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Abstract

We discuss both the historical roots of Skolem’s primitive recursive
arithmetic, its essential role in the foundations of arithmetic, its relation to
the finitism of Hilbert and Bernays, and its relation to Kant’s philosophy
of mathematics.

1. Skolem tells us in the Concluding Remark of his seminal paper on
primitive recursive arithmetic (PRA), “The foundations of arithmetic es-
tablished by means of the recursive mode of thought, without use of ap-
parent variables ranging over infinite domains” [1923], that the paper was
written in 1919 after he had studied Whitehead and Russell’s Principia
Mathematica and in reaction to that work. His specific complaint about
the foundations of arithmetic (i.e. number theory) in that work was, as
implied by his title, the essential role in it of logic and in particular quan-
tification over infinite domains, even for the understanding of the most
elementary propositions of arithmetic such as polynomial equations; and
he set about to eliminate these infinitary quantifications by means of the
“recursive mode of thought.” On this ground, not only polynomial equa-
tions, but all primitive recursive formulas stand on their own feet without
logical underpinning.

2. Skolem’s 1923 paper did not include a formal system of arithmetic, but
as he noted in his 1946 address, “The development of recursive arithmetic”
[1947], formalization of the methods used in that paper results in one of
the many equivalent systems we refer to as PRA. Let me stop here and
briefly describe one such system.

∗Is paper is loosely based on the Skolem Lecture that I gave at the University of Oslo in
June, 2010. The present paper has profited, both with respect to what it now contains and
with respect to what it no longer contains, from the discussion following that lecture.
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We admit the following finitist types1 of objects:

N A×B

when A and B are finitist types. We also admit as terminal types the
types

A→ B

of functions from the finitist type A to the finitist type B. The terms of
each type are:

Variables xA = x of each finitist type A

x : A

.
0 : N t : N ⇒ t′ : N

Primitive recursion

s : A & t : N×A→ A & r : N ⇒ PR(s, t, r) : A

where A is a finitist type, with the defining axioms

PR(s, t, 0) = s PR(s, t, r′) = t(r, PR(s, t, r)).

Corresponding to the cartesian product A×B we have

s : A & t : B ⇒ (s, t) : A×B

p : A×B ⇒ pL : A & pR : B

with the defining axioms axioms

(s, t)L = s (s, t)R = t

and
(pL, pR) = p.

Finally, for terminal types A→ B we have

s : A & t : A→ B ⇒ ts : B

and
x : A & t : B ⇒ λx.t : A→ B

with the defining axiom (lambda-conversion)

(λx.t)s = t[s/x]

The formulas are built up from equations between terms of the same
finitist type by means of implication. The logical axioms and rules of
inference are those of identity, implication and mathematical induction

φ(0) φ(x)→ φ(x′)

φ(t)

1The finitist types are called the finitist types of the first kind in “Finitism” [Tait, 1981].
The finitist types of the second kind are the types, corresponding to a constant equation, of
the computations proving the equation. We need not discuss these here.
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It is easy to show that
0 = 0′ → φ

for any formula φ. So we may abbreviate

¬φ := φ→ 0 = 0′.

The axiom of double negation elimination

¬¬φ→ φ

is then also derivable.
The Dedekind axioms

¬0 = t′ s′ = t′ → s = t

express that the iteration of successor, starting with 0, is ‘free”—there are
no loops. It is in virtue of that that definition by primitive recursion is
valid. Indeed, given definition by primitive recursion, we can derive the
Dedekind axioms. Define sgn and pred by

sgn 0 = 0 sgn t′ = 0′ pred 0 = 0 pred t′ = t.

Then

0 = t′ → sgn 0 = sgn t′ s′ = t′ → pred s′ = pred t′.

Using mathematical induction one easily proves the uniqueness of def-
inition by primitive recursion: let s : A, t : N × A → A and u : N → A.
Then

u0 = s un′ = t(n, un)

ur = R(s, t, r)

The converse is also true: mathematical induction can be derived from
uniqueness of primitive recursion. (See [Goodstein, 1945; Skolem, 1956;
Goodstein, 1957].)

3. Concerning his general philosophy of mathematics or at least of arith-
metic, Skolem, again in the Concluding Remark of [Skolem, 1923], ex-
presses his allegiance to Kronecker’s finitism. In particular, he refers to
Kronecker’s principle that a mathematical definition (Bestimmung), say
of a numerical function or property is genuine if and only if it supplies an
algorithm for determining its values. In its consequent rejection of infinite
quantifiers, this position also stands with Weyl’s later ‘intuitionism’ [1921]
and Hilbert’s still later ‘methodological’ finitism [1922; 1923; 1926].

It is interesting to note that Hilbert, too, studied the foundations of
arithmetic in Principia Mathematica2 and, at roughly the same time as
Skolem, rejected it, but for a quite opposite reason, namely because with
the axioms of infinity and of reducibility, it could no longer claim to be

2Concerning Hilbert’s flirtation with logicism, see [Hilbert, 1918], his lecture ”Prinzipien
der Mathematik” in his 1917-18 lectures on logic [Hilbert, 2011, Chapter1] and [Mancosu, 1999;
Sieg, 1999a]. Concerning his rejection of it, see his lecture ”Probleme der Mathematischen
Logik” in [Hilbert, 2011, Chapter 2].
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a logical foundation. Indeed, it is just as subject to the demand for a
consistency proof as the axiomatic theory of numbers, to which Hilbert
then returned. The lingering problem for him was to avoid the circle
of a proof of consistency of the axiomatic theory that is itself founded
on an axiomatic theory. Hilbert and Bernays felt that they solved that
problem around 1922 by restricting the methods of proof theory, in which
consistency is to be established, to finitist mathematics.

