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RECURSIVE VALUATION AND SENTIMENTS

ABSTRACT

Expectations and uncertainty about growth rates that might
prevail in the future influence the valuation of risky claims to
consumption. I explore this mechanism using the recursive utility
model pioneered by Koopmans, Kreps and Porteus, Epstein and
Zin and others. This model gives a structured way to investigate
how beliefs about the future are reflected in current-period
assessments, including in the continuation values of prospective
consumption processes and in the stochastic discount factors used
to represent prices over alternative investment horizons. Thus the
forward-looking nature of the recursive utility model provides an
additional channel for which sentiments about the future matter.
Using some recently developed methods for studying stochastic
processes with uncertain growth, I provide revealing
characterizations by exploring some limiting cases and
suggesting alternative interpretations for sentiments.
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MOTIVATION

I Explore ways in which expectations and uncertainty about future
growth rates influence risky claims to consumption.

I Use a recursive utility model pioneered by Koopmans, Kreps and
Porteus and others that, by design, can make beliefs about
uncertain events figure prominently in asset valuation.

I Provide novel and revealing characterizations that will help us
understand better how this mechanism operates.

3 / 32



RECURSIVE PREFERENCES

Koopmans initiated an important line of research on recursive
preferences that pushed beyond the additive discounted utility
framework.

Some References:

I Stationary Ordinal Utility and Impatience - Koopmans,
Econometrica 1960

I Koopmans, Diamond and Williamson - Econometrica 1964
I Kreps and Porteus - Econometrica 1978
I Epstein and Zin - Econometrica 1989
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KOOPMANS AND RECURSIVE UTILITY

Utility representation:

Vt = Φ[U(Ct),Vt+1]

as a generalization of

Vt = U(Ct) + exp(−δ)Vt+1

where Ct is the current period consumption vector, Vt is the
“continuation value” or what Koopmans called the “prospective”
utility.
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UNCERTAINTY
Kreps-Porteus representation

Vt = Φ [U(Ct),E (Vt+1|Ft)]

as a generalization of expected utility

Vt = U(Ct) + exp(−δ)E (Vt+1|Ft) .

K-P does not reduce intertemporal compound consumption lotteries.
Intertemporal composition of risk matters.

I will feature a convenient special case

Vt =
[
(ζCt)1−ρ + exp(−δ) [Rt(Vt+1)]1−ρ

] 1
1−ρ

where

Rt (Vt+1) =
(
E
[
(Vt+1)1−γ |Ft

]) 1
1−γ

where 1
ρ is the elasticity of intertemporal substitution and γ is a risk

aversion parameter. Epstein and Zin.
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RECURSIVE UTILITY
I Continuation values

Vt =
[
(ζCt)1−ρ + exp(−δ) [Rt(Vt+1)]1−ρ

] 1
1−ρ

where

Rt (Vt+1) =
(
E
[
(Vt+1)1−γ |Ft

]) 1
1−γ

Induces some interesting nonlinearities in valuation.
I Intertemporal marginal rate of substitution

St+1

St
= exp(−δ)

(
Ct+1

Ct

)−ρ [ Vt+1

Rt(Vt+1)

]ρ−γ
.

Depends on continuation values, which gives a channel for
sentiments to matter.

Used to represent asset prices.
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TALK OUTLINE

I Mathematical setup
I Two related applications

I Continuation values for infinite-horizon problems
I Asset pricing over alternative investment horizons

I Perron-Frobenius theory and martingales
I Applications revisited
I Estimated long-run risk model
I Robustness and beliefs
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APPROACH

I Use Markov formulations and martingale methods to study
compounding in stochastic environments

I Allow for nonlinear time series models including models of
stochastic volatility and stochastic regime shifts.

I Use the long-term as a frame of reference.

Explore the implications of state dependent compounding when we
alter the forecast or consumption horizon.

