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Abstract

This paper studies the optimal timing of unemployment insurance subsidies

in a McCall search model. Risk-averse workers sequentially sample random

job opportunities. Our model distinguishes unemployment subsidies from con-

sumption during unemployment by allowing workers to save and borrow freely.

When the insurance agency faces a group of homogeneous workers solving sta-

tionary search problems, the optimal subsidies are independent of unemploy-

ment duration. In contrast, when workers are heterogeneous or when human

capital depreciates during the spell, the optimal subsidy is no longer con-

stant. We explore the main determinants of the shape of the optimal subsidy

schedule, isolating forces for subsidies to optimally rise or fall with duration.
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1. Introduction

When a homogeneous worker faces a stationary search problem, the optimal unem-

ployment insurance subsidy is independent of the worker’s unemployment duration

(Shimer and Werning, 2005). In this paper we examine how relaxing these as-

sumptions affects the optimal timing of unemployment subsidies. In particular, we

model an unemployment insurance agency which sets a schedule of unemployment

subsidies as a function of unemployment duration and faces either: (i) a group of

homogeneous workers whose human capital depreciates during unemployment; or

(ii) a group of heterogeneous workers.

Both scenarios are empirically relevant and represent a significant departure

from previous work on optimal unemployment insurance, which focuses on the

optimal contract for homogeneous workers with stationary search problems (e.g.

Shavell and Weiss, 1979; Hopenhayn and Nicolini, 1997). Our work also differs from

most research on optimal unemployment insurance by distinguishing unemployment

consumption from unemployment subsidies. We allow workers to borrow and save
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using risk free bonds. In Shimer and Werning (2005) we argued that this is crucial

for understanding the design of unemployment insurance policy: a constant subsidy

is optimal, but unemployed workers choose a declining path for their consumption.

Intuitively, with homogeneous workers facing stationary search problems, constant

subsidies are optimal because the tradeoff between insurance and incentives does

not change over time.

This paper shows that the optimal subsidy schedule is not flat when we move

away from the benchmark with identical workers facing stationary search problems.

When workers’ job opportunities deteriorate during the spell, or when the pool of

unemployed workers shifts from one type to another, the tradeoff between insurance

and incentives changes during the spell—and subsidies change with it. We provide a

simple and tractable framework for exploring the main determinants of the optimal

timing of subsidies. In particular, our model is well suited for isolating the impact of

human capital depreciation and heterogeneity on the timing of subsidies, precisely

because subsidies are constant in the version of our model without these features.

Throughout this paper, we focus on workers with constant absolute risk aver-
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sion (CARA) preferences, since the absence of wealth effects leads to particularly

clean results. In the benchmark model with neither human capital depreciation nor

heterogeneity, optimal unemployment insurance subsidies are constant with CARA

preferences and increase slowly with unemployment duration when workers have

constant relative risk aversion (CRRA) preferences. Again, the fact that subsides

are constant in the benchmark model is an important justification for the CARA

specification.

We show that the optimal time-varying path of subsidies depends on the form of

human capital depreciation or heterogeneity, and that there are forces for increasing

or decreasing subsidy schedules. The main lesson we derive is that optimal subsidies

tend to shift over the spell in the direction suggested by simple comparative stat-

ics. For instance, if a worker with constant but lower human capital merits a lower

constant subsidy in a stationary environment, then when human capital depreci-

ates over the spell, subsidies should fall with unemployment duration. Similarly, if

workers are heterogeneous, subsidies fall if the composition of the unemployment

pool shifts towards those workers who would merit a lower constant subsidy if we
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could have, fictitiously, costlessly separated them.

In addition to this general finding, some interesting particular conclusions emerge

from our numerical explorations. We consider two forms of human capital depreci-

ation. In the first, job opportunities arrive at a constant rate but the wage distri-

bution they are drawn from deteriorates in a steady and parallel fashion. This case

captures skill depreciation and is close to that in Ljungqvist and Sargent (1998).

The second form of depreciation has workers sampling from the same distribution of

wages, but the arrival rate of opportunities falls over time. That is, search frictions

rise during the unemployment spell. One interpretation is that workers become

increasingly detached from the labor market as they initially exhaust their nearest

sources for jobs and turn to remoter options. For concreteness, we call the first

form of depreciation skill depreciation and the second form search depreciation.

In our skill depreciation exercises we find decreasing optimal unemployment

insurance subsidies. Constant subsidies would give the long-term unemployed a

higher replacement ratio relative to their potential wages and induce these workers

to become overly picky, or even drop out, as stressed by Ljungqvist and Sargent
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(1998). In our exercises, the declining wage opportunities lead the reservation wage

to decline steadily during unemployment. However, subsidies decline even faster:

the ratio of the unemployment insurance subsidy to the reservation wage is also

decreasing. Interestingly, we also find that skill depreciation creates a force for larger

initial unemployment subsidy levels. Intuitively, the shocks to workers’ permanent

income from remaining unemployed for an additional week, which we seek to insure,

is larger because they are no longer simply the missed current earnings, but also

include the lower future earnings.

In contrast, we find that search depreciation creates a force for rising subsidies.

Intuitively, unfortunate workers who remain unemployed for a long time have lower

arrival rates of offers and, therefore, demand more insurance to deal with their

heightened duration risk. Long-term unemployed workers have lower exit rates from

unemployment, but not because they become choosier. Indeed, in our exercises

we find declining reservation wages during the spell. The reason for the lower

employment rate is that they receive fewer job offers. Since the moral hazard

problem becomes less severe, but risks loom greater, this leads to rising insurance
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subsidies.

In our exercises with heterogeneity we also find forces for increasing or decreas-

ing subsidies. Roughly speaking, subsidies fall if the pool of unemployed shifts

over time towards workers that would have required lower constant subsidies had

the agency faced them in isolation. For example, suppose workers differ in their

value of leisure. Workers who value leisure more have a higher reservation wage

and longer unemployment duration but less need for unemployment insurance. In

this case, subsidies tend to decline during an unemployment spell. Conversely, if

workers differ in the variance of their wage draws, those who face more idiosyncratic

uncertainty have a higher option value of search, a higher reservation wage, longer

unemployment duration, and a greater need for unemployment insurance. Benefits

tend to rise during an unemployment spell.

