
Variable-free Formalization of the
Curry-Howard Theory

W. W. Tait

The reduction of the lambda calculus to the theory of combinators in
[Schönfinkel, 1924] applies to positive implicational logic, i.e. to the typed
lambda calculus, where the types are built up from atomic types by means of
the operation A −→ B, to show that the lambda operator can be eliminated
in favor of combinators K and S of each type A −→ (B −→ A) and (A −→
(B −→ C)) −→ ((A −→ B) −→ (A −→ C)), respectively.1 I will extend
that result to the case in which the types are built up by means of the general
function type ∀x : A.B(x) as well as the disjoint union type ∃x : A.B(x)–
essentially to the theory of [Howard, 1980]. To extend the treatment of −→
to ∀ we shall need a generalized form of the combinators K and S, and
to deal with ∃ we will need to introduce a new form of the combinator S
(whose type turns out to be a general form of the Axiom of Choice). But
also in the present context, if we are to eliminate variables, then not only
the lambda operator for forming terms, but also quantification as a variable-
binding operation for forming formulas must be analyzed away; so we will
need an analogue of the combinators for formulas.

As usual, we shall write st for the value s(t) of the function s for the
argument t; so rst is (r(s))(t), etc.

Let v be a free variable of type A. We wish to rewrite the formulas B(v),
∀x :A.B(x) and ∃x :A.B(x), respectively, as B′v, ∀B′ and ∃B′, where B′ is a
type-valued function on A. If t(v) is a term of type B(v), which we express
by

t(v) :B(v)

then λx :A.t(x) is a term of type ∀x :A.B(x), denoting a function on A whose
value for s : A is t(s) : B(s). We wish to rewrite the terms t(v), λx : A.t(x),

1This observation is essentially contained in the discussion of the so-called theory of
functionality in Chapters 9 and 10 of [Curry and Feys, 1958].

1

respectively, as t′v :B′v and t′ :∀B′. Thus, a two-quantifier formula

Q1x :AQ2y :B(x).C(x, y)

where Q1 and Q2 are quantifiers, is to be rewritten as

Q1x :AQ2y :B(x).C(x)′y

or
Q1x :AQ2y :B′x.C ′′xy

or simply
Q1Q2C

′′

C ′′ is a function defined on A such that C ′′s is a type-valued function defined
on B′s for all s : A. Let u and v be free variables of types A and B(u),
respectively. A term t(u, v) of type C(u, v) should be rewritten as t′′uv,
where t′′ is of type ∀∀C ′′.

To discuss the general case, we need a definition.

Definition 1 The notion of a base of functionals is defined by induction:

• The null sequence is a base.

• If A is a type and F1, . . . , Fn are functions defined on A such that, for
each t :A, 〈F1t, . . . , Fnt〉 is a base, then the sequence 〈A, F1, . . . , Fn〉 is
a base.

When 〈A, F1, . . . , Fn〉 is a base, the base 〈A, F1, . . . , Fn−1〉 is uniquely deter-
mined by the functional Fn. As an example, in the two-quantifier example
above, 〈A, B′, C ′′〉 is a base. More generally, an n-quantifier formula

Q1x1 :A1 Q2x2 :A2(x1) · · ·Qnxn :An(x1, . . . , xn−1).B(x1, . . . , xn)(1)

is to be rewritten as

Q1x1 :A1 Q2x2 :A′
2x1 · · ·Qnxn :A(n−1)

n x1 · · ·xn−1.B
(n)x1 · · ·xn

where 〈A, A′
2, . . . A

(n−1)
n , B(n)〉 is a base, or simply as

Q1 · · ·QnB
(n).

If v1, v2, . . . , vn are free variables of types A1, A2(v1), . . . , An(v1, . . . , vn), re-
spectively, then a term t(v1, v2, . . . , vn) of type B(v1, v2, . . . , vn) is to be
rewritten as t(n)v1v2 · · · vn, where t(n) is of type ∀∀ · · · ∀B(n).

In order to carry out this analysis, we need to introduce a formalism
in which we can represent functionals and objects which depend upon free
variables.

2

1 The Calculus

We must simultaneously define three notions:

• The notion of a base of formulas.

– Bases are finite sequences whose members are called formulas.

– If 〈�F , G〉 is a base, then �F is called the base of G and denoted by
Base(G).

– When 〈A〉 is a base, A is called a (formula) type.

– A base of formulas is intended to denote a base of functionals for
suitable values of the free variables.

– With a formula we may associate a rule of conversion, which spec-
ifies the meaning of the formula. FCONV G means that the for-
mula F converts to the formula G according to the rules of con-
version.