4. For most of us, constructivists or otherwise, arithmetic does not end
with Kronecker’s principle or with PRA. As Gödel [1958] has taught
us, even without the introduction of logic we can extend PRA non-
conservatively but constructively by allowing definition by recursion of
higher type objects, such as numerical-valued functions of numerical func-
tions, numerical-valued functions of these, etc.3 If in the definition of the
formal system PRA above we abolish the distinction between finitist and
terminal types and admit A → B as well as A × B to be a type when
A and B are, then the resulting system is Gödel’s theory T of primitive
recursive functions of finite type, provided we add the axioms (so-called
η-conversion)

λx.tx = t

when t : A→ B and t does not contain x, and the rule of inference

φ→ s = t

φ→ λx.s = λx.t

when x is not in φ.
Actually, this is not quite Gödel’s theory, but it agrees with that theory

in its arithmetic consequences (i.e. theorems φ containing only equations
between terms of type N). Objects of types A → B are interpreted by
Gödel to be computable (bereckenbar) functions from A to B and he inter-
prets equations between objects of this type as expressions of ‘intensional’
or ‘definitional equality’. But, for example, one might prove the equation
sx = tx, where x is of type N by induction on x. By the above inference
we then have λxsx = λxtx and so, by η-conversion, s = t. An application
of this is yields the higher-type form of uniqueness of primitive recursive
definition:

r0 = s rn′ = t(n, rn)

r = λnR(s, t, n)

Certainly a notion of equality admitting this inference is not decidable.4

But Gödel’s conception of T is not entirely satisfactory. Although
T is a quantifier-free theory, on his interpretation of it the (domain of

3The fact that non-primitive recursive functions such as the Ackermann function, defined
by two-fold nested recursions, are definable using primitive recursion of higher type was already
shown by Hilbert in [1926].

4The difficulty of dealing with equations of higher type was avoided by Spector in [1962] by
restricting equations to those between numerical terms and restricting formulas to equations.
Equations s = t, standing alone, between terms of type A→ B are taken to be abbreviations
for sx = tx, where the variable x of type A does not occur in s or t. s = t → u = v is then
taken to be an abbreviation for (1−sgn|s− t|)+sgn|u−v| = 0, where |x−y| denotes absolute
difference.
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objects of) type A → B is defined only by means of quantification over
infinite domains; namely, a computable function of type A → B is one
which, applied to any computable object of type A yields a computable
object of type B. If one takes the function to be given by a Turing
machine, then the statement that it is computable becomes an arithmetic
statement whose complexity grows with the type of the function5 It seems
preferable to accept the notion of function as sui generis, to interpret
A→ B simply as the domain of functions from A to B, and to understand
equations between objects of such a type to mean equality in the usual
sense of extensional equality of functions. What makes T constructive
is not that it concerns special domains of ‘constructive objects’ of higher
type, but rather that it treats the higher types constructively.6 This
means that Kronecker’s principle will be violated and the law of double
negation elimination (i.e. classical propositional logic) will not in general
be valid for formulas containing equations between terms of higher type;
but Gödel’s application of T in the Dialectica interpretation does not
depend on that anyway.

5. Likewise, the requirements of a constructivism more liberal than Kro-
necker’s can be met even with the (non-conservative) introduction of in-
finite quantification, as in Heyting arithmetic. In this case again decid-
ability of formulas (¬¬φ→ φ) cannot in general be proved, as Kronecker
demands; but it is not assumed as an axiom either. As is well-known,
this constructive extension of Kronecker’s finitism is from another point
of view—a proof-theorist’s point of view—just a generalization of Gödel’s.
For the basic notion of constructive logic is that of a proof of a sentence:
a sentence is given by stating what counts as a proof of it. So we may
think of the sentence as (or at least having associated with it) the type of
its proofs and we are led to the Curry-Howard theory of dependent types.
And when we consider what is to count as a proof of the implication
A→ B or quantification ∀x : Aφ(x), we are led to the types A→ B and
Πx:Aφ(x), respectively. And when we analyze mathematical induction

φ(0) ∀x[φ(x)→ φ(x′)]

φ(r)

from this point of view, if s is a proof of the first premise and t is a proof
of the second, then the proof p of the conclusion is obtained by primitive
recursive definition: p = PR(s, t, r). So, as in the case of Gödel’s theory T ,
we may think of Heyting arithmetic, i.e. the extension of PRA by means
of adding infinite quantification, as application of definition and proof by
induction to functions and formulas of higher types. This line of thought
has of course been developed by Per Martin-Löf, e.g. in [1973; 1998], into
a foundation for constructive mathematics. But that is not the direction
that I want to take here; rather I want to reflect on the lowest level of the
hierarchy of types, the finitist types.

But, before passing on to that, I want to at least mention a difficulty
that arises for the theory of dependent types (as opposed to the types

5Gödel seems to have tried over and over again (see [Gödel, 1972, footnote h]), but I think
unsuccessfully, to eliminate this logical complexity.

