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The totality Ω of transfinite numbers was first introduced in [Cantor,
1883] by means of the principle

If the initial segment Σ of Ω is a set, then it has a least strict
upper bound S(Σ) ∈ Ω.

Thus, for numbers α = S(Σ) and β = S(Σ′), α < β iff α ∈ Σ′; α = β iff
Σ = Σ′; S(∅) is the least number 0 (although Cantor himself took the least
number to be 1); if Σ has a greatest element γ, then α is its successor γ + 1;
and if Σ is non-null and has no greatest element, then α is the least upper
bound of Σ. The problem with the definition, of course, is in determining
what it means for an initial segment to be a set. Obviously, not all of them
are: for the totality Ω of all numbers is an initial segment, but to admit
it as a set would yield S(Ω) < S(Ω), contradicting the assumption that Ω
is well-ordered by <. Cantor himself understood this already in 1883. In
his earlier writings, e.g. [1882], he had essentially defined a set ‘in some
conceptual sphere’ such as arithmetic or geometry, to be the extension of a
well-defined property. But in these cases, he was considering sets of objects
of some type A, where being an object of type A is itself is not defined in
terms of the notion of a set of objects of type A. But with his definition of
the transfinite numbers, an entirely novel situation arises: the definition of
Ω depends on the notion of a subset of Ω. Accordingly, he abandoned his
earlier definition of set in [1883] and, in his later writings, he distinguished
between those initial segments which are sets and those which are not in
terms of his concept of ‘consistent multiplicity’; but that is just naming the
problem, not solving it.

∗This is a revised version of [Tait, 1998a]. I thank Peter Koellner for very useful
comments on an earlier draft.
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However, we can replace the condition on Σ of being a set or consistent
multiplicity by certain other conditions C which have a precise meaning,
yielding the principle

If the initial segment Σ of ΩC satisfies the condition C, then it
has a least strict upper bound S(Σ) ∈ ΩC .

We will call such conditions C existence conditions. Unlike the case of Ω,
no obvious contradiction arises in general from the assumption that we can
take the least upper bound S(ΩC). We can merely conclude that ΩC does
not satisfy the condition C (since, otherwise, S(ΩC) ∈ ΩC and so S(ΩC) <
S(ΩC)); so that, in proceeding to construct S(ΩC) and larger numbers, we
must replace C by some other existence condition which they satisfy. In
this way, we are led to a hierarchy of more and more inclusive existence
conditions, each of which can replace the condition “is a set” in Cantor’s
definition and so yields an initial segment of the transfinite numbers, but
none of which yields ‘all the numbers’.

In formulating existence conditions, we can make use of the fact that each
transfinite number α can be armed with the structure 〈R(α),∈α, ranα〉, where
R(α) is obtained by starting with the null set and iterating the operation
D 7→ P(D) of taking power sets α times. (R(S(Σ)) =

⋃
{R(α) | α ∈ Σ}.)

∈α=∈ ∩(R(α)× R(α)). The rank of a set is the least strict upper bound of
the ranks of its elements, so that R(α) is the set of all sets of rank < α. ran is
the rank function, assigning to each set its rank, and ranα is its restriction to
R(α). Thus ranα is a function with domain R(α) and range of values the set
of ordinals < α. We avoid taking the transfinite numbers to be external to
set theory by identifying them with the von Neumann ordinals, i.e. with the
transitive sets of transitive sets. (The set x is transitive iff y ∈ x −→ y ⊂ x.)
α then is the subset of R(α) consisting of all ordinals in R(α) and β < α
simply means β ∈ α. In terms of von Neumann ordinals, S(Σ) is just Σ
and an existence condition is precisely a condition under which we admit the
existence of Σ as a set.

Thus, we will be discussing a particular conception of set theory which is
explicitly formulated in [Gödel, *1933o] and [Gödel, 1947] but is implicit in
[Zermelo, 1930]. In part, it is the conception according to which sets are the
objects in any member of the hierarchy of domains obtained from the null
domain by iterating the power set operation. Thus, this idea presupposes
as well-understood the more primitive, logical notion of set, the one which
is formalized in second-order predicate logic, namely that of forming from a
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given totality D of objects the totality of all sets of objects in D. The other
ingredient of this conception is that the process of iterating the power set
operation does not presuppose a given external system of ordinals or ‘stages’
along which the iteration takes place, but is autonomous. The ordinals we
consider are only the internal von Neumann ordinals, and the question, given
some initial segment Σ of ordinals, whether it has an upper bound, so that
we may continue the iteration of taking power sets beyond the ordinals in
Σ, should depend only on properties of Σ or better of the universe of sets
obtained by iterating the power set operation through Σ.

One should note that the ‘bottom-up’ conception described here is not
the one motivating most contemporary work in set theory, where the choice
of axioms is guided more by global considerations of the properties of the
models of the axioms as a whole. Also, the cardinal numbers so far obtained
on this conception are all relatively small: their existence is consistent with
V = L. But, as we will explain, there seem to be resources in the conception
that have not yet been investigated and that might lead beyond that barrier.
In any case, it seems of interest to see what can be developed on the basis
of our more ‘constructive’ conception—what large cardinal axioms can be
founded on it.

1 Basic Set Theory

The R(α) with α > 0 are, to within isomorphism, the models of a certain
second-order theory T0, whose second-order quantifiers range over classes of
individuals. Its language is that of second-order set theory with the unary
function constant ran (for the rank function) added. X, Y, Z, . . . are the
second-order variables, ranging over classes, x, y, z, . . . are the first-order vari-
ables ranging over sets and lower case Greek letters are to be understood as
relativized variables ranging over the class On of von Neumann ordinals. I.e.

∃α[· · ·α · · ·] := ∃x(x ∈ On ∧ [· · ·x · · ·])

For any formula φ(x) of T0, the comprehension axiom of second-order logic
yields a class (depending on the free variables in φ(x) other than x) consisting
of just those sets x such that φ(x). We denote such a class by

{x | φ(x)}
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We assume the axiom of extensionality for classes (as an axiom of second-
order logic) and so there is exactly one such class. For example

On = {x | x is transitive ∧ every element of x is transitive}

If s is a set term (i.e. first-order) and S a class term, s = S will mean
∀x[x ∈ s ←→ x ∈ S] and ‘S is a set’ will mean ∃x[x = S]. S ∈ s means
of course that ∃x[x = S ∧ x ∈ s]. (As usual, we are using the symbol
“∈” ambiguously, to denote both a relation between sets and sets and a
heterogenious relation between sets and classes; but no confusion will result.)

