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Basic Facts about Risk Aversion

Consider an individual with a twice-continuously-differentiable utility function u(C).  

Suppose this individual has wealth x plus a gamble that will pay a small random amount g,

such that  E(g) = 0.

Let * be the maximum that he would pay to insure against this gamble.  So  u(x!*) = E(u(x+g)).

Assuming that all possible values of g are near 0, Taylor series approximations yield

u(x) ! * uN(x) . E[u(x) + uN(x) g + uNN(x) g '2] = u(x) + uNN(x) Var(g)'2.2

and then  * . ![uNN(x)'uN(x)] Var(g)'2.

Fact. There must exist some x  and x  in the (small) interval of possible values of x+g such that 1  2

u(x) ! *uN(x ) = u(x ! *) = Eu(x+g) = u(x) + 0.5 uNN(x ) Var(g),1            2

so  * = !0.5 Var(g) uNN(x )'uN(x ),  where x  and x  are close to x when the range of g is small.2 1    2  1

The individual's Arrow-Pratt risk-aversion index at wealth x is  r(x) = !uNN(x)'uN(x).

So we find that the individual's value for a small zero-expected-value gamble is approximately half

of the variance of the gamble times the individual's risk-aversion index.

Notice that this risk-aversion index r(x) would not change if we changed how i's utility is measured

to some other equivalent scale u(x) = Au(x)+B where A>0 and B are constants.ˆ

The reciprocal of the risk aversion index  J(x) = 1'r(x)  is called the risk tolerance index, 

which has the advantage of being measured in the same units as money (dollars).

An individual whose risk aversion is constant, independent of his given wealth x, must have a utility

function that satisfies the differential equation  !uNN(x)'uN(x) = R,  for some constant R.

This differential equation is equivalent to   d[LN(uN(x))]'dx = !R.

For R>0, the solutions to this differential equation with uN>0 are  u(x) = B!Ae , !Rx

where A>0 and B are arbitary scale constants.

An individual whose risk tolerance is proportional to his wealth would have  r(x) = "'x  with ">0,

so  u(x) = B+Ax '(1!"),  or  u(x) = B+A LN(x)  if "=1.1!"

Suppose an individual with constant risk aversion R (u(x) = !e ) will get a random income Y!Rx

drawn from a Normal distribution with mean µ and standard deviation F.

The certainty equivalent (CE) of this lottery Y for this individual is the sure amount of money W

that individual would be willing to accept instead of this lottery Y.

Thus, the certainty equivalent W satisfies the equation  u(W) = E(u(Y)).

Fact:  Suppose u(C) is a utility function with constant risk aversion, Y  and Y  are independent
1  2

random variables, and u(W ) = E(u(Y )) for each i in {1,2}.  Then  u(W +W ) = E(u(Y +Y )).i            1 2i            1 2

Fact:  For an individual with constant risk aversion R (risk tolerance J=1'R), a Normal lottery with

mean µ and standard deviation F has certainty equivalent  W = µ ! 0.5RF  = µ ! 0.5(F'J)F.2

That is,  .  (Proof: use .)

(This can also be derived from the local approximation formula using the fact that a Normal random

variable can be written as the limit of sums of many small independent random variables.)
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Efficient Risk Sharing in a Syndicate

Let N denote the set of members of an investment partnership or syndicate.

They hold assets which will yield random returns Y that have some given probability distribution.

Each individual i in N has a given utility function for money u (C).i

Let x (y) denote the individual i's planned payoff when the syndicate earns Y=y.i

To be feasible, we must have  3  x (y) = y,  œy0ú.i0N i

Let us consider an efficient allocation rule (x (C))   that maximizes 3  8  E(u (x (Y))),i i0N    i0N i i i

subject to this feasibility constraint, for some given positive utility weights (8 ) .i i0N

To simplify the characterization of the efficient rule, we assume all appropriate differentiability.

For each outcome y, the marginal weighted utility 8 u N(x (y)) must be equal across all i in N.i i i

That is, there must exist some function <(y) such that  8  u N(x (y)) = <(y),  œi0N,  œy0ú (1).i i i

Differentiating with respect to y, we get   8  u NN(x (y)) Mx 'My = <N(y) (2).i i i  i

Equation (1) implies  8  = <(y)'u N(x (y)).i  i i

Substituting this into (2), we get  [u NN(x (y))'u N(x (y))] Mx 'My = <N(y)'<(y).i i i i  i

The bracketted term here is just the Arrow-Pratt index of risk aversion times !1.

Let J (x ) denote the reciprocal of the Arrow-Pratt risk-aversion index, which is the risk tolerance ofi i

individual i when i gets payoff x (y).  That is  J (x ) = !u N(x )'u NN(x ).i      i i   i i i i

Then we get  Mx 'My = !(<N(y)'<(y)) J (x ).i    i i

This derivative Mx 'My is i's marginal share of the variable risks held by the syndicate.i

Feasibility implies  1 = 3  Mx 'My = !(<N(y)'<(y)) 3  J (x (y)).j0N j    j0N j j

Thus, we get  Mx 'My = J (x (y))'[3  J (x (y))]. (3)i   i i j0N j j

That is, individual i's share of the syndicate's risks should be proportional to i's risk tolerance.

Constant absolute risk aversion.  Suppose that each individual i has utility function  u (w) = !ei
!w'T(i)

for some given parameter T(i).  Then  u N(w) = (e )'T(i),  uNN(w) = !(e )'(T(i)) .i
!w'T(i)     !w'T(i) 2

So  T(i) = !u N(w)'u NN(w)  is i's constant risk tolerance.i i

Let  T* = 3  T(j).  Let  u*(y) = !e   be a utility function with constant risk tolerance T*.j0N
!y'T*

So in an efficient sharing rule:  Mx 'My = T(i)'3  T(j) = T(i)'T*,  œy, i   j0N

and so   x (y) = x (0) + y T(i)'3  T(j) = x (0) + y T(i)'T*.i   i    j0N   i

By (1),   <(y) = 8 u N(x (y)) = [8 e 'T(i)]e .  (The factor in [] is independent of y and i.)i i i   i
!xi(0)/T(i) !y'T*

With this efficient sharing rule, each individual i gets the expected utility

E[u (x (Y))] = E[!e ] = !u (x (0)) E[u*(Y)].i i       i i
!(xi(0) + T(i)'T*)'T(i)Y

Let W  and W* be certainty equivalents satisfying  u (W ) = Eu (x (Y))  and  u*(W*) = Eu*(Y).i        i i   i i

With exponential utilities,  u (W ) = !u (x (0)) u*(W*)  implies  W  = x (0) + (T(i)'T*)W*.i i   i i      i  i

So individuals who have constant risk tolerance should share risks linearly in proportion to their risk

tolerances, and each wants their syndicate to evaluate risks according to a collective utility function

u* that has a constant risk tolerance equal to the sum of their individual risk tolerances.
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If all individuals have the same utility function with proportional risk tolerance  u (x) = x '(1!")i
1!"

with ">0 (or u (x) = LN(x) for "=1) then (1) implies  8  (x (y))  = <(y)  and so  x (y) = 8  <(y) .i          i i        i   i
!"         1/" !1/"

Then  y = 3  x (y) = <(y)  3  (8 ) ,   so  <(y)  = y'[3  (8 ) ]  and  <(y) = [3  (8 ) ]  y  .j j    j j        j j       j j
!1/"  1/"      !1/"   1/"        1/" " !"

So each i must get a constant fraction of the total y:  x (y) = k  y,  where  k  = (8 ) '[3  (8 ) ].i   i     i  i j j
1/"  1/"

Implementation with a price system

Suppose that Y has finitely many possible values y, each with some probability p(y).

The marginal utility equation (1)  8  u N(x (y)) = <(y),  œi0N,  œy0ú,  i i i

implies that the efficient allocation can be implemented by a price system, 

in which each partner i has a budget I  to spend on acquiring claims on income in each state of thei

total returns Y, and B(y) is the price of one unit of income when Y=y.

In such a price system, i would choose the quantities x (y) for all possible y to maximizei

3  p(y)u (x (y))  subject to  3  B(y)x (y) # I .y i i      y i   i

Let µ  be the Lagrange multiplier of i's budget constraint (i's marginal utility of budgeted funds).i

At an optimal solution, we have  p(y)u N(x (y)) = µ B(y),  œi,  œy.i i   i

This coincides with the efficient marginal utility equation (1) iff  

u N(x (y)) = µ B(y)'p(y)= <(y)'8 ,  œi œy.  i i   i  i

Thus  µ 8  = p(y)<(y)'B(y)  must be some constant A that does not depend on i or y.i i

That is  B(y) = p(y)<(y)'A.

This price system allows a risk-free rate of return on budgeted funds  1+D = 1'[3  B(y)]y

So in terms of the risk-free rate D, we must have  (1+D)[3  p(y)<(y)] = A,y

and so  B(y) = p(y)<(y)'[(1+D) 3  p(z)<(z)]  œy.z

The price of future income from returns y depends both on the probability p(y) and on <(y). 