6See [Tait, 2006] for further discussion.
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in Gödel’s theory T ) from the treatment of the concepts of function and
higher-order equality that I advocated above in connection with the the-
ory T and say something about its remedy. The relation s =A,B t or for
simplicity s = t of extensional equality between objects respectively of
type A and type B (unlike that of intensional equality) is definable in the
theory itself (see [Tait, 2005a].), but it can happen that the extensionally
equal terms s and t are of different (but extensionally equal) types A and
B, respectively. For example, it may be that s = ru and t = rv, where
r : ∀x : A.φ(x) where x occurs in φ(x) and u and v are distinct normal
terms of type A that are extensionally equal. In that case s and t are of
the distinct (but extensionally equal) types φ(u) and φ(v), respectively.
Because of this, ‘substitution of equals for equals’ fails for extensionally
equality in a strong sense that the substitution may not even be mean-
ingful. For example, if s : A → B, t : A and t = r, where r is not of
type A, then st : B, but sr is not meaningful. However, we can restrict
extensional equality to the relations =A,A between terms of the same type
and in that case, substitution of equals for equals holds.

6. Let me turn back to the historical question about the source of the idea
of founding arithmetic on the ‘recursive mode of thought.’ Skolem speaks
only of Kronecker as a positive influence, but certainly in the passages in
which Kronecker expresses his principle concerning mathematical defini-
tions, namely in footnotes in his papers “Grundzüge einer arithmetischen
Theorie der algebraischen Grössen” [1881, 257] and “Über einige Anwen-
dungen der Modelsysteme” [1886, 156, footnote *], there is no specific
reference to the recursive mode of thought or, in general, to the system-
atic foundations of arithmetic. And in his paper “Über den Zahlbegriff ”
[1887] there is no explicit discussion of the principle of proof or definition
by mathematical induction at all. In his introductory essay in Skolem’s Se-
lected Works in Logic [Skolem, 1970, 17 -52], Wang speculates (p. 48) that
Skolem might have been at least unconsciously influenced by Grassmann’s
1861 Lehrbuch der Arithmetik [1904, XXIII]; but although Grassmann, in
his axiomatic treatment of the theory of the integers states and uses the
principle of proof by mathematical induction for propositions about the
positive integers and in effect gives the recursive definitions of addition
and multiplication of the integers, he does not mention the general prin-
ciple of definition by primitive recursion of arithmetic functions, which is
surely the basis of Skolem’s paper. 7

In [1947] Skolem himself states that, as far as he knows, his 1923 paper
was the first investigation of “recursive number theory” and he criticizes
with some justification Curry’s assertion [Curry, 1940] that it had its roots
in work of Dedekind and Peano. Peano added to Dedekind’s concept of
a simply infinite system a framework of formal logic, but he did not even
state, much less derive, the principle of definition by recursion as did

7Jens Erik Fenstad suggested in conversation that it was perhaps Skolem’s close study of E.
Netto’s Lehrbuch der Combinatorik [1901], a work of which he later collaborated in producing
a second edition, that led him to his conception of foundations of arithmetic. Again, it is true
that the work abounds in proofs by mathematical induction, but nowhere is a function or
concept defined by induction.
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Dedekind. Like Grassmann, he simply introduced as axioms the primi-
tive recursive definitions of the arithmetic operations. As for Dedekind
himself, Skolem points out that his foundation for arithmetic had a quite
different goal from his own. Indeed, his own motivation, “to avoid the
use of quantifiers”, was the exact opposite of that of Dedekind who in his
monograph Was sind und was sollen die Zahlen? [Dedekind, 1888] and
along with Frege in his Begriffsschrift [Frege, 1879] aimed at the reduction
of the concept of finite iteration to logic, employing what we now recognize
as second-order logic. Indeed, Dedekind and Frege, rather than Russell
and Whitehead, were the real source of the foundation of arithmetic that
Skolem was opposing. And Dedekind’s set-theoretic and non-algorithmic
approach to mathematics was the explicit target of Kronecker’s footnotes.

7. Nevertheless, there is an element of truth in Curry’s assessment, for
there are two themes in Dedekind’s monograph. One is indeed the reduc-
tion of definition and proof by induction to logic. That reduction can be
criticized not only by extreme constructivists such as Kronecker or more
moderate constructivists such as Brouwer, but also by those, like Poincaré
and (in his predicativist phase) Weyl, who rejected impredicative defini-
tions. For the core of Dedekind’s (and Frege’s) reduction is his definition
of the least set containing a given object and closed under a given function
as the intersection of all such sets; and this is the paradigm of an impred-
icative definition8 But the other theme of Dedekind’s monograph makes
it, I believe, a legitimate ancestor of Skolem’s paper. For Dedekind was
first to explicitly recognize the central role in the foundations of arithmetic
of proof and definition by mathematical induction, the first of which he
built into his notion of a simply infinite system and the latter of which (in
the form of definition by iteration) he derived from it and then used both
to define the arithmetic operations and to prove the categoricity of the
axioms for a simply infinite set. Indeed, if one replaces the second-order
axiom of mathematical induction in his theory of a simply infinite system
by the rule of induction in the form

φ(0) φ(x)→ φ(x′)

φ(t)

for arbitrary numerical predicates φ(x) of numbers and the principle of
definition by iteration

I(s, t, 0) = s I(s, t, r′) = t(I(s, t, r))