The axioms of T0 are:

Extensionality
∀xy(∀z[z ∈ x←→ z ∈ y] −→ x = y)

Foundation

∀X[∃y(y ∈ X) −→ ∃y ∈ X∀z(z ∈ X −→ z 6∈ y)]

It follows from this that the class On of (von Neumann) ordinals is well-
ordered by ∈, which (as we noted) among ordinals we often denote by <.
Foundation also enables us to prove that all sets have a certain property by
showing that, if all subsets of a given set have the property, then so does the
given set—the principle of ∈-Induction.

Second-order Separation

∀xY ∃z[∀u(u ∈ z ←→ u ∈ x ∧ u ∈ Y )]

and, finally, two axioms concerning the rank function:

Rank 1

∀x∀y[y ∈ ran(x)←→ ∃z ∈ x∀u(u ∈ y ←→ u ∈ ran(z) ∨ u = ran(z))]

In other words, if z ∈ x, then ran(z) + 1 = ran(z) ∪ {ran(z)} exists and
moreover, {ran(z) + 1 | z ∈ x} is a set and is by definition ran(x). Writing

R(α) = {x | ran(x) ∈ α}

the second axiom concerning rank is

Rank 2
∀α[R(α) is a set].
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From Foundation and Rank 1, it follows that ran(x) is an ordinal and is the
least ordinal > ran(y) for each y ∈ x.

Note that, since ⋃
x = {y | ∃z[y ∈ z ∧ z ∈ x]}

is a subclass of the set R(ran(x)) and so is a set, the axiom of Union is
derivable in T0. In Zermelo-Fraenkel set theory, in particular in the presence
of the axiom of Replacement, the rank function ran can be defined; but to
begin with we want to consider arbitrary domains R(α) (α > 0), and these
in general will not satisfy Replacement.

It is clear that the R(α) for α > 0 are models of T0. Of course, when
we speak of models of T0, we really should be speaking of the structure
〈R(α),∈α, ranα〉 and not simply of its domain R(α); but, unless otherwise
specified, when we say that a formula is satisfied in R(α), we will mean that
it is satisfied in the corresponding structure. We prove now that the R(α)
are, to within isomorphism, the models of T0.

Theorem 1 Every model of T0 is isomorphic to R(γ) for exactly one γ > 0,
and the isomorphism is unique.

Let M be a model of T0. Then the class OnM of ordinals in M is well-
ordered by ∈M. Let γ be the ordinal of this well-ordering. Since the domain
of M is non-empty, OnM is non-empty and so γ > 0. There is exactly
one isomorphism from γ = OnR(γ) well-ordered by ∈γ onto γ′ = OnM well-
ordered by ∈M. Let α′ be the image of α < γ under this isomorphism. There
is exactly one isomorphism f from R(γ) onto the domain M ofM, which is
defined by ∈-recursion: suppose that f(y) is defined for all y ∈ x and that
ranM(f(y)) = ran(y)′. Then {f(y) | y ∈ x} is included in RM(ran(x)′) and
so is a set {f(y) | y ∈ x}M inM. Define

f(x) = {f(y) | y ∈ x}M

Clearly ranM(f(x)) = ran(x)′. By ∈-induction, one easily proves that f is
injective (one-to-one). To show that every y ∈M is in the range of f , assume
that every z ∈ y is in the range of f—say z = f(z∗). Let ranM(y) = α′.
Then ran(z∗) < α and so {z ∗ | z ∈M y} is a set x ∈ R(α) and f(x) = y.
Clearly, for x and y in R(γ), x ∈ y iff f(x) ∈M f(y) and we have shown
that ranM(f(x)) = ran(x)′. So f is indeed the required isomorphism. The
uniqueness of f is immediate using ∈-induction. �
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2 Morse-Kelley Set Theory

In this section, we will discuss the existence conditions which lead to the
(impredicative) second-order theory of sets first introduced in [Morse, 1965].

Given an existence condition C, ΩC(α) will denote the least initial seg-
ment of ordinals containing α+1 which does not possess C. In what follows,
Σ will be an initial segment of ordinals. If T is an extension of T0, then by
an ordinal of T we shall mean an α such that R(α) is a model of T . In the
following, we shall consider extensions T of T0 obtained by adding axioms
which are formal expressions of existence conditions. Thus, the least ordinal
of T > α is ΩC(α), where C is the existence condition in question.

The existence conditions that we shall consider in this paper are all for-
mulated in terms of a formula φ(X), with only X free. For now, the formula
is one in the language of basic set theory and X is a second-order variable.
The corresponding condition is that φ(A) is true in R(Σ) for some A ⊆ R(Σ)
and, for no α ∈ Σ is φ(A ∩ R(α)) true in R(α). The formal expression that
this condition is an existence condition is the axiom

∀X[φ(X) −→ ∃βφβ(X ∩R(β))](1)

where φβ(X) is the result of restricting the first- and second-order bound
variables in φ(X) to R(α) and R(α + 1), respectively. Axioms of this form
have been called reflection principles, because they express the fact that
R(Σ)’s possession of a certain property is reflected by R(α)’s possession of it
for some α ∈ Σ.

Since predicate logic assumes that all models are non-null, T0 already
expresses that the condition given by φ(X) = ∀y(y 6= y) is an existence
condition.

If we take
φ(X) = ∃α(X = {α})

then (1) is equivalent to the axiom of

Successor
∀α[α ∪ {α} is a set].

With this axiom, we can derive the axioms of Unordered Pairs and Powerset,
since if x and y are in R(α), then the classes {x, y} and {z | z ⊆ x} are
included in R(α + 1) and so are sets. Since we have arbitrary unordered
pairs, we can now introduce the usual coding

(x, y) = {{x}, {x, y}}
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of ordered pairs. By means of this coding, functions F may be represented
by means of their graphs {(x, F (x)) | x is in the domain of definition of F}.
Let “X is a function” mean that X is a class of pairs such that (x, y) ∈ X
and (x, z) ∈ X implies that y = z. dom(X) (rang(X)) is the set of x (y)
such that for some y (x), (x, y) ∈ X.

