PROBABILITY MODELS FOR ECONOMIC DECISIONS by Roger Myerson
excerpts from Chapter 8: Risk Sharing and Finance

8.1. Optimal risk sharing in a partnership of individuals with constant risk tolerance

To introduce the basic ideas of optimal risk sharing, let us begin with an example of two
individuals (numbered 1 and 2) who are considering a real-estate development project. Suppose
that they have an option to buy a tract of land for $125,000, after which they would then need to
spend an additional $40,000 on improvements (including an allocation for the cost of their own
time in supervising the project) before they could sell the land in subdivided lots. The total
revenue that they could then earn from selling these lots would be uncertain, but has an expected
value of $200,000 and a standard deviation of $25,000. For simplicity, let us assume here that
the time to complete this real estate project is small enough that we can ignore the interest costs
of borrowing money to cover the expenses before the revenues come in. So the net returns from
this real estate project next year will have expected value

1 =200,000 - (125,000 + 40,000) = $35,000
and standard deviation

o = $25,000.
Suppose that each of these two individuals evaluates risky incomes using a utility function with
constant risk tolerance, where individual 1 has risk tolerance

1, = $20,000,
and individual 2 has risk tolerance

1, = $30,000.
They must decide whether to undertake this real estate project, and if so, how to divide the
returns among themselves. Let us assume that the uncertainty about profits from this project can
be described by a Normal distribution.

When an individual with constant risk tolerance r has a gamble that will pay a random
amount of money drawn from a Normal probability distribution with mean p and standard
deviation o, his certainty equivalent for the gamble is

CE=p - (0.5/1)*c"2



So if individual 1 were to undertake this project himself, his certainty equivalent would be
p - (0.5/1))*(0"2) = 35000 - (0.5,/20000)*(25000"2)
=35000 - 15625 = $19,375.
That is, the option to buy this land and undertake this project would be worth $19,375 to
individual 1, if he had to undertake all the risks of the project alone.
If individual 2 were to undertake this project by herself, then its value to her would be
n - (0.5/15)*(0"2) = 25000 - (0.5,/30000)*(25000"2)
=35000 - 10417 = $24,583
So if individual 1 had the option to buy this land, then individual 2 would be willing to pay up to
$24,583 to buy the option from him, and individual 1 would be glad to sell the option for any
price above $19,375. Of course it is not surprising that this risky project should be more valuable
to the individual who has greater risk tolerance.

But even though individual 2 is strictly more risk tolerant than individual 1, the project
could be even more valuable to these individuals if they undertake the project as partners, with
individual 1 taking a positive share of the project's risks. For example, if they each took 50% of
the net profits from the project, then each individual would anticipate a payment drawn from a
Normal distribution with mean 0.50*35000 = $17,500 and standard deviation
0.50*25000 = $12,500. For his 50% share, individual 1 would have certainty equivalent

CE(1) = 17500 - (0.5,/20000)*(12500"2) = 17500 - 3906 = $13,594,
For her 50% share, individual 2 would have certainty equivalent

CE(2) = 17500 - (0.5,/30000)*(12500"2) = 17500 - 2604 = $14,896.
So the total certainty-equivalent value of the project to the two individuals when they share it
equally is

CE(1) + CE(2) = 13594 + 14896 = $28.,490
Thus, the project is worth more to them when it is shared equally than when the more risk
tolerant individual 2 owns it completely.

Such risk sharing is beneficial because each individual j's risk premium (0.5/ rj)*0A2 is
proportional to the square of the standard deviation (the variance) of his or her income. So

halving individual 2's share from 100% to 50% would halve the standard deviation of her



monetary returns from $25,000 to $12,500, which in turn would reduce her risk premium to a
quarter of its former value from $10,417 to $2604. This decrease in individual 2's risk premium
from giving up 50% of the project (10417-2604 = 7813) is much greater than the increase in
individual 1's risk premium when he takes on 50% of the project (3906-0).

