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Competitive Equilibria in Markets with Adverse Selection  

Let us consider markets, such as insurance markets, where each consumer can buy a contract 
from one firm, which would establish a contractual relationship between the consumer and the 
firm.  In this relationship, the consumer's expected benefit and the firm's expected cost of 
fulfilling the terms of any contract may depend on the consumer's type, which is privately known 
only by the consumer.  Thus, in selling any particular contract, a firm must worry about the 
possibility that it is selling to consumers who might generate particularly high costs for the firm 
under this contract; this is the problem of adverse selection. 

We assume that there are multiple firms which can sell any of these contracts, and any one of 
these firms could serve the entire population of consumers.  Thus, in a competitive equilibrium, 
prices should be such that firms expect zero profits for every contract, when problems of adverse 
selection are taken appropriately into account.  Our goal is to understand what competitive 
equilibria could look like in such a market. 

Michael Rothschild and Joseph Stiglitz (QJE,1976) considered one natural definition of 
competitive equilibrium which they found might not exist for some simple markets.  But if 
economists cannot even identify any competitive equilibria for simple models of markets with 
adverse selection, then economic analysis cannot contribute to policy debates about whether 
insurance markets would function better with more competition or with more regulation.  So we 
need a more refined understanding of perfect competition that would exclude at least some of the 
competitive deviations which Rothschild and Stiglitz used to eliminate all candidates for 
equilibrium in the examples where Rothschild and Stiglitz found nonexistence. 

Here we follow Eduardo Azevedo and Daniel Gottlieb (Econometrica, 2017) and develop a 
simplified version of their concept of competitive equilibrium for markets with adverse selection, 
which they proved to exist for a wide class of market models.  This approach differs from 
Rothschild and Stiglitz in not considering competitive deviations in which a firm substantially 
cuts its price for one kind of contract in order to attract profitable demand from low-cost 
consumers who would not have otherwise considered buying this contract.  For a firm to attract 
demand from consumers who had not been planning to buy this contract at the anticipated 
market price, the price cut would have to be advertised broadly to the general population of 
consumers, and such a broad advertising campaign could easily provoke counter-responses from 
other firms. 

Economists generally assume that in a perfectly competitive market, consumers plan their 
consumption optimally with respect to the given market prices and then can readily find many 
alternative sources of supply at these prices.  In a perfectly competitive market, each firm gets 
only a small share of the overall demand for any positively traded contract, but this share would 
be very elastic to any deviation from the equilibrium price.  The ability of a firm to substantially  
increase its share of existing demand by offering to sell a contract for even slightly less than the 
market price is sufficient to imply that firms must expect to just break even on all contracts in a 
competitive equilibrium.  Thus, competitive equilibria here are characterized by an 
understanding of which types of consumers would buy each contract at its prevailing market 
prices such that no firm could expect to gain by a small price cut to increase its own share of the 
demand from these consumers. 
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A basic framework for analyzing markets with adverse selection 

To model such a market with adverse selection, let Y denote the set of possible contracts, and let 
T denote the set of possible types of consumers.  For simplicity, we may sometimes assume that 
Y and T are nonempty finite sets.  (When they are infinite sets, some sums below may need to be 
rewritten as integrals.)  A given utility function U: YT  specifies the utility U(p,x,t) that 
any consumer of type t would get from buying contract x at price p.  A given cost function 
C:YT  specifies the expected cost C(x,t) for a firm to fulfill a contract x for a consumer of 
type t.  A given probability distribution  in (T) specifies the fraction (t)>0 of consumers who 
have each type t in the general population.  Each consumer must buy exactly one contract.  (The 
set of possible contracts Y may include a "no-trade" option x=0 which would have zero cost 
C(0,t)=0 regardless of the consumer's type t.) 

In a Rothschild-Stiglitz model of insurance markets, a consumer's type t[0,1] would denote his 
probability of suffering some loss ℓ>0 from some given initial wealth W, and the contract 
parameter x[0,1] would denote the fraction of this loss to be covered by an insurance policy.  
Then, given some concave increasing utility function u() for monetary wealth, we would get 
  U(p,x,t) = t u(Wp(1x)ℓ) + (1t) u(Wp). 