We are now able to formulate the axiom of

Choice
∀x∃F [F is a choice function for x]

where a choice function for x is a set consisting of exactly one pair (y, z)
for each non-empty element y of x, where z ∈ y. The axiom of Choice is a
consequence of the Global Choice principle,

∃F [F is a choice function for V ]

which, like [Zermelo, 1930], I take to be a principle of second-order logic,
following (at least as I see it) from the meaning of ∀∃. T1 will denote T0
together with the axioms of Successor and Choice. Its ordinals are precisely
the limit ordinals. In T1 we can prove that every set can be well-ordered
([Zermelo, 1908]).

Consider the condition corresponding to

φ(X) = dom(X) is a function ∧ ∃y[rang(X) = {y} ∧ dom(dom(X)) = y]

Here we are coding a pair (F, y), consisting of a class F and a set y by
X = F × {y}, consisting of the pairs (x, y) with x ∈ F . From now on,
we shall use F as a bound variable ranging over functions. So the formal
expression of the condition corresponding to φ(X) as an existence condition
is expressed by the axiom of

Replacement

∀F [dom(F ) is a set −→ rang(F ) is a set]

Adding this axiom to T1, we obtain the usual system T2 of (impredicative)
second-order set theory—so-called Morse-Kelley set theory—without the ax-
iom of Infinity. From this axiom, it follows that a choice function for a set
is itself (coextensive with) a set. Also, with this axiom, and providing that
we replace the axiom of Successor by the axioms of Unordered Pairs and
Powerset, we can drop the primitive constant ran and its axioms Rank1 and
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Rank2, since ran can now be defined by ∈-induction and these two axioms
can be deduced from the remaining axioms [Zermelo, 1930].

As usual, we identify cardinal numbers with initial ordinals, i.e. with
ordinal numbers which are not in one-to-one correspondence with smaller
ordinals. In T2 we can prove that every set x has (i.e. is in one-to-one
correspondence with) a cardinal number |x|.

Let 2α = |P(α)|. A cardinal κ is called a strong limit cardinal if α < κ
always implies that 2α < κ. So, every ordinal of T2 must be a strong limit
cardinal. An ordinal γ is called singular iff it is of the form

⋃
α<β F (α), where

dom(F ) = β < γ; otherwise, γ is called regular. Note that 0 and ω are both
regular strong limit cardinals. Clearly a regular ordinal must be a cardinal
and, in view of the axiom of Replacement, the ordinals of T2 must be regular.
Conversely, if κ is a regular strong limit cardinal > 0, then it is an ordinal of
T2. First, note that we can define the ordinal function Φ (i.e. ordinal-valued
function on ordinals) in R(κ) by

Φ(0) = 0
Φ(α+ 1) = 2Φ(α)

and for limit ordinals γ

Φ(γ) =
⋃
α<γ

Φ(α)

For α < κ, Φ(α) = |R(α)| and so x ∈ R(κ) =
⋃

α<κR(α) implies |x| ∈ R(κ).
To see that R(κ) satisfies the axiom of Regularity, let F be a function
with dom(F ) ∈ R(κ) and rang(F ) ⊆ R(κ). Let g be a one-to-one corre-
spondence from |dom(F )| to dom(F ). Then G = ran ◦ F ◦ g is a func-
tion from |dom(F )| < κ and so, since κ is regular,

⋃
rang(G) = β < κ.

But rang(F ) ⊆ R(β) and so rang(F ) ∈ R(κ). So, as was first proved in
[Zermelo, 1930], the ordinals of T2 are precisely the regular strong limit car-
dinals > 0.

Φ is an example of a normal function, i.e. an ordinal function f which
is order-preserving, i.e. α < β implies f(α) < f(β), and continuous, i.e.,
when γ is a limit ordinal, then f(γ) =

⋃
α<γ f(α). When f is an order-

preserving ordinal function, then α ≤ f(α) for all α. For, f(α) < α implies
f(f(α)) < f(α); and so there can be no α such that f(α) < α because there
can be no least such α. When f is a normal function, then it has fixed-points
f(β) = β ≥ any given α. Either α is already a fixed point or else, using the
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fact that f is order-preserving,

α < f(α) < f(f(α)) < · · · < fn(α) < · · · .

In the second case, let β =
⋃

n<ω f
n(α). Then α < β and

f(β) =
⋃
n<ω

fn+1(α) = β.

Of course, in the case in which the fixed point β is > α ≥ ω, β is singular,
since it is > ω and cofinal with the range of the function F defined on ω by
F (n) = fn(α).

The strong limit cardinals δ are precisely the fixed-points of Φ. For δ <
Φ(δ) would imply by continuity that there is a β < δ with δ < Φ(β). The least
such β would be a successor ordinal γ + 1. So Φ(γ) < δ ≤ 2Φ(γ). Conversely,
if δ is a fixed point, δ 6= 0 , then α < δ implies 2α = Φ(α + 1) < Φ(δ) = δ.
So δ is a strong limit.

If we apply the axiom (1) to

φ(X) = [0 ∈ On ∧ ∀α∃γ(α < γ)]

(in which X does not occur), then we obtain the existence of a limit ordinal
and so of the least one ω. This is the axiom of Infinity. Because this axiom
is commonly just assumed, it is usual to speak only of the regular strong
limit cardinals > ω, which are called the (strongly) inaccessible cardinals.
Thus, the ordinals of models of Morse- Kelley set theory T3 = T2+ Infinity
are precisely the inaccessible cardinals, i.e. the regular fixed points of the
normal function α 7→ iα, defined by

iα = Φ(ω + α)

For Φ(ω + α) = ω + α for α > 0 implies that α has power > ω and so
ω + α = α.