A | B [ C | D | E | F | G H
1 |Suppose profits will be drawn from a Normal distribution
2 |Mean 35000
3 |Stdev 25000
4
5 |Profits can be shared by individuals 1 and 2
6 |Individ |RiskTol %$Share Mean Stdev CE RiskPremium
7 1 20000 0.4 14000 10000 11500 2500
8 2 30000 0.6 21000 15000 17250 3750
9
10 Sum (RTs) |CE (total, sumRTs) Sum (CEs) |Sum (RPs)
11 50000 28750\ 28750 6250

12 |[SOLVER: Maximize F11 by changing C7.
13 |[FORMULAS |

14 |Cc8. =1-C7 Fll. =SUM(F7:F8)
15 |D7. =C7*$BS$2 Gll. =SUM(G7:G8)
16 |E7. =C7*$B$3 Bl1l. =SUM(B7:B8)
17 |F7. =D7-(0.5/B7)*E7"2 Cll1. =B2-(0.5/B11l)*B3~2

18 |G7. =D7-F7 \
19| D7:G7 copied to D8:G8

Figure 8.1. Sharing a Normal gamble.

The spreadsheet in Figure 8.1 is set up to analyze the effect on the individuals' certainty
of other ways of sharing the risks of this project. When we enter individual 1's share of the risks
into cell C7, then the expected value and standard deviation of 1's income are calclulated in cells
D7 and E7 by the formulas =C7*$B$2 and =C7*$B$3, where cells B2 and B3 contain the
mean 35000 and standard deviation 25000 of the project's total profits. Then individual 1's
certainty equivalent is calculated in cell F7 by the formula =D7- (0.5/B7) *E7"2, where B7
contains individual 1's risk tolerance 20000. Individual 2's share is calculated by =1-C7 in cell
C8, and copying D7:F7 to D8:F8 yields individual 2's certainty equivalent for her share in cell
F8. Cell F11 computes the sum of the individuals' certainty equivalents by the formula
=SUM (F7:F8).

Now we can use Solver in this spreadsheet to maximize the sum of the computed



certainty equivalents in cell F11 by changing individual 1's percentage share of the project in cell
C7. The result is that Solver returns the value 0.4 in cell C7, as shown in Figure 8.1. When
individual 1 takes a 40% share, his expected monetary value is 0.40*35000 = $14,000 and his
standard deviation is 0.40*25000 = $10,000, and so his certainty equivalent is
CE(1) = 14000 - (0.5,/20000)*(10000"2) = 14000 - 2500 = $11,500
When individual 2 takes a 60% share, her expected monetary value is 0.60*35000 = $21,000 and
her standard deviation is 0.60*¥25000 = $15,000, and so her certainty equivalent is
CE(2) =21000 - (0.5/30000)*(15000"2) = 21000 - 3750 = $17.,250
When they plan to share the risks in this way, their total certainty equivalent of the project is
CE(1) + CE(2) = 11500 + 17250 = $28,750
This total $28,750 is the maximal sum of certainty equivalents that the partners can achieve by
sharing the profits of this project.
In this optimal sharing rule, the ratio of 2's share to 1's share is 0.6,/0.4 = 1.5. Notice that
the ratio of 2's risk tolerance to 1's risk tolerance is exactly the same 30000,20000 = 1.5. This

result is not a coincidence, as the following general fact asserts.

Fact 1. Suppose that a group of individuals have formed a partnership to share the risky
profits from some joint venture or gamble, and each individual j in this group has a constant risk
tolerance that we may denote by . Let R denote the sum of all the partners' risk tolerances
R= Zj rj). Then these individuals can maximize the sum of their certainty equivalents by
sharing the risky profits among themselves in proportion to their risk tolerances, with each

individual j taking the fractional share I /R of the risky profits.

For this example, Fact 1 yields the same optimal shares that Solver returned in Figure 8.1.
The sum of the partners' risk tolerances here is
R =1, +1,=20000+30000 = $50,000.
So the optimal share for individual 1 is 20000,/50000 = 0.4, the same share that Solver
generated in cell C7.