<(y) measures the marginal social utility of future returns y, and it is generally decreasing in y,

because it is the Lagrange multiplier of the total-returns constraint in the problem:

choose  (x )   to maximize  3  8 u (x )  subject to  3  x  # y.i i0N     i i i i      i i

References:  Robert Wilson, Econometrica (1968); Karl Borch, Econometrica (1962).
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Optimal risk sharing among partners with constant risk tolerance

Consider a group of individuals who have formed a partnership to share the risky profits from some
joint venture or gamble  Suppose each individual j in this group has a constant risk tolerance,
denoted by J .  Let T  denote the sum of all the partners' risk tolerances (T  = 3  J ).j    o          o  j j

These partners can maximize the sum of their certainty equivalents by sharing the risky
profits among themselves in proportion to their risk tolerances, with each individual j taking the
fractional share J 'T  of the risky profits.  The maximal sum of the partners' certainty equivalentsj o
that can be achieved by such efficient risk sharing is equal to the certainty equivalent of the whole
gamble to an individual who has a constant risk tolerance equal to T , the sum of these partners' risko
tolerances.  Thus, in making decisions about risky investments, the partnership should act as a
corporate person with a risk tolerance equal to the sum of its members' risk tolerances.

(Coase theorem)  If the partners were planning to share risks according to a sharing rule that
does not maximize the sum of the partners' certainty equivalents, then any partner j could propose
another sharing rule rule that would increase j's own certainty equivalent and would not decrease the
certainty equivalents of any other partners. 

Risk-sharing example.  Consider a financial asset yielding a return Y that is drawn from a Normal˜

distribution with mean  µ = $35000,  F = $25000.  Investor 1 has risk tolerance T  = 20000, and1
investor 2 has risk tolerance T  = $30000.2
When 1 owns the whole  asset, his certainty equivalent is
CE (Y) = 35000!(0.5'20000)*25000  = 35000!15625 = $19375.1

˜   2

If 2 owned the whole asset, her certainty equivalent would be
CE (Y) = 35000!(0.5'30000)*25000  = 35000!10417 = $245832

˜   2

So if 1 sold the asset to 2 for price x then they would get  CE (x) = x,  CE (Y!x) = $24583 ! x.  1     2
˜

The transaction makes both better off if  19375 # x # 24583.
In this range, x=24583 would be best for investor 1.
Now consider the possibility that 1 could sell a 50% share to 2 for some price x.  Then they get 
CE (0.50Y+x) = 0.50*35000 + x ! (0.5'20000)*(0.50*25000)  = 17500+x ! 3906 = $13594 + x,1

˜       2

CE (0.50Y!x) = 0.50*35000 ! (0.5'30000)*(0.50*25000)  =  17500 ! x ! 2604 = $14896 ! x.2
˜     2

This transaction makes both better off if  19375!13594 = 5781 # x # 14896.
The sum of their certainty equivalents is 13594+14896 = $28490
which is higher than either could get from the asset alone.
When the price x is 14896, investor 1 gets all of this certainty equivalent value.
In general, if 1 sells a share 2 to investor 2 for a price x, their certainty equivalents are
CE ((1!2)Y+x) = (1!2)*35000 + x ! (0.5'20000)*[(1!2)*25000]1

˜       2

CE (2Y!x) = 2*35000 ! x ! (0.5'30000)*(2*25000)  2
˜       2

The sum of these is maximal when  (1!2) 'T  + 2 'T   is minimized, at  2 = T '(T +T ) = 0.6.2   2
1  2        2 1 2

When 1 sells the optimal 60% share to investor 2 for a price x, they get
CE (0.40*Y+x) = 0.40*35000 + x ! (0.5'20000)*(0.40*25000)  = 1

˜       2

= 14000 + x ! 2500 = $11500 + x,
CE (0.60*Y!x) = 0.60*35000 ! (0.5'30000)*(0.60*25000)  = 2

˜     2

= 21000 ! x ! 3750 = $17250 ! x.
This transaction makes both better off if  19375!11500 = 7875 # x # 17250.
The maximized sum of their certainty equivalents is 11500+17250 = $28750.
When the price x is 17250, investor 1 gets this maximal certainty-equivalent value.

For a fictitious corporate person with risk tolerance T   = T +T  = 50000, the asset Y would beo   1 2
˜

worth  CE (Y) = 35000!(0.5'50000)*25000  = 35000!6250 = $28750.o
˜   2
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Moral hazard with a linear wage rule, Normal risks, and constant risk tolerance.

Suppose that a firm's net profits will be a random variable y drawn from a Normal distribution with

a variance F  but with a mean that depends on the effort of an agent.2

If the agent's effort is high, then the agent's effort cost is c  and profit has mean  E(y*c ) = m .H      H   H

If the agent's effort is low, then the agent's effort cost is c  and profit has mean  E(y*c ) = m .L      L   L

Suppose  m  > m   and  c  > c .H  L    H  L

Nobody else can observe the agent's effort, but his wage can depend on the observable profit y.  For

now, let us assume that firm must specify the agent's wage as a linear function of observed profits,

according to any linear formula  w(y) = "+$y.  

(This assumption is questionable.  We will see soon that the firm might prefer a nonlinear formula.

But let's start with this linearity assumption because linearity makes things simpler.)

Suppose that the agent has a constant risk tolerance T, but the owners of the firm are risk neutral

(meaning that they have linear utility for money or infinite risk tolerance).

The agent's best outside option is to earn w elsewhere with zero effort costs.G

What linear wage rule (",$) is best for the firm if the firm wants the agent to choose high effort?

Under an (",$) linear wage rule, the agent's net certainty equivalent with high effort is

E("+$y*c ) ! (0.5'T)Var("+$y*c ) ! c = " + $m  ! (0.5'T)($F)  ! c .H   H   H    H    H
2

By choosing his outside option, the agent could instead get certainty equivalent w.G

With low effort, the agent could get the certainty equivalent  "+$m !(0.5'T)($F) !c .L L
2

So for the agent to want to work here and exert high effort, (",$) must satisfy the 

participation constraint  " + $m  ! (0.5'T)($F)  ! c  $ w,  and the H    H
2    G

moral-hazard incentive constraint  "+$m !(0.5'T)($F) !c  $ "+$m !(0.5'T)($F) !c .H H  L L
2   2

These constraints imply " + $m  $ w + c  + (0.5'T)($F)   and  $ $ (c !c )'(m !m ).H    H        H L H L
G     2

The risk-neutral owners of the firm want to minimize their expected wage bill  "+$m .L

So the optimal linear rule should choose " (given any $) to make the participation constraint bind,

and should choose $ as small as possible to make the moral-hazard constraint bind.  

That is, the optimal rule is  $ = (c !c )'(m !m ) and  " = w + c  + (0.5'T)($F)  ! $m .H L H L        H    H
G     2

The firm's minimal expected wage bill is  w + c  + (0.5'T)($F) ,  and the owner's expected netG     2
H

profit is thus  m  ! w ! c  ! (0.5'T)($F) .H    H
G     2

Given that the agent is risk averse and the owners are risk neutral, the optimal sharing rule without

moral hazard would have $=0 (and so "=w+c ), if the agent could be forced to choose high effort.G
H

So moral hazard provides a fundamental reason why risk-averse agents cannot insure away their

professional risks: because their share of such risks is essential to motivate their efforts.
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Moral Hazard with constant risk tolerance, monetary effort cost, 2 actions.

A risk-neutral principal is designing an incentive plan for a risk-averse agent.

The agent must choose among two unobservable actions: a  and a .H  L

Each action has a cost to the agent, c(a ) = c  < c(a ) = c .  The agent could earn w elsewhere.L   L  H   H
G

Suppose the agent's utility from choosing action a and getting wage w would be 

u(w!c(a)) = !EXP(!(w!c(a))'T),  where T>0 is the agent's constant risk tolerance.

[This model differs from standard textbook models in that effort cost here is monetary, subtracted

from income before applying the utility function: u(w!c(a)) instead of u(w)!c(a).]

The principal can only observe an outcome y that is a random variable which depends on the agent's

action according to the conditional probability distribution p(y*a ) or p(y*a ). H   L

Let Y denote the set of possible values of y, which we assume here to be a finite set.

The principal can promise the agent a wage w(y) that depends on the observable outcome.

Suppose that the principal's expected payoff is much higher when the agent chooses a .H

So the principal's problem is to design the wage-function w(C) to minimize the expected wage

expense, subject to the constraints that the agent should not prefer the outside option w or the lowerG

action a :L

      Choose (w(y))  to minimize  3  p(y*a ) w(y)  subject toy0Y    y0Y H

          3  p(y*a ) u(w(y)!c(a )) $ u(w ) (participation constraint: 8),y0Y H  H   o

          3  p(y*a ) u(w(y)!c(a )) $ 3  p(y*a ) u(w(y)!c(a )) (moral-hazard constraint: µ).y0Y H  H   y0Y L  L

The participation constraint must be binding, or else the principal could reduce all w(y).

If the moral-hazard constraint were not binding, then the optimal solution would be w(y)=w+c  forG
H

all outcomes y, but then the agent would prefer the lower-cost action a  (with c(a )<c(a )).L  L H

So both constraints must be binding at the optimal solution.  Let 8 and µ denote the Lagrange

multipliers of the participation and moral-hazard constraints respectively.  The Lagrangean is

L(w;8,µ) =  3  p(y*a ) w(y) ! 8[3  p(y*a ) u(w(y)!c ) ! u(w)] y H    y H  H
G

! µ[3  p(y*a ) u(w(y)!c ) ! 3  p(y*a ) u(w(y)!c )].y H  H   y L  L

The optimality conditions  0 = ML'Mw(y)  yield

œy0Y:     0 = p(y*a ) ! (8+µ) p(y*a ) uN(w(y)!c ) + µ p(y*a ) uN(w(y)!c ).H    H  H    L  L

With constant risk tolerance,  uN(w!c) = EXP(!(w!c)'T)'T = !u(w!c)'T.