So far, we have applied the reflection principle only to first-order formulas
φ(X), i.e. formulas in which all the bound variables are first-order. It turns
out that, not only are the axioms of Successor, Replacement and Infinity
consequences in T0 of reflection for such formulas, but reflection for first-
order φ(X) is deducible in T3.
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3 Zermelo’s conception of set theory

It is an embarassment in set theory, as it is often understood, that an ab-
solute distinction must be drawn between totalities such as the totality of
‘all ordinals’ or ‘all cardinals’ or ‘all sets’—the totalities which Cantor called
‘inconsistent manifolds’ and we call proper classes—on the one hand, and
those totalities which form sets. For when we take the former totalities to be
well-defined objects, then we must make this absolute distinction: the two
kinds of objects must be treated quite differently. But why, if the totality
of all sets has a well-defined extension, is it not a set in an more extensive
totality? The only grounds for the distinction is the negative one that, if we
treat proper classes like sets, we are led to inconsistency—in the examples
cited, to the familiar ‘paradoxes of set theory’. Thus, on this understanding
of set theory, these paradoxes truly are paradoxical: there is no accounting
for them. We can, as Cantor did, only introduce the distinction between
those totalities which are ‘consistent’ and those which are not. (Of course,
relative to any domain R(α) there are proper classes, i.e. subclasses of the
domain which are not coextensive with elements of it; but these are proper
classes only in this relative sense: each subclass of R(α) will be coextensive
with a set in R(α+ 1) for example.)

At the end of [1930], Zermelo sketched a quite different approach to un-
derstanding set theory and the so-called paradoxes, one which precludes this
embarassment. He begins with the Hilbertian thesis that we may speak
about the existence of this or that object in mathematics only when we have
specified a consistent and categorical theory in which we can speak of such
objects. More generally, we may assert mathematical propositions (including
existence propositions) only within such a theory. The background of this
view is that there are no mathematical phenomena (such as Kantian pure
intuitions) on the basis of which mathematical propositions are meaningful:
however it is that we come to accept a body of propositions in some mathe-
matical sphere, whether derived from empirical experience or by analogy or
whatever, there can be no definitive criterion for existence or truth until we
have specified an axiomatic basis for these propositions. The requirement of
consistency aims at making sure that the distinctions between existence and
non-existence and, more generally, between truth and falsety do not collapse.
The requirement of categoricity, for Hilbert and Zermelo, probably aimed at
making sure that questions of truth had determinate answers. Since the non-
trivial categorical axiomatic theories are all second-order and we now know
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that second-oder logic is incomplete, we also know that categoricity does not
yield determinate answers in all cases. But for us, categoricity still seems
a reasonable requirement: it means that the reference of the theory—the
structure to which it refers—is fixed (to within isomorphism): no new axioms
about the specific mathematical concepts involved are needed. Consistency
is, of course, on the grounds stated above, an indispensible requirement; but
as we now also know (and Zermelo didn’t in 1930), there is no reasonable
sense in which we can establish it conclusively even for T1. We must live
with the possibility that an inconsistency may be discovered in even elemen-
tary parts of mathematics (or that there is one, but we will never be able to
discover it because the proof is too long).

Zermelo takes as his starting point T2.1 He notes that it is not a cat-
egorical theory and so does not itself determine a structure. Rather, it is
its various categorical (and consistent) extensions that determine structures.
For example, if we add the axiom that there are no infinite ordinals, then
we obtain a categorical extension whose model is R(ω). But, contrary to
a common understanding of set theory as a theory about ‘the’ universe of
sets, there is no such universe: the notion of ‘all ordinals’ or ‘all sets’ lacks
rigorous mathematical sense. Or rather it has only a relative sense: all sets
or ordinals in this or that categorically determined domain. More generally,
there is no absolute notion of proper class; there are only proper classes rel-
ative to a particular model R(α). He concludes from this analysis that the
paradoxes of set theory (die “ultrafiniten Antinomien der Mengenlehre”) are
illusory and arise from the confusion between the (non-categorical) theory T2
and its models, by which he has to mean its categorical extensions. For if we
take set theory itself to have a model which includes all sets, then its universe
is indeed the ‘class of all sets’ in the absolute sense and paradoxes arise if
we do not make the absolute distinction, which otherwise has no foundation,
between sets and proper classes.

By adopting Zermelo’s point of view, we see that there is no conceptual
difficulty with admitting second-order quantifiers, i.e. over classes. The
models that we consider are the R(α)’s, and the second-order quantifiers
relative to this simply range over the elements of R(α+ 1), but now regarded
as classes. Of course, we must distinguish the elements of R(α) qua first-
order objects from their occurrence in R(α + 1) as second-order. To make

1Presumably, he included the axioms of Unordered Couples and Replacement in order
not to have to take the rank function as primitive.
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this precise, we may take the range of the second-order variables to be the
isomorphic replica R(α + 1)∗ of R(α + 1) which consists in replacing each
element x of the latter by the pair (α, x). For y ∈ R(α) and (α, x) a class,
y ∈ (α, x) means simply that y ∈ x. In the same way, we can equally well
consider quantifiers of order higher than 2 as well.

4 Formulas of Finite Order

In fact, in what follows, we are going to want to consider not only second-
order formulas, but formulas of arbitrary finite order, where the quantifiers
of order n + 1 (n > 0) range over classes of objects of order n. So we will
begin with some details that will apply generally and not just to the formulas
of second-order set theory.

The order of a formula is the maximum of the orders of the bound vari-
ables in it. Note that the formulas of order 0 are those which contain no
quantifiers. The relativization φβ of the formula φ to R(β) is extended from
formulas of second-order set theory to those of arbitrary finite order in the
obvious way: all the quantifiers of order n + 1 are restricted to R(β + n).
When talking about sets and classes, it is more natural to speak of their types
rather than their orders. The type of an object of order n+ 1 is n.

Let A be of type 1. From the point of view of R(β), A is Aβ = A∩R(β).
For, when A and B are type 1, then A and B are equal relative to R(β) just
in case ∀z ∈ R(β)[z ∈ A ←→ z ∈ B] iff Aβ = Bβ. It follows that, from the
point of view of R(β), B is

Bβ = {Aβ | A ∈ B}

for B of arbitrary type > 1.
So, for A of type > 0, φβ(Aβ) expresses the truth of φ(A) in R(β). When

φ = ψ(A, . . . , B) is a formula of finite order containing no parameters other
than A, . . . , B, each of which is of type > 0, φβ will denote ψβ(Aβ, . . . , Bβ).

In order to code higher order and possibly heterogeneous relations as
objects of finite type, we introduce the following operations: We define A ↑
of type n + 1 for A of any type n, and A ↓ of type n + 1 for A of any type
n+ 2, such that A ↑↓= A.