8It is worth noting that in Dedekind’s case the impredicativity is limited to (1) constructing
from a Dedekind infinite system 〈D, 0,′ 〉 (i.e. where 0 ∈ D and x 7→ x′ is an injective operation
on D whose range does not contain 0) the simply infinite subsystem 〈N, 0,′ 〉, and (2) defining
the ordering < of N. According to his well-known letter to Keferstein [1890], (1) was simply
part of his proof that the theory of simply infinite systems is consistent. His development of
arithmetic from the axioms of a simply infinite system together with the axioms of order (<),
in particular his familiar bottom-up derivation of the principle of definition by recursion (as
opposed to Frege’s [1893] top-down derivation), is predicative. (2) is worth noting because
< is primitive recursive, but the natural definition of its characteristic function is not by
iteration; and the principle of definition by induction that Dedekind proved was restricted to
definition by iteration. Dedekind defined the ordering n < x essentially as the least set which
contains n′ and is closed under x 7→ x′. Dedekind needed the relation < in his derivation of
the principle of definition by iteration.
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where the operation I(a, f, n) is defined for an arbitrary domain of objects
D with a ∈ D, f : D → D and n ∈ N, then we have a logic-free founda-
tion of arithmetic for which Dedekind’s proof of categoricity goes through
exactly as stated. (We will see that the general principle of definition by
primitive recursion is derivable in this framework.) The ‘open-endedness’
of this system—arbitrary numerical predicate φ(x) and arbitrary domain
D—may seem to contrast with Dedekind’s characterization of the num-
bers in second-order logic. But, as we know, the range of the second-order
quantifier is itself open-ended: by going to ever higher orders, we intro-
duce new sets of numbers into its scope.

An aside: Although Dedekind and Frege shared in the second-order
analysis of the notion of a finite iterate of a function (or, in Frege’s case,
of a binary relation),9 their conceptions of what would constitute a foun-
dations of arithmetic were profoundly different. In answer to the question
“What are the numbers?” Dedekind recognized their sui generis charac-
ter and sought only to uniquely characterize the system of numbers, while
Frege, focusing on the role of the numbers as finite cardinals, sought to
reduce them to something else, namely to extensions of concepts. One
consequence of his approach was that the principle of definition by recur-
sion does not play an essential role in Frege’s foundation, since he defined
the arithmetic operations on numbers in terms of the corresponding op-
erations on extensions. It was only in [Frege, 1903] that Frege derived
this principle and in effect proved the categoricity of the theory of simply
infinite systems.10

8. As we just noted, Dedekind proved the principle of definition by itera-
tion, not the general principle of primitive recursive definition. As Peter
Aczel pointed out in conversation, the latter principle does seem to have
appeared explicitly for the first time in [Skolem, 1923]. It is the special
case of iteration I(s, t, n) that is immediately justified on the basis of the
notion of the numbers representing the ‘free’ finite iterations (i.e. without
loops): the iteration

0, 1 . . . , n

of ′ starting with 0 is imaged by the iteration

s, ts, . . . tns

9[Frege, 1879] and [Dedekind, 1888]. It is worth noting that a version of Dedekind’s mono-
graph under the same title can be found in his notebooks dating, as he himself indicates in the
Preface to the first edition, from 1872-1878. A reference to this manuscript can also be found
in a letter to Dedekind from Heinrich Weber, dated 13 November 1878. (See [P.Dugac, 1976].)

10It is usual to say that, whereas Frege understood the numbers as cardinals, Dedekind
took them to be ordinals. Although there is some justice in this, there is also an objection:
when Cantor introduced the concept of ordinal number, it was as the isomorphism types of
well-ordered sets, just as he introduced the cardinals as isomorphism types of abstract sets.
Just as Cantor did not refer to his transfinite numbers in [1883a] as ordinal numbers (see
[Tait, 2000] for further discussion of this), Dedekind did not define the (finite) numbers as
order types nor did he refer to them as ordinals. A significant thing about both systems
of numbers, Cantor’s transfinite numbers and Dedekind’s finite numbers, and as opposed to
Frege’s, is that they are defined intrinsically, without reference to the domain of either sets or
well-ordered sets.
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= I(s, t, n) of t : D → D starting with s : D. In [1981] I argued directly
that definition by primitive recursion followed from the notion of number
as the form of finite sequences; but behind the argument was the following
reduction of primitive recursion to pure iteration.11 To carry out the
reduction, we need to use the uniqueness of the recursion equations for
the identity function λx : N.x on N in the form.

r0 = 0 rn′ = (rn)′

rs = s
For the reduction of primitive recursion to iteration the admission of types
A×B may also be essential. As far as I know, this question remains open.
Let s : A and t : N×A→ A. Define s̄ : N×A and t̄ : N×A→ N×A by

s̄ = (0, s) t̄(n, x) = (n′, t(n, x)).

and write f = λnI(s̄, t̄, n). (f is a term of terminal type containing any
variables that might be in s or t.) Thus

f(0) = s̄ f(n′) = t̄(f(n)).

Note that
f0L = 0

fn′L = t̄(fn)L = t̄(fnL, fnR)L = ((fnL)′, t(fnL, fnR)L = (fnL)′.

So λnfnL satisfies the same iteration equations as the identity function
λn : N.n on N and so

fnL = n

and

fn′R = t̄(fn)R = t̄(fnL, fnR)R = t̄(n, fnR)R = (n′, t(n, fnR))R = t(n, fnR).

So PR(s, t, n) can be defined to be gn = fnR = I(s̄, t̄, n)R.

