T e . r—

4.5 Computing Sequential Equilibria
Caomsider the game shown in Figui‘e 4.9, adapted from Rosenthal (1981).

This game can be interpreted as follows. After the upper chance event,
which occurs with probability .95, the players alternate choosing be-

““Tween generous (g,, for k = 1,2,3,4) and selfish ( ;) actions until someone
is selfish or until both have been generous twice. Each player loses $1
edch time he is generous, but gains $5 each time the other player is
generous. Everything is the same after the lower chance event, which
occurs with probability .05, except that 2 is then incapable of being
selfish (perhaps because she is the kind of person whose natural integrity
would compel her to reciprocate any act of generosity). Player 1 does
not directly observe the chance outcome.

The move probabilities and belief probabilities that make up a se-
quential equilibrium are shown in Figure 4.9 in parentheses and angle
brackets. To characterize the beliefs, let o« denote the probability that
phayer 1 would assign to the event that player 2 is capable of selfishness
at the beginning of the game, and let 8 denote the probability that 1
would assign to the event that 2 is capable of selfishness if he had
observed her being generous once. To characterize the behavioral strat-
egies, let B be the probability that 1 would be generous in his first move;
lét y be the probability that 2 would be generous in her first move, if
she is capable of selfishness; let € be the probability that 1 would be
generous in his second move; and let { be the probability that 2 would
be generous at her second move, if she is capable of selfishness. We
now show how to solve for these variables, to find a sequential equilib-
rium of this game.

Two of these variables are easy to determine. Obviously, a = .95,
because that is the probability of the upper alternative at the chance
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node, the outcome of which is unebservable to player 1. Also, it is easy
to see that { = 0, because player 2 would have no incentive to be
generous at the last move of the game, if she is capable of selfishness.

To organize the task of solving for the other components of the
sequential equilibrium, we use the concept of suppert, introduced in
Section 3.3. At any information state, the support of a sequential equi-
librium is the set of moves that are used with positive probability at this
information state, according to the behavioral-strategy profile in the
sequential equilibrium. We select any information state and try to guess
what might be the support of the sequential equilibrium at this state,
Working with this guess, we can either construct a sequential equilib-
rium or show that none exists with this support and so go on to try
another guess.

It is often best to work through games like this backward. We already
know what player 2 would do at information state 4, so let us consider
now player 1's information state 3, where he makes his second move,
There are three possible supports to consider: {g,}, {f3}, and {gs./;}.
Because { = 0, player 1's expected payoff (or sequential value) from
choosing g; at state 3 is 38 + 8(1—8); whereas player I’s expected payoff
from choosing f; at state 3 is 48 + 4(1~8) = 4. By Bayes’s formula (4.5),
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Even if B = 0, full consisténcy requires that § = 19y/(19y + 1), because
. this equation would hold for any perturbed behavioral strategies in
. which B was strictly positive. :
- Let us try first the hypothesis that the support of the sequential
. equilibrium at I's state 3 is {g,}; so ¢ = 1. Then sequential rationality
“for player 1 at state 3 requires that'38 -+ 8(1<8) = 4. This inequality
% implies that 0.8 = § = 19y/(19y + 1); so y =< 4/19. But & = 1 implies
4 that player 2's expected payoff from choosing g, at state 2 (her first
= thove) would be 9, whereas her expected payoff from choosing f, at
“-state 2 would be 5. Thus, sequential rationality for player 2 at state 2
requires thaty = 1, 'whten'e = 1. Since y = | andy =< 4/19 cannot both
i e satisfied, there can be no sequential equilibrium in which the support
ot 1's state 3 is {gs}.
.. - Let us try next the hypothesis that the support of the sequential
. bquilibriumn at 1's state 3 is {f,}; so ¢ = 0. Then sequential rationality
for player 1 at state 3 requires that 35 + 8(1-8) < 4. This inequality
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implies that 0.8 = 8 = 19y/(19y + 1); soy = 4/19. Bute = 0 implies
that player 2’s expected payoff from choosing g, at state 2 would be 4,
whereas her expected payoff from choosing f; at state 2 would be 5.
Thus, sequential rationality for player 2 at state 2 requires thaty =0
when e = 0. Because ¥ = 0 and y = 4/19 cannot both be satisfied, there
can be no sequential equilibrium in which the support at 1's state 3 is
{/sh _

The only remaining possibility is that the support of the sequential
equilibrium at state 3 is {gs.fs}; s0 0 < & < 1. Then sequential rationality
for player 1 at state 3 requires that 35 + 8(1 — 8) = 4, or else player 1
would not be willing to randomize between g5 and f;. With consistent
beliefs, this implies that 0.8 = & = 194/(19y + 1); so y = 4/19. Thus,
player 2 must be expected to randomize between gy and f, at state 2
(her first move). Player 2’s expected payoff from choosing g, at state 2
is 9 + 4(1—&), whereas her expected payoff from choosing [fs at state
2 is 5. Thus, sequential rationality for player 2 at state 2 requires that
5 = O9¢ + 4{1—¢); s0 £ = 0.2. It only remains now to determine 1's move
at state 1. If he chooses s;, then he gets 0; but if he chooses g, then his
expected payoff is

