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Sender-Receiver Games with Cheap Talk 

Let us consider games where player 1 (the sender) has private information about his type in some set 
T1, and player 2 (the receiver) chooses an action in some set C2.  Each player i has a given utility 
functions ui:C2×T1→ , and player 2's prior belief about 1's type is described by a given probability 
distribution  p∈Δ(T1).  We assume that player 1 can send messages (with a large potential 
vocabulary) to player 2 before she chooses her action, but player 1's messages are just "cheap talk" 
which do not affect anybody's payoff except to the extent that player 2 responds to the messages sent 
by player 1. 

With cheap talk, there is always a babbling equilibrium where 1's message is independent of his type 
and 2's action is her ex-ante optimal action independently of 1's message.  But sometimes better 
equilibria can be found where substantive communication occurs. 

For example, consider a game (from section 6.7 in Game Theory by Myerson) where T1={1a,1b}, 
C2={x,y,z}, the prior probability distribution has p(1a)=p(1b)=0.5, and the utility payoffs (u1,u2) 
depend on 2's action and 1's type as follows: 

   c2=x   c2=y   c2=z    
 t1=1a   2, 3   0, 2  −1, 0   (p(1a) = 0.5) 
 t1=1b   1, 0   2, 2    0, 3   (p(1b) = 0.5) 

In the babbling equilibrium, player 2's optimal choice with prior beliefs is y, which would be the best 
outcome for player 1 when his type is 1b.  When 1's type is 1a, however, he would like to tell player 
2 that x is actually better for both of them.  But in direct face-to-face communication without noise, 
there cannot be any equilibrium in which player 1 encourages player 2 to choose x with positive 
probability.  Notice first that no belief about t1 could ever make 2 willing to randomize between x and 
z.  (Action x is optimal for 2 when the probability of 1a is 2/3 or more, y is optimal for 2 when the 
probabilty of 1a is between 1/3 and 2/3, and z is optimal for 2 when the probability of 1a is 1/3 or 
less.)  If there were any message that player 1 could announce that would make player 2 willing to 
choose x (either for sure or in a randomization between x and y), then type 1a would always want to 
announce such a message (to maximize the probability of x), but then the absence of such a message 
would convince player 2 that 1's type is 1b and so would cause her to choose z; but this in turn would 
imply that even type 1b should want to send the same message that type 1a would send.  Thus, with 
direct communication, this game has no equilibrium other than the trivial babbling equilibrium. 

But player 1 can send a credible message with noise.  Imagine that player 1 has a carrier pigeon 
which, if sent, would reach player 2 with probability 0.4.  There is an equilibrium in which 1 sends 
the carrier pigeon (with a note saying "I am type 1a, please do x") if t1=1a but not if t1=1b.  If the 
pigeon does not arrive, player 2's posterior belief about the probability of type 1b is 
0.5×1/(0.5×1+0.5×(1−0.4)) = 5/8, and so player 2 is still prefer to choose y, not z.  So noise can help 
player 1 here to send messages that credibly guide 2's action.  

The discovery that noise can actually help to support credible communication that might not be 
possible without noise raises the question: What else is possible?  We now develop a general 
framework for answering this question, for any given sender-receiver game. 

Given a sender-receiver game (T1,C2,u1,u2,p), a general coordination mechanism or mediation plan 
can be described by a function μ:T1→Δ(C2).  We can think of this plan as being implemented by a 
trustworthy mediator who first asks player 1 to confidentially report his type, and then, depending on 
this report, the mediator will recommend an action to player 2.  For any t1∈T1 and c2∈C2, and The 
number μ(c2|t1) denotes the probability that the mediator will recommend action c2 if player 1 reports 
type t1.  So 
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[1] ∑d2∈C2 μ(d2|t1) = 1  and  μ(c2|t1) ≥ 0,  ∀c2∈C2,  ∀t1∈T1. 

The plan of sending a carrier pigeon corresponds to the mediation plan with μ(c2|t1) as follows: 
   c2=x   c2=y   c2=z    
 t1=1a    0.4    0.6     0 
 t1=1b     0     1     0 

Consider the expected payoffs that will result from a plan μ if player 1 reports his type honestly and 
player 2 chooses her action obediently under this plan μ.  Player 2's expected payoff is 

 U2(μ) = ∑t1∈T1 ∑c2∈C2 p(t1)μ(c2|t1)u2(c2,t1). 

If player 1's type is t1 then his expected payoff is 

 U1(μ|t1) = ∑d2∈C2 μ(d2|t1)u1(c2,t1). 

But if player 1 with type t1 dishonestly reported type s1 to the mediator, then he could get expected 
payoff 

 Û1(μ,s1|t1) = ∑d2∈C2 μ(d2|s1)u1(c2,t1). 

On the other hand, if player 2 planned to choose action d2 when a particular action c2 is 
recommended, then the net change in player 2's expected payoff would be 

 ∑t1∈T1 p(t1)μ(c2|t1)(u2(d2,t1)− u2(c2,t1)). 

Then, honest reporting by player 1 and obedient action by player 2 can be equilibrium behavior with 
mediation plan μ if and only if 

[2] U1(μ|t1) ≥ Û1(μ,s1|t1),  ∀t1∈T1,  ∀s1∈T1;  and 

[3] ∑t1∈T1 p(t1)μ(c2|t1)(u2(d2,t1)− u2(c2,t1)) ≤ 0,  ∀c2∈C2,  ∀d2∈C2. 

We say that μ is incentive compatible iff μ satisfies these constraints [2] and [3].  Here [2] are the 
informational incentive constraints saying that player 1 should not want to lie about his type, and [3] 
are the strategic incentive constraints saying that player 2 should not want to disobey her 
recommendations. 

A mechanism μ is (strictly) interim dominated by another mechanism ν iff every type of player 1 
would expect to better under ν than μ, and player 2 would also expect to do better under ν than μ; 
that is, 

    U1(ν|t1) > U1(μ|t1)  ∀t1∈T1,  and  U2(ν) > U2(μ). 

A mechanism μ is (weakly) incentive-efficient iff it is incentive compatible and it is not interim 
dominated by any other incentive-compatible mechanism.   That is, μ is not incentive-efficient if a 
social planner can find some other incentive-compatible mechanism ν such that, at the point in time 
when player 1 knows his type but player 2 does not, we could be sure that both players 1 and 2 would 
definitely prefer to implement ν rather than μ.  A mechanism μ is incentive-efficient if and only if 
there exist some nonnegative utility weights λ1(t1)≥0 for each t1 in T1 and λ2≥0 such that these 
weights are not all zero and μ is an optimal solution to the problem of maximizing 

[4] λ2U2(μ) + ∑t1∈T1 λ1(t1)U1(μ|t1) 

over μ subject to the probability constraints [1] and the incentive constraints [2] and [3]. 

To characterize optimal solutions to this maximization problem, we consider the Lagrangean: 
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 L(μ,λ,α) = λ2U2(μ) + ∑t1∈T1 λ1(t1)U1(μ|t1) +  
   + ∑t1∈T1 ∑s1∈T1 α1(s1|t1)(U1(μ|t1) − Û1(μ,s1|t1)) + 
   + ∑c2∈C2 ∑d2∈C2 α2(d2|c2) ∑t1∈T1 p(t1)μ(c2|t1)(u2(c2,t1)− u2(d2,t1)). 

Now let us define (λ,α)-virtual utility functions v1 and v2 as follows:  

 v1(c2,t1,λ,α) = [(λ1(t1) + ∑s1∈T1 α1(s1|t1))u1(c2,t1) − ∑s1∈T1 α1(t1|s1)u1(c2,s1)]/p(t1), 

 v2(c2,t1,λ,α) = λ2(t1)u2(c2,t1) + ∑d2∈C2 α2(d2|c2))(u2(c2,t1) − u2(d2,t1)). 