Thus, summing the optimality conditions over all y in Y, we get

0 = 1 + (8+µ) 3  p(y*a ) u(w(y)!c )'T ! µ 3  p(y*a ) u(w(y)!c )'T,y H  H    y L  L

which with the binding constraints yields  0 = 1 + (8+µ) u(w)'T ! µ u(w)'T = 1 + 8 u(w)'T.G    G      G

So the participation constraint's Lagrange multiplier is  8 = 1'uN(w) = !T'u(w) = T×EXP(w'T). G   G   G

With constant risk tolerance T,  uN(w(y)!c ) = 0 uN(w(y)!c ),  where  0 = EXP(!(c !c )'T).L    H       H L

So the optimality conditions become  0 = 1 ! uN(w(y)!c )[8 + µ ! µ 0 p(y*a )'p(y*a )],  œy0Y.H       L H

Then the optimal wage w(y) can be determined from the equations:

T×EXP((w(y)!c )'T) = 1'uN(w(y)!c ) = 8 + µ ! µ 0 p(y*a )'p(y*a ),  œy0Y.H   H         L H

Thus, the optimal wage w(y) is monotone decreasing in the likelihood ratio  p(y*a )'p(y*a ).L H

With  µ # 8'(0 max  p(y*a )'p(y*a ) ! 1),  µ is determined by the requirement that they0Y L H

moral-hazard constraint must be satisfied as a binding equality.
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Credit rationing in a binary moral-hazard model with limited liablity (Stiglitz-Weiss).

An entrepreneur can undertake a project which requires an amount I to be invested this period.

Next period, the project will return the amount RI if it succeeds, or 0 if it fails.

The entrepreneur must borrow the amount I but can offer collateral worth C for the loan.

If the entrepreneur manages the investment well, then its probability of success will be p .H

But the entrepreneur could act badly, divert an amount (I, and reduce the probability of success to p .L

This reduction in the probability of success is the only observable consequence of such malfeasance.

The entrepreneur is risk neutral but has limited liability in the sense that he cannot lose more than C.

Let w  denote the entrepreneur's alternative wage next period if he does not manage this project,0

Let D denote the market rate of interest per period for risk free investments elsewhere.

Suppose that  p R > 1+D > p R + (,  so that the project could be worthwhile for risk-neutralH     L

investors if the entrepreneur manages it well, but not if he acts badly.

If the entrepreneur is charged an interest rate r to borrow I, then the entrepreneur will get the surplus 

(R!(1+r))I  if the project is a success, but he will default and lose the collateral C if the project fails.

Including the value of defaulted collateral, the investors' expected return is  p (1+r)I + (1!p )C.H   H

Per unit invested, the investors' rate of return is  p (1+r) + (1!p )C'I.H   H

So the investors' participation constraint is  p (1+r) + (1!p )C'I $ 1+D,H   H

which holds iff  1+r $ (1+D)'p  ! (C'I)(1!p )'p .H  H H

The entrepreneur's participation constraint is  p (R!(1+r))I ! (1!p )C $ w .H   H   0

The entrepreneur's participation constraint implies  p R ! w 'I $ p (1+r) + (1!p )C'I.H   0   H   H

The moral-hazard constraint to deter entrepreneurial malfeasance is

p (R!(1+r))I ! (1!p )C $ (I + p (R!(1+r))I ! (1!p )C.H   H     L   L

The moral-hazard constraint yields a lower bound on an agent's stake   C + (R!(1+r))I $ (I'(p !p ),H L

and an upper bound on investors' rate of return  C'I + p R ! p ('(p !p ) $ p (1+r) + (1!p )C'I.H   H H L   H   H

Suppose that C and w  are small so that  C + w  < p (I'(p !p ).  [poor agent case]0        0  H H L

This poor-agent condition implies that  C'I + p R ! p ('(p !p ) < p R ! w 'I.H   H H L   H   0

Then the upper bound on investors' rate of return is determined by the moral-hazard constraint:  

p (1+r) + (1!p )C'I # C'I + p R ! p ('(p !p ).H   H     H   H H L

The maximal interest rate r* that can avoid moral hazard is  1+ r* = R + C'I ! ('(p !p ).H L

Suppose also that R satisfies  R $ (1+D)'p  + ('(p !p ) ! C'(p I).H  H L   H

Then the investors are willing to lend at this rate r*, because

p (1+r*)I + (1!p )C = p [R + C'I ! ('(p !p )]I + (1!p )C $ (1+D)I.H   H   H     H L   H

Even at this maximal interest rate, however, the entrepreneur's expected gain is strictly positive:

p (R!(1+r*))I ! (1!p )C ! w  = p ('(p !p ) ! C ! w  > 0.H   H   0  H H L     0

The quantity p ('(p !p )  here may be called the expected moral-hazard rent that the entrepreneurH H L

must be allowed in this financial transaction, to deter his malfeasance.

Now suppose that there are many such entrepreneurs, but only a limited supply of funds from

investors who understand these projects well enough to enter into such financial deals.

Then the interest rate for such loans can rise only to the maximal rate r*.  If the demand from

entrepreneurs at this rate exceeds the supply of funds, there must be credit rationing.
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Long-term agency relationships 

Let us consider a version of the above model, but now the projects are available to firms which must

hire agents to manage them.  As before, R is the return per unit invested if the project succeeds, 

p  is the probability of success if the manager acts appropriately, but the manager could instead divertH

a fraction ( of the invest funds and reduce the probability of success to p .  Here  p  < p .L     L  H

Agents' alternative wages and collateral are negligible relative to these investments (so w  = 0, C=0).0

An agent can manage a project of various investment sizes I, with an upper bound of I # 1 (billion$) 

(and with some much smaller positive lower bound that is still large relative to wages and collateral).

If firms can profitably hire agents to manage such projects, then many firms will do so, driving down

the prices of the goods which are the outputs of these investment projects.

So (assuming such a general equilibrium) let us consider the optimal agency contracts for these firms

when R is near the lower bound where such contracts are just barely profitable.

Let us ignore interest over the periods of the project (D=0).

Assuming limited liability for the agents, the terms of an agent's contract specify  (I,w ,w ),  whereS F

I is the investment size handled by the agent, w  is his wage if success, w  is his wage if failure.S      F

Assuming risk-neutrality, the agent's participation constraint is  p w  + (1!p )w  $ 0,H S  H F

the moral-hazard constraint is  p w  + (1!p )w  $ (I + p w  + (1!p )w ,H S  H F    L S  L F

and the limited-liability and investment bound constraints are  w  $ 0,  w  $ 0,  0 # I # 1.S    F

(The actual lower bound on I may be positive, but we allow I=0 to represent not hiring the agent.)

The firm wants to maximize its expected profit  (p R!1)I ! [p w  + (1!p )w ].H   H S  H F

The optimal solution has  w  = 0,  w  = (I'(p !p ),  giving the firm  [p R ! 1 ! p ('(p !p )]I, F    S  H L       H     H H L

and so the investment I = 1 is worthwhile as long as  R $ 1'p  + ('(p !p ).H  H L

Let  G = ('(p !p ) denote the moral-hazard rent per unit invested which a successful agent must get,H L

and let  g = p G = p ('(p !p )  denote the expected moral-hazard rent per unit invested.H   H H L

So with competitive firms, the output-market equilibrium would yield R at or near  R* = 1'p  + G.H

To verify the optimality of the solution, notice that the optimization is a linear programming problem.

The solution is supported by the following Lagrange multipliers (dual variables):

8=0 for the agent's participation constraint,  and  µ = p '(p !p )  for the moral-hazard constraint.H H L

These multipliers yield  0 = ML'Mw  = !p  + 8p  + (p !p )µ,  S  H  H  H L

0 > ML'Mw  = !(1!p ) + 8(1!p ) ! (p !p )µ,  F  H   H   H L

and  ML'MI = p R ! 1 ! µ( $ 0  when  R $ 1'p  + G.H             H

A surplus G is required here to cover the cost of the agent's moral-hazard rent.

Now suppose that an agent can manage one such project in each of T periods in his career, and the

agent's responsibilities can depend on his past history of successes or failures.

We will now show that the lowest R at which firms can expect nonnegative profits from such

multiperiod agency relationships is  R* = 1'p  + G'T.H

Intuitively, the cost of an agent's moral-hazard rent G can now be divided over T periods.

