)(1)Nπ(2j) |Wπ(2j)]|2
)1/2

·
( 1

G

∑

1≤j≤G

|E[Ȳπ(2j−1)(1)Nπ(2j−1) |Wπ(2j−1)] +E[Ȳπ(2j)(1)Nπ(2j) |Wπ(2j)]|2
)1/2

.
( 1

G

∑

1≤j≤G

|E[Ȳπ(2j−1)(1)Nπ(2j−1) |Wπ(2j−1)]−E[Ȳπ(2j)(1)Nπ(2j) |Wπ(2j)]|2
)1/2( 1

G

∑

1≤g≤2G

E[Ȳg(1)Ng |Wg]
2
)1/2 P→ 0 ,

where the first inequality follows by inspection, the second follows from Cauchy-Schwarz, the third follows from (a + b)2 ≤
2a2 + 2b2, and the convergence in probability follows from Assumptions 3.6, 3.5 and the law of large numbers. Therefore,

1

G

∑

1≤g≤2G

E[Ȳg(1)Ng |Wg]
2Dg

P→ E
[
E[Ȳg(1)Ng |Wg]

2
]
,
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and hence it follows from (17) that

1

G

∑

1≤g≤2G

Var[Ȳg(1)Ng |Wg]Dg
P→ E[Var[Ȳg(1)Ng |Wg]] .

Similarly,
1

G

∑

1≤g≤2G

Var[Ȳg(0)Ng |Wg]Dg
P→ E[Var[Ȳg(0)Ng |Wg]] .

We now establish

ρ(L((LYN1
1,G , 0,LYN0

1,G , 0)|W (G), D(G)), N(0,V1))
P→ 0 , (18)

where L(·) is used to denote the law of a random variable and ρ is any metric that metrizes weak convergence. For that purpose

note that we only need to show that for any subsequence {Gk} there exists a further subsequence {Gkl
} along which

ρ(L((LYN1
1,Gkl

, 0,LYN0
1,Gkl

, 0)|W (Gkl
), D(Gkl ), N(0,V1)) → 0 with probability one . (19)

In order to extract such a subsequence, we verify the conditions in the Lindeberg central limit theorem in Proposition 2.27 of

van der Vaart (1998). First note that by the results proved so far,

Var[(LYN1
1,G , 0,LYN0

1,G , 0)′|W (G),D(G)]
P→ V1 .

Next, We will use the inequality

∣
∣
∣
∣
∣
∣

∑

1≤j≤k

aj

∣
∣
∣
∣
∣
∣

I







∣
∣
∣
∣
∣
∣

∑

1≤j≤k

aj

∣
∣
∣
∣
∣
∣

> ǫ






≤

∑

1≤j≤k

k|aj |I
{

|aj | >
ǫ

k

}

. (20)

It follows from (20) that

1

G

∑

1≤g≤2G

E[(Dg(Ȳg(1)Ng − E[Ȳg(1)Ng |Wg]))
2 + ((1 −Dg)(Ȳg(0)Ng −E[Ȳg(0)Ng |Wg]))

2

× I{(Dg(Ȳg(1)Ng − E[Ȳg(1)Ng |Wg]))
2 + ((1 −Dg)(Ȳg(0)Ng −E[Ȳg(0)Ng |Wg]))

2 > ǫ2G}|W (G),D(G)]

.
1

G

∑

1≤g≤2G

E[Dg(Ȳg(1)Ng −E[Ȳg(1)Ng |Wg])
2I{Dg(Ȳg(1)Ng −E[Ȳg(1)Ng |Wg])

2 > ǫ2G/2}|W (G), D(G)]

+
1

G

∑

1≤g≤2G

E[(1−Dg)(Ȳg(0)Ng − E[Ȳg(0)Ng |Wg])
2I{(1 −Dg)(Ȳg(0)Ng −E[Ȳg(0)Ng |Wg])

2 > ǫ2G/2}|W (G), D(G)]

≤ 1

G

∑

1≤g≤2G

E[(Ȳg(1)Ng −E[Ȳg(1)Ng |Wg])
2I{|Ȳg(1)Ng −E[Ȳg(1)Ng |Wg]| > ǫ

√
G/

√
2}|Wg]

+
1

G

∑

1≤g≤2G

E[(Ȳg(0)Ng −E[Ȳg(0)Ng |Wg])
2I{|Ȳg(0)Ng −E[Ȳg(0)Ng |Wg]| > ǫ

√
G/

√
2}|Wg] .

Fix any m > 0. For G large enough, the previous line

≤ 1

G

∑

1≤g≤2G

E[(Ȳg(1)Ng − E[Ȳg(1)Ng |Wg])
2I{|Ȳg(1)Ng − E[Ȳg(1)Ng |Wg]| > m}|Wg]

+
1

G

∑

1≤g≤2G

E[(Ȳg(0)Ng − E[Ȳg(0)Ng |Wg])
2I{|Ȳg(0)Ng − E[Ȳg(0)Ng |Wg]| > m|Wg]

P→ 2E[(Ȳg(1)Ng − E[Ȳg(1)Ng |Wg])
2I{|Ȳg(1)Ng − E[Ȳg(1)Ng |Wg]| > m}]

+ E[(Ȳg(1)Ng − E[Ȳg(1)Ng |Wg])
2I{|Ȳg(1)Ng − E[Ȳg(1)Ng |Wg]| > m}] .

because E[(Ȳg(1)Ng −E[Ȳg(1)Ng |Wg])2] < ∞ and E[(Ȳg(0)Ng −E[Ȳg(0)Ng |Wg])2] < ∞. As m→ ∞, the last expression goes

to 0. Therefore, it follows from similar arguments to those in the proof of Lemma B.3 of Bai (2022) that both conditions in

Proposition 2.27 of van der Vaart (1998) hold in probability, and therefore there must be a subsequence along which they hold

almost surely, so (19) and hence (18) holds.
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Next, we study (LYN1
2,G ,LN1

G ,LYN0
2,G ,LN0

G ). It follows from QG = Q2G and Assumption 3.4 that









LYN1
2,G

LN1
2,G

LYN0
2,G

L
N0
2,G









=










1√
G

∑

1≤g≤2GDg(E[Ȳg(1)Ng |Wg]− E[Ȳg(1)Ng ])

1√
G

∑

1≤g≤2GDg(Ng −E[Ng])

1√
G

∑

1≤g≤2G(1 −Dg)(E[Ȳg(0)Ng |Wg]− E[Ȳg(0)Ng ])

1√
G

∑

1≤g≤2G(1−Dg)(Ng −E[Ng])










.

For LYN1
2,G , it follows from similar arguments to those used above that Var[LYN1

2,G |W (G)]
P→ 0. Therefore, it follows from Markov’s

inequality conditional on W (G) and D(G), and the fact that probabilities are bounded and hence uniformly integrable, that

L
YN1
2,G = E[LYN1

2,G |W (G)] + oP (1) .

Applying a similar argument to each of LN1
G , LYN0

2G and LN0
G allows us to conclude that









LYN1
2,G

LN1
G

LYN0
2,G

LN0
G









=










1
2
√

G

∑

1≤g≤2G(E[Ȳg(1)Ng |Wg]− E[Ȳg(1)Ng ])

1

2
√

G

∑

1≤g≤2G(Ng − E[Ng])

1

2
√

G

∑

1≤g≤2G(E[Ȳg(0)Ng |Wg]− E[Ȳg(0)Ng ])

1
2
√

G

∑

1≤g≤2G(Ng − E[Ng])










+ oP (1) .

It thus follows from the central limit theorem (the application of which is justified by Assumption 2.1(c) and Lemma B.1) that

(LYN1
2,G ,LN1

G ,LYN0
2,G ,LN0

G )′
d→ N(0,V2) .

Because (16) holds and (LYN1
2,G ,LN1

G ,LYN0
2,G ,LN0

G ) is deterministic conditional on N(G),X(G), D(G), the conclusion of the theorem

follows from Lemma S.1.3 in Bai et al. (2022).

A.4 Proof of Theorem 3.3

The desired conclusion follows immediately from Lemmas B.4-B.6.

A.5 Proof of Theorem 3.4

By the derivation in Theorem 3.6 in Bugni et al. (2022),

ω̂2
CR,G =

1

2

(

ω̂2
CR,G(1) + ω̂2

CR,G(0)
)

, (21)

(where we note that the factor of 1/2 appears since we are normalizing by the number of pairs), and

ω̂2
CR,G(d) :=

1
(

1
2G

∑

1≤g≤2G NgI{Dg = d}
)2

1

2G

∑

1≤g≤2G





(
Ng

|Mg|

)2

I{Dg = d}




∑

i∈Mg

ǫ̂i,g(d)





2

 ,

with

ǫ̂i,g(d) := Yi,g − 1
∑

1≤g≤2GNgI{Dg = d}
∑

1≤g≤2G

NgȲgI{Dg = d} .

Fix d ∈ {0, 1}, r ∈ {0, 1, 2}, ℓ ∈ {1, 2} arbitrarily. Then by Lemma S.1.5 in Bai et al. (2022) applied to the observations

(Nℓ
g Ȳ

r
g (d) : 1 ≤ g ≤ 2G),

1

2G

∑

1≤g≤2G

Nℓ
g Ȳ

r
g (d)I{Dg = d} P−→

E[N lȲ r
g (d)]

2
.