These definitions are constructed to give us the following equation 

 L(μ,λ,α) = ∑t1∈T1 p(t1) μ(c2|t1) (v1(c2,t1,λ,α) + v2(c2,t1,λ,α)). 

That is, the Lagrangean L(μ,λ,α) is just the expected sum of the players' (λ,α)-virtual utilities.  

An incentive-compatible mechanism μ solves the maximization problem [4] if and only if there exists 
a vector α of nonnegative Lagrange multipliers that satisfy the complementary slackness conditions  

 α1(s1|t1)≥0  and  α1(s1|t1)(U1(μ|t1) − Û1(μ,s1|t1)) = 0,  ∀t1∈T1, ∀s1∈T1; 

 α2(d2|c2)≥0  and  α2(d2|c2) ∑t1∈T1 p(t1)μ(c2|t1)(u2(c2,t1)− u2(d2,t1)) = 0,  ∀c2∈C2, ∀d2∈C2; 

and μ maximizes the the expected sum of the players (λ,α)-virtual utilities over all mechanisms 
μ:T1→Δ(C2) without regard to the incentive constraints.  This virtual maximization holds when μ 
satisfies the optimal-support condition:  

 {c2| μ(c2|t1)>0} ⊆ argmaxc2∈C2 (v1(c2,t1,λ,α) + v2(c2,t1,λ,α)),  ∀t1∈T1. 

The complementary slackness conditions say that a Lagrange multiplier can be strictly positive only 
if its corresponding incentive constraint is satisfied by μ as a binding equality.  When α1(t1|s1)>0 
(which indicates some difficulty in deterring 1 from reporting t1 when s1 is true), we may say that 
type s1 jeopardizes type t1 for player 1.  With this terminology, player 1's (λ,α)-virtual utility is a 
positive multiple of his true utility minus positive multiples of the utility that he would get with other 
possible types that jeopardize his true type.  When α2(d2|c2)>0 (which indicates some difficulty in 
deterring 2 from choosing d2 when c2 is recommended), we may say that action d2 jeopardizes action 
c2 for player 2.  Player 2's (λ,α)-virtual utility is a positive multiple of her actual utility minus 
positive multiples of the utility that she would get with other actions that jeopardize her 
recommended action. 

When people enter into a relationship or transaction, the problem of getting them to act appropriately 
is called moral hazard, and the problem of getting them to share information appropriately is called 
adverse selection.  In our sender-receiver games, the sender (player 1) is subject to an adverse 
selection problem, represented by the informational incentive constraints [2], and the receiver (player 
2) is subject to a moral hazard problem, represented by the strategic incentive constraints [3].  

Let us apply these conditions to the question of what incentive-compatible mediation plan would be 
best for the receiver (player 2) in our example with the payoffs (u1,u2): 

   c2=x   c2=y    c2=z 
 t1=1a   2, 3   0, 2  −1, 0   (p(1a)=0.5) 
 t1=1b   1, 0   2, 2    0, 3   (p(1b)=0.5) 

In this case we have λ2=1 and λ1(1a)=λ1(1b)=0, because we are just trying to maximize U2(μ) subject 
to the probability constraints and incentive constraints.  This is a linear programming problem which 
can be efficiently solved by many computer programs, including the Solver program in MS Excel.  
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But we can solve the problem by hand if we can guess which probabilities in μ will be positive and 
which Lagrange multipliers in α will be positive. 

In this case the correct guesses are that  

 μ(x|1a)>0,  μ(y|1a)>0,  μ(y|1b)>0,  μ(z|b1)>0,  α1(1a|1b)>0,  and  α2(z|y)>0. 

That is, the mediator randomizes between recommending x or y if player 1 reports 1a, and the 
mediator randomizes between recommending y or z if player 1 reports 1b; the binding incentive 
constraints are that player 1 should not report 1a when 1b is true, and that player 2 should not do z 
when y is recommended.  To simplify our notation, let  β = α1(1a|1b),  γ = α2(z|y),  p = μ(y|1a),  and  
q = μ(y|1b),  so that μ(x|1a) = 1−p and μ(z|1b) = 1−q.  With these Lagrange multipliers, the virtual 
utilities (v1,v2) become 

           c2=x              c2=y          c2=z 
 t1=1a  −(1)β/0.5, 3  −(2)β/0.5, 2+(2−0)γ            −(0)β/0.5, 0 
 t1=1b    (1)β/0.5, 0    (2)β/0.5, 2+(2−3)γ   (0)β/0.5, 3 

The optimal-support conditions require:  −(1)β/0.5 + 3 = −(2)β/0.5 + 2+(2−0)γ ≥ (0)β/0.5 + 0,   
and  (1)β/0.5 + 0 ≤ (2)β/0.5 + 2+(2−3)γ = (0)β/0.5 + 3.   

The two equations are satisfied when β=0.5 and γ=1, and then the two inequalities are also satisfied. 

The binding incentive constraints (α1(1a|1b)>0 and α2(z|y)>0) require 
2q+0(1−q) = (1)(1−p)+2p  and  (0.5)p(2)+(0.5)q(2) = (0.5)p(0)+(0.5)q(3), 
and these equations are satisfied by p=1/3, q=2/3.  So we get a mechanism with μ(c2|t1) as follows: 
   c2=x   c2=y   c2=z    
 t1=1a    2/3    1/3     0 
 t1=1b     0    2/3    1/3 
It is straightforward to verify that this mechanism μ satisfies all other incentive constraints (with 
slack), and so it satisfies all the Lagrangean conditions for maximizing player 2's expected payoff 
among all incentive-compatible mechanisms. 
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Motivating an agent with a linear type drawn from a continuous distribution on an interval. 
Suppose that the agent's type t ̃is a random variable drawn from an interval [A,B]. 
The agent's type t is his cost of effort, and his utility for income w and effort q is   w ! t q. 
Consider any contract (w(C),q(C)) where the terms of trade for each type θ would be  (w(t),q(t)). 
Let  U(w,q*t) = w(t) ! tq(t)  denote the expected utility of type t under this contract. 
For any pair of possible types t and s in [A,B], the (s*t)-informational incentive constraint says 
U(w,q*t) = w(t) ! t q(t) $ w(s) ! t q(s) = U(w,q*s) + (s!t)q(s). 
Similarly, the (t*s)-incentive constraint implies  U(w,q*s) ≥ U(w,q*t) + (t!s)q(t) 
So the (t*s) and (s*t) constraints together imply  (s!t)q(t) ≥ U(w,q*t)!U(w,q*s) ≥ (s!t)q(s). 
So when  s > t  we must have q(t) $ q(s), and so q(t) is a decreasing function of the cost-type t. 
These inequalities over many small steps from t up to B yield the information-rent equation:   

U(w,q*t) = U(w,q*B) + ∫ B
t q(r) dr.  

With all q(r)≥0, the high cost-type B has the least gain from trade: U(w,q*B) = mint∈[A,B] U(w,q*t). 
The w function can be determined from the q function and the value U(w,q*B) by: 

w(t) = U(w,q*t) + tq(t) = U(w,q*B) + tq(t) + ∫ B
t q(r) dr 

With q(•) weakly decreasing, these functions (w,q) will satisfy incentive compatibility because 

U(w,q*t)![w(s)!tq(s)] = U(w,q|t)!U(w,q|s)!(s!t)q(s) = ∫ s
t q(r) dr ! (s!t)q(s) = ∫ s

t [q(r)!q(s)]dr ≥ 0.  