In general, we assume here that, for each xY and each tT, U(p,x,t) is strictly decreasing and 
continuous in the price p.  Also, for each xY, tT, p , and yY, we assume that there exists 
some price (p,x,t,y) such that  U(p,x,t) = U((p,x,t,y),y,t).  (This says that money is important 
enough for a price adjustment to change any consumer's preference over any pair of contracts.)  
So (p,x,t,y) denotes the price of y which would make a type-t consumer indifferent between 
buying y and buying x at price p.  

We consider here a simplified version of Azevedo and Gottlieb's (2017) definition of competitive 
equilibrium for markets with adverse selection.  We define a competitive equilibrium to be a pair 
(q,) such that q=(q(x))xY is a price vector in Y, =((x|t))xY,tT is an allocation vector 
in (Y)T, and the following conditions are satisfied: 

[0]  yY (y|t) = 1  and  (x|t)0, xY, tT; 

[1]  xY (x|t)U(q(x),x,t) = maxxY U(q(x),x,t), tT; 

[2]  tT (t)(x|t)(C(x,t)q(x)) = 0, xY;  and 

[3]  yY, tT such that  U(q(y),y,t) = maxxY U(q(x),x,t)  and  q(y)  C(y,t). 

Condition [0] must be satisfied because each number (x|t) denotes the fraction of type-t 
consumers who choose contract x.  Condition [1] is an optimality condition for consumers, 
saying that consumers of each type only choose contracts that maximize their utility at the given 
q prices.  Condition [2] is a zero-profit condition for firms, saying that firms expect to break even 
on any contract that attracts a positive fraction of the consumers.  In this case, when 
sT (s)(x|s) > 0, condition [2] implies that q(x) equals the average cost of all consumers who 
choose contract x 
  q(x) = tT C(x,t)(t)(x|t)/sT (s)(x|s). 
Condition [3] says that, for each contract, there is at least one type which is willing to choose this 
contract but would not be profitable for the competitive firms at the given price.  Condition [3] is 
actually implied by condition [2] for any contract that has positive demand in the equilibrium, 
but requiring condition [3] for all contracts adds a further restriction on the pricing of contracts 
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that have zero demand under .  Without this restriction, we could get equilibria that satisfy [2] 
trivially for any one contract x simply by setting its price q(x) so high that all (x|t)=0.  With 
condition [3], a real possibility of unprofitable sales can explain what deters firms from trying to 
increase demand for a contract by shading its price slightly.  

When all costs C(x,t) are nonnegative, any positively traded contract must have a nonnegative 
price in equilibrium; but the definition of competitive equilibrium here allows the possibility that 
some untraded contracts might have negative prices, as if there were some small fund for 
subsidizing sales of the contract.  Of course, a contract that has zero demand at a negative price 
would have the same zero demand at the higher price of zero.  The point of imputing a negative 
price here is only to identify which types would be willing to buy the contract with the least 
subsidy, so that we can verify that the imputed price is not greater than the costs of serving these 
types.1 

We now state and prove a general existence theorem for equilibria of finite markets with adverse 
selection.  To simplify some equations below, let us introduce the notation:  
U̅(q,t) = maxxY U(q(x),x,t). 

Fact.  When Y and T are finite sets and U satisfies the assumptions that are listed above, a 
competitive equilibrium must exist. 

Proof.  For each x in Y, let  c̄(x) = maxtT C(x,t),  and  c(x) = mintT C(x,t).   
Then let  c0(x) = mintT minyY (c(y),y,t,x)  1.  

Here we have  c0(x) < c(x),  because  (c(x),x,t,x) = c(x),  and we also have  c(x)  c̄(x).  Now, for any  
such that 0<<1, consider a modified market in which the fraction of each type t in T is (1)(t) and, on 
for each contract x, a fraction /#Y of the consumers are a new artificial type that only buys contract x 
and has cost c0(x).  (Here #Y is the number of contracts in the finite set Y.) 

Now for any price vector q in xY [c0(x),c̄(x)]  and any allocation vector  in (Y)T such that, consider a 
mapping that selects a new price vector q' and a new allocation vector ' as follows. 
For each contract x, q'(x) is the average cost   

  q'(x) = (c0(x)/#Y + tT C(x,t)(t)(x|t))/(/#Y + tT (t)(x|t)). 