For any such partnership, we may define the total risk tolerance of a partnership to be the

sum of the risk tolerances of the individual partners. For this example, we have seen that the



partnership's total risk tolerance is R = $50,000. Now, if we considered the partnership as a
corporate person with constant risk tolerance equal to this total R, then a Normal lottery with
mean $35,000 and standard deviation $25,000 would have certainty equivalent

u - (0.5/R)*0”2 =35000 - (0.5/50000)*(25000"2) = $28,750
for this partnership, as is calculated in cell C11 of Figure 8.1. Notice that this corporate certainty
equivalent is exactly the same as maximized sum of the partners' individual certainty equivalents
in cell F11 under the optimal sharing rule. The following general fact asserts that this result is

also not a coincidence.

Fact 2. Consider a group of individuals who have formed a partnership to share the risky
profits from some joint venture or gamble, where each individual has constant risk tolerance, as
assumed in Fact 1. Let R denote the sum of all the partners' individual risk tolerances (R = Zj rj).
Then the maximal sum of the partners' certainty equivalents that can be achieved by optimal risk
sharing (as described in Fact 1) is equal to the certainty equivalent of the whole gamble to an
individual who has a constant risk tolerance equal to the sum of these partners' risk tolerances.
Thus, to maximize the sum of their certainty equivalents, the partnership should evaluate
gambles according to its total risk tolerance, whenever the partners have a choice about which

gambles to undertake.

Facts 1 and 2 here do not require the gamble to be Normal. We have used the special
formula for certainty equivalents of Normal gambles, but the same results can also be obtained
for more general distributions. It would only be more difficult to compute the certainty
equivalents....

Fact 2 can give us some sense of why businesses are typically more risk tolerant than
individuals, because the risks of a business may be shared among many investors. When shares
of a company are owned by 50 people whose average risk tolerance is $20,000, then Fact 2
asserts that the company itself should evaluate risks with a risk tolerance of $1,000,000. Fact 1
tells us that, among these 50 people, the ones with greater risk tolerance should have a greater
share of the company.

The above discussion assumes that partners should want to maximize the sum of their



certainty equivalents. This is a good assumption, but it needs some defense. After all, any single
partner may care only about his own certainty equivalent of what he gets from the partnership.
Why should anyone care about maximizing this sum of all certainty equivalents? The answer is

given by the following fact.

Fact 3. Consider a risk-sharing partnership where all partners have constant risk
tolerance. If the partners were planning to share risks according to a sharing rule that does not
maximize the sum of the partners' certainty equivalents, then any partner j could propose another
sharing rule rule that would increase j's own certainty equivalent and would not decrease the

certainty equivalents of any other partners.

To understand Fact 3, notice first that adding any fixed payment from one partner to
another partner would not change the sum of the partners' certainty equivalents. A net payment
of x dollars from partner 2 to partner 1 (when there is no uncertainty about this amount x) would
decrease 2's certainty equivalent by x and would increase 1's certainty equivalent by x, because
each partner is assumed to have constant risk tolerance. Thus the net payment of x dollars would
leave the sum of their certainty equivalents unchanged.

Now, suppose that the partners were originally planning to use some sharing rule does not
maximize the sum of the partners' certainty equivalents. Then consider any other sharing rule
that is optimal, in the sense of maximizing the sum of the partners' certainty equivalents.
Changing to this "optimal" sharing rule would increase some partners' certainty equivalents, but
it might also decrease other partners' certainty equivalents. But let us now modify this optimal
rule by adding some net payments that will cancel out these changes for all partners except one,
say partner j. Any partner whose certainty equivalent would decrease should receive an
additional payment equal to the amount of his decrease, to be paid by this partner j. Any other
partner whose certainty equivalent would increase should make an additional payment equal to
the amount of his increase, paying it to partner j. So when these payments have been added into
the optimal sharing rule, everybody other than partner j is getting exactly the same overall
certainty equivalent as under the original plan. But adding these fixed payments does not change

the sum of the partners' certainty equivalents. So our modified optimal plan (with the additional



payments) still maximizes the sum of the partners' certainty equivalents, and so it must generate a
strictly greater sum of certainty equivalents than the original plan. Thus, with everybody else's
certainty equivalent unchanged, partner j must be enjoying a strictly greater certainty equivalent
under this new plan. This proves Fact 3.