95 X (4/19) X .2 X 3 + .95 X (4/19) X .8 X 4 + .95 x (15/19)
X (—1) + .05 X .2 X 8 + .05 x .8 X 4 = 0.25,

when @ = .95, vy = 4/19, ¢ = .2, and { = 0. Because 0.25 > 0, sequential
rationality for player'1 at state 1 requires that § = 1. That is, in the
unique sequential equilibrium of this game, player 1 should be generous
at his first move,

Consider now the scenario ([ fi}.[ fol.[fsl.{ fal), in which each player
would always be selfish at any information state; so =y = ¢ = (=20
If the chance node and the nodes and branches following the lower
.05-probability branch were eliminated from this game, then this would
be the unique sequential-equilibrium scenario. That is, if it were com-
mon knowledge that player 2 would choose between selfishness and
generosity only on the basis of her own expected payoffs, then no player
would ever be generous in a sequential equilibrium. Furthermore,
([ ALIALLALLAD is an equilibrium in behavioral strategies of the actual
game given in Figure 4.9 and can even be extended to a weak sequential
equilibrium of this game, but it cannot be extended to a full sequential
equilibrium of this game. For example, we could make this scenario a
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weak sequential equilibrium, satisfying sequential rationality at all in-
formation states, by letting the belief probabilities o and 8 both equal
.95, However, the belief probability & = .95 would not be consistent (in
the full sense) with this scenario because, if player 2 would be expected
to be selfish at state 2 (y = 0), then player 1 would infer at state 3, after
he chose generosity and did not get a selfish response from player 2,
that player 2 must be incapable of selfishness, so 8 must equal 0. But
with & = 0, selfishness ( f;) would be an irrational move for player 1 at
state 3, because he would expect generosity (g;) to get him a payoff of
8, with probability 1 - & = 1.

This example illustrates the fact that small initial doubts may have a
major impact on rational players’ behavior in mulistage games. If player
1 had no doubt about player 2’s capacity for selfishness, then perpetual
selfishness would be the unique sequential equilibrium. But when it is
common knowledge at the beginning of the game that player 1 assigns
even a small positive probability of .05 to the event that player 2 may
be the kind of person whose natural integrity would compel her to
reciprocate any act of generosity, then player 1 must be generous at
least once with probability 1 in the unique sequential equilibrium. The
essential idea is that, even if player 2 does not have such natural integ-
rity, she still might reciprocate generosity so as to encourage player 1
to assign a higher probability to the event that she may continue to be
generous in the future. Her incentive to do so, however, depends on
the assumption that player 1 may have at least some initial uncertainty
about player 2’s type in this regard. The crucial role of such small initial
uncertainties in long-term relationships has been studied in other ex-
amples of economic importance (see Kreps, Milgrom, Roberts, and
Wilson, 1982).

For a second example, consider the game in Figure 4.10. To char-
acterize the sequential equilibria of this game, let a denocte the belief
probability that player 2 would assign in information state 3 to the
upper 2.3 node, which follows player 1’s x, move. With these beliefs at
information state 3, player 2's conditionally expected payoff would be
8a + 0(1 — a) if she chose 5, 7o + 7(1 — a) = 7 if she chose f;, or 6a
+ 9(1 — a) = 9 — 3 if she chose g3. So move e; would be optimal for
player 2 at state 3 when both 8a = 7 and 8a = 9 — 3a, that is, when «
= 7. Move f; would be optimal for 2 when both 7= 8axand 7= 9 —
3a, that is, when 25 = a = %. Move g3 would be optimal for 2 when
both 9 — 30 = 8x and 9 —3a = 7, that is, when a =< %3, Notice tha}
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For the game in Figure 4.9 of Myerson's Game Theory, the portion of the game after the upper
branch with chance-probability 0.95 is an example of the centipede game. If this upper branch were
the whole game, so that it would be common knowledge that player 2 is a rational actor who prefers

f, at the last move, then the game would have the following normal representation in strategic form:

fye 2fy €284
f) e 0,0 0,0 0,0
g6 -1,5 4, 4 4, 4
£183 -1,5 3,9 8.8

(Here £ denotes the two equivalent strategies f;f; and f;g;, and f,* denotes the two equivalent

strategies f,f, and f,g,.)

For the actual extensive-form game in Figure 4.9, where player 2's nice reciprocating behavioral

type has probability 0.05, the normal representation in strategic form can be written:

fye 221y €284
f) e 0,0 0,0 0,0
2,6 -0.75, 4.95 4,4 4,4
2123 -0.55,5.15 3.25, 8.95 8,8

This game has a Nash equilibrium at (f;e, f,*), but this equilibrium does not correspond to a
sequential equilibrium of the extensive-form game.

The sequential equilibrium corresponds to the Nash equilibrium

(0.8[gyf3] + 0.2[g; 3], (15/19)[f52] + (4/19)[g,14])-