For each type t, '(|t) can be any probability distribution over Y such that 

  {xY| '(x|t)>0}  argmaxxY U(q(x),x,t),  tT. 

By the Kakutani fixed-point theorem, we can find a pair (q,) in (xY [c0(x),c̄(x)])  (Y)T  that maps to 
itself under this mapping.  This  (q,) will satisfy conditions [0] and [1] and also a perturbed version of 

                                                 
1 The definition of competitive equilibrium here is a simplified version of the equilibrium concept developed by 
Azevedo and Gottlieb [2017].  Their concept differs from the simple competitive equilibrium concept here in that 
they require that the prices of untraded contracts should be evaluated as limits of equilibrium prices from a sequence 
of perturbed models in which vanishingly small populations of artificial consumers are introduced to guarantee some 
positive low-cost demand for every contract.  (Such a construction is used in the proof of equilibrium existence 
above.)  This perturbational condition is analogous to conditions that are applied in perfect and proper refinements 
of Nash equilibrium.  These perturbations are constructed so that the limiting equilibrium price of each contract is 
nonnegative, and so the type that would be willing to buy the contract with the least subsidy might not be identified 
when the price is zero, but the costs for all types are assumed to be nonnegative.  Examples can be constructed (with 
infinitely many types, including pairs of types that have identical utility functions but different costs) such that the 
perfect competitive equilibrium concept of Azevedo and Gottlieb helps to exclude some counter-intuitive equilibria 
that would be admitted by the simple competitive equilibrium concept developed here. 
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the zero-profit condition [2] with the new artificial types included as an  fraction of the population 
(which ensure that every contract gets strictly positive demand). 

Now consider a sequence of numbers  that converge to 0, so that the artificial types become an 
infinitesimal fraction of the population as we go to the limit.  By compactness of the domain 
(xY [c0(x),c̄(x)])  (Y)T, there exists a subsequence such that all the q(x) and (x|t) converge to some 
limits q*(x) and *(x|t) that are also in this domain.  We can now show that this (q*,*) is a competitive 
equilibrium. 

The fact that conditions [0] and [1] and an approximate version of [2] are satisfied for each (q,) implies, 
by continuity, that these conditions are satisfied for the limit (q*,*).  Furthermore, the limit of 0 
implies that every contract x that has positive *-demand must have q*(x) that is a weighted average of 
C(x,t) costs and so satisfies  c(x)  q*(x)  c̄(x).  Each type t must be generating positive demand (x|t)>0 
for at least one of its optimal contracts x, for which we then get that t's optimal utility Ū(q*,t) must satisfy  
U̅(q*,t)=U(q*(x),x,t)  U(c(x),x,t).  (Utility is decreasing in the price.) 

Now let us show that condition [3] is satisfied for any contract y.  Since c0(y) < c(y), the price q*(y) could 
not equal c0(y) unless demand for y was zero.  But c0(y) was defined so that any type would strictly prefer 
y at price c0(y) over any other contract x priced at c(x).  Thus, for every contract y, we must have q*(y) > 
c0(y), which implies q(y) > c0(y) for all sufficiently small , which in turn implies that (y|t)>0 for at 
least one real type t in T.  (The demand (y|t) would be small, of order , but it must be strictly positive.)  
As there are only finitely many types, we can choose a subsequence (if necessary) so that there is some 
type t in T such that (y|t)>0 for all , and so we get  U(q(y),y,t) = U̅(q,t)  for all .  Among such types t, 
we can pick the one with the highest cost in contract y, and then we must also get  q(y)C(y,t)  for all , 
because the price q(y) is a weighted average of the real types that choose y in  and the lower-cost 
artificial type for y.  So in the limit, the price q*(y) satisfies condition [3], U(q*(y),y,t) = U̅(q*,t) and 
q*(y)C(y,t), with this type t. 