In both cases, we find that optimal subsidies tend to overshoot their long-run

target. To be concrete, suppose individuals differ in their value of leisure. If types

could be separated, optimal subsidies would be constant for each type and higher

for workers who value leisure less. A common decreasing subsidy schedule partially
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imitates this desirable but unattainable property. The reason is that with any

common subsidy schedule, unemployment duration is longer for workers who have

a higher value of leisure and so the expected present value of per-period subsidies is

lower for such workers when the subsidy schedule is decreasing with unemployment

duration.

Put differently, the model predicts that optimal unemployment subsidies for the

long-term unemployed should be low both because the long-term unemployed mostly

have a high value of leisure and because this provides better a tradeoff between

insurance and incentives for workers in the early stages of an unemployment spell.

The second piece of the argument points to a time consistency problem: if it were

possible to reset the subsidy, the insurance agency would like to raise unemployment

subsidies. By constraining itself from doing that, it is possible to provide better

incentives early in the unemployment spell.

Throughout this paper, we focus on the optimal timing of unemployment sub-

sidies rather than unemployment benefits and taxes. This is because of Ricardian

equivalence. When workers can borrow and lend, many unemployment benefit and
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tax schedules are equivalent in the sense that they do not affect workers’ budget

sets and hence do not affect their behavior. However, the model uniquely deter-

mines the optimal timing of unemployment subsidies, the present value of transfers

from the unemployment insurance agency if the worker remains unemployed for one

additional period.

Our model incorporates elements present in various positive models of unemploy-

ment and the effects of unemployment insurance. Ljungqvist and Sargent (1998)

emphasize human capital depreciation of unemployed workers to explain higher

European unemployment. They model skill loss as stochastic, so their story actu-

ally also combines elements of heterogeneity. In particular, during ‘tranquil’ times

human capital depreciates steadily during unemployment generating unimportant

amounts of heterogeneity among the unemployed. In contrast, during ‘turbulent’

times a fraction of workers lose skills immediately at the moment they are laid off,

generating significant amounts of heterogeneity.1

1 Ljungqvist and Sargent (1998, pg. 548) conclude that “during tranquil times, the depreciation
of skills during spells of unemployment [. . . ] is simply too slow to have much effect on the amount
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Our paper departs in important ways from existing normative analyses that

focuses on homogenous workers facing stationary search problems. In these con-

texts, Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997) showed that

consumption should decline during unemployment. Although these results are of-

ten interpreted as a prescription for declining unemployment subsidies, Werning

(2002) and Shimer and Werning (2005) highlight the importance of distinguish-

ing consumption from unemployment subsidies and suggest a different interpre-

tation: workers collect constant, or near constant, unemployment benefits but

choose to have consumption declining as they draw down their assets, by the usual

permanent-income reasoning, to smooth their consumption. Pavoni (2003) and

Violante and Pavoni (2005) are two papers that study optimal insurance in environ-

ments with human capital depreciation. However, these papers do not focus on the

optimal timing of subsidies because they do not attempt to distinguish consumption

from subsidies, and they focus on the latter by assuming that the unemployment

of long-term unemployed. The primary cause of long-term unemployment in our turbulent times
is the instantaneous loss of skills at layoffs. Our probabilistic specification of this instantaneous
loss creates heterogeneity among laid-off workers having the same past earnings.”
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insurance agency can control consumption.

The rest of the paper is organized into four sections. Section 2 describes the

model. Section 3 characterizes the worker’s search problem for any given unem-

ployment insurance schedule. Section 4 describes optimal unemployment insurance

policy. Section 5 studies homogeneous workers who face skill and search deprecia-

tion during unemployment. Section 6 turns to the case of heterogeneity. Section 7

contains our conclusions.

2. The Model

We adapt the model from Shimer and Werning (2005, 2006). These papers provide

a tractable version of a McCall (1970) search problem enhanced to incorporate risk-

averse workers that can save and borrow freely. Time is continuous and infinite

t ∈ [0,∞). Workers seek to maximize expected discounted utility

E0

∫ ∞

0

e−ρtu(c(t))dt (1)
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where c(t) is consumption. We work with Constant Absolute Risk Aversion (CARA)

utility functions: u(c) = −e−γc with c ∈ R. This assumption allows us to solve the

model in closed form.2

Unemployed workers sample job opportunities at Poisson arrival rates λ(t). Jobs

are distinguished by their wage w drawn from a distribution F (w, t). This introduces

two potential forms of human capital depreciation. We assume jobs last forever.

Budget Constraints. Workers can save and borrow at the market interest r.

Their budget constraints are

ȧ(t) = ra(t) + y(t) − c(t), (2)

where a(t) are assets and y(t) represents current non-interest income: it equals

the unemployment subsidy, B(t), during unemployment and the wage, w(t), during

employment. Initial assets a(0) = a0 are given, although there may be initial lump-

2Shimer and Werning (2005) verify that CARA preferences provide a good benchmark: the
numerical solution with CRRA preferences is very close to the CARA closed form solution.



Section 2: The Model Back 13

sum taxes and transfers, as we discuss further below. In addition workers must

satisfy the No-Ponzi condition limt→∞ e−rta(t) ≥ 0.

Heterogeneity. To capture worker heterogeneity we assume that there are N

types indexed by n = 1, 2, . . . , N and index the primitives of the worker’s search

problem by the type, λn(t), Fn(w, t), un(c), γn, and ρn.

Unemployment Insurance Policy. In this paper we are interested in the optimal

timing of unemployment insurance subsidies, and not in larger, more comprehen-

sive, social welfare reforms. This motivates the policy problem we consider, which

is to select a schedule of unemployment subsidies {B(t)}t≥0 that stipulates the sub-

sidy B(t) received by a worker that remains unemployed at t. Subsidies can be

conditioned only on unemployment duration.3

The optimal unemployment insurance policy problem we study is to find the

best such schedule of subsidies. For the case with heterogeneous workers one must,

in general, specify a welfare criterion. However, to avoid redistributional concerns

3We do not consider, for instance, menus of schedules that may self-select and separate worker
types; likewise we do not consider constraining workers access to savings.
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we allow initial lump-sum transfers between workers types. These transfers are

equivalent to redistributions in terms of initial assets a0. It turns out that, with

CARA preferences, the optimal schedule {B(t)}t≥0 is then uniquely pinned down:

all Pareto efficient allocations can be achieved with the same schedule by varying

the initial lump-sum transfers (initial assets) between workers. Thus, we do not

need to specify any particular welfare criterion and our analysis characterizes all

Pareto efficient schedules.

3. Worker Behavior

In this section we characterize the behavior of a single unemployed type n worker

confronted with any subsidy schedule {B(t)}t≥0.