The result then follows by an identical derivation to that of Theorem 3.6 in Bugni et al. (2022).
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A.6 Proof of Theorem 3.5

Let 1K denote a column of ones of length K. Then consider the following cluster-robust variance estimator where clusters are

defined at the level of the pair :

(

1

G

∑

1≤j≤G

∑

g∈λj

X′
gXg

)−1(

1

G

∑

1≤j≤G




∑

g∈λj

X′
g ǫ̂g








∑

g∈λj

X′
g ǫ̂g





′)(
1

G

∑

1≤g≤G

∑

g∈λj

X′
gXg

)−1

, (22)

where λj := {π(2j − 1), π(2j)}, and

Xg :=

(

1|Mg | ·
√

Ng

|Mg | , 1|Mg| ·
√

Ng

|Mg|Dg

)

ǫ̂g :=

√

Ng

|Mg|
(Yi,g − (µ̂G(1) − µ̂G(0))Dg − µ̂G(0) : i ∈ Mg)

′ .

Imposing the condition that Ng = k are equal and fixed and |Mg| = Ng, and then following the algebra in, for instance, the

proof of Theorem 3.4 in Bai et al. (2023b), it can be shown that

ω̂2
PCVE,G =

1

G

∑

1≤j≤G




∑

g∈λj

ȲgI{Dg = 1} −
∑

g∈λj

ȲgI{Dg = 0}





2

− (µ̂G(1) − µ̂G(0))2 .

By Lemmas S.1.5 and S.1.6 of Bai et al. (2022) applied to the observations (Ȳg(d) : 1 ≤ g ≤ 2G), and the continuous mapping

theorem, we thus obtain that

ω̂2
PCVE,G

P−→ E[Var[Ȳg(1)|Xg ]] + E[Var[Ȳg(1)|Xg ]] + E[
(
(E[Ȳg(1)|Xg ]− E[Ȳg(1)]) − (E[Ȳg(0)|Xg ]− E[Ȳg(0)])

)2
] .

Simplifying using the law of total variance and the fact that Ỹg(d) = Ȳg(d) − E[Ȳg(d)] once we impose that Ng = k, we then

obtain

ω̂2
PCVE,G

P−→ E[Ỹ 2
g (1)] + E[Ỹ 2

g (0)]− 1

2
E[(E[Ỹg(1) + Ỹg(0)|Xg ])

2] +
1

2
E
[

(E[Ỹg(1) − Ỹg(0)|Xg ])
2
]

.

The conclusion then follows.

A.7 Proof of Theorem 3.6

Proof. Note that the null hypothesis (8) combined with Assumption 2.1(e) implies that

Ȳg(1)|(Xg , Ng)
d
= Ȳg(0)|(Xg , Ng) . (23)

If the assignment mechanism satisfies Assumption 3.4, the result then follows by applying Theorem 3.4 in Bai et al. (2022) to

the cluster-level outcomes {(Ȳg ,Dg, Xg, Ng) : 1 ≤ g ≤ 2G}. If instead the assignment mechanism satisfies Assumption 3.1,

then note that (23) is in fact equivalent to the statement

(Ȳg(1), Ng)|Xg
d
= (Ȳg(0), Ng)|Xg . (24)

The result then follows by applying Theorem 3.4 in Bai et al. (2022) using (24) as the null hypothesis. To establish this

equivalence, we first begin with (23) and verify that for any Borel sets A and B,

P{Ȳg(1) ∈ A,Ng ∈ B|Xg} = P{Ȳg(0) ∈ A,Ng ∈ B|Xg} a.s.

By the definition of a conditional expectation, note we only need to verify for all Borel sets C,

E[P{Ȳg(1) ∈ A,Ng ∈ B|Xg}I{Xg ∈ C}] = P{Ȳg(0) ∈ A,Ng ∈ B,Xg ∈ C} .

We have

E[P{Ȳg(1) ∈ A,Ng ∈ B|Xg}I{Xg ∈ C}]

= P{Ȳg(1) ∈ A,Ng ∈ B,Xg ∈ C}
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= E[P{Ȳg(1) ∈ A|Xg, Ng}I{Ng ∈ B}I{Xg ∈ C}]

= E[P{Ȳg(0) ∈ A|Xg, Ng}I{Ng ∈ B}I{Xg ∈ C}]

= P{Ȳg(0) ∈ A,Ng ∈ B,Xg ∈ C} ,

where the first and second equalities follow from the definition of conditional expectations, the the third follows from (23), and

the last follows again from the definition of a conditional expectation. The opposite implication follows from a similar argument

and is thus omitted.

A.8 Proof of Theorem 3.7

Note that

√
G∆̂G =

√
G




1

N(1)

∑

1≤g≤2G

DgNg Ȳg − 1

N(0)

∑

1≤g≤2G

(1 −Dg)Ng Ȳg





=
1

N(1)

√
G

∑

1≤g≤2G

(
DgNgȲg − (1−Dg)Ng Ȳg

)
+

(
1

N(1)
− 1

N(0)

)√
G

∑

1≤g≤2G

(1 −Dg)NgȲg

=
1

N(1)/G

1√
G

∑

1≤j≤G

(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)
(Dπ(2j) −Dπ(2j−1))

+

1√
G
(N(0) −N(1))

N(1)
G

N(0)
G

1

G

∑

1≤g≤2G

(1−Dg)NgȲg

=
1

N(1)/G

1√
G

∑

1≤j≤G

(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)
(Dπ(2j) −Dπ(2j−1))

−
1√
G

∑

1≤j≤G(Nπ(2j) −Nπ(2j−1))(Dπ(2j) −Dπ(2j−1))

N(1)
G

N(0)
G

1

G

∑

1≤g≤2G

(1−Dg)Ng Ȳg .

Hence the randomization distribution of
√
G∆̂G is given by

R̃G(t) := P

{
√
G∆̌(ǫ1, . . . , ǫG) ≤ t

∣
∣
∣
∣
∣
Z(G)

}

, (25)

where

√
G∆̌(ǫ1, . . . , ǫG) =

1

Ñ(1)/G

1√
G

∑

1≤j≤G

ǫj
(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)
(Dπ(2j) −Dπ(2j−1))

−
1√
G

∑

1≤j≤G ǫj(Nπ(2j) −Nπ(2j−1))(Dπ(2j) −Dπ(2j−1))

Ñ(1)
G

Ñ(0)
G

1

G

∑

1≤g≤2G

(1− D̃g)Ng Ȳg ,

ǫj , j = 1, . . . , G are i.i.d. Rademacher random variables generated independently of Z(G), {D̃g : 1 ≤ g ≤ 2G} denotes the

assignment of cluster g after applying the transformation implied by {ǫj : 1 ≤ j ≤ G}, and

Ñ(d) =
∑

1≤g≤2G

NgI{D̃g = d} .

By construction, v̂2G evaluated at the transformation of the data implied by {ǫj : 1 ≤ j ≤ G} is given by

v̌2G(ǫ1, . . . , ǫG) = τ̂2G − 1

2
λ̌2G (ǫ1, . . . , ǫG) (26)

where τ̂2G is defined in (5), and

λ̌2G (ǫ1, . . . , ǫG) =

2

G

∑

1≤j≤⌊G/2⌋
ǫ2j−1ǫ2j

((

Ŷπ(4j−3) − Ŷπ(4j−2)

)(

Ŷπ(4j−1) − Ŷπ(4j)

) (
Dπ(4j−3) −Dπ(4j−2)

) (
Dπ(4j−1) −Dπ(4j)

))

.
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The desired conclusion then follows from Lemmas B.7 and B.9, along with Theorem 5.2 in Chung and Romano (2013).

A.9 Proof of Theorem 3.8

We first show that β̂G
P→ β∗. The proof follows almost verbatim Theorem 4.2 in Bai et al. (2023a) with a few minor differences

because we match on Ng, which could all be resolved as in the proof of Lemma B.3. To establish the limiting distribution, first

define

ψ̄d,G =
1

G

∑

1≤g≤2G

ψgI{Dg = d}

for d ∈ {0, 1}. Note that

1

G

∑

1≤g≤2G

(Ȳg(1)Ng − (ψg − ψ̄G)′β̂G)Dg

=
1

G

∑

1≤g≤2G

(Ȳg(1)Ng − (ψg − ψ̄G)′β∗)Dg − 1

G

∑

1≤g≤2G

(ψg − ψ̄1,G)′(β̂G − β∗)Dg − (ψ̄1,G − ψ̄G)′(β̂G − β∗)

=
1

G

∑

1≤g≤2G

(Ȳg(1)Ng − (ψg − ψ̄G)′β∗)Dg − OP (G−1/2)oP (1)

=
1

G

∑

1≤g≤2G

(Ȳg(1)Ng − (ψg − ψ̄G)′β∗)Dg + oP (G−1/2)

=
1

G

∑

1≤g≤2G

(Ȳg(1)Ng − (ψg −E[ψg])
′β∗)Dg − (ψ̄G −E[ψg])

′β∗ + oP (G−1/2) .

where the second equality follows because β̂G − β∗ = oP (1),

1

G

∑

1≤g≤2G

(ψg − ψ̄1,G)Dg = 0 ,

and √
G(ψ̄1,G − ψ̄G) = OP (1) .