Fact 3 tells us that it is always optimal for partners to maximize the sum of their certainty
equivalents. To apply Fact 3, consider our sharing example from the perspective of individual 1,
in a situation where the option to buy and develop the land was originally his alone, and so he has
the option to undertake the project without any participation from individual 2. Individual 2, of
course, has the alternative of not participating in the project, in which case she would get $0.

Any sharing rule that gives 2 a certainty equivalent more than $0 would be better for her than
nonparticipation, and so could be accepted by her. The best possible sharing rule for individual 1
would be one that maximizes 1's certainty equivalent subject to the constraint that 2's certainty
equivalent should not be less than $0. Fact 3 tells us that this can be achieved by sharing in the
optimal proportions, to maximize the sum of the individuals' certainty equivalents, with an
additional payment from individual 2 to individual 1 that reduces 2's certainty equivalent to $0
(or to some value slightly greater than $0). By Fact 1, the optimal share for individual 2 is 60%
of this project, because 30000,/(20000+30000) = 0.6, and we have seen that a 60% share with no
additional payment would have certainty equivalent $17,250 to individual 2 (see cell F8 in Figure
8.1). So the best possible sharing rule for individual 1 would be to sell individual 2 a 60% share
of this project for an initial payment of $17,250 (or slightly less than this), which just exhausts
2's perceived gains from participating in the partnership. After selling 60% of the investment to
individual 2 for this maximal price, individual 1 would have $17,250 in cash plus a risky
investment that is worth $11,500 to him (his certainty equivalent for a 40% share). Thus, selling
60% to individual 2 for $17,250 would make individual 1's overall certainty equivalent from the
project 17250 + 11500 = $28,750. This is the most he could possibly hope for in any sharing
rule, because it allocates to him all the maximal sum of certainty equivalents that the two
partners can get from this project.

Of course, individual 2 would prefer to pay less than $17,250 for a 60% share, and she

might try to negotiate for a lower price in this situation. Recall that $19,375 was 1's certainty



equivalent for undertaking the project himself, and so 1 would not accept any certainty equivalent
less than $19,375 when his alternative is owning 100% of the project himself. Because 1's
certainty equivalent for 40% of the project is $11,500, he needs an additional payment of
19375-11500 = $7875 to raise his certainty equivalent to this level. So the best possible sharing
rule for individual 2 here would be for her to buy 60% of the project (her optimal share) for just a
bit above $7875, which is the lowest price that individual 1 would be willing to accept.

But regardless of who initially owns the project, the partners can can agree that they
should maximize the sum of their certainty equivalents by sharing the risky returns in proportion
to their risk tolerances. How this maximal value is divided among them is a bargaining problem.
If one of them initially owns more than his or her optimal share of the project, there will exist a
range of transfer prices at which the individuals could both gain by changing to their optimal
shares. In this situation, the price that individual 2 may actually pay to buy 60% of the project
must be a question of bargaining between the two individuals, and without a theory of bargaining
we can only say here that it should be somewhere between $7875 and $17,250.

Facts 1, 2, and 3 here require the assumption that all partners have constant risk tolerance,
but they do not require any assumption about the probability distribution from which the
partnership's profits will be drawn. Normality here was only used to compute exact certainty
equivalents in Figure 8.1. ...In Figure 8.1, when we asked Solver to find an optimal sharing rule,
we implicitly assumed that the two partners would share the profits linearly. Here a partner's
share is linear if each extra dollar of profit would increase the partner's income by the same
amount. But this linearity assumption is not necessary. Even when we allow that a partner's
income may be a nonlinear function of the total profit earned, the linear sharing rule that we
described in Fact 1 is still optimal for maximizing the sum of the certainty equivalents among

partners who all have constant risk tolerance.