For any job-acceptance policy, workers solve a standard consumption-savings

subproblem, maximizing utility in equation (1) subject to the budget constraint

equation (2) and the No-Ponzi condition. As is well known, the solution to any
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consumption-savings problem must satisfy the usual intertemporal Euler equation

un
′(c̃t) = e−(ρn−r)s

Et[un
′(c̃t+s)],

where {c̃t} is the optimal stochastic process for consumption. With CARA prefer-

ences un
′(c) = γnun(c), so this implies

un(c̃t) = e−(ρn−r)s
Et[un(c̃t+s)].

It follows that
∫ ∞

0

e−ρns
Et[u(c̃t+s)]ds =

u(c̃t)

r

which conveniently relates lifetime utility to current consumption.

Let Vn(t) and c(t) represent the lifetime utility and consumption of an un-

employed worker, respectively, after duration t; note that both are deterministic
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functions of t. Then applying the argument above implies that

Vn(t) =
un(c(t))

r
. (3)

Unemployed workers wait around for job offers. An unemployed worker accepts

a job offer if the wage is higher than the wage w̄n(t) which makes her indifferent.

Since a worker with current assets a(t) and a job paying w̄n(t) forever consumes

ra(t) + w̄n(t) + (ρn − r)/γnr,

Vn(t) =
un(ra(t) + w̄n(t) + (ρn − r)/γnr)

r
(4)

Time differentiate and use un
′(c) = −γnun(c) to get

V̇n(t) = −γnV (t)(rȧ(t) + ˙̄wn(t)). (5)
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During unemployment, ȧ(t) = ra(t) +B(t) − c(t). Equations (3) and (4) imply:

c(t) = ra(t) + w̄n(t) + (ρn − r)/γnr, (6)

ȧ(t) = B(t) − w̄n(t) − (ρn − r)/γnr. (7)

Substituting equation (7) into equation (5) yields

V̇n(t) = Vn(t)
(

− γn

(

r(B(t) − w̄n(t)) + ˙̄wn(t)
)

+ ρn − r
)

. (8)

With a reservation wage rule, lifetime utility during unemployment is a function

of time and evolves according to

ρnVn(t) = un(c(t)) + V̇n(t)

+ λn(t)

∫ ∞

w̄n(t)

(

un(ra(t) + w + (ρn − r)/γnr)

r
− Vn(t)

)

dFn(w, t)

Use equation (3) to eliminate un(c(t)), equation (8) to eliminate V̇n(t), and divide
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through by Vn(t) as given in equation (4):

˙̄wn(t) = r(w̄n(t) −B(t))

−
λn(t)

γn

∫ ∞

w̄n(t)

(

1 −
un(ra(t) + w + (ρn − r)/γnr)

un(ra(t) + w̄n(t) + (ρn − r)/γnr)

)

dFn(w, t)

Since un(a)/un(b) = −un(a− b), this is equivalent to

˙̄wn(t) = Gn(w̄n(t), t) − rB(t), (9)

where

Gn(w̄, t) ≡ rw̄ −
λn(t)

γn

∫ ∞

w̄

(1 + un(w − w̄)) dFn(w, t). (10)

This is a crucial equation for our analysis. In a stationary environment, with con-

stant subsidies B, a constant arrival rate λ, and a constant wage distribution F (w),

the stationary solution in equation (9) boils down to the reservation wage equations

in Shimer and Werning (2005, 2006).



Section 3: Worker Behavior Back 19

The relations in equations (3)–(9) are necessary conditions for worker optimality.

Indeed, they completely characterize behavior over any finite horizon. Together with

appropriate “transversality” conditions, which pin down the relevant solution to

the ordinary differential equation (9), they are also sufficient for worker optimality.

In particular, given a path for benefits {B(t)}, one solves the ODE (9) for the

reservation wage path w̄(t). Then equation (6)–(7) can be solved for the path of

assets a(t) and consumption c(t) during unemployment. This then characterizes

the entire allocation.

The appropriate solution to equation (9) when primitives F (w, t) and λ(t) and

benefits B(t) are constant is the constant reservation wage with ˙̄w(t) = 0. For the

purposes of this paper, we do not need to characterize “transversality” conditions

in more general cases for two reasons: (i) since our relations completely characterize

behavior over any finite horizon they will suffice for our theoretical results, derived

using dynamic programming arguments (for example, Proposition 1 below); (ii) our

numerical work truncates, by necessity, the economy by assuming that primitives

and benefit policy are constant for t ≥ T , after some long duration T .
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Relation between w̄n(t) and B(t). We shall use the characterization of the

relationship in equation (9) between the reservation wage path {w̄n(t)} and subsidy

schedule {B(t)} extensively. It is useful to understand what this relation does and

does not imply.

Suppose we are in a stationary environment so that Gn(w̄, t) = Gn(w̄) is inde-

pendent of time t. Then, at a steady state, where ˙̄wn = 0, we have B = Gn(w̄n)/r.

Since Gn is increasing in w̄n it follows that there is a positive relation between

subsidies and the reservation wage. This is intuitive since a higher subsidy makes

the option of waiting for higher wage draws more attractive without making em-

ployment any more desirable. As a result, the worker becomes more picky about

what jobs to accept.

However, the steady-state relationship does not imply that along any dynamic

path w̄n(t) and B(t) will rise and fall in tandem. In equation (9) subsidies B(t)

determine both w̄n(t) and ˙̄wn(t). Informally, if the reservation wage is rising sharply,

it indicates that the unemployed worker’s lifetime utility is doing the same; things

are better in the near future, so current subsidies must be temporarily low.
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This implies that there is no simple relation between the paths of w̄n(t) and

B(t). For instance, suppose w̄n(t) is monotonically increasing; then, it may seem

reasonable to expect subsidies B(t) to also be increasing. This will be the case as

long as w̄n(t) does not accelerate too much, so that ˙̄wn(t) does not rise too abruptly;

otherwise, equation (19) implies that subsidies will decrease over a range where ˙̄wn

rises quickly. Thus, a monotonic w̄n(t) does not imply monotonic subsidies B(t).

The converse, however, is true: if the subsidy schedule B(t) is monotonic then w̄n(t)

is monotonic.

This discussion emphasizes the dynamic nature of worker’s search problem. The

reservation wage is not only affected by the current subsidy, but also by future

subsidies. As a result, current subsidies may generally provide a poor measure of

the current subsidy to unemployment implicit in the entire schedule.4 Perhaps a

better measure is simply to observe the effect on the actual reservation wage, which

4 To take an extreme example, suppose that subsidies are negative during the first week of
unemployment but they then jump up to a positive level, much higher than any potential wage.
Few would describe the situation faced by the worker in the first period as providing a tax on
unemployment that encourages finding a job.
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is forward looking and incorporates the dynamics of future subsidies.