The last equality follows from the arguments that establish (50) in Bai et al. (2023a). Define

∆̃adj
G =

1
G

∑

1≤g≤2G(Ȳg(1)Ng − (ψg − E[ψg])′β∗)Dg

1
G

∑

1≤g≤2G NgDg
−

1
G

∑

1≤g≤2G(Ȳg(0)Ng − (ψg − E[ψg])′β∗)(1−Dg)
1
G

∑

1≤g≤2G Ng(1−Dg)
.

It follows from previous arguments that

√
G(∆̂adj

G −∆)−
√
G(∆̃adj

G −∆)

=
√
G(ψ̄G − E[ψg])

′β∗
(

1
1
G

∑

1≤g≤2GNgDg
− 1

1
G

∑

1≤g≤2GNg(1−Dg)

)

+ oP (1)

= oP (1) .

Recall that

ν2 = E[Var[Ỹg(1)|Xg , Ng]] + E[Var[Ỹg(0)|Xg , Ng]] +
1

2
E[(E[Ỹg(1) − Ỹg(0)|Xg , Ng]−∆)2] .

It then follows from the proof of Theorem 3.2 that
√
G(∆̂adj

G −∆)
d→ N(0, ς2), where

ς2 = E[Var[Y ∗
g (1)|Xg , Ng]] +E[Var[Y ∗

g (0)|Xg , Ng]] +
1

2
E[(E[Y ∗

g (1)− Y ∗
g (0)|Xg , Ng]−∆)2] ,

where

Y ∗
g (d) =

Ȳg(d)Ng − (ψg −E[ψg])′β∗

E[Ng]
− Ng

E[Ng]

E[Ȳg(d)Ng − (ψg − E[ψg])′β∗]

E[Ng]
= Ỹg(d) −

(ψg − E[ψg])′β∗

E[Ng]

for d ∈ {0, 1}. All relevant assumptions for Theorem 3.2 have their counterparts stated in Theorem 3.8.
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Next we show that ς2 ≤ ν2. First note that by definition it follows immediately that

E[(E[Ỹg(1) − Ỹg(0)|Xg , Ng ]−∆)2] = E[(E[Y ∗
g (1) − Y ∗

g (0)|Xg , Ng]−∆)2] .

It thus remains to show that

E[Var[Y ∗
g (1)|Xg , Ng ]] + E[Var[Y ∗

g (0)|Xg , Ng ]] ≤ E[Var[Ỹg(1)|Xg , Ng]] + E[Var[Ỹg(0)|Xg , Ng ]] .

To that end,

E[Var[Y ∗
g (1)|Xg , Ng ]] + E[Var[Y ∗

g (0)|Xg , Ng ]]

= E

[

Var

[

Ỹg(1) −
(ψg − E[ψg])′β∗

E[Ng]

∣
∣
∣Xg, Ng

]]

+ E

[

Var

[

Ỹg(0) −
(ψg −E[ψg])′β∗

E[Ng]

∣
∣
∣Xg, Ng

]]

= E[Var[Ỹg(1)|Xg , Ng]] + E[Var[Ỹg(0)|Xg , Ng]]−
2E[((ψg − E[ψg|Xg, Ng])′β∗)2]

E[Ng]2
− 2E[Cov[Ng, ψ

′
gβ

∗|Xg, Ng]]
E[Ȳg(1)Ng ] + E[Ȳg(0)Ng ]

E[Ng]3
,

where the first equality follows by definition, the second equality by noting that β∗ is the projection coefficient of 1
2
(Ȳg(1)Ng +

Ȳg(0)Ng − E[Ȳg(1)Ng + Ȳg(0)Ng |Xg, Ng ]) on ψg − E[ψg|Xg, Ng ],

E[(Ȳg(1)Ng + Ȳg(0)Ng −E[Ȳg(1)Ng + Ȳg(0)Ng |Xg, Ng])(ψg − E[ψg|Xg, Ng])
′β∗] = 2E[((ψg − E[ψg|Xg, Ng ])

′β∗)2] ,

or equivalently,

E[Cov[Ȳg(1)Ng + Ȳg(0)Ng , ψ
′
gβ

∗|Xg, Ng]] = 2E[Var[ψ′
gβ

∗|Xg, Ng]] . (27)

We thus obtain

ς2 = ν2 − κ2

once we notice that Cov[Ng, ψ′
gβ

∗|Xg, Ng] = 0, as desired. Finally, note that if we do not match on Ng, then we have that

E[Var[Y ∗
g (1)|Xg ]] + E[Var[Y ∗

g (0)|Xg ]]

= E[Var[Ỹg(1)|Xg ]] +E[Var[Ỹg(0)|Xg ]]−
2E[((ψg −E[ψg|Xg])′β∗)2]

E[Ng]2
− 2E[Cov[Ng, ψ

′
gβ

∗|Xg]]
E[Ȳg(1)Ng ] +E[Ȳg(0)Ng ]

E[Ng]3
,

but the last term no longer necessarily evaluates to zero.

A.10 Proof of Theorem 3.9

The theorem follows from combining the arguments used to establish Theorem 3.3 and those used to establish Theorem 3.2 in

Bai et al. (2023a).

B Auxiliary Lemmas

Lemma B.1. If Assumption 2.1 holds,
∣
∣E[Ȳ r

g (d)|Xg , Ng]
∣
∣ ≤ C a.s. ,

for r ∈ {1, 2} for some constant C > 0,

E
[

Ȳ r
g (d)Nℓ

g

]

< ∞ ,

for r ∈ {1, 2}, ℓ ∈ {0, 1, 2}, and
E
[
E[Ȳg(d)Ng |Xg]

2
]
<∞ .

Proof. We show the first statement for r = 2, since the case r = 1 follows similarly. By the Cauchy-Schwarz inequality,

Ȳg(d)
2 =




1

|Mg|
∑

i∈Mg

Yi,g(d)





2

≤ 1

|Mg|
∑

i∈Mg

Yi,g(d)
2 ,
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and hence

∣
∣E[Ȳg(d)

2|Xg, Ng]
∣
∣ ≤ E




1

|Mg|
∑

i∈Mg

E[Yi,g(d)
2|Xg, Ng ]

∣
∣
∣
∣
∣
Xg, Ng



 ≤ C ,

where the first inequality follows from the above derivation, Assumption 2.1(e) and the law of iterated expectations, and final

inequality follows from Assumption 2.1(d). We show the next statement for r = ℓ = 2, since the other cases follow similarly.

By the law of iterated expectations,

E
[
Ȳ 2
g (d)N2

g

]
= E

[
N2

gE[Ȳ 2
g (d)|Xg , Ng]

]

. E
[
N2

g

]
< ∞ ,

where the final line follows by Assumption 2.1 (c). Finally,

E
[
E[Ȳg(d)Ng |Xg]

2
]
= E

[
E[NgE[Ȳg(d)|Xg , Ng ]|Xg]

2
]

. E
[
E[Ng|Xg]

2
]
<∞ ,

where the final line follows from Jensen’s inequality and Assumption 2.1(c).

Lemma B.2. If Assumptions 2.1 and 3.5 hold,

1

G

G∑

g=1

∣
∣
∣N2

π(2g) −N2
π(2g−1)

∣
∣
∣

p−→ 0 .

Proof.

1

G

G∑

g=1

∣
∣
∣N2

π(2g) −N2
π(2g−1)

∣
∣
∣ =

1

G

G∑

g=1

∣
∣Nπ(2g) −Nπ(2g−1)

∣
∣
∣
∣Nπ(2g) +Nπ(2g−1)

∣
∣

≤








1

G

G∑

g=1

∣
∣Nπ(2g) −Nπ(2g−1)

∣
∣2








1

G

G∑

g=1

∣
∣Nπ(2g) +Nπ(2g−1)

∣
∣2









1/2

,

where the inequality follows by Cauchy-Schwarz. It follows from an argument similar to the proof of Proposition 3.1 that
1
G

∑G
g=1

∣
∣Nπ(2g) +Nπ(2g−1)

∣
∣2 = OP (1). By Assumption 3.5, 1

G

∑G
g=1

∣
∣Nπ(2g) −Nπ(2g−1)

∣
∣2

p−→ 0. Hence the result follows.

Lemma B.3. If Assumptions 2.1 holds, and additionally Assumptions 3.2-3.3, 3.7 (or Assumptions 3.5-3.6, 3.8) hold, then

1. E
[

Ỹ 2
g (d)

]

< ∞ for d ∈ {0, 1}.

2. ((Ỹg(1), Ỹg(0)) : 1 ≤ g ≤ 2G) ⊥ D(G) | X(G) (or ((Ỹg(1), Ỹg(0)) : 1 ≤ g ≤ 2G) ⊥ D(G) |W (G))

3. 1
G

∑G
j=1

∣
∣µd(Xπ(2j))− µd(Xπ(2j−1))

∣
∣ P−→ 0, where we use µd(Xg) to denote E[Ỹg(d) | Xg] for d ∈ {0, 1}.

(or 1
G

∑G
j=1

∣
∣µd(Wπ(2j))− µd(Wπ(2j−1))

∣
∣ P−→ 0)

4. 1
G

∑G
j=1

∣
∣
(
µ1(Xπ(2j))− µ1(Xπ(2j−1))

) (
µ0(Xπ(2j))− µ0(Xπ(2j−1))

)∣
∣ P−→ 0.