The optimal policy at each period t can be characterized in terms of a recursive optimization problem

with two new parameters:  v  represents the expected monetary rewards that were promised to thet

agent at the end of the previous period, and 8  denotes the firm's future net marginal cost oft+1

fulfilling promises of future monetary rewards.  Then the firm's problem at period t is
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choose (I ,w ,w ,x ) to maximize  (p R!1)I  ! 8 [p w  + (1!p )w ] ! x   + 8 v (net profit)t S,t F,t t     H t  t+1 H S,t  H F,t   t   t t

subject to  x  + p w  + (1!p )w  $ v (8 , promise-keeping)t  H S,t  H F,t  t t

p w  + (1!p )w  ! [(I + p w  + (1!p )w ] $ 0 (µ , moral hazard)H S,t  H F,t    L S,t  L F,t   t

x  $ 0,  w  $ 0,  w  $ 0,  0 # I  # 1. (bounds)t    S,t    F,t      t

Here x  represents the firm's option of paying its past promises in cash at the start of period t.t

For the full multi-period problem, we must add the following conditions:  the agent's initial credit is

v  = 0  because the firm has no past obligations to a new agent,  each later v  is either w  or w1                  t   S,t!1  F,t!1

depending on whether the previous period was a success or failure, the final marginal wage-cost is

8  = 1  because rewards to a retiring agent must be paid in cash, and each earlier period derives itsT+1

marginal cost of end-of-period wage promises from the Lagrange multiplier of next period's promise-

keeping constraint.  (The last term in the objective 8 v  is an accounting constant, not affected byt t

current decisions, to let us sum profits across periods without double-counting back-loaded wages.)

We will now show that, when R = R* = 1'p  + G'T, the following dynamic policy is optimal butH

yields zero expected profits for the firm, and so firms cannot make expected profits at any lower R.

In the last period, if the agent has managed successful projects in all previous periods, then the agent

manages the maximum feasible investment  I  = 1  and is paid  w = I G = G  if it succeeds.T        S,T  T

The possibility of this large final payoff motivates the agent at all previous periods.

At each period t, if the agent has never failed in the past then he manages a project with  I  = (p ) . t  H
T!t

Then his promised reward for success at period t will be  w  = I G = (p ) G,  which is just theS,t  t   H
T!t

expected value of his potential final reward (G times the probability of T!t future successes).

If the agent fails at any period t, he gets  w  = 0  and does not manage any more projects.F,t

The backloading of all rewards is indicated in the solution by  x  = 0  œt.t

Under this plan, the agent invests  I  = (p )   at time t only if he has never failed before, which hast  H
T!t

probability  (p ) .  His expected investment is  (p ) (p )  = (p )   at each period t, and hisH        H H   H
t!1        t!1 T!t  T!1

expected wage bill is  (p ) G,  so the firm's expected net profit is  T(p ) (p R!1)!(p ) G.H           H H H
T           T!1 T

So at any t>1, as long as the agent has been successful, we get  v  = w  = (p ) G,t  S,t!1  H
T+1!t

and so the promise-keeping constraint is satisfied with equality by  v  = p w  = p  (p ) G.t  H S,t  H H
T!t

The moral-hazard constraint is also binding at every t, because  w  = I G= I ('(p !p ).S,t  t  t H L

To support this as an optimal solution in which investment is positive but the firm's expected net

profits are zero, we need Lagrange multipliers µ  $ 0 and 8  $ 0  to satisfy the equationst    t

0 = ML'MI  = p R ! 1 ! µ (   and  0 = ML'Mw  = !8 p  + 8 p  + (p !p )µ ,  for all t0{1,...,T},t  H     t        S,t  t+1 H  t H  H L t

and we need  8  = 0  because promise-keeping has slack at t=1 when the agent starts with v =0.1               1

For  0 = ML'MI  = p R!1!µ (,  at all t we must have  µ  = (p R!1)'(.  t  H t          t  H

Then 0=ML'Mw = 8 p +(p !p )µ !8 p  implies  8  = 8 !µ (p !p )'p  = 8  ! (p R!1)'g.S,t  t H H L t t+1 H    t  t+1 t H L H  t+1  H

(Recall  g = p G = p ('(p !p ).)  Given  8 =1,  we get  8  = 1!(T+1!t)(p R!1)'g,  œt.H   H H L     T+1      t  H

Then 8  = 0 is satisfied iff  1 = T(p R!1)'g,  which holds when  R = (1+g'T)'p  = 1'p  + G'T.1         H         H  H

ML'Mx  = 8 ! 1 < 0  and  ML'Mw  = !(8 !8 )(1!p )!(p !p )µ  < 0 imply  x =0=w   is optimal.t  t        F,t  t+1 t H H L t     t F,t

If R is slightly greater than this R*, this plan can still satisfy all recursive optimality conditions with

one change:  at T, with I  at the upper bound I =1, we can have ML'MI  >0 and µ  < (p R!1)'(.T     T     T   T  H

Keeping other µ  fixed, we get  8  = 1 ! µ (p !p )'p  ! (T!t)(p R!1)'g  œt,  and we can get 8 =0 t     t    T H L H  H         1

with  µ  = [1!(T!1)(p R!1)'g]p '(p !p ).  This fails only when a larger R makes µ  negative.T  H H H L           T
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This model describes a world where productive investments are only possible when agents have long-

term relationships with firms which the agents can trust to reliably pay deferred rewards for service.

The temptation to deny long-promised wages by finding fault with the agent's late-career performance

may become particularly acute when R* < G (which can happen when p , (, and T are large).H

So this economy relies heavily on firms' reputations for judging and rewarding their agents.

The large moral-hazard rents are also a striking feature of this model.  But one might ask whether

these are just a result of the limited-liability assumption, which puts a lower bound on agents' payoffs.

So let us see how the solution would change if the limited liability constraint were relaxed by

allowing punishment in case of failure.  A punishment z$0 would reduce the agent's utility to !z

but without generating any benefit anyone else.  (This is different from taking valuable collateral.)

The recursive problem at any period t is now

choose (I ,w ,w ,z ) to maximize  (p R!1)I  ! 8 [p w  + (1!p )w ] +8 v (net profit)t S,t F,t t     H t  t+1 H S,t  H F,t  t t

subject to  p w  + (1!p )(w  ! z ) $ v (8 , participation)H S,t  H F,t  t   t t

p w  + (1!p )(w  ! z ) $ (I  + p w  + (1!p )(w  ! z ) (µ , moral hazard)H S,t  H F,t  t   t  L S,t  L F,t  t t

w  $ 0,  w  $ 0,  z  $ 0,  0 # I  # 1. (bounds)S,t    F,t    t      t

with  8  = 1,  v  = 0,  and  v  = w   for agents who succeed through time t.T+1    1      t+1  S,t

As before, we consider parametric cases where R is at or near the lower bound at which firms can

make nonnegative expected profit from agents who could manage a project in up to T periods.

Expanding the contract options to include punishment decreases the lowest R at which firms can

profitably invest down to R** = 1'p  + G'[T + p '(1!p )].H    H H

We show now that, at or near this R**, the optimal contract involves no punishment after period 1.

As above, consider a plan in which the agent is paid a moral-hazard rent w  = G at period T only ifS,T

he manages successful projects at all previous periods.  The prospect of this moral-hazard rent yields

expected rewards worth  w  = G(p )   to the agent when he has been successful through period t.S,t  H
T!t

We always have  w =0.  At any time t>1, the agent can manage  I  = w 'G = (p )   with  z  = 0 F,t            t  S,t   H     t
T!t

(no punishment), and the promise-keeping constraint is also binding with  v  = w  = (p ) .t  S,t!1  H
T+1!t

With v =0, the promise-keeping/participation constraint would have slack at t=1 if z  were zero, but1           1

we can make it bind with  z  = w p '(1!p ) = G(p ) '(1!p )   Then the moral-hazard constraint1  S,1 H H   H H
T

will be binding when (I  = (p !p )(w +z ) = (p !p )G(p ) '(1!p ) , so  I  = (p ) '(1!p ).1  H L S,1 1   H L H H     1  H H
T!1       T!1

The optimality conditions are almost the same as above.  The only changes are that 8  can be nonzero1

but now, for z >0, we need  0 = ML'Mz  = µ (p !p ) ! 8 (1!p ).1       1  1 H L   1 H

Also, to justify z =0 for all t>1, we need  0 $ ML'Mz  = µ (p !p ) ! 8 (1!p ).t          t  t H L   t H

From  0=ML'MI   in the zero-expected-profit solution at R=R**, we again get  µ  = (p R!1)'(  œt.t            t  H

From  0=ML'Mz  = µ (p !p ) ! 8 (1!p ),  we get  8 = µ (p !p )'(1!p ).1  1 H L   1 H      1  1 H L H

As before,  0 = ML'Mw  = !8 p  + 8 p  + (p !p )µ   implies  8  = 8  + µ (p !p )'p   at all t,S,t  t+1 H  t H  H L t    t+1  t  t H L H

and so  8t = [p '(1!p ) + t!1]µ (p !p )'p  = [p '(1!p ) + t!1](p R!1)'g  for all t.H H   t H L H  H H   H

Then we get  1 = 8  = [p '(1!p ) + T](p R!1)'g   when  R = R** = 1'p  + G'[T+p '(1!p )].T+1  H H   H          H  H H

Finally, to justify z =0 for t>1, we have  ML'Mz  = µ (p !p ) ! 8 (1!p ) # 0  for all t because t       t  t H L   t H

ML'Mz =0,  µ  is a constant over t, and 8  is increasing in t.1   t       t

This solution could fail only if I >1, but then we can proportionally decrease all I  and w  until I =1.1         t  S,t  1

When R is slightly more than R**, we can still show optimality by reducing µ  if I =1, or µ  if I =1.T  T   1  1
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Becker-Stigler-Shapiro-Stiglitz efficiency wages  

Consider a similar moral-hazard problem where the agent is risk neutral, and there are only two

possible observations: y=1 denotes normal business, and y=0 denotes an accident occurring.