• The notion of a term of type A, where A is a type.

– That t is a term of type A is expressed by t :A.

– With a term we may associate a rule of conversion, which specifies
the meaning of the term. sCONV t means that the term s converts
to the term t according to the rules of conversion.

• The notion of definitional equality between two terms or between two
functionals.

– We denote this relation by ≡.

– We may specify at once that, for terms s and t, s ≡ t is defined to
mean s RED r∧ t RED r for some r, where the relation RED is
defined in terms of the rules of conversion: call an occurrence of
a formula or term X in a formula or term U external if it is not
in a part of U of the form vn(A). (When A is a formula, vn(A)
will be introduced as a variable of type A.) For formulas or terms
U and V , U > V will mean that V is obtained by replacing some
external occurrence X of U by Y , where X CONV Y . RED is
the least reflexive and transitive relation which includes >.

3

– For formulas F and G, F ≡ G will mean that the base of F and the
base of G are of the same length n ≥ 0 and, for some distinct new
symbols x1, . . . , xn, Fx1 · · ·xn and Gx1 · · ·xn RED to a common
expression.2

– We may also specify at once that the type of a term is to be
determined only to within definitional equality. Thus, as a part
of the definition of the type relation we specify that

t :A ∧ A ≡ B −→ t :B.

It will follow that
s ≡ t ∧ s :A −→ t :A.

If �Y = 〈Y1, . . . , Yn〉, then 〈X, �Y 〉 will denote 〈X, Y1, . . . , Yn〉, 〈�Y , Z〉 will de-

note 〈Y1, . . . , Yn, Z〉, �Y t will denote 〈Y1t, . . . , Ynt〉, etc.

1.1 Atomic Formulas

If �F is a base of formulas none of which contains free variables, then Rn(�F)

is an atomic formula with base �F for each n. There may be conversion rules
associated with an atomic formula.

1.2 Instantiation

If G has base 〈A, �F 〉 and t :A, then Gt is a formula with base �Ft.

1.3 Quantification

If H has base 〈�F , G〉, then ∀H and ∃H are formulas with base �F .

• If �F is not null and Q is a quantifier, then we have the conversion rule

(QH)t CONV Q(Ht)

2Notice that, on our definition, variables vn(A) are always in normal form, where a
formula or term X is in normal form iff there is no Y such that X > Y . Thus, even when
the distinct types A and B are ≡, vn(A) 	≡ vn(B).

4

• The (universal) closure of a formula H is

H∗ = ∀ · · · ∀H

where the number of ∀’s is the length of the base of H. Thus, H∗ is a
type.

1.4 Dummy Argument Places

If 〈�F , G〉 and 〈�F , H1, . . . , Hk〉 are bases, then so is 〈�F , G, H1[G], . . . , Hk[G]〉.
• The rules of conversion for Hi[G] (i = 1. . . . , k) are:

– If �F 	= ∅
Hi[G]t CONV Hit[Gt]

– If �F = ∅
Hi[G]t CONV H

• Abbreviations: Let Base(G) = Base(H)

G −→ H = ∀(H[G])

G ∧ H = ∃(H[G])

1.5 Transposition of Argument Places

If 〈 �E, F,G, H1, . . . , Hk〉 is a base, then so is 〈 �E,∀G, F [∀G], H1{1}, . . . , Hk{k}〉.

The subscript ‘i’ in Hi is meta-notation, marking which formula in the base
we are refering to; the ‘{i}’, on the other hand, is part of the syntax of the
formula Hi{i}. The rules of conversion are:

• If �E 	= ∅
Hi{i}t CONV Hit{i}

• If �E = ∅
Hi{i}st CONV Hit(st)

REMARK. In the second case, note that s must be a term of type ∀G and
t must be of type F [∀G]s, i.e. of type F . Since G has base F, st is defined
and is of type Gt, by the principle of ∀ Elimination in §1.8 below. So Hit(st)
is defined.

5

1.6 Variables

For each type A and n ≥ 0
vn(A) :A

vn(A) is called a free variable of basic type A. Note that A is a syntactical
part of vn(A). A variable of basic type A may be denoted by v(A), v′(A),
etc.

1.7 Constants

If A is a type containing no variables, zero or more constant terms of type A
may be introduced.

1.8 Quantifier Elimination

Let 〈A, F 〉 be a base.

• ∀ Elimination
s :A, t :∀F =⇒ ts :Fs

• ∃ Elimination
p :∃F =⇒ (p1) :A, (p2) :F (p1)

1.9 Existential Quantifier Introduction

Let H have base 〈�F , G〉.