4. Optimal Policy

We imagine an unemployment insurance agency that wishes to maximize a weighted

average of unemployed workers’ lifetime utility subject to the constraint that it must

break even on average. If workers are heterogeneous, unemployment insurance

redistributes income across individuals. To focus attention on insurance, we allow

for the possibility of lump-sum transfers between groups of workers at time zero.

Given the structure of preferences in equation (4), this implies the unemployment

insurance agency selects a single subsidy schedule B(t) to maximize the sum of the

reservation wages net of the discounted cost the program.

N
∑

n=1

w̄n(0)µn(0) − rC,
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where w̄n(0) is the time-zero reservation wage of type n workers, µn(0) is the mea-

sure of type n workers in the unemployed population at time 0, and C is the expected

cost of the unemployment subsidy system:

C ≡

∫ ∞

0

e−rtB(t)
N

∑

n=1

µn(t)dt.

where

µn(t) ≡ exp

(

−

∫ t

0

Hn(w̄n(s), s)ds

)

(11)

is the probability of being unemployed at time t and

Hn(w̄n, s) ≡ λn(s)(1 − Fn(w̄n, s)) (12)

is the hazard rate of accepting a job.

The agency recognizes that for any benefit schedule B(t), the reservation wage

of type n workers solves equation (9) and the transversality condition, while the
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measure of unemployed type n workers decreases as these workers find jobs according

to equation (11). The solution to this problem maximizes total surplus, which can

then be split, using lump-sum transfers, in any way.

Use equation (9) to eliminate B(t) from the objective function

N
∑

n=1

w̄n(0)µn(0) − rC =
N

∑

n=1

w̄n(0)µn(0)

−

∫ ∞

0

e−rt

N
∑

n=1

(

˙̄wn(t) −Gn(w̄n(t), t)
)

µn(t)dt (13)

Use integration-by-parts to eliminate the term of the integral involving ˙̄w(t):

∫ ∞

0

e−rt ˙̄wn(t)µn(t)dt = −w̄n(0)µn(0) −

∫ ∞

0

e−rtw̄n(t)(µ̇n(t) − rµn(t))dt

= −w̄n(0)µn(0) +

∫ ∞

0

e−rtw̄n(t)
(

r +Hn(w̄n(t), t)
)

µn(t)dt,
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where the second line differentiates equation (11) to get

µ̇n(t) = −µn(t)Hn(w̄n(t), t). (14)

Substitute this back equation (13) to simplify the objective function w̄(0) − rC.

The planner must choose a sequence of reservation wages for each type to maximize

∫ ∞

0

e−rt

N
∑

n=1

Jn(w̄n(t), t)µn(t)dt, (15)

where

Jn(w̄n(t), t) ≡ w̄n(t)
(

r +Hn(w̄n(t), t)
)

−Gn(w̄n(t), t). (16)

Since there is a single unemployment subsidy schedule, the evolution of the reser-

vation wages are linked by equation (9):

∆̇n(t) = Gn(w̄1(t) + ∆n(t), t) −G1(w̄1(t), t), (17)
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where ∆n(t) ≡ w̄n(t) − w̄1(t) is the difference between the reservation wage of

type n and type 1 workers. Finally, the share of each type evolves according to

equation (14).5

We can view this as an optimal control problem where the planner chooses a

sequence for the reservation wage of type 1 workers and an initial value for other

types’ reservation wages. This then determines the evolution of the differences

∆n(t), n = 2, . . . , N and the unemployment rates µn(t), n = 1, 2, . . . , N . Of course,

the planner also faces a set transversality conditions.

Appendix A discusses our solution method for the case of N = 2, when this

reduces to an optimal control problem with three state variables and one control

variable. We show how to eliminate one of the state variables and apply Pontryagin’s

Maximum Principle to find the solution.6

5 Formally, we also require that the the implied worker behavior be optimal. As discussed in
Section 3 this requires some “transversality” conditions to be met, which we fortunately do not
need to specify for our purposes.

6 An alternative is to formulate the dynamic programming Hamilton-Jacobi-Bellman partial-
differential equation of the problem.
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5. Human Capital Depreciation

In this section we consider the case of a single worker type that faces a non-stationary

search problem, with λ or F are changing over time. The optimal unemployment

insurance problem simplifies considerably:

max
{w̄}

∫ ∞

0

e−rtJ(w̄(t), t)µ(t)dt (18)

subject to µ̇(t) = −µ(t)H(w̄(t), t),

where J is defined in equation (16) and µ(0) = 1 is given.7

5.1. Constant and Non-Constant Benefits

An interesting property of optimal subsidies that follows from our reformulation is

that the schedule is entirely forward looking: only future values of λ and F are

7 Formally, we also require that the implied worker behavior be optimal—which requires
“transversality” conditions, as discussed in Section 3.
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relevant.8 The next result then follows immediately from this observation.9

Proposition 1 (Shimer-Werning, 2005) With a single worker type facing a sta-

tionary problem λ(t) = λ and F (w, t) = F (w) for all t ≥ 0 the optimal subsidy

schedule is flat: B(t) = B̄ for some B̄ > 0.

To tackle the general problem we write it recursively. Let Φ(µ, t) be the value

function for the problem in equation (18). This value function solves the Bellman

equation

rΦ(µ, t) = max
w̄

(

J(w̄, t)µ− Φµ(µ, t)H(w̄, t)µ+ Φt(µ, t)
)

.

8 Note that this is true even when we consider explicitly any “transversality” condition required
to ensure worker optimality.

9 This result is proven in Shimer and Werning (2005) in a discrete time version of the model
using a different argument. That paper shows that the planner does not want to distort savings.
In contrast, here we have simply assumed that the policy problem does not consider introducing
such distortions.
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Note that the value function is homogeneous of degree one in µ and so we can define

φ(t) ≡ Φ(µ, t)/µ solving

rφ(t) = max
w̄

(

J(w̄, t) − φ(t)H(w̄, t) + φ̇(t)
)

Equivalently, we have an ordinary differential equation for φ(t):

φ̇(t) = M(φ(t), t) (19)

where the law of motion function M is given by

M(φ, t) ≡ min
w̄

(

(r +H(w̄, t))φ− J(w̄, t)
)

. (20)

Note that the envelope condition implies that the law of motion function M(φ, t) is

increasing in φ. Moreover, since the cross-partial derivative of w̄ and φ is negative

in the objective function, it follows that the optimal w̄ is increasing in φ.
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To characterize optimal unemployment insurance, we simply need to solve this

ordinary differential equation (19), ensuring that the transversality condition holds.