(or 1
G

∑G
j=1

∣
∣
(
µ1(Wπ(2j))− µ1(Wπ(2j−1))

) (
µ0(Wπ(2j)) − µ0(Wπ(2j−1))

)∣
∣ P−→ 0)

5. 1
4G

∑

k∈{2,3},ℓ∈{0,1}
∑

1≤j≤G
2

(
µd
(
Xπ(4j−ℓ)

)
− µd

(
Xπ(4j−k)

))2 P−→ 0.

(or 1
4G

∑

k∈{2,3},ℓ∈{0,1}
∑

1≤j≤G
2

(
µd
(
Wπ(4j−ℓ)

)
− µd

(
Wπ(4j−k)

))2 P−→ 0)

Proof. Note that

E
[

Ỹ 2
g (d)

]

≤ E



N2
g

(

Ȳg(d)−
E
[
Ȳg(d)Ng

]

E [Ng]

)2




. E
[
N2

g Ȳ
2
g (d)

]
+

(

E
[
Ȳg(d)Ng

]

E [Ng]

)2

E[N2
g ] < ∞
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where the inequality follows by Lemma B.1. The second result follows directly by inspection and Assumption 3.4 (or Assumption

3.1 ). In terms of the third result, by Assumption 3.3 and 3.2,

1

G

G∑

j=1

∣
∣µ1(Xπ(2j))− µ1(Xπ(2j−1))

∣
∣ .

1

G

G∑

j=1

∣
∣Xπ(2j) −Xπ(2j−1)

∣
∣ P−→ 0 .

Meanwhile,

1

G

G∑

j=1

∣
∣µ1(Wπ(2j))− µ1(Wπ(2j−1))

∣
∣ .

1

G

G∑

j=1

∣
∣E[Nπ(2j)Ȳπ(2j)(d) |Wπ(2j)]− E[Nπ(2j−1)Ȳπ(2j−1)(d) | Wπ(2j−1)]

∣
∣

+
1

G

G∑

j=1

∣
∣E[Nπ(2j) |Wπ(2j)]− E[Nπ(2j−1) |Wπ(2j−1)]

∣
∣

.
1

G

G∑

j=1

∣
∣Nπ(2j)

(
E[Ȳπ(2j)(d) |Wπ(2j)]− E[Ȳπ(2j−1)(d) |Wπ(2j−1)]

)∣
∣+

1

G

G∑

j=1

∣
∣Nπ(2j) −Nπ(2j−1)

∣
∣

+
1

G

G∑

j=1

∣
∣(Nπ(2j) −Nπ(2j−1))E[Ȳπ(2j−1)(d) |Wπ(2j−1)]

∣
∣

.
1

G

G∑

j=1

Nπ(2j)

∣
∣Wπ(2j) −Wπ(2j−1)

∣
∣ ,

which converges to zero in probability by Assumption 3.5. To prove the fourth result, by Assumption 3.3 and 3.2,

1

G

G∑

j=1

∣
∣
(
µ1(Xπ(2j))− µ1(Xπ(2j−1))

) (
µ0(Xπ(2j))− µ0(Xπ(2j−1))

)∣
∣ .

1

G

G∑

j=1

∣
∣Xπ(2j) −Xπ(2j−1)

∣
∣2 P−→ 0 .

Similarly,

1

G

G∑

j=1

∣
∣
(
µ1(Wπ(2j)) − µ1(Wπ(2j−1))

) (
µ0(Wπ(2j)) − µ0(Wπ(2j−1))

)∣
∣

≤ 1

G

G∑

j=1

∣
∣µ1(Wπ(2j))− µ1(Wπ(2j−1))

∣
∣
∣
∣µ0(Wπ(2j))− µ0(Wπ(2j−1))

∣
∣

.
1

G

G∑

j=1

N2
π(2j)

∣
∣Wπ(2j) −Wπ(2j−1)

∣
∣2 P−→ 0 ,

where the last step follows by Assumption 3.5. Finally, fifth result follows the same argument by Assumption 3.8 ( or Assumption

3.7).

Lemma B.4. Consider the following adjusted potential outcomes:

Ŷg(d) =
Ng

1
2G

∑

1≤j≤2G Nj

(

Ȳg(d) −
1
G

∑

1≤j≤2G Ȳj(d)I{Dj = d}Nj

1
G

∑

1≤j≤2G I{Dj = d}Nj

)

.

Note the usual relationship still holds for adjusted outcomes, i.e. Ŷg = DgŶg(1) + (1 −Dg)Ŷg(0). If Assumptions 2.1 holds,

and additionally Assumptions 3.2–3.3 (or Assumptions 3.5–3.6) hold, then

µ̂G(d) =
1

G

∑

1≤g≤2G

Ŷg(d)I {Dg = d} P→ 0

σ̂2G(d) =
1

G

∑

1<g<2G

(

Ŷg − µ̂G(d)
)2
I {Dg = d} P→ Var

[

Ỹg(d)
]

.

Proof. It suffices to show that
1

G

∑

1≤g≤2G

Ŷ r
g (d)I {Dg = d} P→ E

[

Ỹ r
g (d)

]

45



for r ∈ {1, 2}. We prove this result only for r = 1 and d = 1; the other cases can be proven similarly. To this end, write

1

G

∑

1≤g≤2G

Ŷg(1)I {Dg = 1} =
1

G

∑

1≤g≤2G

Ŷg(1)Dg =
1

G

∑

1≤g≤2G

Ỹg(1)Dg +
1

G

∑

1≤g≤2G

(

Ŷg(1) − Ỹg(1)
)

Dg .

Note that

1

G

∑

1≤g≤2G

(

Ŷg(1) − Ỹg(1)
)

Dg =

(

1
1
2G

∑

1≤g≤2G Ng
− 1

E[Ng]

)


1

G

∑

1≤g≤2G

Ȳg(1)NgDg





−






1
G

∑

1≤g≤2G Ȳg(d)I{Dg = d}Ng
(

1
2G

∑

1≤g≤2G Ng

)2
− E[Ȳg(d)Ng ]

E[Ng]2









1

G

∑

1≤g≤2G

NgDg





By weak law of large number, Lemma A.2 (or Lemma A.1) and Slutsky’s theorem, we have

1

G

∑

1≤g≤2G

(

Ŷg(1) − Ỹg(1)
)

Dg
P−→ 0 .

By applying Lemma S.1.5 from Bai et al. (2022) and Lemma B.3, we have

1

G

∑

1≤g≤2G

Ỹg(d)Dg
P→ E

[

Ỹg(d)
]

= 0 .

Thus, the result follows.

Lemma B.5. If Assumptions 2.1 holds, and Assumptions 3.2-3.3 hold, then

τ̂2G
P→ E

[

Var
[

Ỹg(1) | Xg

]]

+ E
[

Var
[

Ỹg(0) | Xg

]]

+E

[(

E
[

Ỹg(1) | Xg

]

−E
[

Ỹg(0) | Xg

])2
]

in the case where we match on cluster size. Instead, if Assumptions 2.1 and 3.5-3.6 hold, then

τ̂2G
P→ E

[

Var
[

Ỹg(1) | Wg

]]

+E
[

Var
[

Ỹg(0) | Wg

]]

+E

[(

E
[

Ỹg(1) | Wg

]

− E
[

Ỹg(0) | Wg

])2
]

in the case where we do not match on cluster size.

Proof. Note that

τ̂2G =
1

G

∑

1≤j≤G

(

Ŷπ(2j) − Ŷπ(2j−1)

)2
=

1

G

∑

1≤g≤2G

Ŷ 2
g − 2

G

∑

1≤j≤G

Ŷπ(2j)Ŷπ(2j−1).

Since
1

G

∑

1≤g≤2G

Ŷ 2
g = σ̂2G(1) − µ̂2G(1) + σ̂2G(0) − µ̂2G(0)

It follows from Lemma B.4 that
1

G

∑

1≤g≤2G

Ŷ 2
g

P−→ E[Ỹ 2
g (1)] + E[Ỹ 2

g (0)]

Next, we argue that
2

G

∑

1≤j≤G

Ŷπ(2j)Ŷπ(2j−1)
P−→ 2E[µ1(Wg)µ0(Wg)] ,

where we use the notation µd(Wg) to denote E[Ỹg(d) |Wg]. To this end, first note that

2

G

∑

1≤j≤G

Ŷπ(2j)Ŷπ(2j−1) =
2

G

∑

1≤j≤G

Ỹπ(2j)Ỹπ(2j−1) +
2

G

∑

1≤j≤G

Ŷπ(2j)Ŷπ(2j−1) − Ỹπ(2j)Ỹπ(2j−1) .