 
Suppose the principal's beliefs about the agent's type are described by the cumulative distribution  
F(t) = P(t#̃t),  and  f(t) = FN(t)  is the continuous probability density of this distribution,  

with f(t)>0 for all t in [A,B].   Here  F(B)=1,  F(A)=0,  and  P(a#t#̃b) = F(b)!F(a)= ∫ b
a f(t) dt   

whenever  a ≤ b.  Then the expected wage bill is 

∫ B
A w(t) f(t) dt = ∫ B

A [U(w,q*t) + tq(t)] f(t) dt =  ∫ B
A [U(w,q*B) + tq(t) + ∫ B

t q(r) dr] f(t) dt   

     = U(w,q*B) + ∫ B
A t q(t) f(t) dt +  ∫ B

A  ∫ r
A f(t) dt q(r) dr 

     = U(w,q*B) + ∫ B
A t q(t) f(t) dt + ∫ B

A  F(r) q(r) dr = U(w,q*B) + ∫ B
A q(t) [t + F(t)/f(t)] f(t) dt .  

So the incentive-compatible expected wage E(w(t)̃) looks like what the principal would have to pay 
without incentive constraints if the cost of each type t were increased to a virtual cost  t+F(t)/f(t).   
This virtual-cost formula expresses the fact that, when we ask more effort from any type t, we 
increase the amount that we must pay all types below t, because of incentive constraints. 
 
Example: Akerlof's Lemons.  The "agent" is the seller of a unique object, of which the "principal" is 
the only potential buyer.  The seller's type is the value of the object to him, which depends on his 
unverifiable private information about its quality.  Then q(t) can be reinterpreted as the probability of 
his selling the good if he acts like type t, which must satisfy  0 # q(t) # 1,  and w(t) is his expected 
revenue from selling if he acts like type t.   
Suppose t ̃is drawn from a Uniform distribution on the interval from 0 to 100, but the value of the 
object to the buyer also depends on the quality (which the buyer would learn only after the 
transaction) and would be 1.5t.̃  So the object would always be worth 50% more to the buyer. 
If (w,q) satisfies the incentive constraints and U(w,q*t)$0, the buyer's expected gain from trade is   

∫100
0 [1.5tq(t)!w(t)]f(t)dt = ∫100

0 [1.5t!t!F(t)/f(t)]q(t)f(t)dt!U(w,q*100)  

= ∫100
0 [1.5t!2t]q(t)dt/100 ! U(w,q*100) # 0.  The buyer can only expect to lose if any q(t)>0.  
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Equilibrium in markets with adverse selection  

Let Y denote the set of possible contracts, and let T denote the set of possible types of consumers.  For 
simplicity, we may sometimes assume that Y and T are nonempty finite sets.  (When they are infinite sets, 
some sums below may need to be rewritten as integrals).  A given utility function U: ×Y×T→  specifies the 
utility U(p,x,t) that any consumer of type t would get from buying contract x at price p.  A given cost function 
C:Y×T→  specifies the expected cost C(x,t) for a firm to fulfill a contract x for a consumer of type t.  A given 
probability distribution μ in Δ(T) specifies the fraction μ(t)>0 of consumers who have each type t in the 
general population.  Each consumer must buy exactly one contract.  (We could include the no-trade option as 
an x=0 contract with cost 0 and utility 0 for all types.) 

In a Rothschild-Stiglitz model of insurance markets, a consumer's type t∈[0,1] would denote his probability of 
suffering some loss ℓ>0 from some given initial wealth W, and the contract parameter x∈[0,1] would denote 
the fraction of this loss to be covered by an insurance policy.  Then, given some concave increasing utility 
function u(•) for monetary wealth, we would get 
  U(p,x,t) = t u(W−p−(1−x)ℓ) + (1−t) u(W−p). 

In general, we assume here that, for each x∈Y and each t∈T, U(p,x,t) is strictly decreasing and continuous in 
the price p.  Also, for each x∈Y, t∈T, p∈ , and y∈Y, we assume that there exists some price ϕ(p,x,t,y) such 
that U(p,x,t) = U(ϕ(p,x,t,y),y,t).  (This says that money is important enough for a price adjustment to change 
any consumer's preference over any pair of contracts.)  So ϕ(p,x,t,y) denotes the price of y which would make 
a type-t consumer indifferent between buying y and buying x at price p.  

In this market, each consumer will buy exactly one contract.  We also assume that there are multiple firms 
which can sell any of these contracts, and any one of these firms could serve the entire population of 
consumers.  Thus, in a competitive equilibrium, prices should be such that firms expect zero profits for every 
contract. 

We consider here a simplified version of Azevedo and Gottlieb's (2017) definition of competitive equilibrium 
for markets with adverse selection.  We define a competitive equilibrium to be a pair (q,γ) such that 
q=(q(x))x∈Y is a price vector in Y, γ=(γ(x|t))x∈Y,t∈T is an allocation vector in Δ(Y)T, and the following 
conditions are satisfied: 

[0]  ∑y∈Y γ(y|t) = 1  and  γ(x|t)≥0, ∀x∈Y, ∀t∈T; 

[1]  ∑x∈Y γ(x|t)U(q(x),x,t) = maxx∈Y U(q(x),x,t), ∀t∈T; 

[2]  ∑t∈T μ(t)γ(x|t)(C(x,t)−q(x)) = 0, ∀x∈Y;  and 

[3]  ∀y∈Y, ∃t∈T such that U(q(y),y,t) = maxx∈Y U(q(x),x,t) and q(y)≤C(y,t). 

Condition [0] must be satisfied because each number γ(x|t) denotes the fraction of type-t consumers who 
choose contract x.  Condition [1] is an optimality condition for consumers, saying that consumers of each type 
only choose contracts that maximize their utility at the given q prices.  Condition [2] is a zero-profit condition 
for firms, saying that firms expect to break even on any contract that attracts a positive fraction of the 
consumers.  In this case, when ∑s∈T μ(s)γ(x|s) > 0, condition [2] implies that q(x) equals the average cost of all 
consumers who choose contract x 

  q(x) = ∑t∈T C(x,t)μ(t)γ(x|t)/∑s∈T μ(s)γ(x|s). 

Condition [3] says that, for each contract, there is at least one type which is willing to choose this contract but 
would not be profitable for the competitive firms at the given price.  Condition [3] is actually implied by 
condition [2] for any contract that has positive demand in the equilibrium, but requiring condition [3] for all 
contracts adds a further restriction on the pricing of contracts that have zero demand under γ.  Without this 
restriction, we could get equilibria that satisfy [2] trivially for any one contract x simply by setting its price 
q(x) so high that all γ(x|t)=0.  With condition [3], a real possibility of unprofitable sales can explain what 
deters firms from trying to increase demand for a contract by shading its price slightly.  
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When all costs C(x,t) are nonnegative, any positively traded contract must have a nonnegative price in 
equilibrium; but the definition of competitive equilibrium here allows the possibility that some untraded 
contracts might have negative prices, as if there were some small fund for subsidizing sales of the contract.  Of 
course, a contract that has zero demand at a negative price would have the same zero demand at the higher 
price of zero.  The point of imputing a negative price here is only to identify which types would be willing to 
buy the contract with the least subsidy, so that we can verify that the imputed price is not greater than the costs 
of serving these types. 

To simplify some equations below, let us introduce the notation:  U̅(q,t) = maxx∈Y U(q(x),x,t). 

Fact.  When Y and T are finite sets and U satisfies the assumptions that are listed above, a competitive 
equilibrium must exist. 

Proof.  For each x in Y, let  c̄(x) = maxt∈T C(x,t),  and  c(x) = mint∈T C(x,t). 

Then let  c0(x) = mint∈T miny∈Y ϕ(c(y),y,t,x) − 1.  