When primitives settle down in the long-run one can solve backwards from the

long-run steady-state. The optimal reservation wage solves the right hand side of

equation (20) at each date. And the subsidies that implement this reservation wage

are found by inverting equation (9) for B(t).

It is instructive to verify how the stationary solution in Proposition 1 solves the

ODE system in equation (19). Since primitives are constant the law of motion is

independent of time: M(ψ, t) = M(ψ). Since M(ψ) is increasing there exists a

unique steady-state value ψ∗ satisfying 0 = M(ψ∗). Then note that the stationary

solution ψ(t) = ψ∗ solves the ODE system and satisfies the transversality conditions.

The reservation wage and subsidies implicit in this solution are constant, as in

Proposition 1.

A simple non-stationary case, illustrated in Figure 1, is when primitives are

constant up to some time T , at which point they switch forever after. That is, we

have λ(t) = λ0 and F (w, t) = F0(w) for all t < T and λ(t) = λ1 and F (w, t) = F1(w)
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for all t ≥ T . This implies that φ evolves according to φ̇ = M0(ψ) for t < T , and

then φ̇ = M1(ψ) for t ≥ T .

We know that the optimal solution must reach the steady-state point φ∗1 of M1

at t = T . Thus, the initial value φ(0) must start somewhere to the right of point

φ∗0 and increase—accelerating with the explosive dynamics of M0—until it reaches

φ∗1 exactly at time t = T , at which point it remains constant there. The larger is T

the closer φ(0) must be to φ∗0; indeed, as T → ∞ then φ(0) limits to φ∗0.

The implications for subsidies B(t) are immediate translations of those derived

for φ(t). Let B∗
i denote the optimal constant subsidies for the stationary problem

with λi and Fi(w). Then subsidies B(t) converge to the optimal constant subsidy

B∗
1 in the long run as t → ∞ and they start somewhere near B∗

0 . This result is

generalized in the next proposition, where we imagine time extending indefinitely

on both sides.

Proposition 2 Suppose that we have λ(t) and F (w, t) defined for all t ∈ R with well

defined limits limt→−∞ λ(t) = λ0 and limt→−∞ F (w, t) = F0(w) and limt→∞ λ(t) =

λ1 and limt→∞ F (w, t) = F1(w). Then B(t) is such that limt→−∞B(t) = B∗
0 and
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limt→∞B(t) = B∗
1 , where B∗

i is defined as the optimal constant subsidy levels for

the economies with constant primitives at λi and Fi(w).

medskipAn Aside: Q-Theory Analogy. Our model can be mapped into the

adjustment cost model of investment with constant returns to scale which Hayashi

(1982) used to related investment to “Tobin’s Q”.

In the case of certainty the investment model can be formulated as maximizing

discounted profits
∫ ∞

0

π(i(t), t)K(t)dt

subject to K̇(t) = i(t)K(t), where i(t) = I(t)/K(t) is the investment rate. There

are constant returns to scale in the net profit function, which equals revenues net of

investment costs, and constant returns in investment. No assumption of concavity

is required. One can show that the value function is homogeneous of degree one,

V (K) = qK, so that the marginal and average value of capital, q, often referred to

as “Tobin’s Q”, solves

rq = max
i

{π(i, t) + iq} + q̇.
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The important result for this theory is that the investment rate is a function of q;

the entire future is captured by this forward looking variable.

This model maps directly into our framework, with µ playing the role of K,

φ playing the role of q, w̄ playing the role of investment i, and π given by w̄(r +

H(w̄, t)) −G(w̄, t).

5.2. Numerical Explorations

This section describes the outcome of two numerical experiments. We first consider

skill depreciation, then search depreciation. The purpose of these explorations is

not to obtain definite quantitative conclusions. Our goal is to understand the qual-

itative workings of the model and perhaps get a tentative feel for their quantitative

importance.

Our baseline parameterization is close to that in Shimer and Werning (2005).

We set γ = 1, r = ρ = .001 and λ = 1 and interpret a period to be a week, with

an implied annual interest rate of 5.3%. The distribution is assumed to be Fréchet:
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F (w) = exp(−w−θ). We set θ = 103.5.

This baseline calibration has wages concentrated near 1 and delivers an expected

duration of around 10 weeks, which is in line with unemployment durations in the

United States. The optimal constant subsidy in this economy turns out to be very

low, around 0.01. The desire to insure is small enough, while the moral-hazard

problem severe enough, that low subsidies result at the optimum. As discussed by

Shimer and Werning (2005), liquidity, in contrast, is important: workers are able to

smooth their shocks, spreading their impact over time, by dissaving or borrowing.

• Skill Depreciation

In this first exercise we keep λ(t) = 1 constant and instead assume that the distri-

bution of wages shifts downwards in a parallel fashion. Our specification is inspired

by the depreciation process used in Ljungqvist and Sargent (1998). Specifically we
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let

F (w, t) = F (w − exp(−δF · t)) t < T

F (w, t) = F (w − exp(−δF · T )) t ≥ T

where F (w) is the baseline Fréchet distribution defined above. Thus, at t = 0

the wage distribution is simply a rightward shift of the baseline distribution. Over

time the distribution shifts continuously to the left, converging back to the baseline

distribution. We set the speed of convergence to δF = 0.01.

Our approach is to solve the ODE system in equation (19). We first solve the

system’s steady state for t ≥ T . We then solve the ODE backwards up to t =

0. This gives us φ(t). We then compute w̄(t) and solve equation (9) for B(t) =
1
r
(G(w̄(t), t) − ˙̄w(t)).10

10 The numerical details are as followed. We employed Matlab’s ode45 routine to solve the
ODE, along with the fminbnd routine for the required optimization. We computed φ(t) and then
backed out the implied reservation wage w̄(t). We then fit a piecewise cubic shape-preserving spline
through w̄(t) (using Matlab’s interp1 routine with the pchip option) to obtain the derivative ˙̄w(t)
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Figure 2 shows the outcome of this exercise for the optimal schedule of subsi-

dies. The schedule is decreasing with unemployment duration, starting at subsidies

just above 0.30 and falling to the steady-state value of 0.01—equal to the value of

subsidies at the baseline. Figure 4 shows that these subsidies induce the reserva-

tion wage to fall during the unemployment spell. The rate at which the reservation

wage drops, however, does not keep up with the rate of decline in the distribution

of wages. This is shown in Figure 5 where we plot the acceptance probability of

job opportunities, 1 − F (w̄(t)). The optimal schedule induces workers to become

pickier: the probability of accepting a job offer falls from around 80% to 10%. Note

that in this case, since λ(t) = 1 the acceptance probability equals the hazard rate of

out unemployment, λ(t)(1 − F (w̄(t))). Benefits, however, all even faster: Figure 3

plots the ratio B(t)/w̄(t), it is decreasing.