9. This might be a good place to mention the axiom

(pL, pR) = p

when p : A × B or p : ∃x :A.B(x), which we used in the above reduction
of primitive recursion to iteration with p = fn. Like the corresponding

λxfx = f

when f : A → B or f : ∀x : A.B(x), it is not usually counted as fol-
lowing from the notion of definitional equality. This is certainly right
historically, but I am not clear on the principle by which it is excluded.
Shouldn’t it be part of the characterization of A × B, for example, that
every object p : A × B has the form (a, b) with a : A and b : B? If so
then the equation p = (pL, pR) seems mandatory. (On the other hand,
the analogous argument that every object of type A → B should be of

11Such a reduction is carried out in [Robinson, 1947] for the case in which D is finitary
type, without the introduction of product types A×B. Instead, she introduced the primitive
recursive coding of pairs of natural numbers and then showed that all other primitive recursions
could be reduced, using this coding, to iteration.
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the form λx.t is perhaps not so compelling.) I would welcome some in-
sight on this. The notion of definitional equality derives from Gödel’s
Dialectica paper [Gödel, 1958], where in footnote 7 he states that “iden-
tity (Identität) between functions is to be understood as intensional or
definitional equality.” Clearly that statement in itself does not force the
narrow meaning of ‘definitional equality’ that was later established (by
me as well as others). If, as Gödel intended, classical propositional logic
is to be applied to equations of higher type, this notion of equality or
identity needs to be decidable, but that certainly leaves latitude for our
equation (pL, pR) = p as well as the corresponding λx.tx = t.12 Is there
a natural notion of intensional equality? Whatever answer this question
deserves, I don’t see any principled grounds for rejecting the equations in
question as intensional equations.

However, there is another problematic ingredient in the reduction of
primitive recursive definition to iteration, namely the uniqueness of the
iteration equations for λx : N.x, and this is a different matter. Equations
obtained from uniqueness of iteration are no more intensional than equa-
tions obtained by mathematical induction; indeed, as we noted, the two
principles are equivalent. So the equation

PR(s, t, .n) = I(s̄, t̄, n)R

must be understood as an extensional equality.
Of course, in the case of our present concern, PRA, which deals only

with numerical terms, the intensional meaning of an equation s = t be-
tween closed terms, namely that s and t compute to the same numeral,
and the extensional meaning, that they denote the same number, agree.

10. Closest to Skolem’s conception of the foundations of arithmetic among
his predecessors seems to be that of Poincaré, especially in [1894], although
Skolem makes no mention of him in this context and Poincaré stops far
short of Skolem’s detailed development of the subject13. But as Skolem
subsequently did, he explicitly founds arithmetic on what he calls ‘rea-
soning by recurrence’, i.e. definition and proof by induction. He doesn’t
state a general principle of definition by recursion and the only definitions
by recursion he actually gives are of the operations of addition and multi-
plication; so it is not clear whether he had in mind definition by iteration
or the more general principle of definition by primitive recursion. Indeed,
given his attitude towards formality, it seems possible, even likely, that he
never explicitly considered the difference.

Interestingly, both Poincaré and Skolem simply take the initial num-
ber, lets say 0,14 and the successor function n 7→ n′ to be given. “The
notions ‘natural number’ and ‘the number n + 1 following the number

12By the Strong Normalization Theorem, definitional equality means having the same nor-
mal form. This theorem is preserved when the conversions of (pL, pR) and λxtx to p and t,
respectively, are admitted.

13“Here I stop this monotonous series of reasonings.” §IV.
14Many of the writers that I mention, including Poincaré and Dedekind, in fact take the

least natural number to be 1. For the sake of simplicity, since nothing of relevance for us is
really at stake in the choice, I will pretend that everyone starts with 0.
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n’ (thus the descriptive function n + 1) as well as the recursive mode of
thought are taken as basic.” [Skolem, 1923]. Poincaré in fact assumes
that they are defined and then observes that “these definitions, whatever
they may be, do not enter into the course of the reasoning.” [Ewald, 1996,
974]. What is striking about this is that both of them were reacting to
the logicism of Russell. But for Russell, following Frege, giving a founda-
tion for arithmetic required defining the natural numbers, and the logical
complexity and in particular the need for the infinitary quantification
that so displeased Skolem and enraged Poincaré resulted precisely from
the attempt to define them (namely as the extensions of concepts).

For Poincaré the principle of reasoning by recursion is a synthetic a
priori truth. This thesis was explicitly a rejection of both the logicism of
Russell (and Couturat) and Hilbert’s axiomatic conception of mathemat-
ics. As far as I know, he makes no explicit mention in his discussions of
philosophy of mathematics of Dedekind’s foundations of arithmetic or of
Frege’s; but in the first decade of the twentieth century (and so prior to
the publication of Principia Mathematica, he devoted a series of papers
[1905; 1906a; 1906b; 1906c; 1909] to an attack on Russell’s logical foun-
dations of arithmetic. Unlike the later rejection by Hilbert and Skolem,
many of his objections, especially in the earlier papers, were based on a
faulty understanding of the new logic which formed the framework for
attempts at logical foundations15 and added nothing useful to the discus-
sion. But that is not so of his critique in general: two of his objections,
in conjunction, are quite telling and indeed were taken over some years
later by Hilbert. The first is his critique of impredicative reasoning and
his recognition that Russell’s foundation of arithmetic, once the Axiom of
Reducibility is introduced (as it must be), involves impredicative defini-
tions. As we have already noted, Hilbert was later to conclude that this
means that the foundation is no longer a logical foundation: quantification
over sets of numbers cannot be eliminated in the way that Russell claimed
in his ‘no-class’ theory. The second objection now comes into play and
it was equally applied by Poincaré as a criticism of Hilbert’s initial foray
[1905] into proof theory: The axioms of Russell’s theory, like Hilbert’s, are
subject to the demand for a consistency proof. But Poincaré recognizes,
as Hilbert at that point did not, a circularity problem: for example, a
proof of syntactic consistency of a system containing mathematical induc-
tion would itself inevitably need to employ mathematical induction. This
is the circle that Hilbert only confronted many years later, e.g. in [1922]
and, as he at least felt, avoided by restricting the proof theory to finitist
methods of reasoning.