Note that

2

G

∑

1≤j≤G

(

Ŷπ(2j)(1)Ŷπ(2j−1)(0) − Ỹπ(2j)(1)Ỹπ(2j−1)(0)
)

Dπ(2j)

=
2

G

∑

1≤j≤G

(

Ŷπ(2j)(1) − Ỹπ(2j)(1)
)

Ŷπ(2j−1)(0)Dπ(2j) +
(

Ŷπ(2j−1)(0)− Ỹπ(2j−1)(0)
)

Ỹπ(2j)(1)Dπ(2j)
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=
2

G

∑

1≤j≤G

(

Ŷπ(2j)(1) − Ỹπ(2j)(1)
)

Ỹπ(2j−1)(0)Dπ(2j) +
(

Ŷπ(2j)(1) − Ỹπ(2j)(1)
) (

Ŷπ(2j−1)(0) − Ỹπ(2j−1)(0)
)

Dπ(2j)

+
(

Ŷπ(2j−1)(0) − Ỹπ(2j−1)(0)
)

Ỹπ(2j)(1)Dπ(2j) ,

for which the first term is given as follows:

2

G

∑

1≤j≤G

(

Ŷπ(2j)(1) − Ỹπ(2j)(1)
)

Ỹπ(2j−1)(0)Dπ(2j)

=

(

1
1
2G

∑

1≤g≤2G Ng
− 1

E[Ng]

)


2

G

∑

1≤j≤G

Nπ(2j)Ȳπ(2j)(1)Ỹπ(2j−1)(0)Dπ(2j)





−






1
2G

∑

1≤g≤2G Ȳg(1)I{Dg = 1}Ng
(

1
2G

∑

1≤g≤2G Ng

)2
− E[Ȳg(1)Ng ]

E[Ng]2









2

G

∑

1≤j≤G

Nπ(2j)Ỹπ(2j−1)(0)Dπ(2j)



 .

By following the same argument in Lemma S.1.6 from Bai et al. (2022) and Lemma B.3, we have

2

G

∑

1≤j≤G

Nπ(2j)Ȳπ(2j)(1)Ỹπ(2j−1)(0)Dπ(2j)
P−→ E[E[NgȲg(1) | Xg]E[Ȳg(0) | Xg]]

2

G

∑

1≤j≤G

Nπ(2j)Ỹπ(2j−1)(0)Dπ(2j)
P−→ E[E[Ng | Xg]E[Ȳg(0) | Xg]]

for the case of not matching on cluster sizes. As for the case where we match on cluster sizes,

2

G

∑

1≤j≤G

Nπ(2j)Ȳπ(2j)(1)Ỹπ(2j−1)(0)Dπ(2j)
P−→ E[NgE[Ȳg(1) | Wg]E[Ȳg(0) |Wg]]

2

G

∑

1≤j≤G

Nπ(2j)Ỹπ(2j−1)(0)Dπ(2j)
P−→ E[NgE[Ȳg(0) | Wg]]

Then, by weak law of large number, Lemma A.2 (or Lemma A.1) and Slutsky’s theorem, we have

2

G

∑

1≤j≤G

(

Ŷπ(2j)(1)− Ỹπ(2j)(1)
)

Ỹπ(2j−1)(0)Dπ(2j)
P−→ 0 .

By repeating the same arguments for the other two terms, we conclude that

2

G

∑

1≤j≤G

(

Ŷπ(2j)(1)Ŷπ(2j−1)(0) − Ỹπ(2j)(1)Ỹπ(2j−1)(0)
)

Dπ(2j)
P−→ 0 ,

which immediately implies
2

G

∑

1≤j≤G

Ŷπ(2j)Ŷπ(2j−1) − Ỹπ(2j)Ỹπ(2j−1)
P−→ 0 .

Thus, it is left to show that
2

G

∑

1≤j≤G

Ỹπ(2j)Ỹπ(2j−1)
P−→ 2E[µ1(Wg)µ0(Wg)] ,

for the case of matching on cluster sizes, and for the case of not matching on cluster size,

2

G

∑

1≤j≤G

Ỹπ(2j)Ỹπ(2j−1)
P−→ 2E[µ1(Xg)µ0(Xg)] ,

both of which can be proved by applying Lemma S.1.6 from Bai et al. (2022) and Lemma B.3. Hence, in the case where we

match on cluster size,

τ̂2n
P→ E

[

Ỹ 2
g (1)

]

+ E
[

Ỹ 2
g (0)

]

− 2E [µ1 (Wg)µ0 (Wg)]

= E
[

Var
[

Ỹg(1) |Wg

]]

+ E
[

Var
[

Ỹg(0) |Wg

]]

+ E
[

(µ1 (Wg)− µ0 (Wg))
2
]

= E
[

Var
[

Ỹg(1) |Wg

]]

+ E
[

Var
[

Ỹg(0) |Wg

]]

+ E

[(

E
[

Ỹg(1) | Xi

]

− E
[

Ỹg(0) | Wg

])2
]

.

And corresponding result holds in the case where we do not match on cluster size.
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Lemma B.6. If Assumptions 2.1 holds, and Assumptions 2.1 and 3.2-3.3, 3.7 hold, then

λ̂2G
P→ E

[(

E
[

Ỹg(1) | Xg

]

− E
[

Ỹg(0) | Xg

])2
]

in the case where we match on cluster size. Instead, if Assumptions 3.5-3.6, 3.8 hold, then

λ̂2G
P→ E

[(

E
[

Ỹg(1) |Wg

]

− E
[

Ỹg(0) |Wg

])2
]

in the case where we do not match on cluster size.

Proof. Note that

λ̂2G =
2

G

∑

1≤j≤⌊G/2⌋

((

Ŷπ(4j−3) − Ŷπ(4j−2)

)(

Ŷπ(4j−1) − Ŷπ(4j)

) (
Dπ(4j−3) −Dπ(4j−2)

) (
Dπ(4j−1) −Dπ(4j)

))

=
2

G

∑

1≤j≤⌊G/2⌋

((

Ỹπ(4j−3) − Ỹπ(4j−2)

)(

Ỹπ(4j−1) − Ỹπ(4j)

) (
Dπ(4j−3) −Dπ(4j−2)

) (
Dπ(4j−1) −Dπ(4j)

))

︸ ︷︷ ︸

:=λ̃2
G

+
2

G

∑

1≤j≤⌊G/2⌋

(((

Ŷπ(4j−3) − Ŷπ(4j−2)

)(

Ŷπ(4j−1) − Ŷπ(4j)

)

−
(

Ỹπ(4j−3) − Ỹπ(4j−2)

)(

Ỹπ(4j−1) − Ỹπ(4j)

))

×
(
Dπ(4j−3) −Dπ(4j−2)

) (
Dπ(4j−1) −Dπ(4j)

))

Note that

(

Ŷπ(4j−3)(1) − Ŷπ(4j−2)(0)
) (

Ŷπ(4j−1)(1) − Ŷπ(4j)(0)
)

Dπ(4j−3)Dπ(4j−1)

−
(

Ỹπ(4j−3)(1) − Ỹπ(4j−2)(0)
) (

Ỹπ(4j−1)(1) − Ỹπ(4j)(0)
)

Dπ(4j−3)Dπ(4j−1)

=
(

Ŷπ(4j−3)(1) − Ŷπ(4j−2)(0) −
(

Ỹπ(4j−3)(1) − Ỹπ(4j−2)(0)
))(

Ỹπ(4j−1)(1) − Ỹπ(4j)(0)
)

Dπ(4j−3)Dπ(4j−1)

+
(

Ŷπ(4j−3)(1) − Ŷπ(4j−2)(0) −
(

Ỹπ(4j−3)(1) − Ỹπ(4j−2)(0)
))

×
(

Ŷπ(4j−1)(1) − Ŷπ(4j)(0)−
(

Ỹπ(4j−1)(1) − Ỹπ(4j)(0)
))

Dπ(4j−3)Dπ(4j−1)

+
(

Ŷπ(4j−1)(1) − Ŷπ(4j)(0) −
(

Ỹπ(4j−1)(1) − Ỹπ(4j)(0)
))(

Ỹπ(4j−3)(1)− Ỹπ(4j−2)(0)
)

Dπ(4j−3)Dπ(4j−1) .

Then we can show that each term converges to zero in probability by repeating the arguments in Lemma B.5. The results

should hold for any treatment combination, which implies λ̂2G − λ̃2G
P−→ 0. Finally, by Lemma S.1.7 of Bai et al. (2022) and

Lemma B.3, we have

λ̂2G = λ̃2G + oP (1)
P→ E

[(

E
[

Ỹg(1) | Wg

]

− E
[

Ỹg(0) | Wg

])2
]

in the case where we match on cluster size, and

λ̂2G = λ̃2G + oP (1)
P→ E

[(

E
[

Ỹg(1) | Xg

]

− E
[

Ỹg(0) | Xg

])2
]

in the case where we do not match on cluster size.

Lemma B.7. Let R̃G(t) denote the randomization distribution of
√
G∆̂G (see equation (25)). Then under the null hypothesis

(9), we have that

sup
t∈R

|R̃G(t) − Φ(t/τ)| P−→ 0 ,

where, in the case where we match on cluster size,

τ2 = E[Var[Ỹg(1)|Wg]] + E[Var[Ỹg(0)|Wg ]] +E
[

(E[Ỹg(1)|Wg ]− E[Ỹg(0)|Xg ])
2
]

,

and in the case where we do not match on cluster size,

τ2 = E[Var[Ỹg(1)|Xg ]] + E[Var[Ỹg(0)|Xg ]] + E
[

(E[Ỹg(1)|Xg ]− E[Ỹg(0)|Xg ])
2
]

,
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with (in both cases)

Ỹg(d) =
Ng

E[Ng]

(

Ȳg(d) −
E[Ȳg(d)Ng ]

E[Ng]

)

.

Proof. For a random transformation of the data, it follows as a consequence of Lemmas A.1 and A.2 that

1

G

∑

1≤g≤2G

I{D̃g = d}Ng
P−→ E[Ng] ,

1

G

∑

1≤g≤2G

(1− D̃g)NgȲg
p−→ E[NgȲg(0)] .