Thus (q*,*) is a competitive equilibrium.  QED 

Separating equilibria of markets with two risk-types and a convex interval of contracts  

For markets where the set of possible contracts Y is infinite, one can still prove an existence of 
competitive equilibria with some additional continuity assumptions which are developed by 
Azevedo and Gottlieb (2017).   The basic idea of the proof is to consider the limits of 
competitive equilibria that we would get for an increasing sequence of finite subsets of Y which 
in the limit become dense in the whole set. 

Now let us consider a class of models that include Rothschild-Stiglitz insurance markets with 
two types.  Let T={L,H} where L is the low type and and H is the high type.  The type may be 
interpreted as the probability of suffering a loss, with 0<L<H<1.  The set of possible contracts Y 
will be the interval [0,1] (or some subset of this interval), where any x in [0,1] denotes the 
fraction of the insured loss that will be covered by the insurance company.  In addition to the 
previous assumptions about U, we now add several further assumptions about the U and C 
functions in our model, all of which will be satisfied by a Rothschild-Stiglitz insurance model: 

 C(x,t) is continuous in x and U(p,x,t) is continuous x and p, tT; 

 C(0,L)=C(0,H)=0, but  0 < C(x,L) < C(x,H)  x>0; 

 U(C(x,t),x,t) is strictly increasing in x, tT; 

 if y>x then  (p,x,L,y) < (p,x,H,y),  but if y<x then  (p,x,L,y) > (p,x,H,y). 
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The second assumption says that the high types are more expensive to serve.  The third 
assumption says that any type of consumer would prefer full insurance at a price that is 
actuarially fair for this type.  The fourth assumption is a "single-crossing" condition.  It says that, 
when consumers are asked about their willingness to switch from a contract x at a price p to 
some other contract y, if y is greater than x then type H would be more willing to switch than 
type L, in the sense that type H would accept the increased coverage y for a higher price than 
type L would accept; but if y<x then the type L would be more willing to switch than type H.  If 
U is continuously differentiable in both p and x, then the single-crossing property is implied by a 
condition that, when we normalize the marginal utility of money (p) across types, type H has 
greater marginal utility for increasing coverage x. 
  (U(p,x,L)/x)/(U(p,x,L)/p) < (U(p,x,H)/x)/(U(p,x,H)/p). 

Fact.  When Y=[0,1], T={L,H}, and U and C satisfy the above assumptions, the unique 
competitive equilibrium is the best separating plan, which is defined as follows.  Type H chooses 
the contract xH=1 which has price q(1)=C(1,H).  Type L chooses a contract xL at the price 
q(xL) = C(xL,L), where xL is the solution to the equation U(C(xL,L),xL,H) = U(C(1,H),1,H).  
Any other contract y has the price q(y) = (C(xL,L),xL,L,y) if y<xL, and q(y) = (C(1,H),1,H,y) 
if y>xL. 

Proof.  Every contract x in the interval [0,1] must be priced so that at least one type is willing to buy it, so 
that either  U(q(x),x,L) = U̅(q,L)  or  U(q(x),x,L) = U̅(q,H).  The pricing function q(x) cannot be 
discontinuous because, at any point of discontinuity, the type that is (supposedly) willing to choose 
contracts that converge to the highest price limit would actually strictly prefer to switch to a nearby 
contract that has a price close to the lowest price limit.  Thus, the set of contracts that any type is willing 
to choose at the q prices is a closed set, and so the connected interval Y=[0,1] must include some contract 
y* that both types are willing to choose.  That is, we have some y* such that U(q(y*),y*,L) = U̅(q,L) and 
U(q(y*),y*,H) = U̅(q,H). 

By the single-crossing property, this y* must be unique, and only type L is willing to choose any contract 
x < y*.  (If x<y* satisfied U(q(x),x,H) = U̅(q,H) = U(q(y*),y*,H), then type L would strictly prefer x at 
price q(x) over y* at price q(y*), contradicting the fact that y* is optimal for both types.)  Similarly, if 
x>y*, then only type H is willing to choose the contract x at price q(x). 