P (H) : (H −→ ((∃H)[G])∗

The conversion rules for ∃ are

• If �F 	= ∅
P (H)t CONV P (Ht)

• If �F = ∅
P (H)st1 CONV s

P (H)st2 CONV t

6

1.10 The Combinator K

Let G and H have base �F .

K(G, H) : (G −→ (H −→ G))∗

The conversion rules associated with K are

• If �F 	= ∅
K(G, H)t CONV K(Gt, Ht)

• If �F = ∅
K(G, H)st CONV s

1.11 The Combinators S∀ and S∃

Let H have base 〈 �E, F, G〉 and let Q be a quantifier ∀ or ∃. Then

SQ(H) : (∀QH −→ Q∀(H{1})∗

The conversion rules are

• If �E 	= ∅
SQ(H)t CONV SQ(Ht)

• Assume that �E = ∅ and let r : ∀QH. So H{1} has base 〈∀G, F [∀G]〉.
Let s :∀G and t :F [∀G]s. So t :F and

SQ(H)r :∀Q(H{1})

– Let Q = ∀.
S∀(H)r :∀∀(H{1})

S∀(H)rst must be defined to be of type H{1}st, i.e. of type
Ht(st). But rt :∀(Ht), st :Gt and so rt(st) :Ht(st). Thus, we may
define S∀(H)rst by the conversion rule

S∀(H)rst CONV rt(st)

7

– Let Q = ∃.
S∃(H)r :∃∀(H{1}

Thus
S∃(H)r1:∀G

S∃(H)r2:∀H{1}(S∃(H)r1)

So
S∃(H)r1t :Gt

S∃(H)r2t :Ht(S∃(H)r1t)

But rt : ∃Ht and so rt1 : Gt and rt2 : Ht(rt1). So we may define
S∃(H) by the conversion rules

S∃(H)r1t CONV rt1

S∃(H)r2t CONV rt2

We have completed the description of the calculus.
Notice that the type of S∃(H) is a general form of the Axiom of Choice: for

example, let H have base 〈A, B[A]〉. Then H{1} has base 〈A −→ B, A[A −→
B]〉 and the type ∀∃H −→ ∃∀H{1} may be written as

∀x :A∃y :BHxy −→ ∃f :A −→ B∀x :AHx(fx)

2 Some properties of the calculus

Let V ar(X) denote the set of variables in the formula or term X.

Definition 2 The type B of the term t is suitable for t iff V ar(B) =
V ar(t) − {t}.

Lemma The following facts are easily derived.

1. Every variable in a formula in the base of F is in F .

2. Every term has a suitable type.

3. If G and H have bases �E and 〈 �E, F 〉, respectively, then

∀(H[G]) ≡ (∀H)[G]

.

8

4. If G and H both have base 〈 �E, F 〉, then

H[G]{1} ≡ H[∀G]

5. Let F , G and H all have base �E. Then

H[F][G[F]] ≡ H[G][F]

.

Assuming that there are no further conversion rules, we may prove in the
usual way

Theorem 1 Church-Rosser Theorem If the formula or term X reduces to
Y and to Z, then Y and Z reduce to some U . In particular, every term or
formula has at most one normal form.

Theorem 2 Well-foundedness Theorem If X is a formula or term, then
every sequence X > Y > · · · is finite. In particular, every formula or term
has a normal form.

In view of these two theorems, the relation ≡ between formulas and terms
is decidable. We will not discuss general conditions on extensions of the
calculus obtained by adding new conversion rules under which the Church-
Rosser and Well-foundedness Theorems are preserved, since the main result
of this paper, the Explicit Definition Theorem below, will be preserved by
any such extension.

3 Identity Function

Let G and H have base �F and let S = S∀(H[G]). Then S is of type

(∀(G −→ H) −→ ∀∀(H[G]{1}))∗

which, by 3 and 4 of the Lemma is ≡ to

(∀(G −→ H) −→ (∀G −→ ∀H))∗(2)

9

Let G be B[A] and let H be C[A]. By 5 of the Lemma, (2) is ≡ to

(A −→ (B −→ C)) −→ ((A −→ B) −→ (A −→ C))(3)

So
S : (A −→ (B −→ C)) −→ ((A −→ B) −→ (A −→ C))

Set B = A −→ A, C = A, K1 = K(A, B) and K2 = K(A, A). Then
K1 :A −→ (B −→ C) and K2 :A −→ B. Set

IA = SK1K2

Then IA :A −→ C, i.e. IA :A −→ A. Let t :A.

IAt = SK1K2t ≡ K1t(K2t) ≡ t.