Combining this with Lemma B.8 and a straightforward modification of Lemma A.3. in Chung and Romano (2013) to two

dimensional distributions, we obtain that

sup
t∈R

|R̃G(t) − Φ(t/τ)| P−→ 0 ,

where when we match on cluster size

τ2 =
1

E[Ng]2

(
E[Var(Ng Ȳg(1)|Wg)] + E[Var(Ng Ȳg(0)|Wg)] + E

[
(E[NgȲg(1)|Wg ]− E[NgȲg(0)|Wg ])

2
])

,

and when we do not match on cluster size

τ2 =
1

E[Ng]2

(

E[Var(Ng Ȳg(1)|Xg)] + E[Var(Ng Ȳg(0)|Xg)] + E
[
(E[NgȲg(1)|Xg ]− E[NgȲg(0)|Xg ])

2
]
+

− 2
E[NgȲg(0)]

E[Ng]

(
E[N2

g Ȳg(1)] + E[N2
g Ȳg(0)]−

(
E
[
E[NgȲg(1)|Xg ]E[Ng|Xg]

]
+E

[
E[NgȲg(0)|Xg ]E[Ng|Xg]

]))

+

(
E[NgȲg(0)]

E[Ng]

)2

2E[Var(Ng|Xg)]
)

.

The result then follows from further algebraic manipulations to simplify τ in each case (see for instance Lemma B.10).

Lemma B.8.

ρ
(

L
(

(KY N
G ,KN

G )′|Z(G)
)

, N (0,VR)
)

P−→ 0 ,

where
(

KY N
G

K
N
G

)

=





1√
G

∑

1≤j≤G ǫj
(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)
(Dπ(2j) −Dπ(2j−1))

1√
G

∑

1≤j≤G ǫj(Nπ(2j) −Nπ(2j−1))(Dπ(2j) −Dπ(2j−1))



 ,

and where, in the case where we match on cluster size,

VR =

(

V
1
R 0

0 0

)

,

with

V
1
R = E[Var(NgȲg(1)|Wg)] +E[Var(Ng Ȳg(0)|Wg)] + E

[
(E[NgȲg(1)|Wg ]− E[NgȲg(0)|Wg ])

2
]
,

and when we do not match on cluster size,

VR =

(

V
1,1
R V

1,2
R

V
1,2
R V

2,2
R

)

,

with

V
1,1
R = E[Var(NgȲg(1)|Xg)] + E[Var(NgȲg(0)|Xg)] + E

[
(E[NgȲg(1)|Xg ]− E[NgȲg(0)|Xg ])

2
]

V
1,2
R = E[N2

g Ȳg(1)] + E[N2
g Ȳg(0)]−

(
E
[
E[NgȲg(1)|Xg ]E[Ng|Xg]

]
+ E

[
E[NgȲg(0)|Xg ]E[Ng|Xg]

])

V
2,2
R = 2E[Var(Ng |Xg)] .

Proof. Using the fact that ǫj , j = 1, . . . , G and ǫj(Dπ(2j) − Dπ(2j−1)), j = 1, . . . , G have the same distribution conditional

on Z(G), it suffices to study the limiting distribution of (K̃Y N
G , K̃N

G )′ conditional on Z(G), where

K̃
YN
G :=

1√
G

∑

1≤j≤G

ǫj
(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)
,
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K̃
N
G :=

1√
G

∑

1≤j≤G

ǫj
(
Nπ(2j) −Nπ(2j−1)

)
.

We will show

ρ
(

L
(

(K̃Y N
G , K̃N

G )′|Z(G)
)

, N(0,VR)
)

P−→ 0 , (28)

where L(·) denote the law and ρ is any metric that metrizes weak convergence. To that end, we will employ the Lindeberg

central limit theorem in Proposition 2.27 of van der Vaart (1998) and a subsequencing argument. Indeed, to verify (28), note

we need only show that for any subsequence {Gk} there exists a further subsequence {Gkl
} such that

ρ
(

L
(

(K̃Y N
Gkl

, K̃N
Gkl

)′|Z(Gkl
)
)

, N(0,VR)
)

→ 0 with probability one . (29)

To that end, define

VR,n =

(

V
1,1
R,n V

1,2
R,n

V
1,2
R,n V

2,2
R,n

)

= Var[(K̃Y N
G , K̃N

G )′|Z(G)] ,

where

V
1,1
R,n =

1

G

∑

1≤j≤G

(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))
2

V
1,2
R,n =

1

G

∑

1≤j≤G

(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))(Nπ(2j) −Nπ(2j−1))

V
2,2
R,n =

1

G

∑

1≤j≤G

(Nπ(2j) −Nπ(2j−1))
2 .

First consider the case where we match on cluster size. By arguing as in Lemma S.1.6 of Bai et al. (2022), it can be shown that

V
1,1
R,n

P−→ E[Var[NgȲg(1)]|Wg] + E[Var[NgȲg(0)]|Wg ] +E
[
(E[NgȲg(1)|Wg]−E[NgȲg(0)|Wg])

2
]
.

Next, we show that in this case V
1,2
R,n and V

2,2
R,n are oP (1). For V

2,2
R,n this follows immediately from Assumption 3.5. For V

1,2
R,n

note that by the Cauchy-Schwarz inequality,

1

G

∑

1≤j≤G

((
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

) (
Nπ(2j) −Nπ(2j−1)

))

≤








1

G

∑

1≤j≤G

(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)2








1

G

∑

1≤j≤G

(
Nπ(2j) −Nπ(2j−1)

)2









1/2

.

The second term of the product on the RHS is oP (1) by Assumption 3.5. The first term is OP (1) since

1

G

∑

1≤j≤G

(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)2
.

1

G

∑

1≤g≤2G

N2
g Ȳg(1)

2 +
1

G

∑

1≤g≤2G

N2
g Ȳg(0)

2 = OP (1) ,

where the first inequality follows from exploiting the fact that |a − b|2 ≤ 2(a2 + b2) and the definition of Ȳg, and the final

equality follows from Lemma B.1 and the law of large numbers. We can thus conclude that V
1,2
R,n = oP (1) when matching on

cluster size.

VR,n
P→ VR . (30)

In the case where we do not match on cluster size, again by arguing as in Lemma S.1.6 of Bai et al. (2022), it can be shown

that (30) holds. Next, we verify the Lindeberg condition in Proposition 2.27 of van der Vaart (1998). Note that

1

G

∑

1≤j≤G

E[((ǫj(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)))
2 + (ǫj(Nπ(2j) −Nπ(2j−1)))

2)

× I{((ǫj(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)))
2 + (ǫj(Nπ(2j) −Nπ(2j−1)))

2) > ǫ2G}|Z(G)]

=
1

G

∑

1≤j≤G

E[((Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))
2 + (Nπ(2j) −Nπ(2j−1))

2)

× I{((Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))
2 + (Nπ(2j) −Nπ(2j−1))

2) > ǫ2G}|Z(G)]

.
1

G

∑

1≤j≤G

(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))
2I{(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))

2 > ǫ2G/2}
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+
1

G

∑

1≤j≤G

(Nπ(2j) −Nπ(2j−1))
2I{(Nπ(2j) −Nπ(2j−1))

2 > ǫ2G/2} .

where the inequality follows from (20) and the fact that (Ng , Ȳg), 1 ≤ g ≤ 2G are all constants conditional on Z(G). The last

line converges in probability to zero as long as we can show

1

G
max

1≤j≤G
(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))

2 P→ 0

1

G
max

1≤j≤G
(Nπ(2j) −Nπ(2j−1))

2 P→ 0 .

Note

1

G
max

1≤j≤G
(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))

2 .
1

G
max

1≤j≤G

(

N2
π(2j−1)

Ȳ 2
π(2j−1) +N2

π(2j)
Ȳ 2
π(2j)

)

.
1

G
max

1≤g≤2G

(
N2

g Ȳ
2
g (1) +N2

g Ȳ
2
g (0)

) P→ 0

Where the first inequality follows from the fact that |a − b|2 ≤ 2(a2 + b2), the second by inspection, and the convergence

by Lemma S.1.1 in Bai et al. (2022) along with Assumption 2.1(c) and Lemma B.1. The second statement follows similarly.

Therefore, we have verified both conditions in Proposition 2.27 of van der Vaart (1998) hold in probability, and therefore for

each subsequence there must exists a further subsequence along which both conditions hold with probability one, so (29) holds,

and the conclusion of the lemma follows.

Lemma B.9. Let v̌2G(ǫ1, . . . , ǫG) be defined as in equation (26). If Assumption 2.1 holds, and Assumptions 3.6-3.5 (or

Assumptions 3.3-3.2) hold,

v̌2G(ǫ1, . . . , ǫG)
P−→ τ2 ,

where τ2 is defined in (B.7).