Here we have  c0(x) < c(x),  because  ϕ(c(x),x,t,x) = c(x),  and we also have  c(x) ≤ c̄(x).  Now, for any ε such 
that 0<ε<1, consider a modified market in which the fraction of each type t in T is (1−ε)μ(t) and, on for each 
contract x, a fraction ε/#Y of the consumers are a new artificial type that only buys contract x and has cost 
c0(x).  (Here #Y is the number of contracts in the finite set Y.) 

Now for any price vector q in ×x∈Y [c0(x),c̄(x)]  and any allocation vector γ in Δ(Y)T such that, consider a 
mapping that selects a new price vector q' and a new allocation vector γ' as follows. 
For each contract x, q'(x) is the average cost   

  q'(x) = (c0(x)ε/#Y + ∑t∈T C(x,t)μ(t)γ(x|t))/(ε/#Y + ∑t∈T μ(t)γ(x|t)). 

For each type t, γ'(•|t) can be any probability distribution over Y such that 

  {x∈Y| γ'(x|t)>0} ⊆ argmaxx∈Y U(q(x),x,t),  ∀t∈T. 

By the Kakutani fixed-point theorem, we can find a pair (qε,γε) in (×x∈Y [c0(x),c̄(x)]) × Δ(Y)T  that maps to itself 
under this mapping.  This  (qε,γε) will satisfy conditions [0] and [1] and also a perturbed version of the zero-
profit condition [2] with the new artificial types included as an ε fraction of the population (which ensure that 
every contract gets strictly positive demand). 

Now consider a sequence of numbers ε that converge to 0, so that the artificial types become an infinitesimal 
fraction of the population as we go to the limit.  By compactness of the domain (×x∈Y [c0(x),c̄(x)]) × Δ(Y)T, 
there exists a subsequence such that all the qε(x) and γε(x|t) converge to some limits q*(x) and γ*(x|t) that are 
also in this domain.  We can now show that this (q*,γ*) is a competitive equilibrium. 

The fact that conditions [0] and [1] and an approximate version of [2] are satisfied for each (qε,γε) implies, by 
continuity, that these conditions are satisfied for the limit (q*,γ*).  Furthermore, the limit of ε→0 implies that 
every contract x that has positive γ*-demand must have q*(x) that is a weighted average of C(x,t) costs and so 
satisfies  c(x) ≤ q*(x) ≤ c̄(x).  Each type t must be generating positive demand γ(x|t)>0 for at least one of its 
optimal contracts x, for which we then get that t's optimal utility Ū(q*,t) must satisfy  U̅(q*,t)=U(q*(x),x,t) ≤ 
U(c(x),x,t).  (Utility is decreasing in the price.) 

Now let us show that condition [3] is satisfied for any contract y.  Since c0(y) < c(y), the price q*(y) could not 
equal c0(y) unless demand for y was zero.  But c0(y) was defined so that any type would strictly prefer y at 
price c0(y) over any other contract x priced at c(x).  Thus, for every contract y, we must have q*(y) > c0(y), 
which implies qε(y) > c0(y) for all sufficiently small ε, which in turn implies that γε(y|t)>0 for at least one real 
type t in T.  (The demand γε(y|t) would be small, of order ε, but it must be strictly positive.)  As there are only 
finitely many types, we can choose a subsequence (if necessary) so that there is some type t in T such that 
γε(y|t)>0 for all ε, and so we get  U(qε(y),y,t) = U̅(qε,t)  for all ε.  Among such types t, we can pick the one with 
the highest cost in contract y, and then we must also get  qε(y)≤C(y,t)  for all ε, because the price qε(y) is a 
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weighted average of the real types that choose y in γε and the lower-cost artificial type for y.  So in the limit, 
the price q*(y) satisfies condition [3], U(q*(y),y,t) = U̅(q*,t) and q*(y)≤C(y,t), with this type t. 

Thus (q*,γ*) is a competitive equilibrium.  QED 

For markets where the set of possible contracts Y is infinite, one can still prove an existence of competitive 
equilibria with some additional continuity assumptions which are developed by Azevedo and Gottlieb (2017).   
(The basic idea of the proof is to consider the limits of competitive equilibria that we would get for an 
increasing sequence of finite subsets of Y which in the limit become dense in the whole set.) 

Now let us consider a class of models that include Rothschild-Stiglitz insurance markets with two type.  Let 
T={L,H} where L is the low type and and H is the high type.  The type may be interpreted as the probability of 
suffering a loss, with 0<L<H<1.  The set of possible contracts Y will be the interval [0,1] (or some subset of 
this interval), where any x in [0,1] denotes the fraction of the insured loss that will be covered by the insurance 
company.  In addition to the previous assumptions about U, we now add several further assumptions about the 
U and C functions in our model, all of which will be satisfied by a Rothschild-Stiglitz insurance model: 

  C(x,t) is continuous in x and U(p,x,t) is continuous x and p, ∀t∈T; 

  C(0,L)=C(0,H)=0, but  0 < C(x,L) < C(x,H)  ∀x>0; 

  U(C(x,t),x,t) is strictly increasing in x, ∀t∈T; 

  if y>x then  ϕ(p,x,L,y) < ϕ(p,x,H,y),  but if y<x then  ϕ(p,x,L,y) > ϕ(p,x,H,y). 

The second assumption says that the high types are more expensive to serve.  The third assumption says that 
any type of consumer would prefer full insurance at a price that is actuarially fair for this type.  The fourth 
assumption is a "single-crossing" condition.  It says that, when consumers are asked about their willingness to 
switch from a contract x at a price p to some other contract y, if y is greater than x then type H would be 
willing to switch than type L, in the sense that type H would accept the increased coverage y for a higher price 
than type L would accept; but if y<x then the type L would be more willing to switch than type H.  If U is 
continuously differentiable in both p and x, then the single-crossing property is implied by a condition that, 
when we normalize the marginal utility of money (−p) across types, type H has greater marginal utility for 
increasing coverage x. 
  (∂U(p,x,L)/∂x)/(−∂U(p,x,L)/∂p) < (∂U(p,x,H)/∂x)/(−∂U(p,x,H)/∂p). 

Fact. When Y=[0,1], T={L,H}, and U and C satisfy the above assumptions, the unique competitive 
equilibrium is the best separating plan, which is defined as follows.  Type H chooses the contract xH=1 which 
has price q(1)=C(1,H).  Type L chooses a contract xL at the price q(xL)=C(xL,L), where xL is the solution to the 
equation U(C(xL,L),xL,H) = U(C(1,H),1,H).  Any other contract y has the price q(y) = ϕ(C(xL,L),xL,L,y) if 
y<xL, and q(y) = ϕ(C(1,H),1,H,y) if y>xL. 

Proof.  Every contract x in the interval [0,1] must be priced so that at least one type is willing to buy it, so that 
either  U(q(x),x,L) = U̅(q,L)  or  U(q(x),x,L) = U̅(q,H).  The pricing function q(x) cannot be discontinuous 
because, at any point of discontinuity, the type that is (supposedly) willing to choose contracts that converge to 
the highest price limit would actually strictly prefer to switch to a nearby contract that has a price close to the 
lowest price limit.  Thus, the set of contracts that any type is willing to choose at the q prices is a closed set, 
and so the connected interval Y=[0,1] must include some contract y* that both types are willing to choose.  
That is, we have some y* such that U(q(y*),y*,L) = U̅(q,L) and U(q(y*),y*,H) = U̅(q,H). 

By the single-crossing property, this y* must be unique, and only type L is willing to choose any contract x < 
y*.  (If x<y* satisfied U(q(x),x,H) = U̅(q,H) = U(q(y*),y*,H), then type L would strictly prefer x at price q(x) 
over y* at price q(y*), contradicting the fact that y* is optimal for both types.)  Similarly, if x>y*, then only type 
H is willing to choose the contract x at price q(x). 