We consider a short interval of time g, in which the probability of an accident is "g if the agent

chooses to be diligent a , and $g if the agent chooses to shirk a , where $ > ".H          L

Choosing a  also yields a hidden benefit of Dg to the agent in this period.L

Suppose that participation constraints apply ex-post: after the outcome is observed, the agent cannot

be made worse off than his outside option of v, which is the present-discounted value of his lifetimeG

income in the competitive labor market.  The principal wants to minimize the expected cost subject to

the ex-post participation constraints and the moral-hazard incentive constraint that the agent should

not shirk.  Let V  and V  denote the agent's expected total payoff after observing y=1 or y=01  0

respectively.  So the principal's problem is 

choose (V ,V ) to minimize  (1!"g)V  + "gV   subject to  1 0     1  0

(1!"g)V  + "gV  $ Dg + (1!$g)V  + $gV ,  V  $ v,  V  $ v.1  0    1  0   1    0
G     G

We could add an ex-ante participation constraint  (1!"g)V  + "gV  $ w,  but if the payoff w that1  0
G       G

must be promised to recruit the agent is the same as the payoff v that he can get by quitting later, thenG

this constraint is redundant with the ex-post participation constraints  V  $ v  and  V  $ v.1      0
G      G

The moral-hazard constraint implies  V  ! V  $ D'($!").1  0

So the optimal solution is  V  = v,  V  = v + D'($!").0    1
G     G

So the agent's expected reward  (1!"g)V  + "gV  = v + (1!"g)D'($!")  for a short g-period of1  0
G

service must be greater than the outside option v by a positive bonus even as g!0.G

In a dynamic model, if the problem is repeated with a different agent every g-period then the

principal's cost becomes huge, but the cost can be reduced by using benefits of future employment be

part of current incentive-pay.

Consider a stationary solution: if y=1 this period then the agent will be paid gw and rehired for next

period, but if the y=0 this period then the agent is dismissed to the outside option v.G

So with discount rate r, we get the recursion equation:  V  = wg + (1!rg)((1!"g)V  + "gv).1    1
G

With  V  = v + D'($!"),  this implies  w = rv + (r + " ! gr")D'($!").1
G         G

Here rv is the outside wage rate corresponding to the present-discounted value v.G           G

As g60, this optimal stationary incentive plan pays the agent an efficiency wage rate that exceeds the

outside wage rate by (r+")D'($!"), but dismisses the agent when an accident occurs.

This g60 is a problem of controlling a Poisson process where accidents occur as a Poisson process

with the low rate " when the agent is diligent, but the high rate $ when the agent shirks.

When X is a Poisson random variable with mean 8, X can be any nonnegative integer, ˜          ˜

P(X=k) = e  (µ) 'k!  for any k 0{0,1,2,...},  E(X) = µ,  Var(X) = µ,  Stdev(X) = µ . ˜   !µ k        ˜     ˜     ˜   0.5

When accidents occur in a Poisson process with rate 8, the number of accidents between any two

times t and t+* (*>0) is a Poisson random variable with mean 8*, and it is independent of the number

of accidents before time t.  

In any short time interval of length g, the probability of an accident is approximately 8g, 

the probability of no accidents is approximately 1!8g, and the probability of two or more accidents is

vanishingly smaller of order g . 2
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Holmstrom-Milgrom Control of Brownian Motion (Econometrica 55(2):303-328, 1987):

Suppose the agent is risk-averse with constant risk tolerance T, subject to an ex-ante participation

constraint with the alternative reservation wage w .  But now suppose that the observable is a Normalo

random variable with mean µ(a) that depends on his action, and variance F  that does not depend on2

his action.  For two Normals with different means and the same variance, the likelihood ratios go to

infinity in the tails, and so the multiplier of our moral-hazard constraint must be µ=0: it is costless! 

The optimal solution achieves first-best nonlinearly: pay w  except for an infinite punishment in ano

event that has infinitesimal probability, infinitesimally smaller when he chooses high µ.  Something

seems wrong in this solution.  

Holmstrom-Milgrom changed the problem to allow the agent to get feedback as the Normal outcome

evolves, by considering the problem of controlling the drift of a Brownian motion.

For such a problem, they showed that linear incentive pay becomes optimal.

For important applications, they explicitly considered multidimensional Brownian motion.

We may (w.l.o.g.) restrict attention to Brownian motion (Y (t),...,Y (t)) where the various1 n

components Y (t) are independent and have the same volatility:i

In any time interval from t to t+* (*>0), the changes Y (t+*)!Y (t) are Normal random variables, withi i

mean µ (a)* and variance F *, independent across i, and independent of the path to time t.i
2

Here the drifts µ (a) are functions of the agent's hidden action (a) during this interval.i

The agent also pays a hidden cost of effort at rate c(a) over time.

The agent's choices of action after time t can depend on the past (Y (t),...,Y (t)).1 n

We may assume that the process begins at (Y (0),...,Y (0)) = (0,...,0).1 n

A linear incentive plan for the agent over the period [0,S] specifies constants (A,B ,...,B ) and1 n

promises to pay the agent  w(Y) = A + 3  B Y (S).i i i

The agent's final utility payoff is  u(w(Y)!C(a)),  where  C(a) = I  c(a(t))dt,  S
0

and u(C) is a utility function with constant-risk-tolerance T.  We may let the ending time be S=1, so

that, for any constant action a, the Y (S) are independent Normals with mean µ (a) and variance F .i       i
2

Holmstrom and Milgrom show that such simple linear incentive plans are optimal for the principal to

maximize any linear function of the final (Y (S),...,Y (S)) 1 n

subject to an ex-ante participation constraint at time 0 and a moral-hazard constraint that the constant-

risk-tolerant agent always chooses an action that maximizes his expected utility:

     Choose w(C) and a  to maximize  E(3  B Y (S) !  w(Y) *a )  subject to *          *
i i i

     a  0 argmax  E(u(w(Y)!C(a))*a),  and  E(u(w(Y)!C(a ))*a ) $ u(w ).*       * *
a       o

Linearity makes  w(Y) = A + 3  B Y (S)  a Normal random variable, so the agent's constraints can bei i i

rewritten with the formula for certainty equivalents of Normals with constant risk tolerance:

a  0 argmax  A+3 B µ (a)!C(a)!(0.5'T)F 3 B ,  A+3 B µ (a )!C(a )!(0.5'T)F 3 B  $ w .*    2  2    * * 2  2
a i i i i i   i i i i i   o

The binding participation constraint yields  A = w  + C(a ) + (0.5'T)F 3 B  ! 3 B µ (a ).o    i i   i i i
*   2 2  *

Then the principal's expected profit is  E(3  B Y (S)! w(Y)*a ) = 3  B µ (a ) ! 3  B µ (a ) ! Ai i i    i i i   i i i
*    *    *

   = 3  B  µ (a ) ! C(a ) ! (0.5'T)F 3 B  ! w ,  which we want to maximizei i i     i i   o
*   *   2 2

subject to the incentive constraint, which reduces to:  a  0 argmax  3 B µ (a) ! C(a).*
a i i i

For each component a  of vector a, first-order conditions are  3  B  Mµ (a )'Ma  = MC(a )'Mak        i i i k  k
*   *

or, with nonnegativity constraints a  $ 0, we may have  3  B  Mµ (a )'Ma  # MC(a )'Ma   if a =0.k       i i i k  k   k
*   *
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Technical key to their proof:  Such a Brownian motion can be viewed as the limit of a linear function

of multidimensional Poisson process.  Large-mean Poissons are approximately Normal.

Consider some small g>0.  For any action a, let the Poisson processes start at  x (0*a,g)=0  for all i.i

For any time interval t to t+*, let  x (t+**a,g)!x (t*a,g)  (= arrivals of type i) be a Poisson randomi i

variable with mean  *7 (a,g) = *(F +gµ (a))'g ,  independently of the past before t, andi   i
2 2

independently across all i=1,...,n.

Recall that the variance of a Poisson random variable is equal to its mean or expected value.

Now let  y (t*a,g) = g x (t*a,g) ! t F 'g.i    i
2

So y (t*",g) has frequent discontinuous upward jumps of size g, but between these jumps it isi

decreasing at the rate !F 'g.2

Then  E(y (t+**a,g)!y (t*a,g)) = g * (F +gµ (a))'g  ! * F 'g = µ (a)*,i i     i      i
2 2   2

and  Var(y (t+**a,g)!y (t*a,g)) = g  * (F +gµ (a))'g  = F * + gµ (a)* 6 F *  as  g60.i i     i     i
2  2 2  2     2

So as g60, this y process converges to the Brownian motion Y that we wanted to study.

So a wage that is linear in the y , say A+3  B y ,  would also be linear in the x , with coefficients:i   i=1 i i         i
n

A+3  B  y (t*a,g) = A+3  B  [g x (t*a,g)!tF 'g] = (A!ntF 'g) + 3  (B g) x (t*a,g)n     n    2   2   n
i=1 i i   i=1 i  i     i=1 i  i

Consider a discrete-time approximation to the multidimensonal Poisson process problem (g>0).

In any short time interval of length * (much less than g , say *=g ), there are n+1 events that could2   3

occur: no arrival, or one arrival of some type i0{1,..,n}, each with probability  *F 'g +*µ (a)'g.  2 2
i

Two or more arrivals in a short time interval has vanishingly small probability.