A ↑= {x | x = A}.
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If A is type n+ 2, define the set A ↓ of type n+ 1 by

A ↓=
{
B if A = {B}
∅ if A is not a singleton

Using these operations, we can raise the order of quantifiers in formulas. E.g.,
if X is of type n+ 1 and Y and Z are of type n+ k + 1, then

∀X∀Y φ(X, Y )←→ ∀Z∀Y φ(Z ↓ · · · ↓, Y )

where there are k occurences of ↓ . In this way, every formula of order n > 1
is equivalent in T1 (regarded now as being embedded in predicate logic of
finite order rather than just second-order) to a formula

Q1X1 · · ·QmXmφ(X1, . . . , Xm)(2)

where φ is of order < n, the Qi are quantifiers ∀ or ∃ and the Xi are all of
order n.

Again, in T1 we can define An× and A/n for n < ω and A of any type as
follows. Let A be of type ≤ 1.

An× = {〈n, x〉 | x ∈ A}

A/n = {x | 〈n, x〉 ∈ A}.
If B is of type > 1, then

Bn× = {Xn× | X ∈ B}

and
B/n = {X/n | X ∈ B}.

Let A and B be of the same type. Define

A+B = A0× ∪B1×.

Then (A+B)/0 = A and (A+B)/1 = B.
Using compositions of these operations, which compositions we shall call

the contracting operations, we can reduce the formula (2) to one in which
Qi 6= Qi+1 for i < m. For example, if X and Y are of the same type

∀X∀Y φ(X, Y )←→ ∀Xφ(X/0, X/1)

in T1. In particular, every formula of order n + 2 is equivalent to a Πn+1
m

formula for some m in the sense of the following definition.
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Definition 1 Let n ≥ 0.

• A formula of order ≤ n is called a Πn
0 formula and a Σn

0 formula.

• A Πn
m+1 is one of the form ∀Y ψ(Y ) where ψ is a Σn

m formula and Y is
a variable of type n.

• A Σn
m+1 formula is the negation of a Πn

m formula.

If β is a limit ordinal, then R(β) is closed under all the operations X ↑, X ↓,
Xn× and X/n. We note also, for later use

Lemma 1 For β a limit ordinal, each of the following hold when both sides
of the equation are defined:

• (A ↑)β = Aβ ↑

• (A ↓)β = Aβ ↓

• Aβ
n× = (Aβ)n×

• Aβ
/n = (Aβ)/n

• (A+B)β = Aβ +Bβ.

�

5 Reflection on a Second-order Parameter

When φ is restricted to Πn
m and the type of X to 1, then we denote the axiom

schema (1) by
RF (n,m).

Definition 2

• An ordinal γ is said to be φ-indescribable if (1) holds in R(γ).

• If Θ is a class of formulas, then γ is called Θ-indescribable if it is
φ-indescribable for each φ ∈ Θ containing only the free variable X of
order 2.

14



• γ is totally indescribable if it is Θ-indescribable where Θ is the class
of all formulas of set theory of finite type.

So γ is Πn
m-indescribable if RF (n,m) holds in R(γ).

In the remainder of this section, we discuss the strength of RF (n+1,m).
Let ψ denote the conjunction of the axioms of Morse-Kelley set theory. Ap-
plying (1) to the Π1

1 formula φ(X) = ψ ∧ ∃α(α ∈ X) (with X = {α}), we
obtain the axiom that, for any ordinal α, there is as inaccessible cardinal
> α, i.e. that there is an unbounded sequence of inaccessible cardinals. In
fact, we can strengthen this.

A class C of ordinals is unbounded iff C 6⊂ α for all α. Similarly, D ⊆ β
is unbounded in β if D 6⊆ α for any α < β. C is called closed if, for every
ordinal β, if C ∩ β is unbounded in β, then β ∈ C. It is easy to see that
the closed unbounded classes, called CLUB classes, are precisely the range
of values of normal functions. Namely, corresponding to the CLUB class C
is the normal function which enumerates it. A class S of ordinals is called
stationary if, for every CLUB class C, S ∩ C 6= ∅. For any limit ordinal β,
we can also speak of closed unbounded subsets of β and of stationary subsets
of β: simply relativize the definitions to R(β).

Lemma 2 Let m,n > 0 and φ(X) ∈ Πn
m, where X is of type 1. Then

RF (n,m) implies

∀X[φ(X) −→ {β | φβ(Xβ)} is stationary].

For assume φ(A) and let C be CLUB. ApplyRF (n,m) to [φ(A)∧C is unbounded]
(coding the pair (A,C) by an object of type n) to obtain a β such that φ(A)β

(i.e. φβ(Aβ)) and C ∩ β = Cβ is unbounded in β, so that β ∈ C.
So, in particular, it follows from RF (1, 1) that the class A of inaccessible

cardinals is stationary. Applying RF (1, 1) to the assertion that A is sta-
tionary, which is Π1

1, we obtain a cardinal κ such that A ∩ κ is stationary
in κ, i.e. κ is a so-called Mahlo cardinal. Using Lemma 2, we can iterate
this procedure and obtain a stationary class B of Mahlo cardinals, and so
cardinals κ such that B ∩ κ is stationary in κ, i.e. hyper-Mahlo cardinals;
and so on.

However, RF (1, 1) yields something more than the existence of Mahlo
cardinals, hyper-Mahlo cardinals and the like:
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Definition 3

• A binary tree is a class T of functions f such that, for some ordinal
β, f : β −→ 2 and such that, if f ∈ T and f has domain β, then f
restricted to any ordinal less than β is in T.

• A binary tree T is path-bounded iff for every function F : Ω −→ 2,
there is an α such that F restricted to α is not in T.

• T is bounded iff there is an α such that for all F : Ω −→ 2, F restricted
to α is not in T.

• The binary tree property is that every path-bounded binary tree is
bounded.

The instance
T is bounded −→ ∃β[Tβ is bounded]β

of RF (1, 1) implies the binary tree property. So, since a cardinal κ is weakly
compact just in case it is inaccessible and R(κ) has the binary tree property,
RF (1, 2) implies the existence of a stationary class of weakly compact cardi-
nals. We can of course go on to construct a stationary class of hyper-weakly
compact cardinals; and so on.