So for any >0, condition [3] requires  U(q(y*),y*,L) = U̅(q,L)  and  q(y*)  C(y*,L).  Taking the 
limit as 0, we must have  q(y*)  C(y*,L).  The contracts that L actually chooses must be in the interval 
[0,y*].  If L actually had positive demand for some contract x < y*, then the zero-profit condition for firms 
would require that contract to be priced at  q(x)=C(x,L),  but U(C(x,L),x,L) is strictly increasing in x, and 
so we would get the contradition 
  U̅(q,L) = U(q(x),x,L) = U(C(x,L),x,L) < U(C(y*,L),y*,L)  U(q(y*),y*,L) = U̅(q,L). 

Thus type L cannot be actually buying any contract less than y*, which is the highest contract that L is 
willing to choose.  We found that q(y*)  C(y*,L), but for firms to break even in selling y*, its price cannot 
be strictly less than the low cost C(y*,L), and so we must have q(y*) = C(y*,L), and only the type-L 
consumers are actually buying this contract.  That is, y* is the contract that was called xL in the statement 
of the Fact above. 

Then type H consumers must be actually buying some strictly higher contract z>y* which must satisfy the 
break-even price of q(z)=C(z,H).  But U(C(z,H),z,H) is strictly increasing in z, and we know that the 
greatest contract 1, which only H is willing to choose, must in equilibrium satisfy q(1)C(1,H).  Thus, if 
type H cannot be buying any contract z<H, because it would yield the contradiction  U̅(q,H) = 
U(C(z,H),z,H) < U(C(1,H),1,H)  U(q(1),z,H) = U̅(q,H).  Thus, type H is buying the maximal contract 1 
at the price C(1,H).  QED 
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An example where competitive equilibria are inefficient 

In insurance markets that fit this two-type model, the high-risk types get full insurance priced for 
their higher risks, and the low-risk types get substantially incomplete insurance although it is 
fairly priced for their lower risks.  The low-risk types must accept less insurance coverage as a 
costly signal to distinguish themselves from high-risk types.  But notice (in the Fact above) that 
the contract that each type gets and the price that it pays in these models actually do not depend 
on the fraction of each type in the population.  If most consumers are the high-risk type, then it is 
not surprising that low-risk types would choose to accept less insurance coverage as a signaling 
cost to distinguish themselves from the high-risk types, because the low types would have to pay 
much more for insurance if they had to be pooled with all those high types.  However, when the 
fraction of high-risk types in the overall population is small, then the average cost of providing 
full insurance to everybody in the population may be only slightly greater than the cost of 
providing it to the low-risk types separately.  In that case, the separating equilibrium will be 
Pareto-inefficient, as all types would strictly prefer to buy full (or almost-full) insurance at a 
price that fairly covers the pooled costs of the whole population. 

In such a case, a firm might hope to earn positive profits by offering full insurance at a price that 
is slightly above the average cost for the entire population, if the firm could actually attract the 
entire population without stimulating a competitive response by other firms.  But such a pooling 
offer would not be an equilibrium, because other firms could offer slightly less insurance 
coverage at a slightly lower price that would profitably attract only the low-risk types, as long as 
the high-risk types have the option of accepting the first firm's "pooling" offer.  The Pareto-
efficient pooling contract could be sustained as a competitive equilibrium only with some 
government intervention to prevent firms from offering contracts with slightly less coverage. 

For example consider an insurance market where each consumer has an independent risk of some 
insurable loss of size ℓ=30, and each consumer has constant risk tolerance =10.  In the 
population, 75% of all consumers are low-risk types for whom the probability of this loss is 0.2, 
but 25% are high-risk types for whom the probability of this loss is 0.6.  So the cost of an 
insurance contract that covers a fraction x of the loss for each type would be C(x,L)=0.2xℓ=6x 
and  C(x,H)=0.6xℓ=18x,  while the pooled cost would be  0.75(0.2xℓ)+0.25(0.6xℓ) = 0.3xℓ = 9x.  
A consumer's utility for such a contract x at a price p would depend on his type as follows: 
     U(p,x,L) = [0.2e(p+(1x)30)/10 + (10.2)ep/10],  U(p,x,H) = [0.6e(p+(1x)30)/10 + (10.6)ep/10]. 
Then the prices for a contract y to make a consumer of each type indifferent between y and the 
contract x at price p can be computed by the formulas: 
 (p,x,L,y) = p + 10 LN(0.2e(1x)30/10 + 10.2)  10 LN(0.2e(1y)30/10 + 10.2), 
 (p,x,H,y) = p + 10 LN(0.6e(1x)30/10 + 10.6)  10 LN(0.6e(1y)30/10 + 10.6). 
In Figure 1 below, the two green curves are indifference curves for the low-risk types, and the 
two red curves (with higher slopes) are indifference curves for the high-risk types.  Of the three 
dotted lines in Figure 1, the lowest (green) line is where p=C(x,L), the highest (red) line is where 
p=C(x,H), and the middle (blue) line is the pooling-cost line where p=0.75C(x,L)+0.25C(x,H). 