As Figure 5 illustrates the hazard rate out of unemployment is high, especially

at the beginning of the spell where depreciation is greatest. Workers become more

willing to accept bad matches to prevent their skills from depreciating. We com-

from it.
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puted the solution for θ = 15 which increases the dispersion of wages making search

more attractive. Figure 6 plots optimal subsidies for this case. Once again we see

that subsidies are decreasing. Figure 7 shows that the hazard rate out of unem-

ployment is much lower now, and close to the hazard at the benchmark without

depreciation.

• Search Depreciation

In this second exercise we assume that the wage distribution is fixed at the base-

line’s Fréchet specification, but that the arrival rate falls continuously over time.

Specifically, we let λ(t) = λ̄0 exp(−δλ · t) + λ̄1 for t ≤ T and constant thereafter; we

set δλ = 0.01, λ̄0 = .9 and λ̄1 = .1, so that the arrival rate starts at our benchmark

of one offer a week and falls continuously towards one offer every 10 weeks.

Figure 8 shows the results of this exercise for optimal subsidies. We find an

increasing schedule, which is in line with Proposition 2, since a lower arrival rate

increases the duration risk of unemployment prompting higher subsidies. The level

of subsidies is quite low in this case throughout, so the increase in subsidies is
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not very spectacular. Figure 9 shows that even though subsidies rise the accep-

tance probability (blue line) rises with duration as job opportunities become rarer.

Workers become less picky and lower their reservation wages. However, the result-

ing hazard rate out of unemployment λ(t)(1 − F (w̄(t))), also shown (green line),

comes out to be slightly declining.

We have found that the limiting long-run subsidy is quite sensitive to the long-

run value λ1 for low enough values, and become quite large for λ1 near zero. To

illustrate this Figure 10 shows optimal subsidies when λ1 = .01. Note that subsidies

rise only moderately for about 6 years—similar to what we found in Figure 8 for

higher λ1. However, when λ(t) gets very close to zero, subsidies rise sharply and

asymptote to a high level, around 0.73. Of course, with these parameters only

an insignificant fraction of workers make it this far into long-term unemployment.

Nevertheless, this illustrates that the magnitude of the increase in subsidies depends

on parameters of the problem.

As explained in Section 3, when the reservation wage accelerates there may be

regions where subsidies are decreasing. We found that this occurs over an interme-
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diate region of time for the extreme parameter value of λ1 = 0. Figure 12 shows

that subsidies are decreasing over an intermediate region. Indeed, they become

slightly negative there because they were low and close to zero initially. The non-

monotonicity occurs after around 6 years, a duration that an insignificant fraction

of workers will reach. However, this illustrates the point we made earlier: that

subsidies may be a poor measure of the subsidy to unemployment since workers are

forward looking and incorporates the dynamics of future subsidies.

6. Heterogeneity

When workers are heterogeneous, for any given common subsidy schedule, the pool

of unemployed worker types typically varies over time. That is, worker types that

tend to have lower hazard rates become more prevalent as time passes. This section

focuses on how this affects the optimal subsidy schedule. We study the case with

two types of workers indexed by n = 1, 2. To bring out the role of heterogeneity we

suppose that for each worker type the arrival rate of offers λn and the distribution
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of wages Fn does not vary with time t.

6.1. Numerical Explorations

As with the depreciation case, the purpose of our explorations is not to obtain

definite quantitative conclusions but to understand the qualitative workings of the

model.

In all our exercises we start with equal population fractions for both worker

types µ1 = µ2 = 1/2. We begin with heterogeneity in the distribution functions

of potential wages. All the other parameters are set at our baseline, as described

in Section 5. If we could costlessly separate workers, then it would be optimal to

give worker n some constant subsidies equal to B̄n. The values of B̄n will be useful

references in the exercises below.

Heterogeneity in θ. In this experiment we set θ1 = 50 and θ2 = 100, in our

Fréchet specification: Fn(w) = exp(−w−θn). Workers of type 1 tend to have a lower

hazard rate out of unemployment because they sample from a distribution with
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thicker tails and have a higher option value of waiting for offers. As a consequence,

their fractions rises in the unemployment pool over time. The implied constant

optimal subsidies are small for both workers, but slightly higher for type-1 workers:

B̄1 = 0.024 and B̄2 = 0.012.

Figure 14 shows the optimal subsidy schedule for this case. Overall subsidies

start around B̄2 rise with duration and limit to B̄1, as type-1 workers prevail in

the unemployment pool. Indeed, subsidies rise and initially overshoot B̄1 and then

come down back towards it. Figure 15 shows the evolution of the fraction of type

1 workers µ1(t)/(µ1(t) + µ2(t)) alongside the relative hazard rate H1(t)/H2(t). In

this example the relative hazard rate is quite constant, hoovering around 1/2, and

the fraction of type-1 workers rises steadily towards 1; the hazard rates are also

quite constant and around H1 ≈ .48 and H2 ≈ .95.

In this example, given the chosen parameters, the overall subsidy levels are

quite low. As a consequence, so is the rise in subsidies. This need not be the

case: Figure 16 and 17 are comparable to Figure 14 and 15 but using θ = 10 and

θ = 20. The associated constant subsidy levels are now B̄1 = 0.267 and B̄2 = 0.073.
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Figure 16 shows that the rise in subsidies is more significant now as subsidies rise

from a value near B̄1 and asymptote to B̄2.

In the previous two examples workers with lower hazard rates were also those

workers that merited a higher constant unemployment subsidy, in the sense that

B̄1 > B̄2. As a consequence, when policy cannot separate workers subsidies tend to

rise over time. Our next example inverts this logic.

Parallel Shifts. We now assume that workers of type 1 sample from a distribution

that is shifted to the left in a parallel fashion, so that F1(w) = F2(w + ω).