Thus IA is the identity function on A.
Notice that the combinators for positive implicational logic really are

a special case of K(G, H) and S∀(H). Namely, they are K(A, B) of type
A −→ (B −→ A) and S∀(C[A][B[A]]) of type (3).

4 Explicit Definition Theorem

Definition 3 A variable v is unfettered in the term t (formula F) iff for
every variable v(A) occuring in t (F), v does not occur in A.

Note: If B is a suitable type for the term t, then v is unfettered in t iff it is
unfettered in B.

Theorem Explicit Definition Theorem Let v = v(A).

• If 〈F1, . . . , Fn〉 is a base and v is unfettered in Fn, then there is a base
〈A, F ′

1, . . . , F
′
n〉 such that V ar(F ′

i) ⊆ V ar(Fi) − {v} and

F ′
iv RED Fi

• If t : B and v is unfettered in t and in B, then there is a t′ : ∀B′ such
that V ar(t′) ⊆ V ar(t) − {v} and

t′v RED t

10

Note: If B ≡ C, then B′ ≡ C ′. So, in particular, given a term t in which v
is unfettered, we need only find one type C of t in which v is unfettered and
construct t′ :∀C ′. If B is another type of t in which v is unfettered, then t′

will be of type ∀B′ as well.

Proof. The proof is by induction on the definition of the base or term.
Case 1. Assume that v does not occur in Fn. Then it does not occur in any
Fi. Set F ′

i = Fi[A].
Case 2. Assume that v is not in t and let B be a suitable type for t. Then
v is not in B and so B′ = B[A]. Set t′ = K(B, A)t, which is of type
∀B′ = A −→ B and t′v CONV t.

In the remaining cases, we may assume that v occurs in the formula or
term in question.
Case 3. Let us assume that F ′ is defined for F = G, F = H and for every
formula F in the base of G or H. Then we may clearly set

(QH)′ = QH ′

H[G]′ = H ′[G′]

H{n}′ = H ′{n}
P (H)′ = P (H ′)

K(G, H)′ = K(G′, H ′)

SQ(H)′ = SQ(H ′)

For example, H[G]′v = H ′[G′]v CONV H ′v[G′v] RED H[G]. And K(G, H)′v =
K(G′, H ′)v CONV K(G′v, H ′v) RED K(G, H). Note that K(G, H)′ is of
type (G′ −→ (H ′ −→ G′)∗, which is ∀(G −→ (H −→ G)∗)′, so the type is
right.
Case 4. Let Fi = Git, where t : C and 〈C, G1, . . . , Gn〉 is a base. Then
〈A, C ′, G′

1, . . . , G
′
n〉 is a base and t′ :∀C ′. Set F ′

i = G′
i{i}t′. Then

F ′
iv CONV G′

iv(t′v) RED Git = Fi

Case 5. Let H have base 〈B〉, f : ∀H, and t : B. We need to define (ft)′.
f ′ : ∀∀ H ′, t′ : ∀B′ and S∀(H

′)f ′ : ∀∀H ′{1}. H ′{1} has base 〈∀B′, A[∀B′〉.
So S∀(H

′)f ′t′ is defined and is of type ∀H ′{1}t′ ≡ ∀(Ht)′. So set (ft)′ =
S∀(H

′)f ′t′. For
S∀(H

′)f ′t′v RED f ′v(t′v) RED ft

11

Case 6. Let p :∃H, where H has base B. We need to define (p1)′ and (p2)′.
p′ : ∀∃H ′, where H ′ has base 〈A, B′〉. H ′{1} has base 〈∀B′, A[∀B′]〉. So
S∃(H

′)p′ :∃∀(H ′{1}). Set (p1)′ = S∃(H
′)p′1 and (p2)′ = S∃(H

′)p′2.

(p1)′v RED p′v1 REDp1

(p2)′v RED p′v2 REDp2.

The proof is completed.
We may now take ∀x : A.B(x) to be an abbreviation for ∀B′, providing

the free variable v = v(A) is unfettered in B(v). If v is fettered in B, then B
has the form B(v, u(C(v))), where u(C(v)) is a variable and v is unfettered
in C(v). But in this case, ∀x :A.B(x), i.e. ∀x :A.B(x, u(C(x))) doesn’t make
any literal sense: u(C(x)) does not denote a variable of any particular type.
Rather we can only think of it as a dependent variable, depending on the
value of x. But then we may more accurately replace u(C(v)) by u(∀C ′)v,
eliminating at least one context which fetters v. Iterating this proceedure,
we finally transform B(v) into a type D(v) in which v is unfettered and
such that ∀x :A.D(x) expresses the only reasonable meaning of ∀x :A.B(x).
Similarly, we may restrict λx :A.t(x) to the case in which v is unfettered in
t(v); and in that case it is an abbreviation for t′. In this case, the restriction
that v be unfettered in t(v) is precisely Gentzen’s restriction on his rule ∀−I
in the system of natural deduction.