Study continuation values, asset values and growth.
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DISCRETE-TIME FORMULATION

I Markov process X.
I Additive functional

Yt =
t∑

j=1

κ(Xj,Xj−1)

I Multiplicative functional

Mt = exp(Yt) =
t∏

j=1

exp[κ(Xj,Xj−1)]

I The product of two multiplicative functions is a multiplicative
functional.

Use multiplicative functionals to model state dependent growth and
discounting.
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EXAMPLE: MIXTURE OF NORMALS MODEL

I Let {Wt+1} be a multivariate iid sequence of standard normals.
I Construct an additive functional:

Yt+1 − Yt = Zt · µ+ Zt · ΛWt+1

where Z is a component of X and evolves as a finite state Markov
chain Y0 = 0.

I Construct the multiplicative functional:

Mt = exp(Yt)

and study conditional expectations. Recursive structure to the
compounding over time.
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UTILITY RECURSION RECONSIDERED

I Recall

Vt =
[
(ζCt)1−ρ + exp(−δ) [Rt(Vt+1)]1−ρ

] 1
1−ρ

.

where

Rt (Vt+1) =
(
E
[
(Vt+1)1−γ |Ft

]) 1
1−γ .

I To adjust for growth, exploit homogeneity and divide by Ct to
obtain:

Vt

Ct
=

[
ζ1−ρ + exp(−δ)

[
Rt

(
Vt+1

Ct+1

Ct+1

Ct

)]1−ρ
] 1

1−ρ

,

When consumption is a multiplicative functional, Vt
Ct

will be a
function of the Markov state Xt.
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RESTATING THE RECURSION
I Explore the parameter region γ > ρ and define

1− ν =
1− γ
1− ρ

Restrict ρ 6= 1 in what follows. ( ρ = 1 requires a separate
argument.)

I Consumption dynamics

log Ct+1 − log Ct = κ(Xt+1,Xt),

and solution form:(
Vt

Ct

)1−ρ
= h(Xt).

I Formalism:

Vf (x) = E (exp[(1− γ)κ(Xt+1,Xt)]f (Xt+1)|Xt = x) ,

Restated recursion

h(x) = ζ1−ρ + exp(−δ)
[
Vh1−ν(x)

] 1
1−ν
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ASSET PRICING OVER ALTERNATIVE
INVESTMENT HORIZONS

Multi-period return:

Gt

E (StGt|X0 = x)

Logarithm of the expected return adjusted for horizon:

1
t

log E (Gt|X0 = x)− 1
t

log E (StGt|X0 = x)

I In valuation problems there are two forces at work - stochastic
growth G and stochastic discounting S. Study product SG.

I Term structure of risk and shock prices - look at value
implications of marginal changes in growth exposure as
represented by changes in G.

I Build recursions that exploit the Markov structure.
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WARMUP
I Normal mixture model:

Yt+1 − Yt = Zt · µ+ Zt · ΛWt+1

where Z evolves a finite state Markov chain. Realized value of Zt

is a coordinate vector.
I Let f (Xt+1) = g · Zt:

z′Mg = E
[

Mt+1

Mt
f (Xt+1)|Xt = x

]
= E [exp(Yt+1 − Yt)g · Zt+1|Zt = z]

where M is a matrix with nonnegative entries.
I Characterize Mj. Grows or decays geometrically with the rate

given by logarithm of the dominant eigenvalue.
I Perron-Frobenius theory - dominant eigenvalue has an

eigenvector with positive entries.
I Adjust for growth or decay using the eigenvalue; construct a new

probability matrix using the eigenvector.
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PERRON-FROBENIUS THEORY/ MARTINGALES

I Solve,

E [M1e(X1)|X0 = x] = exp(η)e(x)

where e is strictly positive. Eigenvalue problem.
I Construct martingale

M̂t = exp(−ηt)Mt

[
e(Xt)
e(X0)

]
.

I Invert to obtain factorization

Mt = exp(ηt)M̂t

[
e(X0)
e(Xt)

]
.

exp(ηt) is the eigenvalue for horizon t and e the eigenfunction.
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MULTIPLICATIVE MARTINGALES

Factorization:

Mt = exp(ηt)M̂t

[
e(X0)
e(Xt)

]
.