So for any ε>0, condition [3] requires  U(q(y*−ε),y*−ε,L) = U̅(q,L)  and  q(y*−ε) ≤ C(y*−ε,L).  Taking the limit 
as ε→0, we must have  q(y*) ≤ C(y*,L).  The contracts that L actually chooses must be in the interval [0,y*].  If 
L actually had positive demand for some contract x < y*, then the zero-profit condition for firms would require 
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that contract to be priced at  q(x)=C(x,L),  but U(C(x,L),x,L) is strictly increasing in x, and so we would get 
the contradition 
  U̅(q,L) = U(q(x),x,L) = U(C(x,L),x,L) < U(C(y*,L),y*,L) ≤ U(q(y*),y*,L) = U̅(q,L). 

Thus type L cannot be actually buying any contract less than y*, which is the highest contract that L is willing 
to choose.  We found that q(y*) ≤ C(y*,L), but for firms to break even in selling y*, its price cannot be strictly 
less than the low cost C(y*,L), and so we must have q(y*) = C(y*,L), and only the type-L consumers are 
actually buying this contract.  That is, y* is the contract that was called xL in the statement of the Fact above. 

Then type H consumers must be actually buying some strictly higher contract z>y* which must satisfy the 
break-even price of q(z)=C(z,H).  But U(C(z,H),z,H) is strictly increasing in z, and we know that the greatest 
contract 1, which only H is willing to choose, must in equilibrium satisfy q(1)≤C(1,H).  Thus, if type H cannot 
be buying any contract z<H, because it would yield the contradiction  U̅(q,H) = U(C(z,H),z,H) < 
U(C(1,H),1,H) ≤ U(q(1),z,H) = U̅(q,H).  Thus, type H is buying the maximal contract 1 at the price C(1,H).  
QED 

The definition of competitive equilibrium here is a simplified version of the equilibrium concept developed by 
Azevedo and Gottlieb [2017].  Their concept differs from the simple competitive equilibrium concept here in 
that they require that the prices of untraded contracts should be evaluated as limits of equilibrium prices from a 
sequence of perturbed models in which vanishingly small populations of artificial consumers are introduced to 
guarantee some positive low-cost demand for every contract.  (Such a construction is used in the proof of 
equilibrium existence above.)  This perturbational condition is analogous to conditions that are applied in 
perfect and proper refinements of Nash equilibrium.  Examples can be constructed (with infinitely many types, 
including pairs of types that have identical utility functions but different costs) such that the perfect 
competitive equilibrium concept of Azevedo and Gottlieb helps to exclude some counter-intuitive equilibria 
that would be admitted by the simple competitive equilibrium concept developed here.  

Markets with adverse selection on the sellers' side (e.g. Spence signaling in labor markets)  

We can also model markets where competitive firms buy labor or other inputs from individuals with private 
information about themselves that might be relevant for their potential productivity in any labor-supply 
contract.  Again in this case we can let Y denote the set of possible labor contracts, and let T denote the set 
of possible types of individual workers.  A given utility function U: ×Y×T→  specifies the utility U(p,x,t) 
that any consumer of type t would get from selling his labor under the terms of contract x at wage p.  In this 
case, of course, the worker's utility U(p,x,t) would be a strictly increasing function of the wage-price p.  A 
given productivity function V:Y×T→  specifies the expected output value V(x,t) for a firm from a labor 
contract x with a worker of type t.  A given probability distribution μ in Δ(T) specifies the fraction μ(t)>0 of 
workers who have each type t in the general population.  Each worker must enter into exactly one labor 
contract.  (We could include the no-trade option as an x=0 contract with productivity 0 and utility 0 for all 
types.) 

Our simple concept of competitive equilibrium can be directly extended to such models.  Then a competitive 
equilibrium would be any pair (q,γ) such that q=(q(x))x∈Y is a price vector in Y, γ=(γ(x|t))x∈Y,t∈T is an 
allocation vector in Δ(Y)T, and the following conditions are satisfied: 

[0′]  ∑y∈Y γ(y|t) = 1  and  γ(x|t)≥0, ∀x∈Y, ∀t∈T; 

[1′]  ∑x∈Y γ(x|t) U(q(x),x,t) = maxx∈Y U(q(x),x,t), ∀t∈T; 

[2′]  ∑t∈T μ(t) γ(x|t) (V(x,t)−q(x)) = 0, ∀x∈Y;  and 

[3′]  ∀y∈Y, ∃t∈T such that  U(q(y),y,t) = maxx∈Y U(q(x),x,t)  and  q(y) ≥ V(y,t). 

Thus, for markets with adverse selection on the sellers' side, we can similarly require that [2′] competitive 
firms should expect to break even on any contract that attracts a positive fraction of the informed sellers, and 
that, [3′] even for an untraded contract, there should be at least one seller-type which would be willing to 
choose this contract but would not be profitable for the competitive firms at the given price.
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Moral hazard with constant risk tolerance, monetary effort cost, 2 actions. 
A risk-neutral principal is designing an incentive plan for a risk-averse agent. 
The agent must choose among two unobservable actions: aH and aL. 
Each action has a cost to the agent, c(aL) = cL < c(aH) = cH.  The agent could earn w0 elsewhere. 
Suppose the agent's utility from choosing action a and getting wage w would be  
u(w!c(a)) = !EXP(!(w!c(a))/T),  where T>0 is the agent's constant risk tolerance. 
[This model differs from standard textbook models in that effort cost here is monetary, subtracted 
from income before applying the utility function: u(w!c(a)) instead of u(w)!c(a).] 
The principal can only observe an outcome ỹ that is a random variable which depends on the agent's 
action according to the conditional probability distribution p(y*aH) or p(y*aL).  
Let Y denote the set of possible values of ỹ, which we assume here to be a finite set. 
The principal can promise the agent a wage w(y) that depends on the observable outcome. 
Suppose that the principal's expected payoff is much higher when the agent chooses aH. 
So the principal's problem is to design the wage-function w(C) to minimize the expected wage 
expense, subject to the constraints that the agent should not prefer the outside option w0 or the lower 
action aL: 
      Choose (w(y))y0Y to minimize  3y0Y p(y*aH) w(y)  subject to 
          3y0Y p(y*aH) u(w(y)!c(aH)) ≥ u(w0) (participation constraint: λ), 
          3y0Y p(y*aH) u(w(y)!c(aH)) ≥ 3y0Y p(y*aL) u(w(y)!c(aL)) (moral-hazard constraint: μ). 
 
The participation constraint must be binding, or else the principal could reduce all w(y). 
If the moral-hazard constraint were not binding, then the optimal solution would be w(y)=w0+cH for 
all outcomes y, but then the agent would prefer the lower-cost action aL (with c(aL)<c(aH)). 
So both constraints must be binding at the optimal solution.  Let λ and μ denote the Lagrange 
multipliers of the participation and moral-hazard constraints respectively.  The Lagrangean is 

L(w;λ,μ) =  3y p(y*aH) w(y) ! λ[3y p(y*aH) u(w(y)!cH) ! u(w0)]  
! μ[3y p(y*aH) u(w(y)!cH) ! 3y p(y*aL) u(w(y)!cL)]. 

The optimality conditions  0 = ∂L/∂w(y)  yield 
œy0Y:     0 = p(y*aH) ! (λ+μ) p(y*aH) uN(w(y)!cH) + μ p(y*aL) uN(w(y)!cL). 
With constant risk tolerance,  uN(w!c) = EXP(!(w!c)/T)/T = !u(w!c)/T. 
Thus, summing the optimality conditions over all y in Y, we get 
0 = 1 + (λ+μ) 3y p(y*aH) u(w(y)!cH)/T ! μ 3y p(y*aL) u(w(y)!cL)/T, 
which with the binding constraints yields  0 = 1 + (λ+μ) u(w0)/T ! μ u(w0)/T = 1 + λ u(w0)/T. 