The optimal incentive plan in this short time interval, given any participation constraint, would pay

some amount for each of these possible events.  Changing the participation constraint would only add

a constant to all payments, because of constant risk tolerance.  

At any point in time, past payments would not affect the agent's preferences over gambles for

additional income and effort-cost, again because of constant risk tolerance.

Thus, the optimal incentive plan for the dynamic model can be decomposed to identical incentive

problems in each short time interval, plus a constant to meet the ex-ante participation constraint.

But x (S) measures the number of times that a type-i arrival occurred, for each of which the agent isi

paid the same amount.  

So the optimal final payment to the agent is a linear function of (x (S*a,g),...,x (S*a,g)), 1 n

and so it is also a linear function of (y (S*a,g),...,y (S*a,g)).1 n

Now take the limit as g!0, and the limit of the optimal plans pays the agent as a linear function of the

Brownian-motion endpoint (Y (S),...,Y (S)).1 n
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Controlling a Poisson processes with constant risk tolerance, no liability limits

Suppose that an agent with constant risk tolerance T is to be paid $X,˜

where X is a Poisson random variable with some mean 8.˜

Then the agent's expected utility is 

EU =  =  =  

and so the agent's certainty equivalent of this income $X is 8T(1!e ).˜   !$'T

Now suppose that the agent chooses an action a 0 A (where A is his set of feasible actions), and this

action affects the means 7 (a),...,7 (a) of n independent Poisson random variables X ,...,X .1 n        1 n
˜ ˜

The agent also pays a personal cost C(a) for his action, and has constant risk tolerance T.

The a action and cost C(a) cannot be observed by anybody except the agent, but the principal can

observe the Poisson random variables X ,...,X .˜ ˜
1 n

A risk neutral principal gets revenue  X B +...X B   from these Poisson random variables.˜ ˜
1 1 n n

Consider incentive plans, where the principal pays the agent a wage w according to a linear formula 

w(X ,...,X ) = " + X $  + ... + X $ .˜ ˜     ˜     ˜
1 n     1 1    n n

With constant risk tolerance, the agent's certainty equivalent for the sum of n independent random

payments is equal to the sum of the certainty equivalents of these n random payments 

(this additivity condition only holds with constant risk tolerance).

Let w denote the best alternative wage that the agent could earn elsewhere.G

So the principal's problem can be written:  choose (",$ ,...,$ , a ) to  1 n
*

maximize  7 (a )B +...+ 7 (a )B  ! [" + 7 (a )$  + ... +7 (a )$ ] 1 1  n n    1 1   n n
*  *     *    *

subject to    

 =  $ w .G

Substituting   from the participation constraint, 

the principal's expected profit becomes  . 

If we can differentiate with respect to the action a, first-order conditions of the incentive constraint

are  . 

Extending the Poisson process over time, the number of i-arrivals in a time period of length * may be

denoted by X (*), and it is a Poisson random variable with mean  *7 (a)  (=variance).˜
i            i

Results of separate time intervals are independent.  With constant risk tolerance, they can be analyzed

independently, so the optimal wage is linear in X (*),...,X (*) over the whole period.˜ ˜
1 n

Now fix µ (a) and F , and consider small positive numbers g.i
2

Given any g>0, let  7 (a) = [F  + gµ (a)]'g ,  and let  Y (*) = gX (*) ! *F 'g. i     i      i   i
2  2      ˜   ˜   2

Then  E(Y (*)) = *µ (a),  and  Var(Y (*)) = g Var(X (*)) = *[F  + gµ (a)] 6 *F   as g60.˜       ˜   2 ˜   2    2
i   i     i   i     i

7 (a) here becomes large as g60, and Poisson random variables with large means are approximatelyi

Normal.  So as g60, Y (*) approaches a Normal random variable, ˜
i

and Y  becomes a Brownian-motion process with drift µ (a) and volatility F.˜
i       i

Wages that are linear in Y (*), say A*+3  B Y (*),  are also linear in X (*), with coefficients:˜   n  ˜       ˜
i   i=1 i i       i

A*+3  B Y (*) = A*+3  B  [g X (*)!*F 'g] = (A*!n*F 'g) + 3  (B g) X (*)n  ˜   n    ˜ 2   2   n   ˜
i=1 i i   i=1 i  i     i=1 i  i
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First adverse-selection problem: one privately-informed agent with two possible types  

An agent (seller) is one of two types, 2  or 2  where 2 >2 . His type is his private information. H  L  H L

A principal (buyer) thinks the probability of 2  is p , and the probability of 2  is  p  = 1!p .H  H      L   L  H

The agent's effort q and wage w are both observable numbers which may depend on the agent's

reported type, but the agent can misrepresent his type.  Effort must be nonnegative  q $ 0.

When the agent's type is 2, any wage w and effort q$0 yield payoff w!2q for the agent and yield

profit B(q*2)!w for the principal.  The agent's payoff is his gain from trade over alternatives worth 0. 

With prime N for M'Mq, suppose B(0*2)=0,  BN(q*2)>0,  BNN(q*2)#0,  œ2, œq,  and  BN(0*2 )>2 .L L

The principal's problem is to choose a contract-menu (q ,w ,q ,w )  to H H L L

maximize p (B(q *2 )!w ) + p (B(q *2 )!w )  subject to  w  0 ú,  w  0 ú,  q  $ 0,  q  $ 0,  H H H H   L L L L      L    H    L    H

w  ! 2  q  $ 0, [L-participation, 8 ]L  L L   L

w  ! 2  q  $ 0, [H-participation, 8 ]H  H H   H

w  ! 2  q  $ w  ! 2  q [*L-informational incentive, " ]L  L L  H  L H,   *L

w  ! 2  q  $ w  ! 2  q . [*H-informational incentive, " ]H  H H  L  H L   *H

(If there were no incentive constraints, the solution would have  BN(q *2 )=2 ,  w  = 2 q ,  œi.)i i i   i  i i

The incentive constraints (*H first, then *L) imply:   2 (q !q ) $ w !w  $ 2 (q !q ).H L H   L H  L L H

With 2 >2 , this implies  q !q  $ 0  and  w !w  $ 0,  so  q  $ q   and  w  $ w .H L     L H      L H      L  H    L  H

If both incentive constraints were binding, these would all be equalities.

So both incentive constraints can bind only for a pooling plan that satisfies q =q  and w =w .L H  L H

Note:  If  q  > q   then:  w  ! t q  $ w  ! t q   <=>  t $ (w !w )'(q !q ).   So any L  H    H   H  L   L      L H L H

cost type t >2  would prefer (q ,w ) over (q ,w ), while any type t < 2  would prefer (q ,w ).H   H H   L L       L   L L

The Lagrangean can be written:   L(w,q;8,") =

     = p (B(q *2 )!w ) + p (B(q *2 )!w ) + 8 [w !2 q ] + 8 [w !2 q ]H H H H   L L L L   L L L L   H H H H

+" [w !2 q !w +2 q ] + " [w !2 q !w +2 q ]*L L L L H L H   *H H H H L H L

     = p B(q *2 ) ! q  [(8 +" )2  ! " 2 ] + p B(q *2 ) ! q  [(8 +" )2  ! " 2 ] H H H   H H *H H  *L L   L L L   L L *L L  *H H

+ w  [!p  + 8  + "  ! " ] + w  [!(1!p ) + 8  + "  ! " ].H H  H  *H  *L   L H   L  *L  *H

Lagrange multipliers must be nonnegative  8 $0,  8 $0,  " $0,  " $0,  and satisfy complementaryH   L   *H   *L

slackness.  The first-order Lagrange optimality conditions for  w  0 ú  and  w  0 ú  areL      H

     0 = ML'Mw  = !p  + 8  + "  ! " ,  and so  8  + "  = p  + " ;L  L  L  *L  *H      L  *L  L  *H

     0 = ML'Mw  = !p  + 8  + "  ! " ,  and so  8  + "  = p  + " .H  H  H  *H  *L      H  *H  H  *L

So we must have 8 +8  = p +p  = 1.  With these "balance" equations, the Lagrangean simplifies to:L H  L H

     L = p {B(q *2 ) ! q  [2  + (2 !2 )" 'p ]} + p {B(q *2 ) ! q [2  + (2 !2 )" 'p ]}.H H H   H H  H L *L H   L L L   L L  L H *H L

The 8's have dropped out, but we still need  8  = p  + "  ! "  $ 0  and  8  = p  + "  !"  $ 0,L  L  *H  *L      H  H  *L *H

as well as  "  $ 0  and  "  $ 0  and complementary slackness with the corresponding constraints.*H      *L

Note:  So far, the analysis would be exactly the same if we had no participation constraints but took

8  and 8  as parametric weights for the payoffs of the two types of agent in a social-welfare functionL  H

     [p (B(q *2 )!w ) + p (B(q *2 )!w )] + 8 [w !2 qL] + 8 [w !2 q ].H H H H   L L L L   L L L   H H H H
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With  2  < 2   and q  $ 0,  the L-participation constraint is implied by the H-participation andL  H   H

*L-incentive constraints.  So L-participation is a redundant constraint, and its multiplier is  8  = 0.L

So  "  = p  + "  > 0.  If the optimal solution is not a pooling plan, then at most one incentive*L  L  *H

constraint can bind, and so from " >0 we get " =0.  Nonpooling also implies q  > q  $ 0.*L    *H      L  H