Change of probability measure:

Ê [f (Xt)|X0 = x] = E
(

M̂tf (Xt)|X0 = x
)

I preserves Markov structure
I at most one is stochastically stable - Hansen-Scheinkman
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STOCHASTIC STABILITY

exp(−ηt)E [Mtf (Xt)|X0 = x] = e(x)Ê
[

f (Xt)
e(Xt)

|X0 = x
]

Under stochastic stability and the moment restriction:

Ê
[

f (Xt)
e(Xt)

]
<∞,

the right-hand side converges to:

e(x)Ê
[

f (Xt)
e(Xt)

]
.

Common state dependence independent of f .
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CHANGE OF MEASURE REVISITED
Recall,

Mt = exp(ηt)M̂t

[
e(X0)
e(Xt)

]
.

Consider the stochastic discount factor S = M.

Alternative factorization - risk neutral dynamics.
I Risk-neutral adjustment is a local or one-period adjustment

whereas our adjustment features the long-term valuation.
I Short-term interest rates are typically state dependent whereas η

is not. The state dependence of short-term interest rates adjusts
for risks over multi-period horizons.

I Our change of measure features risk adjustments over multiple
investment horizons with direct characterizations of limiting
behavior.

We are interested in other applications as well that include
adjustments for stochastic growth.
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CONTINUATION-VALUE RECURSION
I Define

1− ν =
1− γ
1− ρ

where ν > 0. We presume that ρ 6= 1 in what follows.
I Consumption dynamics

log Ct+1 − log Ct = κ(Xt+1,Xt),

Solution of the form:(
Vt

Ct

)1−ρ
= h(Xt).

I Formalism:

Vf (x) = E (exp[(1− γ)κ(Xt+1,Xt)]f (Xt+1)|Xt = x) ,

Restated recursion

h(x) = ζ1−ρ + exp(−δ)
[
Vh1−ν(x)

] 1
1−ν
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ITERATING ON THE RECURSION

I Construct

log Mt+1−log Mt = (1−γ)κ(Xt+1,Xt) = (1−γ)(log Ct+1−log Ct)

which depends only on γ and not ρ.
I Factor

Mt = exp(ηt)M̂t

[
e(X0)
e(Xt)

]
.

I Use change of measure:

Vf (x) = E (exp[(1− γ)κ(Xt+1,Xt)]f (Xt+1)|Xt = x) ,

= exp(η)Ê
[

f (Xt+1)
e(Xt+1)

|Xt = x
]

e(x)
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BOUNDS
I Recall

h(x) = ζ1−ρ + exp(−δ)
[
Vh1−ν(x)

] 1
1−ν

I The parameter restriction that is a necessary condition for finite
values for an infinite horizon:

δ ≥ η 1− ρ
1− γ

I Moment inequality

Ê
[
e(Xt)

1
ν−1

]
<∞

implies a bound on the infinite-horizon continuation value.
Deduced by applying Jensen’s Inequality to

Ê
[
f (Xt+1)1−ν |Xt = x

]
for an appropriately defined f .

In parametric examples these inequalities imply parameter restrictions
that are typically ignored in practice.
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WHAT HAPPENS AS WE APPROACH THE
DISCOUNT FACTOR LIMIT?

Recursive utility mechanism features beliefs about the future or
“sentiments”.

Makes these as potent as possible.
I Recall

h(x) = ζ1−ρ + exp(−δ)
[
Vh1−ν(x)

] 1
1−ν

I Drive ζ to zero (scale doesn’t matter) and δ to its bound. Then
the equation simplifies to

h1−ν(x) = exp(−η)Vh1−ν(x)

I Continuation value function (relative to consumption) converges
to

e(x)
1

1−γ

up to scale.
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LIMITING REPRESENTATION OF THE
STOCHASTIC DISCOUNT FACTOR

St+1
St

= exp(−δ)
(

Ct+1
Ct

)−ρ [ Vt+1
Rt(Vt+1)

]ρ−γ
in general.