So the participation constraint's Lagrange multiplier is  λ = 1/uN(w0) = !T/u(w0) = THEXP(w0/T).  
 
With constant risk tolerance T,  uN(w(y)!cL) = η uN(w(y)!cH),  where  η = EXP(!(cH!cL)/T). 

So the optimality conditions become  0 = 1 ! uN(w(y)!cH)[λ + μ ! μ η p(y*aL)/p(y*aH)],  œy0Y. 
Then the optimal wage w(y) can be determined from the equations: 
THEXP((w(y)!cH)/T) = 1/uN(w(y)!cH) = λ + μ ! μ η p(y*aL)/p(y*aH),  œy0Y. 
Thus, the optimal wage w(y) is monotone decreasing in the likelihood ratio  p(y*aL)/p(y*aH). 
With  μ # λ/(η maxy0Y p(y*aL)/p(y*aH) ! 1),  μ is determined by the requirement that the 
moral-hazard constraint must be satisfied as a binding equality. 
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Moral hazard with a linear wage rule, Normal risks, and constant risk tolerance. 
Suppose that a firm's net profits will be a random variable ỹ drawn from a Normal distribution with 
with a mean that depends on an agent's effort, but with a variance σ2 that is independent of effort. 
If the agent's effort is high (aH), then the agent's effort cost is cH and profit has mean  E(ỹ*aH) = mH. 
If the agent's effort is low (aL), then the agent's effort cost is cL and profit has mean  E(ỹ*aL) = mL. 
Suppose  mH > mL  and  cH > cL. 
Nobody else can observe the agent's effort, but his wage can depend on the observable profit ỹ.  
For now, let us assume that firm must specify the agent's wage as a linear function of observed 
profits, according to any linear formula  w(ỹ) = α+βỹ.   
(The likelihood-ratio result of the previous model suggests that such linear rules might be inferior to 
nonlinear rules.  But Holmstrom and Milgrom [1987] provided a fundamental reason why such linear 
rules would actually be optimal solutions to the moral hazard problem:  Suppose that Normally 
distributed returns accrue over some interval of time in a dynamic Brownian-motion process that has 
effort-dependent drift, and suppose that the agent can change his hidden effort at any point in time 
depending on the current state and past history of the observable Brownian process.) 
Suppose that the agent has a constant risk tolerance T, but the owners of the firm are risk neutral, 
which means that they have linear utility for money or infinite risk tolerance. 
The agent's best outside option is to earn w0 elsewhere with zero effort costs. 
What linear wage rule (α,β) is best for the firm if the firm wants the agent to choose high effort? 

Under an (α,β) linear wage rule, the agent's net certainty equivalent with high effort is 
E(α+βỹ*aH) ! (0.5'T)Var(α+βỹ*aH) ! cH = α + βmH ! (0.5'T)(βσ)2 ! cH. 
By choosing his outside option, the agent could instead get certainty equivalent w0. 
With low effort, the agent could get the certainty equivalent  α+βmL!(0.5'T)(βσ)2!cL. 
So for the agent to want to work here and exert high effort, (α,β) must satisfy the  
participation constraint  α + βmH ! (0.5'T)(βσ)2 ! cH $ w0,  and the  
moral-hazard incentive constraint  α+βmH!(0.5'T)(βσ)2!cH $ α+βmL!(0.5'T)(βσ)2!cL. 
These constraints imply α + βmH $ w0 + cH + (0.5'T)(βσ)2  and  β $ (cH!cL)'(mH!mL). 
The risk-neutral owners of the firm want to minimize their expected wage bill  α+βmL. 
So the optimal linear rule should choose α (given any β) to make the participation constraint bind, 
and should choose β as small as possible to make the moral-hazard constraint bind.   
That is, the optimal rule is  β = (cH!cL)'(mH!mL) and  α = w0 + cH + (0.5'T)(βσ)2 ! βmH. 
The firm's minimal expected wage bill is  w0 + cH + (0.5'T)(βσ)2,  and the owner's expected net 
profit is thus  mH ! w0 ! cH ! (0.5'T)(βσ)2. 

Given that the agent is risk averse and the owners are risk neutral, the optimal sharing rule without 
moral hazard would have β=0 (and so α=w0+cH), if the agent could be forced to choose high effort. 
So moral hazard provides a fundamental reason why risk-averse agents cannot insure away their 
professional risks: because their share of such risks is essential to motivate their efforts. 
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Credit rationing in a binary moral-hazard model with limited liablity (Stiglitz-Weiss). 

An agent can undertake a project which requires an amount I to be invested this period. 
Next period, the project will return the amount RI if it succeeds, or 0 if it fails. 
The agent must borrow the amount I but can offer collateral worth C for the loan. 
If the agent manages the investment well, then its probability of success will be pH. 
But the agent could act badly, divert an amount γI, and reduce the probability of success to pL. 
This reduction in the probability of success is the only observable consequence of such malfeasance. 
The agent is risk neutral but has limited liability in the sense that he cannot lose more than C. 
Let w0 denote the agent's alternative wage next period if he does not manage this project, 
Let ρ denote the market rate of interest per period for risk free investments elsewhere. 
Suppose that  pHR > 1+ρ > pLR + γ,  so that the project could be worthwhile for risk-neutral investors 
if the agent manages it well, but not if he acts badly. 

If the agent is charged an interest rate r to borrow I, then the agent will get the surplus  (R!(1+r))I  if 
the project is a success, but he will default and lose the collateral C if the project fails. 
Including the value of defaulted collateral, the investors' expected return is  pH(1+r)I + (1!pH)C. 
Per unit invested, the investors' expected rate of return is  pH(1+r) + (1!pH)C/I. 
The agent's participation constraint is  pH(R!(1+r))I ! (1!pH)C ≥ w0. 
The agent's participation constraint implies an upper bound on the investors' rate of return:   
pHR ! w0/I ≥ pH(1+r) + (1!pH)C/I. 
The moral-hazard constraint to deter agential malfeasance is 
pH(R!(1+r))I ! (1!pH)C ≥ γI + pL(R!(1+r))I ! (1!pL)C. 
The moral-hazard constraint yields a lower bound on an agent's stake   C + (R!(1+r))I ≥ γI/(pH!pL), 
and also an upper bound on investors' returns:  C/I + pHR ! pHγ/(pH!pL) ≥ pH(1+r) + (1!pH)C/I. 

Suppose that C and w0 are small so that  C + w0 < pHγI/(pH!pL).   [poor agent case] 
This poor-agent condition implies that  C/I + pHR ! pHγ/(pH!pL) < pHR ! w0/I. 
Then the upper bound on investors' rate of return is determined by the moral-hazard constraint:   
pH(1+r) + (1!pH)C/I ≤ C/I + pHR ! pHγ/(pH!pL). 
The maximal interest rate r* that can avoid moral hazard is  1+ r* = R + C/I ! γ/(pH!pL). 
Suppose also that R satisfies  R ≥ (1+ρ)/pH + γ/(pH!pL) ! C/(pHI). 
Then the investors are willing to lend at this rate r*, because 
pH(1+r*)I + (1!pH)C = pH[R + C/I ! γ/(pH!pL)]I + (1!pH)C ≥ (1+ρ)I. 
Even at this maximal interest rate, however, the agent's expected gain is strictly positive: 
pH(R!(1+r*))I ! (1!pH)C ! w0 = pHγ/(pH!pL) ! C ! w0 > 0. 
The quantity pHγ/(pH!pL)  here may be called the expected moral-hazard rent that the agent must be 
allowed in this financial transaction, to deter his malfeasance. 