11. Poincaré’s critique applies also to Dedekind, although as we noted,
he makes no explicit reference to him. Dedekind’s foundation starts with
the assumption that there is a Dedekind infinite system, i.e. a set D with
an injective function f : D → D and an element e ∈ D that is not in
the range of f . His claim to be giving a logical foundation of arithmetic
was based upon the fact that, in constructing a simply infinite system
from a Dedekind infinite system and developing arithmetic in a simply

15For a discussion of this see [Goldfarb, 1988].
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infinite system, he eliminated the role of inner Anschauung. But, as he
made explicit in [Dedekind, 1890], he believed, with Hilbert and Poincaré,
that a proof that the concept of a Dedekind infinite system is consistent
is required.

We have with Dedekind and Poincaré an interesting contrast and, per-
haps, the polar opposites in foundations of arithmetic. For the latter, the
concept of finite iteration is unanalyzable, given to us in intuition. For
Dedekind it has a logical analysis and he believes, contrary to Poincaré and
Skolem, that this logical analysis is not just a transformation of intuitive
truths into grotesque ‘logical’ constructions, but that, when we reason
by recursion, his logical analysis actually plays out in our minds. In the
Preface to the first edition of “Was sind und was sollen die Zahlen?” he
writes

. . . I feel conscious that many a reader will scarcely recognize in
the shadowy forms which I bring before him his numbers which
all his life long have accompanied him as faithful and familiar
friends; he will feel frightened by the long series of simple infer-
ences corresponding to our step-by-step understanding, by the
matter-of-fact dissection of the chains of reasoning on which the
laws of numbers depend, and will become impatient at being
compelled to follow out proofs for truths which to his supposed
inner intuition (Anschaaung) seem at once evident and certain.
On the contrary in just this possibility of reducing such truths
to others more simple, no matter how long and apparently ar-
tificial the series of inferences, I recognize a convincing proof
that their possession or belief in them is never given by inner
intuition but is always gained only by more or less complete
repetition of the individual inferences. [Dedekind, 1963, 33]

The first sentence of the preface is

In science, nothing capable of proof ought to be accepted with-
out proof.

But presumably Poincaré’s answer would be that an argument based on
impredicative definitions is not a proof.

12. We have mentioned Poincaré’s (well-vindicated) belief that arithmetic
is founded on a synthetic a priori principle, reasoning by recurrence:

This rule, inaccessible to analytic demonstration and to expe-
rience, is the veritable type of a synthetic a priori judgement.
[Poincaré, 1894, §VI], [Ewald, 1996, 979]

He goes on to write

Why then does this judgement force itself upon us with an
irresistible evidence? It is because it is only the affirmation of
the power of the mind which knows itself capable of conceiving
the indefinite repetition of the same act when once this act
is possible. The mind has a direct intuition of this power,
and experience can only give occasion for using it and thereby
becoming conscious of it.
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And he continues two paragraphs later:

Mathematical induction, that is, demonstration by recurrence
. . . imposes itself necessarily because it is only the affirmation
of a property of the mind itself.

Poincaré’s use of the term “intuition” is in general quite broad (see [Poincaré,
1900]) and it is not entirely clear that he intends his usage in connection
with the principle of reasoning by recurrence to coincide with Kant’s. He
certainly understands himself to be defending a general Kantian point of
view: for example

This is what M. Couturat has set forth in the work just cited;
this he says still more explicitly in his Kant jubilee discourse,
so that I heard my neighbor whisper: “I well see this is the
centenary of Kant’s death.

Can we subscribe to this conclusive condemnation? I think
not, . . . [Poincaré, 1905], [Ewald, 1996, 1023]

But it is not clear whether he believed himself to be following Kant in his
use of the term “intuition”, or even how aware he was of Kant’s precise
doctrine. There is indeed a difference, but I think one can argue that, at
the end of the day and in the case of foundations of arithmetic at least,
the difference doesn’t matter.

The most important distinction in the usage of “intuition” is between
Kant’s, according to which intuition is the (non-propositional) intuition
of, and the meaning according to which it is (propositional) intuition
that.16 In the latter sense, intuitive truths historically are those with
which reasoning must begin, when premises have been pushed back until
no further reduction is possible. It is in this sense, for example, that
Leibniz used the term.17 Poincaré clearly uses the term in the latter,
propositional, sense and, on this understanding, given his rejection of
impredicative reasoning, it would seem that he is absolutely correct on his
own terms in calling the principle of reasoning by recurrence an intuitive
truth.

But this is a case of intuition that. However much Kant may have on
occasion used the term “inuitus” or “Anschauung” in the propositional
sense sense of intuition that, it is a fundament of his philosophy to distin-
guish sensibility, the faculty of intuition, from understanding, the faculty
of concepts, and there is no doubt but that, in this context, intuition is
intuition of, the unique immediate mode of our acquaintance with objects:

16It has sometimes been suggested that the difference between these two meanings of “in-
tuition”, Kant’s and the particular sense of ‘intuition that’ that we are discussing, deriving
from “intuitus”, was created by translating Kant’s “Anschauung” into English (and French)
as “intuition”. But what Kant referred to as “Anschauung” in the Critique of Pure Reason,
he sometimes parenthetically called “intuitus” and also referred to exclusively as intuitus in
his earlier Inaugural Dissertation, written in Latin. (See for example §10.) Thus, in using
the term “Anschauung”, he was merely translating the Latin into German: no new meaning
was created by our translation of “Anschauung”; it was already there in his own use of the
term “intuitus.” An interesting question, which I won’t attempt to answer here, is why Kant
adapted the term intuitus in the way he did.