One interpretation for the source of heterogeneity is that the wage workers sam-

pled is to be interpreted broadly as a wage net of work effort cost on the job. Then

workers of type 1 can be interpreted as “lazy” relative to type 2, in that they have

a higher cost of working.

Another interpretation is that type 1 workers have suffered a discrete loss in

human capital, lowering their productivity on the job by a constant amount. This is

similar to the model in Ljungqvist and Sargent (1998), where a fraction of workers

suffer an immediate loss in skills upon being laid off, the rest are spared. This
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introduces a form of heterogeneity that is very similar to that explored here. Their

model also includes a steady rate of depreciation during the unemployment spell,

that can be roughly captured by our previous analysis.11 Thus, we can captures

both elements, heterogeneity and depreciation, in Ljungqvist and Sargent’s (1998)

specification.

We solve the model with F2 set to the Fréchet specification with θ = 10 and

ω = 1/2. These choices imply B̄1 = 0.185 and B̄2 = 0.242. The results are shown

in Figure 18 and Figure 19. Benefits fall from around 0.225, not too far from B̄2,

and asymptote to the lower value of B̄1.

In all these examples subsidies start somewhere between B̄2 and B̄1 and even-

tually converge to B̄1. This is intuitive since workers of type 1 prevail in the

unemployment pool in the long-run. Note, however, that in all these examples sub-

sidies actually overshoot the B2. Note that such overshooting never occurred in our

explorations with homogeneous workers suffering from human capital depreciation.

11 One difference is that they model the steady depreciation during the spell as stochastic instead
of deterministic, partly for numerical reasons.
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Our intuition for this finding is as follows. The planner would wish to separate

workers by types and offer them different unemployment subsidy levels, i.e. B̄1

and B̄2. Although he cannot do so there is something that imperfectly mimics

separation. To see this, note that when a worker rejects a wage to continue searching

and collecting subsidies, the relevant per-period subsidy in her calculation is an

average of the unemployment subsidies over the span of time until the next suitable

job is found. Since workers of type 1 have lower hazard rates out of unemployment,

this subsidy reflects a longer average of subsidies.

It follows that, all things the same, a downward sloping subsidy schedule implies

a lower effective subsidy for type 1 workers than for type 2 workers; the reverse is

true of an increasing schedule. Thus, titling the schedule helps imitate desired

discriminatory policy. It is this titling that is responsible for the overshooting:

subsidies rise or fall past the desired ex-post long-run level in order to provide

better incentives ex ante.

Note that, by the same logic, this phenomena is symptomatic of a time-consistency

issue: ex post the overshot subsidies are not optimal, they were provided to af-
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fect incentives ex ante. Formally, as we discussed briefly above (and in detail in

Appendix A) the planning problem can be formulated with a two-dimensional state

vector using the fraction of type 1 workers µ1(t)/(µ1(t) + µ2(t)) and the promised

difference in reservation wages w̄2(t)− w̄1(t). However, only the first is a physically

unalterable state variable, the second is, what is sometimes termed, a ‘pseudo’ state

variable, that is is introduced to render the commitment planning problem recursive

(i.e. to keep track of all “promise-keeping” constraints). In general, the promised

differences in reservation wages will be inefficient ex post: the planner would wish

to reoptimize over w̄2(t) − w̄1(t), ignoring the inherited promised value.

Recall that, in contrast, when workers are homogeneous the planning problem

can be reduced so that at any point in time it is entirely forward-looking. There are

no state variables except for calendar time (and none whatsoever when the problem

is stationary). It does not, therefore, feature a time inconsistency issue.
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7. Conclusions

This paper provided a tractable framework for studying the optimal timing of un-

employment subsidies over the unemployment spell. Subsidies should be constant

when workers are homogeneous and face a stationary search problem. In contrast,

human capital depreciation and worker heterogeneity can lead to increasing or de-

creasing schedules, depending on the precise nature of the depreciation or hetero-

geneity; we provided some useful dichotomies. A simple heuristic is suggested by

our finding that optimal subsidies generally shift in the direction suggested by a

comparative-static analysis.
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Appendix

A. Optimal Control with Heterogeneous Agents

In this appendix we describe in detail the optimal control problem with two worker

types, its associated Hamiltonian, the resulting optimality conditions, and our nu-

merical strategy for solving it. We being with some definitions.

Definitions. Let the difference in reservation wages be ∆(t) ≡ w̄2(t)−w̄1(t). Then

the law of motion for this difference is

∆̇(t) = G2(w̄1 + ∆) −G1(w̄1), (21)

Define the fraction of type 1 workers as

α(t) ≡
µ1(t)

µ1(t) + µ2(t)
,
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with the law of motion

α̇(t) = α(t)
(

1 − α(t)
)

(

H2

(

w̄1(t) + ∆(t)
)

−H1

(

w̄1(t)
)

)

. (22)

The objective function is then

∫ ∞

0

e−rt
(

α(t)J1

(

w̄1(t)
)

+
(

1 − α(t)
)

J2

(

w̄1(t) + ∆(t)
)

)

µ(t)dt, (23)

where Jn(w̄) ≡ w̄n

(

r + Hn(w̄n)
)

− Gn(w̄n). Thus, the planning problem is to

maximizing equation (23) over w̄1(t), ∆(t), α(t) and µ(t) subject to equation (21),

equation (22) and

µ̇(t) = −µ(t)(α(t)H1(w̄1(t)) + (1 − α(t))H2(w̄1(t) + ∆(t))).

It is useful to think of w̄1(t) as the control and ∆(t), α(t) and µ(t) as state variables.

Truncated Control Version. In practice, we solve a version of the problem where
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policy is restricted to offering constant subsidies for t ≥ T , for T large. Let Ψ(α,∆)

be the continuation value at T with a constant subsidy that implements a difference

in reservation wages of ∆ and with the fraction of type 1 workers equal to α. The

problem can be written as

∫ T

0

e−rtJ̄(α(t), w̄1(t),∆(t), t)µ(t)dt+ e−rT Ψ(α(T ),∆(T ), T )µ(T ). (24)

with α(0) = α0 and µ(0) = µ0 are given, where

J̄(α, w̄1,∆, t) ≡ αJ1

(

w̄1, t
)

+
(

1 − α
)

J2

(

w̄1 + ∆, t
)

Hamiltonian. The Hamiltonian for this problem is (omitting the arguments in

functions to save on notation)

H ≡ J̄µ+ νµM
µµ+ ναM

α + ν∆M
∆
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where

Mµ(α, w̄1,∆, t) ≡ −(αH1(w̄1) + (1 − α)H2(w̄1 + ∆))

Mα(α, w̄1,∆, t) ≡ α(1 − α)
(

H2(w̄1 + ∆) −H1(w̄1

))

M∆(w̄1,∆, t) ≡ G2(w̄1 + ∆, t) −G1(w̄1, t)

The functions Mα and M∆ are the laws of motion for α and ∆ derived above.