Proof. From Lemma B.5, we see that τ̂2G
P−→ τ2. It therefore suffices to show that λ̌2G (ǫ1, . . . , ǫG)

P−→ 0. In order to do so,

note that λ̌2G (ǫ1, . . . , ǫG) may be decomposed into sums of the form

2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j Ŷπ(4j−k)Ŷπ(4j−ℓ)Dπ(4j−k′)Dπ(4j−ℓ′) ,

where (k, k′) ∈ {2, 3}2 and (l, l′) ∈ {0, 1}2. Note that

2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j Ŷπ(4j−k)Ŷπ(4j−ℓ)Dπ(4j−k′)Dπ(4j−ℓ′)

=
2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j Ỹπ(4j−k)Ỹπ(4j−ℓ)Dπ(4j−k′)Dπ(4j−ℓ′)

+
G

n

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j

(

Ŷπ(4j−k)Ŷπ(4j−ℓ) − Ỹπ(4j−k)Ỹπ(4j−ℓ)

)

Dπ(4j−k′)Dπ(4j−ℓ′) .

By following the arguments in Lemma S.1.9 of Bai et al. (2022) and Lemma B.3, we have that

2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j Ỹπ(4j−k)Ỹπ(4j−ℓ)Dπ(4j−k′)Dπ(4j−ℓ′)

P−→ 0 .

As for the second term, we show that it convergences to zero in probability in the case where k = k′ = 3 and ℓ = ℓ′ = 1. And

the other cases should hold by repeating the same arguments.

2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j

(

Ŷπ(4j−3)Ŷπ(4j−1) − Ỹπ(4j−3)Ỹπ(4j−1)

)

Dπ(4j−3)Dπ(4j−1′)

=
2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j

(

Ŷπ(4j−3)(1)Ŷπ(4j−1)(1) − Ỹπ(4j−3)(1)Ỹπ(4j−1)(1)
)

Dπ(4j−3)Dπ(4j−1′)
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=
2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j

(

Ŷπ(4j−3)(1) − Ỹπ(4j−3)(1)
)

Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)

+
2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j

(

Ŷπ(4j−3)(1) − Ỹπ(4j−3)(1)
) (

Ŷπ(4j−1)(1) − Ỹπ(4j−1)(1)
)

Dπ(4j−3)Dπ(4j−1′)

+
2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j

(

Ŷπ(4j−1)(1) − Ỹπ(4j−1)(1)
)

Ỹπ(4j−3)(1)Dπ(4j−3)Dπ(4j−1′) ,

for which the first term is given as follows:

2

G

∑

1≤j≤
⌊

G
2

⌋

ǫ2j−1ǫ2j
(

Ŷπ(4j−3)(1) − Ỹπ(4j−3)(1)
)

Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)

=

(

1
1

2G

∑

1≤g≤2G Ng

−
1

E[Ng]

)









2

G

∑

1≤j≤
⌊

G
2

⌋

ǫ2j−1ǫ2jNπ(4j−3)Ȳπ(4j−3)(1)Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)









−







1
2G

∑

1≤g≤2G Ȳg(1)I{Dg = 1}Ng

(

1
2G

∑

1≤g≤2G Ng

)2
−
E[Ȳg(1)Ng]

E[Ng]2















2

G

∑

1≤j≤
⌊

G
2

⌋

ǫ2j−1ǫ2jNπ(4j−3)Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)









.

by following the same argument in Lemma S.1.6 from Bai et al. (2022) and Lemma B.3, we have

2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2jNπ(4j−3)Ȳπ(4j−3)(1)Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)

P−→ 0

2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2jNπ(4j−3)Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)

P−→ 0 .

Then, by weak law of large number, Lemma A.2 (or Lemma A.1) and Slutsky’s theorem, we have

2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j

(

Ŷπ(4j−3)(1) − Ỹπ(4j−3)(1)
)

Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)
P−→ 0 .

By repeating the same arguments for the other two terms, we conclude that

2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j

(

Ŷπ(4j−3)Ŷπ(4j−1) − Ỹπ(4j−3)Ỹπ(4j−1)

)

Dπ(4j−3)Dπ(4j−1′)
P−→ 0 .

Therefore, for (k, k′) ∈ {2, 3}2 and (l, l′) ∈ {0, 1}2,

2

G

∑

1≤j≤⌊G
2 ⌋
ǫ2j−1ǫ2j Ŷπ(4j−k)Ŷπ(4j−ℓ)Dπ(4j−k′)Dπ(4j−ℓ′)

P−→ 0 ,

which implies λ̌2G (ǫ1, . . . , ǫG)
P−→ 0, and thus ν̌2G(ǫ1, . . . , ǫG)

P−→ τ2.

Lemma B.10. If E[NgȲg(1)] = E[NgȲg(0)], then for τ defined in Lemma B.7 (when not matching on cluster size),

τ2 = E[Var[Ỹg(1)|Xg ]] +E[Var[Ỹg(0)|Xg ]] +E[(E[Ỹg(1)|Xg ]− E[Ỹg(0)|Xg ])
2] .

Proof. Note if E[NgȲg(1)] = E[NgȲg(0)], then

E[Var[Ỹg(1)|Xg ]] +E[Var[Ỹg(0)|Xg ]] +E[(E[Ỹg(1)|Xg ]− E[Ỹg(0)|Xg ])
2]

=
E[Var[NgȲg(1)|Xg ]]

E[Ng]2
+
E[Var[NgȲg(0)|Xg ]]

E[Ng]2
+

2E[Var[Ng|Xg]]E[NgȲg(d)]2

E[Ng]4

+
E[(E[NgȲg(1)|Xg ]−E[NgȲg(0)|Xg ])2

E[Ng]2

− 2
E[NgȲg(1)](E[N2

g Ȳg(1)] −E[E[NgȲg(1)|Xg ]E[Ng|Xg]])

E[Ng]3

− 2
E[NgȲg(0)](E[N2

g Ȳg(0)] −E[E[NgȲg(0)|Xg ]E[Ng|Xg]])

E[Ng]3
.
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The result then follows immediately.

C Analysis of Matched Tuples designs

In this section we state generalizations of the results presented in Sections 3.1 and 3.2 to settings with more than two treatments.

We focus on the case when not matching on cluster size; similar results should follow for the case of matching on cluster size

analogously.

C.1 Setup and Main Results

We follow the general setup of Bai et al. (2023b) generalized to a setting with clustered assignment. Let Dg ∈ D denote

treatment status for the gth cluster, where D = {1, . . . , |D|} denotes a finite set of values of the treatment. For d ∈ D, let

Yi,g(d) denote the potential outcome for the ith unit in the gth cluster if its treatment status were d. The observed outcome

and potential outcomes are related to treatment status by the expression

Yi,g =
∑

d∈D
Yi,g(d)I{Dg = d} .

We suppose our sample consists of JG := (|D|)G i.i.d. clusters. Now we have

Z(G) := (((Yi,g : i ∈ Mg), Dg,Xg , Ng) : 1 ≤ g ≤ JG)

and

((((Yi,g(d) : d ∈ D) : 1 ≤ i ≤ Ng),Mg, Xg, Ng) : 1 ≤ g ≤ JG) .

Our object of interest will generically be defined as a vector of linear contrasts over the collection of size-weighted cluster-level

expected potential outcomes across treatments. Formally, let

Γ(QG) := (Γ1(QG), . . . ,Γ|D|(QG))′,

where

Γd(QG) :=
1

E[Ng]
E





Ng∑

i=1

Yig(d)





for d ∈ D. Let ν be a real-valued m× |D| matrix. Define

∆ν(QG) := νΓ(QG) ∈ Rm ,

as our generic parameter of interest. We maintain the following generalization of Assumptions 2.1 and 3.3.

Assumption C.1. The distribution QG is such that

(a) {(Mg, Xg, Ng), 1 ≤ g ≤ JG} is an i.i.d. sequence of random variables.

(b) For some family of distributions {R(s, x, n) : (s, x, n) ∈ supp(Mg ,Xg , Ng)},

RG(M(G)
g ,X(G), N(G)) =

∏

1≤g≤JG

R(Mg , Xg, Ng) .

(c) P{|Mg| ≥ 1} = 1 and E[N2
g ] < ∞.

(d) For some C < ∞, P{E[Y 2
i,g(d)|Xg , Ng] ≤ C for all 1 ≤ i ≤ Ng} = 1 for all d ∈ D and 1 ≤ g ≤ JG.

(e) Mg ⊥⊥ ((Yi,g(d) : d ∈ D) : 1 ≤ i ≤ Ng)
∣
∣ Xg, Ng for all 1 ≤ g ≤ JG.

(f) For d ∈ D and 1 ≤ g ≤ JG,

E[Ȳg(d)|Ng ] = E




1

Ng

∑

1≤i≤Ng

Yi,g(d)
∣
∣
∣Ng



 w.p.1 .
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(g) For some C < ∞, P{E[Ng|Xg] ≤ C} = 1

(h) E[Ȳ r
g (d)Nℓ

g |Xg = x], are Lipschitz for d ∈ D, r, ℓ ∈ {0, 1, 2}.

Following Bai et al. (2023b), the G blocks in a matched tuples design may then be represented by the sets

λj = λj(X
(G)) ⊆ {1, 2, . . . , JG} ,

for 1 ≤ j ≤ G. We then maintain the following two assumptions on the treatment assignment mechanism which generalize

Assumptions 3.1, 3.2, and 3.7:

Assumption C.2. Treatment status is assigned so that
{(

(Yig(d) : d ∈ D)1≤i≤Ng
, Ng

)}G

g=1
⊥⊥ D(G)|X(G), and, conditional

on X(G),

{(Dg : g ∈ λj) : 1 ≤ j ≤ G} ,

are i.i.d. and each uniformly distributed over all permutations of (1, 2, . . . , |D|).