The second part of the theorem contains the Deduction Theorem, i.e.
Gentzen’s rule ⊃ −I: If v does not occur in B and is unfettered in the term
t of type B’ i.e. t is a deduction of B from the assumption v of A, then t′

is a deduction of A −→ B which depends only upon assumptions in t other
than v.

Now we return to the initial discussion of the n-quantifier form. Let
B = B(v1, . . . , vn) be a formula and v1, . . . , vn a list of variables including
all the variables in B, vi = vi(Ai). Assume that the list of variables is in
good order, i.e. i < j implies that vj does not occur in Ai. So we may
write Ai = Ai(v1, . . . , vi−1), displaying all the free variables. Then vn is
unfettered in B and we may apply the Explicit Definition Theorem to obtain
B′ with base 〈An〉, containing at most the variables vi for i < n and such
that B′vn ≡ B. vn−1 is unfettered in B′ and so we may construct B′′ with
base 〈An−1, A

′
n〉, containing at most the variables vi for i < n − 1, such

that B′′vn−1vn ≡ B. Iterating n times, we obtain the variable-free formula

12

B(n) with base 〈A1, A
′
2, . . . , A

(n−1)
n 〉 such that B(n)v1 · · · vn ≡ B. Then (1) is

precisely Q1 · · ·Qn.B
(n). We denote Bn by

λx1 :A1 · · ·λnxn :An(x1, . . . , xn−1).B(x1, . . . xn).

Moreover, if t = t(v1, . . . , vn) is a term of type B(v1, . . . , vn), then n ap-
plications of the Explicit Definition Theorem yields t(n) : ∀ · · · ∀B(n) with
t(n)v1 · · · vn ≡ t. We denote tn by

λx1 :A1 · · ·λnxn :An(x1, . . . , xn−1).t(x1, . . . xn).

For future reference, when �F = 〈F1, . . . , Fn〉 is a base and G a formula,
we write

λ�x : �F = λx1 :F1 · · ·λxn :Fnx1 . . . xn−1.

and

G[�F] = λ�x : �F .G.

5 Truth Functions

We briefly discuss one extension of the basic formalism, obtained by adding
the null type NULL, the two-object type TWO and the atomic formula V =
R0(TWO) with base 〈TWO〉. The Church-Rosser and Well-foundedness
Theorems hold for this extension.

There is no introduction rule for NULL. Let G have base �F .
NULL Elimination

N(G) : (NULL[�F] −→ G)∗.

When �F is not empty, there is the conversion rule

N(G)t CONV N(Gt)

Negation can now be defined by

¬G = (G −→ NULL).

Concerning the Two-object Type,

13

• TWO Introduction

� :TWO ⊥ :TWO

• TWO Elimination. Let G have base (�F , TWO[�F])

J(G) : (λ�x : �F .G�x� −→ (λ�x : �F .g�x⊥ −→ ∀G))∗

The conversion rules are:

• When �F is nonempty, the conversion rule is

J(G)r CONV J(Gr)

• When �F is null, the conversion rules are

J(G)st� CONV s J(G)st⊥ CONV t

There are no introduction or elimination rules associated with V ; there are
just the conversions

V � CONV (NULL −→ NULL) V ⊥ CONV NULL

Thus V � is the true proposition proved by N(NULL) and V ⊥ is a false

proposition. Given formulas G and H with base �F , we define

〈G, H〉 = (V [�F] −→ G[TWO[�F]]) ∧ (¬V −→ B[TWO[�F]])

with base 〈�F , TWO[�F]〉 When A and B are types, it is easy to construct
proofs of

〈A, B〉� ←→ A 〈A, B〉⊥ ←→ B

where by a proof of a type C we mean a term of type C which contain no
variables not in C. In view of this, we may introduce disjunction of two
formulas G and H with the same base by

G ∨ H = ∃〈G, H〉

Similarly we could define a new but equivalent conjunction by ∀〈G, H〉.

14

References

Curry, H. and Feys, R. [1958]. Combinatory Logic I, Amsterdam: North-
Holland.

Howard, W. [1980]. The formula-as-types notion of construction, in J. Hind-
ley and J. Seldin (eds), To H.B. Curry, Academic Press, New York,
pp. 479–490.

Schönfinkel, M. [1924]. Über die Bausteine der mathematische Logik, Math-
ematische Annalen 23: 123–153.

15