Note that µ ·Mµ is the law of motion for µ and that Mµ itself can be thought as a

“normalized” law of motion.

Maximum Principle. The reservation wage solves

max
w̄1

H (25)
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And the co-states evolve according to

ν̇µ = rνµ − (J̄ + νµM
µ) (26)

ν̇∆ = rν∆µ−H∆ (27)

ν̇α = rναµ−Hα (28)

Equations (25)–(28), together with the law of motion equations for µ, α and ∆,

comprise an ODE system for the 6-dimensional vector (µ, α,∆, νµ, να, ν∆).

Normalized System. It proves convenient to work with the normalized Hamilto-

nian and co-states:

H̃ ≡ J̄ + kµM
µ + kαM

α + k∆M
∆

kµ ≡ νµ kα ≡
να

µ
k∆ ≡

ν∆
µ

The benefit of this transformation is that we can reduce the 6-dimensional problem

to a 5-dimensional one by dropping µ.
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Since µ can be factored out, the optimality condition (25) is equivalent to

max H̃ (29)

and that using (26)–(28) we can obtain the laws of motion for the transformed

co-states becomes

k̇µ = rkµ − (J̄ + kµM
µ) (30)

k̇∆ = k∆(r −Mµ) − H̃∆ (31)

k̇α = kα(r −Mµ) − H̃α (32)

Equations (29)–(32), together with the law of motion equations for α and ∆, com-

prise an ODE system for the 5-dimensional vector (α,∆, νµ, να, ν∆).

Terminal Conditions. Since ∆(0) is a free variable its costate should be initially

zero

k∆(0) = 0 (33)
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A t = T we must meet the terminal conditions that

kµ(T ) = Ψ(α(T ),∆(T ), T ) (34)

k∆(T ) = Ψ∆(α(T ),∆(T ), T ) (35)

kα(T ) = Ψα(α(T ),∆(T ), T ) (36)

Algorithm. The idea is to start at T and work backwards. The control variable

is w̄1 and the states are µ, ∆ and α; along with their co-states kµ, k∆ and kα. As

before, µ plays no role in the dynamics and it can be ignored.

One way to solve this is to guess the values of α(T ) and ∆(T ). One can then

obtain the values of the co-states at T using equations (34)–(36). This is then

sufficient to solve the system backwards for w̄1, α, ∆, kµ, k∆, kα. One can then

compute the implied value of k∆(0) and α(0). One can then search for the initial

guess α(T ) and ∆(T ) that has k∆(0) = 0 and α(0) = α0, that is to satisfy the

optimality condition equation (33) and the given initial condition for α.

Useful Expressions. We now collect some expressions that are needed. First,
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some derivatives of the Hamiltonian function:

Hα = J1 − J2 − (H1 −H2) ((1 − 2α) kα + kµ)

H∆ = (1 − α) (J ′
2 − kµH

′
2) + k∆G

′
2 + kαα(1 − α)H ′

2

We also need the derivatives:

J ′(w̄) = r +H(w̄) + w̄H ′(w̄) −G′(w̄)

G′(w̄) = r − λ(t)

∫ ∞

w̄

un(w − w̄)dF (w, t) = r + γ(G(w̄) − rw̄) + λ(1 − F (w̄))

We define the value from a steady state policy as

Ψ(α,∆) ≡ max
w̄1

(αS1(w̄1) + (1 − α)S2(w̄1 + ∆))

subject to, 0 = M∆(w̄1,∆), where we define for convenience the steady state surplus
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function:

Sn(w̄) ≡ w̄ −
Gn(w̄)

r +Hn(w̄)
.

It follows immediately that Ψ(·,∆) is always differentiable and

Ψα(α,∆) = S1(w̄1) − S2(w̄1 + ∆)

As for the other partial derivative, note that the constraint 0 = M∆(w̄1,∆) can

be solved for ∆ as a function of w̄1, which we write as ∆∗(w̄1). If this function is

invertible then the maximization is trivial. In general this function may be non-

monotone, so that the above maximization is nontrivial. This may also introduce

kinks in the value function Ψ(α, ·). However, at points of differentiability we must
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have

Ψ∆(α,∆) = (αS′
1(w̄1) + (1 − α)S′

2(w̄1 + ∆))
1

∆′(w̄1)
+ (1 − α)S′

2(w̄1 + ∆)

= (αS′
1(w̄1) + (1 − α)S′

2(w̄1 + ∆))
−M∆

∆

M∆
w̄1

+ (1 − α)S′
2(w̄1 + ∆).
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Figure 2: Optimal Benefits with Skill
Depreciation.
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Figure 3: Ratio of subsidies to the
reservation wage: B(t)/w̄(t).
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Figure 4: Reservation Wage.
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Figure 5: Acceptance Probability.
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Figure 6: Optimal Benefits with θ =
15.
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Figure 7: Hazard rate.



Figures Back 63

0 200 400 600 800 1000
0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

0.021

time (weeks)

B
(t

)

Optimal Benefits

Figure 8: Optimal Benefits with Search
Depreciation.
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Figure 9: Acceptance Probability and
Hazard Rate with Search Depreciation.
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Figure 10: Optimal Benefits with
Search Depreciation when λ1 = .01.
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Figure 11: Acceptance Probability and
Hazard Rates when λ1 = .01.
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Figure 12: Optimal Benefits with
Search Depreciation when λ1 = .01.
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Figure 13: Acceptance Probability and
Hazard Rates when λ1 = .01.
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Figure 14: Optimal Benefits with Het-
erogeneity in θ; θ1 = 50, θ1 = 100.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (weeks)

(t
yp

e 
1)

/(
ty

pe
 2

)

Figure 15: Fraction of type-1 workers
and relative hazard rates.
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Figure 16: Optimal Benefits with Het-
erogeneity in θ; θ1 = 50, θ1 = 100.
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Figure 17: Fraction of type-1 workers
and relative hazard rates.
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Figure 18: Optimal Benefits with Het-
erogeneity in support of F (w).
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Figure 19: Fraction of type-1 workers
and relative hazard rates.
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