The two triangles in Figure 1 show the separating contracts that are sold in the competitive 
equilibrium.  The red triangle is at the full-insurance contract xH=1 that high-risk types can buy 
at the price  pH=C(1,H)=18.  Then the green triangle is at the contract xL which satisfies the 
equation  (pH,xH,H,xL) = C(xL,L),  and so this contract xL=0.322 can be sold to the low types at 
the price pL=C(xL,L)=1.93 without diverting the high types from buying xH=1 at the price pH. 
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The blue square in Figure 1 denotes the contract x* which, when priced at the pooling cost 
p*=0.75C(x*,L)+0.25C(x*,H), would be most preferred by the low-risk types; here x*=0.820 
and p*=7.38.  This contract x* at this pooling price p* would be strictly better for both types of 
consumers than what they get in the separating equilibrium, and so this (x*,p*) pooling plan is 
Pareto-superior to the competitive equilibrium.  (Notice that the firms are just breaking even in 
any case.)  But to have an equilibrium where all consumers bought this contract x* at this price 
p*, the equilibrium prices for any smaller contract x < x* would have to be priced along the thin 
green indifference curve for the low types that goes through (x*,p*), and these prices would be 
greater than the low-types' cost C(x,L) when 0.458  x < x*.  Thus, we cannot have a pooling 
equilibrium at (x*,p*) as long as firms have the option to offer contracts x between 0.458 and x* 
(between the large blue square and the small green square) at competitive prices that would 
attract low types away from the pooling equilibrium. 

However, if government regulations prevented firms from offering any contract x in the interval 
where 0.457<x<x*, then there could be a Pareto-superior competitive equilibrium where 
everyone buys the contract x* at the price p*.  The virtual price for an untraded contract x0.457 
would be p=(p*,x*,L,x) on the thin green indifference curve for low types, and the virtual price 
for the untraded contracts x>x* would be p=(p*,x*,H,x) on the thin red indifference curve for 
high types.  In each case, these virtual prices would be the highest price that could just attract one 
type, but firms could not expect to profit by selling to the attracted type at these prices. 
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Markets with adverse selection on the sellers' side (e.g. Spence signaling in labor markets)  

We can also model markets where competitive firms buy labor or other inputs from individuals 
with private information about themselves that might be relevant for their potential productivity 
in any labor-supply contract.  Again in this case we can let Y denote the set of possible labor 
contracts, and let T denote the set of possible types of individual workers.  A given utility 
function U: YT  specifies the utility U(p,x,t) that any individual of type t would get from 
selling his labor under the terms of contract x at wage p.  In this case, of course, the worker's 
utility U(p,x,t) would be a strictly increasing function of the wage-price p.  A given productivity 
function V:YT  specifies the expected output value V(x,t) for a firm from a labor contract x 
with a worker of type t.  A given probability distribution  in (T) specifies the fraction (t)>0 
of workers who have each type t in the general population.  Each worker must enter into exactly 
one labor contract.  (We could include the no-trade option as an x=0 contract with productivity 0 
and utility 0 for all types.) 

Our simple concept of competitive equilibrium can be directly extended to such models.  Then a 
competitive equilibrium would be any pair (q,) such that q=(q(x))xY is a price vector in Y, 
=((x|t))xY,tT is an allocation vector in (Y)T, and the following conditions are satisfied: 

[0]  yY (y|t) = 1  and  (x|t)0, xY, tT; 

[1]  xY (x|t) U(q(x),x,t) = maxxY U(q(x),x,t), tT; 

[2]  tT (t) (x|t) (V(x,t)q(x)) = 0, xY;  and 

[3]  yY, tT such that  U(q(y),y,t) = maxxY U(q(x),x,t)  and  q(y)  V(y,t). 