17Thus, the intuitive truths in this sense are the a priori truths (i.e. the ‘first principles’)
in the original sense of that term.
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All objects are represented in sensible intuition. Abstracted from its em-
pirical content the intuition is just space (pure outer intuition) and time
(pure inner intuition). He also speaks of (sensible) intuitions of objects to
refer to their representations in intuition. But an intuition by itself is not
knowledge: The latter requires recognizing that an object represented in
intuition falls under a certain concept or that one concept entails another.
A priori knowledge of the latter sort, that all S are P , may be analytic,
namely when P is contained in S. But, although the truths of mathe-
matics can be known a priori, they are not in general analytic. When
they are not analytic, the connection between subject and predicate is
mediated by construction. The demonstration of the proposition begins
with the ‘construction of the concept’ S. Thus, to take one of Kant’s
examples, to demonstrate that the interior angles of a triangle equal two
right angles, we first construct the concept ‘triangle’. We then construct
some auxiliary lines, and then compute the equality of the sums of two
sets of angles, using the Postulate “All right angles are equal” and the
Common Notions “Equals added to (subtracted from) equals are equal”.
The construction of a concept is according to a rule, which Kant calls the
schema of the concept. In the case of geometric concepts these are or at
least include the rules of construction given by Euclid’s ‘to construct’ pos-
tulates, Postulates 1-3 and 5. Of course, these rules are rules to construct
objects from given objects. For example, given three points A,B,C, we
can construct the three lines joining them and thereby, assuming that
they are non-collinear, construct the triangle ABC. About constructing
the concept Kant writes

For the construction of the concept . . . a non-empirical intu-
ition is required, which consequently, as intuition, is an in-
dividual object, but that must nevertheless, as the construc-
tion of the concept (of a general representation), express in the
representation universal validity for all possible intuitions that
belong under the same concept.

The nature of these ‘non-empirical intuitions’ remains one of the main
issues in the study of Kant’s critical philosophy. When, in the Discipline
of Pure Reason in Dogmatic Use (B 741-2), he actually gives the above
example of the proof that the interior angles of a triangle equal two right
angles, he speaks of constructing an empirical figure or one in imagination,
where in the former case (at least) one abstracts from everything we do
not intend to be part of the figure.

Kant had in fact very little to say specifically about arithmetic, in
the Critique of Pure Reason or elsewhere; and what he did say is subject
to different readings. He identifies number as the schema of magnitude,
including both quantity and geometric magnitude. (In the latter case,
he has in mind the fundamental role of number in measurement, i.e. in
defining ratios in Book V of Euclid’s Elements.18) From his discussion
of it in the Schematism, number seems to be identified with the rule of
representing something in intuition as a finite sequence of objects, and so a
particular number, say 5, is the property of a representation of an object in

18If A,B and C,D are pairs of like magnitudes, then A : B ≤ C : D if and only if for all
positive numbers m and n, mB ≤ nA implies mC ≤ nD.
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intuition as a sequence of 5 things. Presumably, reasoning about numbers
begins with ‘constructing’ one or more in pure inner intuition (time). But
if, in analogy with the case of geometry (see the passage quoted above),
the construction is to be ‘of the concept of a general representation’, then
reasoning would seem to begin with ‘constructions of arbitrary numbers.
The development of this conception might indeed lead to a theory of
number founded on the the principle of reasoning by induction (see [Tait,
1981]);19 and this is what I meant by suggesting that, at the end of the day,
in spite of the difference between Kant’s and Poincaré’s use of “intuition”,
they are essentially in agreement about the foundations of arithmetic. But
it is certainly a stretch to think that Kant anticipated such a development
or even had a clear idea of arithmetic as opposed to algebra.20

13. In name at least, Kant plays a significant role in the ultimate response
by Hilbert and Bernays to Poincaré’s charge of circularity against Hilbert’s
earlier approach to proof theory. The role of finitary reasoning in Hilbert’s
program, as it developed in the 1920’s, was this: In order to be assured
that the axioms, say of first- or second-order number theory, indeed do
define a structure, we must prove them consistent. In non-trivial cases,
such a proof would itself seem to involve non-trivial mathematics. If the
mathematics involved in the consistency proof were itself founded on a
system of axioms, we would be in a circle: Poincaré’s circle. Therefore, a
different conception of mathematics needs to be invoked in founding
the methods used in consistency proofs. These methods must themselves
be immune to the demand for consistency proof.

For this, Hilbert and Bernays went back to an older conception of
mathematics, which is indeed Kantian, according to which mathematics
is construction and computation—a conception which, if one didn’t look
too closely at least, worked quite well in Kant’s time and indeed so long as
ε−δ arguments—i.e. logic—could be successfully hidden behind the use of
infinitesimals. Of course, ε−δ arguments were there early in Greek math-
ematics, in applications of the method of exhaustion. Moreover, Newton
was explicitly aware that the use of infinitesimals was just a shorthand
and had to be backed up with an ε − δ arguments. (Leibniz may not
have thought that the elimination of infinitesimals was necessary, but he
explicitly believed that it was always possible.) However in Kant’s time in
the eighteenth century, the calculus truly reigned. If one looks at Euler’s
books on function theory, Introduction to the Analysis of the Infinite or
the Foundations of Differential Calculus, after a very brief indication of
the justification for using infinitesimals in the Preface, the text looks to
be entirely logic-free calculation.