Now suppose that there are many such agents, but only a limited supply of funds from investors who 
understand these projects well enough to enter into such financial deals. 
Then the interest rate for such loans can rise only to the maximal rate r*. 
If the demand from agents at this rate exceeds the supply of funds, there must be credit rationing. 

If the agent also discounts future payoffs by the discount factor δ=1/(1+ρ) per period, then the agent's 
participation and moral hazard constraints become (in second-period values): 
pH(R!(1+r))I ! (1!pH)C ≥ w0/δ, 
pH(R!(1+r))I ! (1!pH)C ≥ γI/δ + pL(R!(1+r))I ! (1!pL)C. 
Then the resulting bounds on the investors' expected rate of return become: 
min{pHR ! w0/(δI), pHR + C/I ! pHγ/(δ(pH!pL))} ≥ pH(1+r) + (1!pH)C/I. 
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Long-term agency relationships and back-loaded moral hazard rents  
Let us consider a model similar to the credit-rationing model, but now the projects are producing 
some special output.  Many competitive firms are able to produce this output, but they must hire 
agents to manage the production projects.  The size of a production project can be measured in terms 
of the value of the inputs I that are given to the agent for the project. When an agent is given inputs 
worth I (say, measured in dollars) to manage in one period, then next period the agent will produce 
either AI units of output (say, measured in lbs) if the project succeeds, or else output will be if the 
project fails.  (Here A is a constant measured in lbs of output per dollar of input.)  Let pH denote the 
probability of success if the manager acts appropriately, but the manager could instead divert a 
fraction γ of the invest funds and reduce the probability of success to pL.  Here  pL < pH. 

We assume here that  γ < (pH/pL + pL/pH − 2),  a condition which will guarantee that competitive 
firms cannot expect to profit from employing agents who divert the γ fraction of inputs. 

The inputs I that one individual agent can manage in any one period can be any amount in some wide 
interval, from some lower bound I to some upper bound Ī.  We assume that this range of feasible 
project sizes is quite wide (so that the ratio Ī/I  is large), but agents' alternative wages and collateral 
are negligible relative to even the minimal size I of these projects (so that, in the notation of the 
previous credit-rationing model, we can let  w0 = 0  and  C = 0). 

An agent's career can span T periods, after which the agent will retire.  We assume that agents and 
investors are risk-neutral and discount future income at some per-period discount factor δ. 

Let π denote the price per unit of the outputs produced by these projects.  When it is profitable for 
firms to hire agents to manage such production projects, then many competitive firms should be 
expected to do so, driving down the price of the good which is the output of these projects.  So let us 
ask, what is the lowest output price π at which hiring agents under an optimal incentive contract can 
be just barely profitable for competitive firms. 
Assuming limited liability for the agents, the terms of an agent's contract in any period must specify  
(I,uS,uF),  where I≥0 is the value of inputs to be managed by the agent this period, and next period the 
expected value of the agent's future compensation will be uS if this project succeeds, or uF if this 
project fails.  For the agent to manage the plan appropriately, the plan must satisfy 
the moral-hazard constraint is  pHδuS + (1!pH)δuF $ γI + pLδuS + (1!pL)δuF,  
and the limited-liability and investment-bound constraints are  uS $ 0,  uF $ 0,  I # I # Ī. 
(Here the agent's participation constraint  pHδuS+(1!pH)δuF ≥ 0  is trivially satisfied.) 
The moral-hazard constraint here implies  uS ≥ uF + γI/(δ(pH−pL)). 
In one period, the firm can minimize the cost per unit of output by choosing  uF = 0  and 
uS = γI/(δ(pH−pL)).  Under this one-period production plan, the expected present-discounted value of 
revenue from outputs next period would be δpHπAI, and the expected present-discounted value of 
costs would be  I + δpHγI/(δ(pH−pL)) = I + pHγI/(pH−pL). 
So this one-period production plan would be profitable at an output price π above 
π1 = (I+pHγI/(pH−pL))/(δpHAI) = (1/pH + γ/(pH−pL))/(δA). 

If the agent were not promised large rewards worth γI/(δ(pH−pL)) for success, he would divert a γ 
fraction of the inputs to his own current consumption have have only pL probability of success; but 
such an alternative would not be worthwhile at any price less than 1/(δApL).  So to ensure that 
competitive firms will pay to satisfy the moral-hazard constraint, we need the inequality 
1/(δApL) > (1/pH + γ/(pH−pL))/(δA),  which is equivalent to our parametric assumption 
γ < (pH/pL + pL/pH − 2). 
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The rewards for the agent in this one-period have an expected present-discounted value of  
δpHuS = pHγI/(pH−pL), which is the expected moral-hazard rent that the agent gets from the power 
that his job gives him over the input resources I.  This moral-hazard rent is not needed to make the 
agent want to take this job (as we assumed that any positive compensation would satisfy the 
participation constraint); it is only needed to deter the agent from abusing the power of this job.  So 
the opportunity to have such a job with its moral-hazard rent can itself be a reward that an agent 
should value.  This fact implies that a firm should be able to reduce its expected costs per unit of 
revenue further by employing agents with a multi-period incentive contract where an agent in one 
period can be motivated by the prospect of managing larger projects in later periods if he can succeed 
in the current project.  

For example, consider extending the one-period contract above to a two-period contract as follows.  
Let I1 denote the value of inputs that the agent manages in his first period.  If the project succeeds, 
instead of simply paying the agent  uS = γI1/(pH−pL)  in cash, the firm could instead give the agent an 
opportunity to manage a larger project with input I2 such that the expected moral-hazard rent 
pHγI2/(pH−pL) is just equal to the promised value uS.  That is, I2 should satisfy  
pHγI2/(pH−pL) = γI1/(δ(pH−pL)),  which holds when 
  I2 = I1/(δpH). 
Under this two-period incentive plan, the agent will be paid γI2/(δ(pH−pL)) in period 3 only if the 
agent's first and second projects both succeed; otherwise he gets no compensation; and the second 
project with inputs I2 is implemented only if the first project with inputs I1 is a success.  So from the 
perspective of period 1, the expected present-discounted value of revenues is  
  πδpHAI1 + π(δpH)2AI2 = 2πδpHAI1 
and the expected discounted value of costs is 
  I1 + δpHI2 + (δpH)2γI2/(δ(pH−pL)) = 2I1 + pHγI1/(pH−pL). 
Thus the two-period incentive contract would yield positive expected profits for the firm at any 
output-price greater than  π2 = [1/pH + (1/2) γ/(pH−pL)]/(δA). 

More generally, a firm can operate profitably at even lower output prices with a T-period incentive 
contract as follows.  In the first period of an agent's career, the agent is entrusted with the minimum 
feasible amount of inputs I1 = I.  At any later period t in {2,...,T}, if the agent's past projects were all 
successful then the agent will be entrusted with inputs worth  
  It = I/(δpH)t−1. 
If the agent ever has an unsuccessful project then he will be dismissed without any further 
compensation, but if all his projects succeed then, in period T+1 he will retire with payment 
  wT+1 = γIT/(δ(pH−pL)) = pHγI/((δpH)T (pH−pL)). 
At each period t, these equations yield 
  pHγIt/(pH−pL) = wT+1(δpH)T+1−t. 
So under this plan, the moral hazard rents for all responsibilities over the agent's entire career are 
back-loaded to one big payment at the end of his career, conditional on good performance throughout 
the agent's career.  For this plan to be feasible, we must assume that the range of feasible project sizes 
is wide enough that  
  Ī ≥ I/(δpH)T−1. 
With this T-period plan, the expected period-1 discounted value of the firm's revenues is  
  ∑t∈{1,...,T} π(δpH)tAIt = TπδpHAI 
and the expected discounted value of the firm's costs is 
  ∑t∈{1,...,T} (δpH)t−1It + (δpH)TwT+1  = TI + pHγI/(pH−pL). 
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So this plan (with moral-hazard rents paid only at period T+1 and then only if the agent has had a 
consistently good record over T periods) can be profitable at any output price greater than 
  π* = [1/pH + (1/T) γ/(pH−pL)]/(δA). 
Optimality of this production plan can be verified by Lagrangean analysis.  The simplest way to do 
this is to decompose the T-period contract-design problem into T one-period problems as follows.  At 
any period t in {1,...,T}, given the expected (long-run) reward vt that has been promised to the age 
under the contract in the previous period, the firm wants to choose this period's terms of employment 
(It, uS,t, uF,t) so as to 
          maximize  (δpHπt+1A!1)It ! δλt+1[pHuS,t + (1!pH)uF,t] (net profit)   
          subject to  δpHuS,t + δ(1!pH)uF,t $ vt (promise-keeping, λt)   
          δpHuS,t + δ(1!pH)uF,t ! [γIt + δpLuS,t + δ(1!pL)uF,t] $ 0 (moral hazard, μt)   
          uS,t $ 0,  uF,t $ 0.  (limited liability)   