Assumption C.3. The blocks satisfy
1

G

∑

1≤j≤G

max
i,k∈λj

|Xi −Xk|2
P→ 0 .

Assumption C.4. The blocks satisfy

1

G

∑

1≤j≤⌊G
2 ⌋

max
i∈λ2j−1,k∈λ2j

|Xi −Xk|2
P→ 0 .

The estimator for ∆ν(QG) is given by

∆̂ν,G := νΓ̂G ,

where for d ∈ D we define

Γ̂G(d) :=
1

N(d)

∑

1≤g≤JG

I{Dg = d} Ng

|Mg|
∑

i∈Mg

Yig ,

with

N(d) =
∑

1≤g≤JG

NgI{Dg = d} .

and let Γ̂G = (Γ̂G(1), . . . , Γ̂G(|D|))′.

Our first result derives the limiting distribution of ∆̂ν,G under our maintained assumptions.

Theorem C.1. Suppose Assumptions C.1-C.3 holds. Then,

√
G(∆̂ν,G −∆ν(Q))

d→ N(0,Vν) ,

where Vν := νVν′, with

V := V1 +V2 , (31)

V1 := diag(E[Var[Ỹg(d)|Xi]] : d ∈ D) ,

V2 :=

[
1

|D|
Cov[E[Ỹg(d)|Xi], E[Ỹg(d

′))|Xi]]

]

d,d′∈D
.

Proof. We show that
√
G(Γ̂G(d) − ΓG(Q) : d ∈ D)

d−→ N(0,V), from which the conclusion of the theorem follows by an

application of the continuous mapping theorem. To show this we repeat the arguments from the proof of Theorem 3.1 while

using the Delta method for vector-valued functions with h(x1, y1, . . . , x|D|, y|D|) = (xd/yd : d ∈ D) and using the fact that

(Γ̂G(d) : d ∈ D) =

( 1√
G

∑

1≤g≤JG
Ȳg(d)NgI{Dg = d}

1√
G

∑

1≤g≤JG
NgI{Dg = d}

: d ∈ D
)

.

54



The Jacobian is given by

Dh(x1, y1, . . . , x|D|, y|D|) =




















1
y1

0 . . . 0

−x1

y2
1

0 . . . 0

0 1
y2

. . . 0

0 −x2

y2
2

. . . 0

. . . . . . . . . . . .

0 0 . . . 1
y|D|

0 0 . . . −x|D|

y2
|D|

.




















.

Repeating the algebra in proof of binary case, we obtain

Dh((E[Ȳg(d)Ng ], E[Ng]) : d ∈ D)′VDh((E[Ȳg(d)Ng ], E[Ng]) : d ∈ D) = V ,

where V is defined in the statement of Lemma C.1.

Following Bai et al. (2023b), our estimator for Vν is then given by V̂ν,G := νV̂Gν
′, where

V̂G := V̂1,G + V̂2,G

V̂1,G := diag
(

V̂1,G(d) : d ∈ D
)

V̂2,G :=
[

V̂2,G(d, d′)
]

d,d′∈D
,

with

V̂1,G(d) := σ̂2G(d)− ρ̂G(d, d)

V̂2,G(d, d′) :=
1

|D|
ρ̂G(d, d′) ,

where

ρ̂G(d, d) :=
2

G

∑

1≤j≤⌊G/2⌋

( ∑

g∈λ2j−1

ŶgI{Dg = d}
)( ∑

g∈λ2j

ŶgI{Dg = d}
)

ρ̂G(d, d′) :=
1

G

∑

1≤j≤G

( ∑

g∈λj

ŶgI{Dg = d}
)( ∑

g∈λj

ŶgI{Dg = d′}
)

if d 6= d′

σ̂2G(d) :=
1

G

∑

1≤g≤JG

Ŷ 2
g I{Dg = d} .

Suppose Assumptions C.1–C.4 hold, then consistency of our variance estimator follows by adapting the arguments from Bai et al.

(2023b) to the proof of Theorem 3.3.

Lemma C.1. Suppose Assumptions C.1–C.3 holds. Define

L
YN
G (d) =

1√
G

∑

1≤g≤JG

(Ȳg(d)NgI{Dg = d} −E[Ȳg(d)Ng ]I{Dg = d})

L
N
G(d) =

1√
G

∑

1≤g≤JG

(NgI{Dg = d} −E[Ng]I{Dg = d}) .

Then, as G→ ∞,

((LYN
G (d), LN

G(d)) : d ∈ D)′
d→ N(0,V) ,

where

V = V1 + V2

for

V1 = diag(Vd
1 : d ∈ D)

V
d
1 =

(

E[Var[Ȳg(d)Ng |Xg]] E[Cov[Ȳg(d)Ng , Ng|Xg]]

E[Cov[Ȳg(d)Ng , Ng |Xg]] E[Var[Ng|Xg]]

)
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V2 =
1

|D|
Var[((E[Ȳg(d)Ng |Xg], E[Ng|Xg]) : d ∈ D)′] .

Proof. The proof is omitted, but follows similarly to previous results using arguments from the proofs of Theorem 3.1 in

Bai et al. (2023b) and Lemma A.2.
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Crépon, B., Devoto, F., Duflo, E. and Parienté, W. (2015). Estimating the Impact of Microcredit

on Those Who Take It Up: Evidence from a Randomized Experiment in Morocco. American Economic

Journal: Applied Economics, 7 123–150.

Cytrynbaum, M. (2021). Designing representative and balanced experiments by local randomization. arXiv

preprint arXiv:2111.08157.

Cytrynbaum, M. (2023). Covariate adjustment in stratified experiments.

de Chaisemartin, C. and Ramirez-Cuellar, J. (2019). At what level should one cluster standard errors

in paired and small-strata experiments? arXiv preprint arXiv:1906.00288.

Donner, A. and Klar, N. (2000). Design and analysis of cluster randomization trials in health research.

London: Arnold.

57

http://arxiv.org/abs/2302.04380
http://arxiv.org/abs/2206.04157
http://arxiv.org/abs/2204.08356


Glennerster, R. and Takavarasha, K. (2013). Running Randomized Evaluations: A Practical Guide.

Princeton University Press.

Hansen, B. E. and Lee, S. (2019). Asymptotic theory for clustered samples. Journal of econometrics, 210

268–290.

Hayes, R. J. and Moulton, L. H. (2017). Cluster randomised trials. Chapman and Hall/CRC.

Imai, K., King, G. and Nall, C. (2009). The Essential Role of Pair Matching in Cluster-Randomized

Experiments, with Application to the Mexican Universal Health Insurance Evaluation. Statistical Science,

24 29–53.

Janssen, A. (1997). Studentized permutation tests for non-i.i.d. hypotheses and the generalized Behrens-

Fisher problem. Statistics & Probability Letters, 36 9–21.

Jiang, L., Liu, X., Phillips, P. C. and Zhang, Y. (2020). Bootstrap inference for quantile treatment

effects in randomized experiments with matched pairs. The Review of Economics and Statistics 1–47.

Middleton, J. A. and Aronow, P. M. (2015). Unbiased estimation of the average treatment effect in

cluster-randomized experiments. Statistics, Politics and Policy, 6 39–75.

Negi, A. and Wooldridge, J. M. (2021). Revisiting regression adjustment in experiments with hetero-

geneous treatment effects. Econometric Reviews, 40 504–534.

Schochet, P. Z., Pashley, N. E.,Miratrix, L. W. andKautz, T. (2021). Design-based ratio estimators

and central limit theorems for clustered, blocked rcts. Journal of the American Statistical Association 1–12.

Su, F. and Ding, P. (2021). Model-assisted analyses of cluster-randomized experiments. Journal of the

Royal Statistical Society: Series B (Statistical Methodology).

van der Vaart, A. W. (1998). Asymptotic statistics, vol. 3 of Cambridge Series in Statistical and Proba-

bilistic Mathematics. Cambridge University Press, Cambridge.

Wang, B., Park, C., Small, D. S. and Li, F. (2022). Model-robust and efficient inference for cluster-

randomized experiments. arXiv preprint arXiv:2210.07324.

58


	1 Introduction
	2 Setup and Notation
	3 Main Results
	3.1 Asymptotic Behavior of G for Cluster-Matched Pair Designs
	3.1.1 Not Matching on Cluster Size
	3.1.2 Matching on Cluster Size

	3.2 Variance Estimation
	3.3 Randomization Tests
	3.3.1 Finite-Sample Results
	3.3.2 Large-Sample Results

	3.4 Covariate Adjustment

	4 Simulations
	4.1 Unadjusted Estimation
	4.2 Covariate-Adjusted Estimation

	5 Recommendations for Empirical Practice
	A Proofs of Main Results
	A.1 Proof of Proposition 3.1
	A.2 Proof of Theorem 3.1
	A.3 Proof of Theorem 3.2
	A.4 Proof of Theorem 3.3
	A.5 Proof of Theorem 3.4
	A.6 Proof of Theorem 3.5
	A.7 Proof of Theorem 3.6
	A.8 Proof of Theorem 3.7
	A.9 Proof of Theorem 3.8
	A.10 Proof of Theorem 3.9

	B Auxiliary Lemmas
	C Analysis of Matched Tuples designs
	C.1 Setup and Main Results