We noted that RF (1, 0) not only implies, but is equivalent in T0 to the
axioms of Successor, Replacement and Infinity. Likewise, RF (1, 1) not only
implies, but is equivalent in T3 to the binary tree property. In other words, in
T0, inaccessibility is equivalent to Π1

0-indescribability and weak compactness
is equivalent to Π1

1-indescribability ([Hanf and Scott, 1961]).
For m,n > 1, there is a single Πn

m formula φ(X, y) such that every Πn
m

formula containing at most the second-order variable X free is equivalent in
T1 to φ(X, e) for some finite ordinal e. It easily follows that, not just for
m,n = 1, but for all n,m > 0, RF (n,m) is equivalent to the single Πn

m+1

formula
ψn,m = ∀X∀n ∈ ω[φ(X,n) −→ ∃βφβ(Xβ, n)]

in T1. So ψn,m expresses Πn
m-indescribability. [Kanamori, 1994, Section 6.9]

So by Lemma 2, RF (n,m + 1) implies that the class of Πn
m-indescribable

cardinals is stationary. In other words, the class of Πn
m-indescribable cardinals

less than a given Πn
m+1-indescribable cardinal κ is stationary in κ. So the

principle RF (n,m) strictly increases in strength as m increases.
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Nevertheless, there is in any case a relatively low limit to the cardinals
obtained by RF (n,m) for arbitrary n and m. Let [C]n denote the set of all
n-element subsets of C. [C]<ω denotes the set of all finite subsets of C.

Definition 4 Let D ⊂ κ.

• D −→ (stationary)n
λ denotes the following partition property of D: for

any function f : [D]n −→ λ, there is a stationary subset S of κ such
that S ⊆ D and f is constant on [S]n.

• D −→ (stationary)<ω
λ denotes the following partition property of D:

for any function f : [D]<ω −→ λ, there is a stationary subset S of κ
such that S ⊆ D and, for each n < ω, f is constant on [S]n.

• We may also write D −→ (α)n
λ or D −→ (α)<ω

λ meaning that the set
S is to be of order type α.

Notice that the notation suppresses the cardinal κ; but, in each case that we
don’t explicitly mention it, will be determined by the context.

Now, the relative weakness of R(n,m) from the point of view of large
cardinal axioms is measured by the fact that, even when κ satisfies the rel-
atively weak principle κ −→ (stationary)2

2, the set of totally indescribable
cardinals < κ is stationary in κ.2

6 Reflection on a Higher-order Parameter

From now on, we will assume the background theory T3 together with the
axiom that there is an unbounded sequence of inaccessible cardinals, and κ
will denote an ordinal of that theory, i.e. an inaccessible limit of inaccessible
cardinals.

2In fact, this holds when κ satisfies the weaker condition of being subtle. A. Kanamori
has pointed out to me that this follows from an easy modification of Theorem 4.1 and its
proof in [Baumgartner, 1973]. Indeed, the restriction to finite types can also be removed:
call κ absolutely indescribable if (1) holds in R(κ) for every formula φ(X) of order < κ
with X of type 1. (The relativization φβ(X) is defined in this case in the obvious way.)
Then, when κ is subtle and, in particular, when κ −→ (stationary)22, the set of absolutely
indescribable cardinals < κ is stationary in κ.
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As we have noted, relative to R(β), the second-order class A is Aβ =
A ∩R(β) and so the relativization Bβ of a third- or higher-order class B is

Bβ = {Aβ | A ∈ B}.

With this definition, φ(A)β(= φβ(Aβ)), where A is of arbitrary finite type
> 0, expresses that φ(A) is true in R(β) and (1) has meaning for X of
arbitrary finite type. But there is a problem with the generalized (1), even
for X of third-order: when U is the class of all bounded (or, alternatively, of
all unbounded) second-order classes, for example, we have the true sentence
φ(U) that every class in U is bounded (or unbounded); whereas for every β,
φβ(Uβ) is false since Uβ is just R(β + 1) and, in particular, contains both
R(β) and the null set. Therefore, we must restrict (1) to special classes of
formulas.

One plausible way to think about the difference between reflecting φ(A)
when A is second-order and when it is of higher-order is that, in the former
case, reflection is asserting that, if φ(A) holds in the structure 〈R(κ),∈, A〉,
then it holds in the substructure 〈R(β),∈, Aβ〉 for some β < κ. (We are no
longer considering the rank function ran as part of the structure, since it is
definable in T3.) But, when A is higher-order, say of third-order, this is no
longer so. Now we are considering the structure 〈R(κ), R(κ + 1),∈, A〉 and
〈R(β), R(β+1),∈, Aβ〉. But the latter is not a substructure of the former, i.e.
the‘inclusion map’ of the latter structure into the former is no longer single
valued: for subclasses X and Y of R(κ), X 6= Y does not imply Xβ 6= Y β.
Likewise, for X ∈ R(β+1), X 6∈ A does not imply Xβ 6∈ Aβ. For this reason,
the formulas that we can expect to be preserved in passing from the former
structure to the latter must be suitably restricted and in particular should
not contain the relation 6∈ between second- and third-order objects nor the
relation 6= between second-order objects. In the general case of reflecting
φ(A) when A is of order n ≥ 2, one should not admit in φ(X) the relation
6∈ between kth-order and k + 1th-order objects or the relation 6= between
kth-order objects, for 1 < k < n.

However, we will not pursue the question of the most general general
formulation of the reflection principle with higher-order parameters here.
Rather, we shall consider (1) for a very special class of formulas φ(X). Let
ψ be a formula. A κ-instance of ψ is the result of substituting for each free
variable of order n (the name of) an object of order n over R(κ), for each n.

Definition 5
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• A formula φ is called almost downward absolute (ada) for κ iff for each
κ-instance ψ of it, either ψ is false in R(κ) or else the set of β < κ
such that it is true in R(β) includes a CLUB set in κ.

• A formula is called reflectable for κ if it is obtained from an ada for-
mula for κ by prefixing a string of zero or more quantifiers.

• A formula is positive iff it is built up by means of the operations ∧,∨,∀
and ∃ from atoms of the form x = y, x 6= y, x ∈ y, x 6∈ y, x ∈ Y ,
x 6∈ Y , X = Y and X ∈ Y .

• A formula is called positive in the extended sense iff it is obtained
from a positive formula φ by the substitution of zero or more terms
S(X, . . . , Y ), expressing contraction operations, for free variables. When
φ is first-order, we call the resulting formula first-order positive in the
extended sense.

Lemma 3 Let λ be a regular uncountable cardinal. Then every first-order
formula which is positive in the extended sense is ada for λ.