Here λt+1 is the expected discounted cost (in terms of dollars at period t+1) of promising the agent a 
reward worth u at period t+1.  The price of output at period t+1 is denoted here by πt+1.  The 
promised reward vt at any period t would be previous period's uS,t−1 or uF,t−1, depending on whether 
the previous project was a success or failure.  At the final employment period t=T, we must have  
λT+1=1,  because the reward will have to be paid in cash at period T+1.  At any earlier period t, λt+1 
should be equal to the Lagrange multiplier of the promise-keeping constraint, which we call λt in our 
analysis of the period-t problem.  With μt denoting the Lagrange multiplier of the moral-hazard 
constraint, Lagrangean analysis can verify the optimality of a solution with It strictly between its 
upper and lower bounds and with uS,t>0.  The Lagrangean optimality conditions (below) imply 
 μt = (δpHπt+1A − 1)/γ   (so that  ∂L/∂It = 0),  and  
 λt = λt+1 − μt(pH−pL)/pH = λt+1 − (δpHπt+1A−1)(pH−pL)/(γpH)  (so that  ∂L/∂uS,t = 0). 
With these multipliers, we get  ∂L/∂uF,t = δ(λt−λt+1) < 0, so that the optimal solution has uF,t=0, and 
both constraints are satisfied as equalities with the solution  uS,t = vt/(δpH)  and  It = vt(pH−pL)/(γpH). 

But there is one difficulty with this solution, as the firm starts at period 1 with no contractual 
obligation to the agent, so that v1=0.  In any contract that involves positive production, the 
requirement of positive expected moral-hazard rents implies that the promise-keeping constraint at 
period 1 must be satisfied as a strict inequality with positive slack.  For such a contract to be optimal, 
the Lagrange multiplier at period 1 must be zero.  With the above recursive formula for λt, λ1=0 and 
λT+1=1  together imply 
  1 − ∑t∈{1,...,T} (δpHπt+1A−1)(pH−pL)/(γpH) = 0. 

This equation is satisfied when all πt+1 are equal to the price π* that we found above.  In fact, it is 
satisfied whenever the average of the πt+1 prices is π* 
  ∑t∈{1,...,T} πt+1/T = π* 
With this π*-average price of output, our T-period plan satisfies all the Lagrangean conditions for 
optimality, provided also that each  πt+1 ≥ 1/(δpHA),  so that our solution has μt≥0. 

Under this T-period plan with all motivating wages back-loaded to retirement after a completely 
successful career, the responsibilities of a successful agent It=I/(δpH)t−1increase by a factor 1/(δpH) 
every period.  That is It+1/It = 1/(δpH).  In a large economy, however, there may be many thousands 
of young agents in the new cohort that starts their career in any period, and we assume that each has a 
risk of failure that is independent of all the others.  So among those agents in the original cohort who 
have not had any failure before period t in their careers, a fraction pH should be expected to continue 
their successful careers through the next period t+1, while the others will fail and get no future 
responsibilities.  So if we let Jt denote the aggregate investment managed by all agents in this cohort 
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in period t of their careers, then Jt+1/Jt = pHIt+1/It = 1/δ.  That is, if some very large number Ω of 
agents in the cohort begin managing I in the first period of their careers, then (by the law of large 
numbers) at any period t in their careers the cohort should be managing a total amount  
  Jt = (pH)t−1ΩIt = (pH)t−1ΩI/(δpH)t−1 = ΩI/δt−1 = J1/δt−1. 
Let  W = ΩwT+1pH

T  denote the expected total wages that will be paid to successful members of this 
cohort when they retire.  (There is no aggregate uncertainty about this amount, as the cohort consists 
of many agents with independent failure risks.)  Then at each period t, we have  
 pHγJt/(pH−pL) = pHγ(pH)t−1ΩIt/(pH−pL) = (pH)t−1ΩwT+1(δpH)T+1−t = WδT+1−t. 
That is, the expected moral-hazard rents that are associated with the investments managed by the 
cohort at the t'th period of their careers are just equal to the current discounted value of the cohort's 
expected end-of-career rewards.  

Now suppose that there are many competitive firms that are capable of hiring agents to produce this 
output under such T-period contracts.  Then we may expect them to hire agents and increase 
production until the equilibrium price of output falls to π*, or to some fluctuating sequence of prices 
that will average to π* over any agent's career.   

With the output price π*, each firm just expects to break even on its T-period relationship with any 
agent.  So at any point in time after the revenues from the first-period project have been realized, the 
firm's expected discounted value of net profits from future revenues and costs under the contract will 
be strictly negative.  Thus, for any mid-career agent with a successful past record, there may be a 
temptation for the owners of the firm to falsely find fault with the agent's performance, so that he can 
be dismissed and replaced by a younger agent.  So the π* equilibrium here depends on the 
assumption that there exist two or more competitive firms which can make a credible commitment to 
pay back-loaded moral-hazard rents.  In this economy, a firm's reputation for reliably judging and 
rewarding its responsible agents is an essential asset, without which the firm could not do business.  
More broadly, the productivity of this economy depends substantially on the social and legal 
structures that enable firms to commit to judging and rewarding their agents appropriately under 
long-term contracts.  
 
Lagrangean analysis of the recursive problem at period t: 
 L(It, uS,t, uF,t; λt, μt) = (δpHπt+1A!1)It ! δλt+1[pHuS,t + (1!pH)uF,t] 
        + λt [δpHuS,t + δ(1!pH)uF,t − vt] 
        + μt [δpHδuS,t + δ(1!pH)uF,t ! (γIt + δpLuS,t + δ(1!pL)uF,t)] 

Optimality conditions for a solution with I < It < Ī,  uS,t > 0,  uF,t = 0: 
 λt ≥ 0  and  δpHuS,t + δ(1!pH)uF,t − vt ≥ 0, with at least one equality; 
 μt ≥ 0  and  pHuS,t + (1!pH)uF,t ! (γIt + pLuS,t + (1!pL)uF,t) ≥ 0, with at least one equality; 
 0 = ∂L/∂It = (δpHπt+1A!1) − μtγ, 
 0 = ∂L/∂uS,t = −λt+1δpH + λtδpH + μtδ(pH−pL), 
 0 ≥ ∂L/∂uF,t = −λt+1δ(1−pH) + λtδ(1−pH) − μtδ(pH−pL). 
The third condition implies  μt = (δpHπt+1A!1)/γ. 
The fourth condition implies  λt = λt+1 − μt(pH−pL)/pH  and 
∂L/∂uF,t = −λt+1δ(1−pH) + λtδ(1−pH) − (λt+1−λt)pHδ = δ(λt−λt+1). 
 