But of course for Hilbert and Bernays, it wasn’t all of mathematics
that needs to be founded in this way on computation and construction.

19One would have, on Kant’s behalf, to admit, given the construction of a number f(X)
from the arbitrary number X, the iteration fY (X) of this construction along the arbitrary
number Y .

20In his discussion of mathematical reasoning in contrast with philosophical reasoning in
the Discipline of Pure Reason, he speaks of geometric reasoning and algebraic reasoning but
indicates no awareness of the special character of reasoning about the natural numbers.
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And this was the appeal of their conception over the severely restrictive
view of Kronecker, that all of mathematics must be finitist, or the less
restrictive view of Brouwer but whose intuitionism would nevertheless
still reject much of the analysis developed in the nineteenth century. For
Hilbert and Bernays, only the discrete mathematics that is involved in
the consistency proofs needed to be founded on this ‘Kantian’ conception.
Once consistency of the formal axiom system was established, the full
range of methods coded in it would be available.

So in their quest for a foundation of proof theory, Hilbert and Bernays
did indeed turn to Kant, at least in the sense that they returned to a
conception of mathematics that was prevalent in Kant’s times and that
was, indeed, embraced by Kant. But their claims to Kant’s authority go
beyond that: Hilbert wrote in “On the Infinite” [1926]

Kant already taught [. . . ] that mathematics has at its disposal
a content secured independently of all logic and hence can never
be provided with a foundation by means of logic alone;. . . .
Rather, as a condition for the use of logical inferences and the
performance of logical operations, something must already be
given to our faculty of representation, certain extralogical con-
crete objects that are intuitively present as immediate experi-
ence prior to all thought. If logical inference is to be reliable, it
must be possible to survey these objects completely in all their
parts, and the fact that they occur, that they differ from one
another, and that they follow each other, or are concatenated,
is immediately given intuitively, together with the objects, as
something that neither can be reduced to anything else nor re-
quires reduction. This is the basic philosophical position that
I consider requisite for mathematics and, in general, for all sci-
entific thinking, understanding, and communication. And in
mathematics, in particular, what we consider is the concrete
signs themselves, whose shape, according to the conception we
have adopted, is immediately clear and recognizable.

Bernays, in “The philosophy of mathematics and Hilbert’s proof theory”
[Bernays, 1930–31] endorses what he takes to be

Kant’s fundamental idea that mathematical knowledge and
also the successful application of logical inference rests on in-
tuitive knowledge

while distinguishing this from the “particular form that Kant gave to this
idea in his theory of space and time” and he sketches a theory of such
intuitive knowledge in terms of his notion of ‘formal abstraction’ and a
‘formal object’.

But what has been abandoned, in addition to Kant’s particular views
about space and time, is his Schematism, the idea that the mind is
equipped with rules that govern the application of concepts, i.e. our
reasoning about formal objects—our computations or constructions. In
[Hilbert, 1926] we are given only a negative injunction that is essentially
Kronecker’s principle, that the concepts we use should be algorithmic—
so, for example, we must reject infinitary quantification in general. But
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nothing is said about where reasoning about these objects is to begin.
Bernays [1930–31, Part II, §1] argues that definition and proof by re-
cursion are valid on this finitist conception when we take the natural
numbers to be the signs (formal objects) || . . . |; but his argument for this
is in essence simply the usual one, based not on the particular nature of
the individual formal objects (the particular nature of 0 and the successor
operation n 7→ n|), but on the way that they are generated—by iterating
the successor operation finitely often. (See §8 above.) But the concept of
a formal object does not contain this notion of finite iteration. The gap
in Bernays’ argument becomes most evident when he acknowledges our
‘empirical limitations’, the fact that arithmetic concerns numbers such as

101020 which are unlikely to occur any way in physical reality. He writes
“But intuitive abstraction is not constrained by such limits on the possibil-
ity of realization. For the limits are accidental from the formal standpoint.
Formal abstraction finds no earlier place, so to speak, to make a princi-
pled distinction than at the difference between finite and infinite.” But
our projection from the number-signs that can be perceived by us, much
less empirically realized, to those that cannot is mediated by the concept
of finite iteration (“We go on-and-on like that”); and it is this concept
that is the essence of arithmetic. As Poincaré put it: “these definitions,
whatever they may be, do not enter into the course of the reasoning.”

14. Kronecker’s principle, stated above, allows us to introduce a function
only when its definition yields an algorithm for computing its values. But
as we know, the question of whether or not the definition of the function
actually yields such an algorithm is itself in general a nontrivial arithmetic
problem whose solution may depend upon what methods of proof we are
willing to admit. On what basis do we accept that the algorithm works—
that the definition is legitimate? We might agree that what can be proved
should be proved; but obviously proof has to start somewhere. So, unless
we abandon the idea of absolute proof in arithmetic, there must be some
principles of arithmetic reasoning that are immune to the demand that
we prove legitimacy. These must be the principles that follow from the
very conception of the natural numbers and are, as I argued in my paper
“Finitism” [Tait, 1981], precisely the principle of definition and proof by
induction.
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Hilbert, D. [1926]. Über das Unendliche, Mathematische Annalen 95: 161–
90. Translated by Stefan Bauer-Mengelberg in [van Heijenoort, 1967,
367-92].

Hilbert, D. [1932-5]. Gesammelte Abhandlungen, Bedrlin: Springer. 3
volumes.

Hilbert, D. [2011]. David Hilbert’s Lectures on the Foundations of Arith-
metic and Logic 1917-1933, Berlin:Springer. edited by M. Hallett,
W. Ewald, W. Sieg and U. Majer.
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