First, let φ(X, . . . , Y ) be first order positive and suppose that ψ = φ(A, . . . , B)
is true in R(λ). For some complete set of Skolem functions for ψ, let C be
the class of ordinals β < λ such that R(β) is closed under them. To see that
β ∈ C implies that ψ is true in R(β), just note that if D is of type > 0 and
D ∈ E occurs in ψ then it occurs positively; and so if it is false in R(λ) it
contributes nothing to the truth of ψ in any R(β). On the other hand, if it
is true in R(λ), then it is true in R(β) for all β < λ.

A first-order formula which is positive in the extended sense is of the form

χ(U, . . . , V ) = φ(S(U, . . . , V ), . . . , T (U, . . . , V ))

where φ is positive and the terms S(U, . . . , V ), . . . , T (U, . . . , V ) are contrac-
tion operations. Let ψ = χ(D, . . . , E) = φ(A, . . . , B) be a κ-instance which
is true in R(κ), where A = S(D, . . . , E), . . . , B = T (D, . . . , E). We have
just shown that there is a CLUB set C of β < κ such that φβ(Aβ, . . . , Bβ).
Let C ′ be the set of limit ordinals in C. C ′ is also CLUB and, according to
Lemma 1, for β ∈ C ′, Aβ = S(Dβ, . . . , Eβ) and Bβ = T (Dβ, . . . , Eβ). So for
β ∈ C ′, χβ(Dβ, . . . , Eβ. �

Definition 6
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• Γ is the class of first-order formulas positive in the extended sense.

• Γn is the class of formulas

∀Y1∃Z1 · · · ∀Yn∃Znψ

where ψ ∈ Γ = Γ0 and the Yi are second-order. (The Zi may be of any
order.)

So the Γn formulas are all positive in the extended sense and so, by Lemma
3, reflectable for all regular cardinals.

We want to study the cardinals κ for which R(κ) satisfies (1) for all
formulas in Γn. More generally:

Definition 7 D ⊆ κ is n-reflective iff

∀X[φ −→ ∃β ∈ Dφβ]

for all φ ∈ Γn containing just the free variable X of arbitrary order > 1.

We shall investigate the class of subsets of cardinals κ which are n-reflective.
In particular, we shall prove

Theorem 2 If D ⊆ κ is n-reflective, then D −→ (Stationary)n+1.

7 n-Stationarity

Definition 8

• For n > 0, a function K defined on [κ]n such that, for κ > β1 > . . . >
βn, K(β1, . . . βn) ⊆ R(βn), is called an n-sequence (on κ).

• When, more strictly, K(β1, . . . βn) is always ⊆ βn, then K is called a
thin n-sequence on κ.

• Let K be an n-sequence on κ. A subset H of κ is called homogeneous
for K iff there is a B ⊆ R(κ) such that K(β1, . . . βn) = B ∩ R(βn) for
all (β1, . . . βn) ∈ [H]n with β1 > . . . > βn.
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If K is a 1-sequence on κ, then the maximal homogeneous classes for K are
precisely those of the form

[K,B] = {α ∈ κ | K(α) = B ∩R(α)}

for some B ⊆ R(κ).

Lemma 4 For every 1-sequence K there is a thin 1-sequence K̂ such that,
if H is homogeneous for K̂, then H ∩ C is homogeneous for K, where C is
the CLUB class of inaccessibles or limits of inaccessibles less than κ.

Choose a bijection
F : κ←→ R(κ)

such that its restriction Fα to α is a bijection

Fα : α←→ R(α)

for each α ∈ C. For α ∈ C, set

ζ ∈ K̂(α)←→ F (ζ) ∈ K(α)

For α 6∈ C, set K̂(α) = ∅. �

Definition 9 Let D ⊆ κ.

• D is 0-stationary iff it is stationary.

• D is n + 1-stationary iff every 1-sequence K has a homogeneous n-
stationary set ⊆ D—i.e. there is an X such that [K,X] ∩ D is n-
stationary.

If D is n-stationary and C is CLUB, then D ∩C is n-stationary. So, by the
lemma above, “1-sequence” can be equivalently replaced by “thin 1-sequence”
in the definition of the notion of n+ 1-stationary.

We will prove that D ⊆ κ is n-reflective iff it is n-stationary.
Using the contraction operations, we can code an n-tuple of objects by

single object whose order is the maximum of the orders of the objects in the
n-tuple.

Definition 10 Let D ⊆ κ.
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• We define the notion of an n-box for D. An n-box is of order n+ 2.

– A 0-box for D is a CLUB class C such that C ∩D = ∅.
– An n + 1-box for D is a class T of triples (K,X, S) for some

fixed 1-sequence K, called the witness for T , such that, for every
second-order class X, there is an S with (K,X, S) ∈ T and S is
an n-box for [K,X] ∩D.

• Let T be of order n+ 2. We define the Γn formula θn(T ) by induction
on n:

– θ0(T )←→ T is an unbounded subset of κ

– θn+1(T )←→ ∀X∃K∃S[(K,X, S) ∈ T ∧ θn(S)]

The order of the bound variables X, A and S are, respectively, 2, 2 and
n+2. Note that θn+1(T ) can be put in the form of a Γn+1 formula by means
of contracting operations.

Lemma 5

a) D is not n-stationary iff it has an n-box.

b) If T is an n-box for some D, then θn(T ) is true (in R(κ)).

c) If T is an n-box for D, then θn(T )β is false for all β ∈ D.

d) If D is n-reflective, then it is n-stationary.