St+1
St

= exp(−η)
(

Ct+1
Ct

)−γ [ e(Xt+1)
e(Xt)

] ρ−γ
1−γ in the limit.

I Stochastic discount factors for power utility (constructed with γ)
and recursive utility share the same martingale components.

I Changing ρ does not alter the martingale component.
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ESTIMATED EXAMPLE
Motivated by the work of Bansal and Yaron, I fit the following model
to the aggregate time series data and specified in continuous time.

dX[1]
t = A11X[1]

t dt +
√

X[2]
t B1dWt,

dX[2]
t = A22(X[2]

t − 1)dt +
√

X[2]
t B2dWt

dYt = µdt + H1X[1]
t dt +

√
X[2]

t FdWt.

The continuous time autogregressive coefficients are:

A11 =
[
−.05 .01

0 −.29

]
A22 = −.07.

The shock loadings for the components of the state vector are:

B1 =
[
.047 .018 0

0 1 0

]
B2 =

[
0 0 −.18

]
F =

[
−.0011 .0044 0

]
H1 =

[
.0021 .0014

]
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SHOCK-PRICE TRAJECTORIES FOR POWER AND
RECURSIVE UTILITY
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Student Version of MATLAB

See second lecture for interpretation and construction details.
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SHOCK-PRICE TRAJECTORIES FOR
ALTERNATIVE VALUES OF THE EIS
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See second lecture for interpretation and construction details.
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IMPACT OF STOCHASTIC VOLATILITY
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FIGURE: Densities for shock price elasticities for exposure to the growth
rate shock. Green volatility shock and blue growth shock.
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IMPACT OF PARAMETER ESTIMATION
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FIGURE: Densities for shock price elasticities for exposure to the growth
rate shock. Green volatility shock an blue growth shock.

See also Hansen, Heaton and Li (JPE).
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ROBUSTNESS AND DISTORTED BELIEFS

I Lack of investor confidence in the models they use.
I Investors explore alternative specifications for probability laws

subject to penalization.
I Martingale is the implied “worst case” model. Parameter θ > 0

determines the magnitude of the penalization where γ > 1 and

θ =
∣∣∣∣1− ρ1− γ

∣∣∣∣ .
The parameters are now ρ and θ where ρ continues to measure
the elasticity of intertemporal substitution.

I Related methods have a long history in “robust” control theory
and statistics.

I Axiomatic treatments in recent decision theory papers.
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ROBUSTNESS AND DISTORTED BELIEFS
I In empirical applications it is common to assume a large value of

the risk aversion parameter γ.
I Instead appeal to a concern about robustness.
I For vt+1 = |1− ρ| log Vt+1 and solve

min
m≥0,E[m|Ft]=1

E [vt+1|Ft] +
1
θ

E [m log m|Ft]

= −θ log E
[

exp
(
−1
θ

vt+1

)
|Ft

]
.

I Minimizing m:

mt+1 =
exp

(
− 1
θvt+1

)
E
[
exp

(
− 1
θvt+1

)
|Ft
] =

(Vt+1)1−γ

E [(Vt+1)1−γ |Ft]
.

This gives rise to the exponential tilting solution as m tilts the
density in directions that have the largest adverse consequences
for the continuation value. Altered beliefs.

See third lecture for more details.
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WHERE DOES THIS LEAVE US?
I The flat term structure for recursive utility shows the potential

importance of macro growth components on asset pricing.
I Typical rational expectations modeling assumes investor

confidence and uses the “cross equation” restrictions to identify
long-term growth components from asset prices. Instead do asset
prices identify “subjective beliefs” of investors and risk aversion?

I Predictable components of macroeconomic growth and volatility
are hard for an econometrician to measure from macroeconomic
data.

Questions
I What are the interesting shocks?
I Where does investor confidence come from when confronted by

weak sample evidence? Motivates my interest in modeling
investors who have a concern for model specification.

I What about learning? Concerns about model specification of the
type I described abstract from learning.

32 / 32