Thus, for markets with adverse selection on the sellers' side, we can similarly require that [2] 
competitive firms should expect to break even on any contract that attracts a positive fraction of 
the informed sellers, and that, [3] even for an untraded contract, there should be at least one 
seller-type which would be willing to choose this contract but would not be profitable for the 
competitive firms at the given price.  
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Homework exercise on markets with adverse selection: 

Consider a population of risk-averse consumers who face uncertain but potentially insurable losses that 
will be independently drawn from normal distributions.  Each consumer has constant risk tolerance, with 
the risk-tolerance index R=10, and each consumer's loss will be drawn from a normal distribution with 
standard deviation =20.  But the expected value of this loss will depend on the consumer's risk type, 
which may be high or low.  A consumer of the low-risk type has an expected loss of mL=40, but a 
consumer of the high-risk type has an expected loss of mH=60.  In the overall population, (L)=80% of 
consumers are the low-risk type and (H)=20% of consumers are the high risk type.  Each consumer 
knows his own risk type, but insurance companies have no way to directly observe anyone risk type 
(other than by the different choices that they might make in the market). 
Consider linear insurance contracts which are parameterized by the fraction x of the consumer's loss that 
the insurance company will cover, where 0x1.  That is, an x-contract specifies that the insurance 
company will pay xS̃ to the consumer when the consumer's risky loss turns out to be S̃.  (With normally 
distributed losses, there is a small probability that a consumer's "loss" S̃ might be negative, in which case 
|S̃| would actually denote a risky income for the consumer, of which the consumer would be contractually 
obligated to pay the fraction x|S̃| to the insurance company.) 

(a)  Find the coverage fraction ȳ such that a high-risk consumer would be indifferent between [1] buying 
full insurance (x=1) at a price such that risk-neutral insurers would expect to just break even in selling to 
high-risk consumers (C(1,H)) and [2] buying a ȳ-contract at a price such that risk-neutral insurers would 
expect to just break even in selling to low-risk consumers (C(ȳ,L)). 

(b)  Construct a competitive equilibrium of this insurance market, when competitive insurance companies 
can sell linear insurance contracts for any fraction x between 0 and 1. You should specify equilibrium 
prices of x-contracts, for all x in the interval [0,1], and you should identify the contracts that will be 
purchased by each type of consumer.  Then verify that this equilibrium satisfies the equilibrium 
conditions that we introduced in class (the simplified version of Azevedo & Gottlieb's equilibrium 
concept).  Also, compute the certainty-equivalent value U̅(q,t) for each type of consumer in this 
equilibrium. 

(c)  Now consider what contract the low-risk consumers would want to buy if all contracts could be priced 
so that risk-neutral insurers would expect to just break even in selling to the overall population (80% low-
risk types and 20% high-risk types).  Find the coverage fraction y* that would maximize the certainty 
equivalent for a low-risk consumer in such an ideal world where contracts could be priced according to 
their expected cost with pooling of all consumers.  Show that both the low-risk types and the high-risk 
types would strictly prefer to buy the contract y* at this pooling price (t{L,H} (t)C(y*,t)) over the 
contracts that they buy with the equilibrium prices that you found in part (b). 

(d)  Find the coverage fraction ŷ such that a low-risk consumer would be indifferent between [1] buying a 
ŷ contract at the price such that risk-neutral insurers would expect to just break even in selling ŷ-contracts 
to low-risk consumers (C(ŷ,L)) and [2] buying the y* contract (from part (c)) at the pooling price such 
that risk-neutral insurers would expect to just break even in selling y*-contracts to the whole population. 

(e)  Now suppose that the government banned the sale of insurance contracts with any coverage fraction x 
such that  ŷ < x < y*.  Show that there is now a competitive equilibrium with pooling at y*.  Verify all our 
conditions for an equilibrium, and show that this equilibrium makes all consumers strictly better off than 
the competitive equilibrium that you found in part (b). 

 

 

These notes are available at: 
http://home.uchicago.edu/~rmyerson/teaching/eqmadsel.pdf 