The proof of a) and b) is immediate by induction on n. d) follows immediately
from a)-c). For c), let T be an n-box for D, β ∈ D, and assume that θn(T )β

is true. We derive a contradiction, by induction on n.
n = 0. θ0(T )β asserts that T β = T ∩ β is unbounded in β. Since T is

CLUB, β ∈ T , contradicting D ∩ T = ∅.
n = m + 1. Let K be the witness for T . Then there are K ′ and S ′ such

that 〈K ′, K(β), S ′〉 ∈ T β and θβ
m(S ′). K ′ = Kβ, K(β) = Aβ for some A, and

S ′ = Sβ, where 〈K,A, S〉 ∈ T . So S is an m-box for D ∩ [K,A], θm(S)β is
true, and β ∈ D ∩ [K,A]—a contradiction. �

So we have proved half of

Lemma 6 D is n-reflective iff it is n-stationary.
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To prove the other half, let D be n-stationary and let φ ∈ Γn be true in R(κ).
We proceed by induction on n.

n = 0: By Lemma 3, there is a CLUB class C ⊆ κ such that φβ for all
β ∈ C, and D is stationary.

n = m + 1: Let φ = ∀Y ∃Zψ(Y, Z), where ψ ∈ Γm. If φβ is false for all
β ∈ D, then we can define a 1-sequence K such that ∃Zψβ(K(β), Z) is false
for all β ∈ D. Choose A so that E = D ∩ [K,A] is m-stationary. For β ∈ E,
∃Zψβ(Aβ, Z) is false. But ∃Zψ(A,Z) is true. Choose B so that ψ(A,B).
But this is a Γn formula and ψβ(Aβ, Bβ) is false for all β in the m-stationary
class E, contrary to the induction hypothesis. �

8 Ineffability

Definition 11 For n > 0, D ⊆ κ is n-ineffable iff every thin n-sequence K
has a stationary homogeneous class ⊆ D.

Theorem 3 ([Baumgartner, 1973]) Let κ be a regular uncountable car-
dinal and n > 0. D ⊆ κ is n-ineffable iff it satisfies D −→ (stationary)n+1.

So, since stationary sets D trivially satisfy D −→ (stationary)1, we need
only show that n-stationary classes are n-ineffable for n > 0.

Baumgartner’s proof shows: For every thin 1-sequence K, there is a club
class CK and an fK | [κ]2 −→ 2 such that, if H is homogeneous for fK , then
CK ∩H is homogeneous for K.

Lemma 7 Let K be an n + 1-sequence on κ, n > 0. Then there is a 1-
sequence K ′ on κ and a function K ′′ defined on R(κ+1) such that K ′′(X) is
an n-sequence on κ for all X ⊆ R(κ) and, if H is homogeneous for K ′′(X),
then H ∩ [K ′, X] is homogeneous for K.

Let K ′ be defined by

G(α) = {〈β1, . . . , βn, K(α, β1, . . . , βn)〉 | β1 < α}.

For each X ⊆ R(κ), define K ′′(X) by

K ′′(X)(β1, . . . , βn) = K(α, β1, . . . , βn)

for all (i.e. any) α ∈ [K ′, X] with α > β1. If there is no such α, let
K ′′(X)(β1, . . . , βn) = ∅. �

Theorem 2 now follows from
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Lemma 8 If n > 0 and D ⊆ κ is n-stationary then D is n-ineffable.

(When n = 1, the converse also holds.) Let n = m + 1 with m > 0 and let
K be an n-sequence (thin or otherwise.) Choose A so that D ∩ [K ′, A] is m-
stationary and hence m-ineffable. So K ′′(A) has a stationary homogeneous
class H ⊆ D ∩ [K ′, A]. So H is homogeneous for K. �

9 Bounds on Higher-Order Reflection

A very generous upper bound for the least n-reflective cardinal is simply
obtained:

Theorem 4 Let κ be measurable and let U be a normal ultrafilter on κ.
Then, for every thin 1-sequence K, there is a set A ⊆ κ such that [K,A] ∈ U.
So every D ∈ U is n-stationary, i.e. n-reflective.

The second assertion easily follows from the first: Every set in U is stationary,
i.e. 0-stationary, since U is a normal ultrafilter. Assume that every set in U
is n-stationary and let K be a thin 1-sequence. There is an A ⊆ κ such that
[K,A] ∈ U. So for D ∈ U, [K,A] ∩D is in U and so is n-stationary. Hence
D is n+ 1-stationary.

To prove the first assertion, let K be a thin 1-sequence and define Bα =
{ζ < κ | α ∈ Kζ}. A ⊆ κ is defined by

α ∈ A ⇔ Bα ∈ U

Let Cα be Bα if the latter set is in U and let it be κ−Bα, otherwise. In any
case, Cα ∈ U. Then α ∈ [K,A] iff Kα = A ∩ α iff

∀β < α[α ∈ Bβ ⇔ Bβ ∈ U

iff ∀β < α[α ∈ Cβ] iff α ∈ ∆ζCζ , where, since U is a normal ultrafilter
containing each Cα, ∆ζCζ = {α | ∀β < α[α ∈ Cβ]} is in U. �

Peter Koellner has shown that there is a cardinal δ less than the Erdös
cardinal κ(ω) (κ(α) being the least κ such that κ −→ (α)<ω) which is n-
reflective for each n.

A simple extension of the notion of n-reflectiveness is obtained as follows:,
let Γm

n be the class of formulas

∀Y1∃Z1 · · · ∀Yn∃Znψ
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where ψ ∈ Γ = Γ0 and the Yi are (m+1)-order. (The Zi may again be of
any order.) So Γn = Γ1

n. The Γ∗n formulas are all positive in the extended
sense and so, by Lemma 3, reflectable for all regular cardinals. We now could
study the cardinals κ for which R(κ) satisfies (1) for all formulas in Γm

n . More
generally: call D ⊆ κ n-reflectivem iff

∀X[φ −→ ∃β ∈ Dφβ]

for all φ ∈ Γm
n containing just the free variable X of arbitrary order > 1.

Generalizing the notion of an n-sequence: For n > 0, a function K defined
on [κ]n such that, for κ > β1 > . . . > βn, K(β1, . . . βn) ⊆ R(βn + m), is
called an n-sequencem (on κ). Let K be an n-sequencem on κ. A subset
H of κ is called homogeneous for K iff there is a B ⊆ R(κ + m) such that
K(β1, . . . βn) = Bβn for all (β1, . . . βn) ∈ [H]n with β1 > . . . > βn. Finally,
we may generalize the notion of n-stationarity:

Definition 12 Let D ⊆ κ.

• D is 0-stationarym iff it is stationary.

• D is n + 1-stationarym iff every 1-sequencem K has a homogeneous
n-stationarym set ⊆ D.

The proof of Lemma 6 extends straightforwardly to a proof that n-reflectivenessm

is equivalent to n-stationaritym. However, it is not yet known where in
the chart of large cardinals this leads. It appears that Koelner’s argument
(for m = 1) extends to show that there are cardinals < κ(ω) which are n-
reflective2 for all n; but it is not clear at the moment whether the argument
can be extended to m > 2.
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