Thus, either (case 2) the optimal solution is a pooling plan with  "  > 0,  or (case 1) the Lagrange*H

multipliers for the optimal solution must be  8  = 0,  " =0,  "  = p ,  8  = p  + "  = 1.L    *H   *L  L   H  H  *L

In the nonpooling case 1, we have  8  = 0,  "  = 0,  "  = p ,  8  = 1. L    *H    *L  L   H

The optimal efforts must maximize the Lagrangean subject only to  q  $ 0 and  q  $ 0:L     H

BN(q *2 ) = 2 ,  BN(q *2 ) # 2 +(2 !2 )p 'p   and  q  $ 0  with at least one equality.L L   L   H H   H H L L H    H

Wages are determined by the constraints that must bind:  w  = 2  q   (for 8 >0),  and  H  H H   H

w  = 2 q  + w  ! 2 q   (for " >0).  L  L L  H  L H   *L

So when q >0, the binding *L-incentive constraint induces ex-post inefficiency for type H:H

BN(q *2 ) = 2 +(2 !2 )p 'p  > 2   (undersupply of q ),H H   H H L L H  H    H

and it induces a positive payoff or information rent for type L:  w !2 q  = (2 !2 )q  > 0.L L L  H L H

This solution is feasible if it satisfies the *H-incentive constraint, which will be satisfied if and only if

our computed quantities satisfy  q  # q .H  L

Otherwise, we have the pooling case 2 where both incentive constraints bind, and  q  = q  = q  > 0.H  L
*

The pooling q  satisfies  BN(q *2 ) = 2  + (2 !2 )" 'p   and  BN(q *2 ) = 2  ! (2 !2 )" 'p .*   *         *
H   H  H L *L H    L   L  H L *H L

So q  can be computed from  p BN(q *2 ) + p BN(q *2 ) = 2 ,  because  " !"  = p  = 1!p .*      *   *
H H   L L   H     *L *H  L  H

For the H-participation constraint to bind, total wages must be  w  = w  = 2 q .  H  L  H
*

The Lagrange multipliers for this pooling solution are  "  = p [2  ! BN(q *2 )]'(2 !2 ),*H  L L  L H L
*

"  = " +p  = p [2  ! BN(q *2 )]'(2 !2 ),  8 =0,  8 =1.  *L  *H L  L H  L H L   L   H
*

"  > 0  requires  BN(q *2 ) < 2   for this pooling solution (oversupply by type L at q ).*H      L   L
*              *

Example  Suppose the agent has 2 possible cost-types: 2 =1 or 2 =2, each with probability 1/2.L   H

The principal's value of effort q from an agent of type 2 is  B(q*2) = (1+2)q ,   so the principal's0.5

gain from trade when paying w for effort q is  if  2=2 ,    if 2=2 . L      H

(Without incentive constraints, the solution would be  q =1,  w =1,  q =9/16=0.5625,  w =1.125.)L   L   H   H

We can apply case 1 from our previous analysis of adverse-selection problem with two types.

The Lagrange multiplier of the *L-incentive constraint is "  = p  = 0.5, and the Lagrangean is: *L  L

L = 0.5{3q  ! q  [2+(2!1)0.5'0.5]} + 0.5{2q  ! q [1]}. H   H   L   L
0.5     0.5

To maximize this over (q ,q ),  we need  0 = 3(0.5)q  ! 3  and   0 = 2(0.5)q  ! 1,  H L        H          L
!0.5         !0.5

and so  q  = 0.25  and  q  = 1.H      L

Because q  < q ,  we know that the case 1 assumptions about binding constraints are OK here. H  L

The values of w  and w  are determined by the binding constraint equations:H  L

To make H-participation binding,  w  = 2 q  = 2×0.25 = 0.5 .H  H H

To make *L-incentive binding,   w  = 2 q  + w !2 q  = 1×1 + 0.5 ! 1×0.25 = 1.25.L  L L  H L H

Then type L gets information rent  U  = w !2 q  = 0.25,  but  U  = w !2 q  =  0.L  L L L      H  H H H

If we had changed  B(q *2 ) to be   with some A  > 6,  then the above analysis would haveH H        H

yielded  q  > q , and so the pooling case 2  would have applied.H  L
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A trading example where sellers with a single asset have two possible types

To be specific, let us consider an example where the seller's cost type is either 2 =20 or 2 =40, and L   H

the buyer's value of the seller's asset is B =30 if the seller's type is 2 , but the buyer's value is B =50L       L       H

if the seller is 2 .  So the asset is always worth 10 more to the buyer than to the seller.H

(This is MWG's example 23.F.2.)  Our analysis uses the inequalities  B  > 2   and  B  > 2  > 2 .L  L    H  H  L

For now, let's keep the probability of the high type p  as a parameter, with  p  = 1!p . H      L  H

In trading plan (w,q), for each seller-type t, q  is t's probability of selling, w  is t's expected revenue.t      t

In such a plan (w,q), a high-type seller's expected gain is  U (w,q*H) = w !2 q ,  1   H H H

a low-type seller's expected gain is  U (w,q*L) = w !2 q ,  1   L L L

and the buyer's expected gain is  U (w,q) = p (B q !w ) + p (B q !w ).2   H H H H   L L L L

A plan (w,q) is incentive-compatible iff  w !2 q  $ w !2 q   and  w !2 q  $ w !2 q .H H H  L H L    L L L  H L H

To be feasible here, (w,q) must be incentive compatible and have  0 # q  # 1,  0 # q  # 1.H      L

A trading plan is (strongly) interim (Pareto-)dominated if there is some other feasible plan that would

yield higher expected gains to each possible type of each individual (given only his type information).

Here, the seller has two possible types and the buyer has only one possible type, 

and so a plan (w,q) would be interim dominated by some other plan (w,q) iffˆ ˆ

U (w,q*H) < U (w,q*H),  U (w,q*L) < U (w,q*L),  and  U (w,q) < U (w,q).  1   1   1   1     2   2
ˆ ˆ     ˆ ˆ       ˆ ˆ

A plan is (weakly) incentive efficient if it is feasible and is not interim dominated by any other

feasible plan.  (See B. Holmstrom and R.Myerson, Econometrica, 1983.)

Fact  An incentive-compatible trading plan (w,q) is incentive efficient iff there exist nonnegativeG G

weights (8 , 8 , 8 ) such that (w,q) solves the problemH  L  2
G G

maximize 8 U (w,q*H) + 8 U (w,q*L) + 8 U (w,q)  subject to (w,q) being feasible H 1   L 1   2 2

(incentive compatible with q 0[0,1] œt).  Without loss of generality, we may let 8  = 1 = 8 +8 .t           2    L H

The Lagrangean for such an optimization problem in this case can be written:

L(w,q;8,") = 8 (w !2 q ) + 8 (w !2 q ) +  (p (B q !w ) + p (B q !w ))H H H H   L L L L    H H H H   L L L L

+ " (w  ! 2 q  ! w  + 2 q ) + " (w  ! 2 q  ! w  + 2 q ).*H H  H H  L  H L   *L L  L L  H  L H

For an optimum with finite payments w  and w , we must have:H  L

0 = ML'Mw  = 8  + "  ! p  ! "   and  0 = ML'Mw  = 8  + "  ! p  ! " .H  H  *H  H  *L      L  L  *L  L  *H

These "balance" equations imply 8 +8 =p +p =1, and they simplify the Lagrangean toL H L H

L = p q {B  ! [2  + (2 !2 )" 'p ]} + p q {B  ! [2  + (2 !2 )" 'p ]}.H H H  H  H L *L H   L L L  L  L H *H L

This Lagrangean must be maximized over  0 # q  # 1,  0 # q  # 1,H      L

and we can only have positive multipliers " for incentive constraints that bind at the solution

These "  and "  must also yield  p  + "|  ! "  = 8  $ 0  and  p  + "  ! "  = 8  $ 0.|H  |L     H  L  |H  H      L  |H  |L  L

For this example, all the incentive-efficient trading plans can be supported by one (8,") vector.

(The incentive-efficient frontier is flat.)  Let us now see how to construct this "universal" (8,").
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Any feasible trading plan must have  q  # q ,  and  q  < 1  can be a useful signal of the high type.H  L     H

But 0<q <1 can be an optimal for the Lagrangean if and only if  B  = 2  + (2 !2 )" 'p .H              H  H  H L *L H

With  B  > 2  > 2 ,  this equality can be achieved by lettingH  H  L

[*] "  = p (B !2 )'(2 !2 ) = p (50!40)'(40!20) = 0.5p  > 0.*L  H H H H L   H   H

For any separating plan, only one incentive constraint can bind, so we should try  "  = 0;  *H

then the balance equations yield  8  = p  + "  = 1.5p   and  8  = p !"  = 1!p !"  = 1!1.5p .H  H  *L  H    L  L *L  H *L  H

These formulas yield valid nonnegative Lagrangean parameters with 8 $0 L

if and only if  p  # (2 !2 )'(B !2 ) = (40!20)'(50!20) = 2/3  here,H  H L H L

So in the low-p  case when  p  # (2 !2 )'(B !2 )=2/3,  the Lagrangean with this (8,") reduces toH    H  H L H L

L = p q {B !B } + p q {B !2 } = p q (30!20),  which is maximized by  q =1.H H H H   L L L L   L L        L

So when p #2/3, these (8,") values verify the incentive-efficiency of any feasible plan (w,q) suchH

that  q  = 1  and the *L-incentive constraint is binding  w !2 q  = w !2 q .L           L L L  H L H

These are all the incentive-efficient trading plans when p #2/3, and their expected payoffs satisfyH

(p +" )U (w,q*H) + (p !" )U (w,q*L) + U (w,q) = p (B !2 ) = (1!p )10.H *L 1   L *L 1   2   L L L   H

But when  p  > (2 !2 )'(B !2 ) = 2/3  here, this attempt to find incentive-efficient separatingH  H L H L

plans fails, because it yields would yield 8  = p !"  # 0.  L  L *L

In this high-p  case when p >2/3, the "  formula [*] can satisfy the Lagrangean conditions forH   H   *L

incentive-efficiency only if we also have " >0, to get 8 $0, and so we can only find incentive-*H    L

efficient plan that are pooling, with both incentive constraints binding and with q =q .H L

So in this case the Lagrangean conditions for incentive-efficiency can be satisfied by

"  = p (B !2 )'(2 !2 ) = 0.5p ,  8 =0,  "  = " !p  = 1.5p !1,  and  8 =1.*L  H H H H L   H   L   |H  *L L  H     H

Then the Lagrangean simplifies to

L = p q {B !B } + p q {B ![2 +(2 !2 )" 'p ]} = q {p B +p B !2 } = q {20p !10},H H H H   L L L L L H *H L   L H H L L H   L H

which is maximized by  q =1.  L

So when p >2/3, the incentive efficient plans are the pooling plans with q =1, H           L

and their expected payoffs satisfy  U (w,q*H) + U (w,q) = p B  + p B  ! 2  = 20p !10.1   2   H H  L L  H  H

In such bilateral trading problems with a single asset and one-sided private information, the

uninformed buyer's optimal trading plan is always to offer a fixed take-it-or-leave it bid that is equal

to (or slightly more than) one of the possible cost-types of the seller.

That is, the buyer's optimal incentive-compatible plan could be either to bid 2 =20, so that L

q =1, w =20, q =0, w =0 (separating); or to bid 2 =40, so that q =1=q , w =40=w  (pooling).L  L  H  H      H    L H  L H

The pooling offer 2  is better than the separating offer 2  for the buyer whenH       L

p B  + p B  ! 2  $ p (B !2 ),  H H  L L  H  L L L

but this inequality is equivalent to  p  $ (2 !2 )'(B !2 ) = 2/3, which defines the high-p  case.H  H L H L       H

To verify optimality for the buyer of the plan to 2  bid in the high-p  case, notice that trading at theH    H

pooling bid 2  satisfies the conditions for incentive efficiency for this case (pooling and q =1), and itH            L
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achieves the maximum of U (w,q*H) + U (w,q)  with U (w,q)*H) = 0.  So it maximizes U (w,q) over1   2    1        2

all feasible plans that satisfy the participation constraints (even while allowing U (L)>0).1

To verify optimalize for the buyer of the plan to bid 2  in the low-p  case, notice that trading at theL   H

separating bid 2  satisfies the conditions for optimality in this case (*L-incentive binding and q =1),L            L

and it maximizes (p +" )U (w,q*H) + (p !" )U (w,q*L) + U (w,q)  with  U (w,q*H) = 0 =H *L 1   L *L 1   2     1

U (w,q*L).  So it maximizes U (w,q) over all feasible plans that satisfy the participation constraints.1      2

But what trading plan might be used when the informed sellers have market power?  This would

happen when there are many buyers and each buyer could trade with as many sellers as are available.  

So let us now assume such a market, with many buyers, each of whom could buy from as many

sellers as are available. 

We might start by considering Walras's concept of market equilibrium, defined for a model in which

trade can only occur at a uniform price for all trades that is posted by a neutral Walrasian auctioneer.

With uninformed buyers who can trade with as many sellers as available, there would be excess

demand if the uninformed buyers could get positive expected profits at the announced prices.

So in equilibrium, the buyers must just get zero expected profit from trading with the types of sellers

who are willing to trade at the given price.

In this example (with B <2 ), for any p  there can be such a Walrasian equilibrium with a positiveL H    H

supply at the price  w'q = B  = 30, where supply comes only from L-types.L

This Walrasian equilibrium has no trade for H types and so is not incentive efficient.

When  p $ (2 !B )'(B !B ) = (40!30)'(50!30) = 0.5,  there is another Walrasian posted-priceH  H L H L

equilibrum at the price  w'q = p B +(1!p )B  = p 50+p 30,  where both types sell.  H H H L  H L

When it exists, the higher price equilibrium is better for sellers and yields the same expected payoff

for buyers.  So we may find a Pareto ranking among Walrasian equilibria with adverse selection.

We might also ask: what trading plan maximizes the seller's ex-ante expected payoff?

That is, let us choose (w,q) to maximize  p U (w,q*H)+p U (w,q*L)  subject to feasibility plusH 1 L 1

interim participation constraints  U (w,q*H)$0,  U (w,q*L)$0,  and  U (w,q)$0?1   1     2

This ex-ante seller's optimum depends on p . H

If  p  $ 0.5  then it is  q  = 1 = q ,  w  = w  = p B +p B  = p 50+p 30 $ 40;  but H        L    H   L  H  H H L L  H L

if  p  # 0.5  then it is  q = 1,  w  = 40q ,  w  = 30+10q p 'p ,  q  = 1'(2!p 'p ),H        L    H  H   L  H H L   H  H L

to satisfy the equations  w  =  2 q ,  w !2  = q (2 !2 ),  and  p (B !w )+p q (B !2 ) = 0.H   H H   L L  H H L     L L L H H H H

For example, with  p  = 0.2,  we get  q =1,  q  = 4/7,  w =40q ,  q  = 31 /  = 31.43.H       L   H    H H   L   7
 3

(L-multipliers with 8 =0.2, 8 =0.8: U $0 has (=8/7, U (H)$0 has $ =1/7, "  = 8/70, " =0.)H  L  2    1   H  |L   |H

When p  is small, this ex-ante optimal plan is bad for an H-type seller (as  U (w,q*H)=0),H               1

but it would involve losses for the buyer (30q !w  < 0) if the seller's type were not H.L L

So if the seller, knowing his type, were to select this trading plan, then the buyer might reasonably

infer that the seller's type is L and thus reject this plan!
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In such problems (where sellers have private information, and where buyers have no private

information but will participate in the market only if expected gains from trade are nonnegative),

we may say that a trading plan is separable iff the plan is incentive-compatible and yields a

nonnegative expected profit for the buyer with each type of seller.  

So a separable trading plan (w,q) is incentive-compatible and satisfies the separate break-even

constraints:  B q  ! w  $ 0,  B q  ! w  $ 0.H H  H    L L  L

Fact.  All types of the informed seller can agree on which separable plan is best. 

Proof  Suppose to the contrary that the best separable plan for type H was (w,q) but the best separable

plan for L was (w,q).  Then let the plan (w,q) coincide with (w,q) for type H but coincide with (w,q)ˆ ˆ       G G           ˆ ˆ

for type L.  That is, let (w ,q ,w ,q ) = (w ,q ,w ,q ).  Then G G G G   ˆ ˆ
H H L L   H H L L

w !2 q  = w !2 q   (by definition of the (w,q) plan when the type is H)G G         G G
H H H  H H H

$ w !2 q    (because H prefers (w,q) over (w,q))ˆ ˆ         ˆ ˆ
H H H

$  w !2 q    (because (w,q) is incentive compatible)ˆ ˆ     ˆ ˆ
L H L

= w !2 q    (by definition of the (w,q) plan when the type is L)G G        G G
L H L

Also, w !2 q  = w !2 q  $ w !2 q  $ w !2 q  = w !2 q .  So (w,q) is incentive compatible.G G   ˆ ˆ       G G    G G
L L L  L L L  L L L  H L H  H L L

(w,q) is separable because B q !w  = B q !w  $ 0   and  B q !w  = B q !w  $ 0.G G     G G          G G   ˆ ˆ
H H H  H H H       L L L  L L L

But each type of seller gets the same expected payoff from (w,q) as the other plan that was assumedG G

best for it, and so (w,q) is best for both types of seller among all separable plans.G G

So we can talk about the best separable plan for the sellers.

In our example, the best separable plan is  q =1,  w  = B  = 30,  q  = (B !2 )'(B !2 ) = 1/3,  L   L  L    H  L L H L

w  = B q   = 50/3,  with  U (w,q*L) = 30!20 = 10,  U (w,q*H) = (50!40)'3 = 3.333,  U (w,q) = 0. H  H H       1       1       2

Having q =1 and w =30 gives type L the highest expected profits subject to the constraint that theL   L

buyer cannot pay more than B  = 30.  Then the best separable plan for H must have (w ,q ) thatL             H H

maximizes  w !40q   subject to  50q !w $0  and  w !20q  # 30!20.  H H     H H     H H

The solution has  w =50q   and  (50!20)q  = 30!20  so  q  = 1/3.H H    H      H

Notice that the best separable plan does not depend on the probability of the high type p .  H

In the low-p  case when  p  < 2/3,  the best separable plan here is interim incentive efficient, H    H

because the *L-incentive constraint is binding and q =1 in this best separable plan.L

When the best separable plan is incentive efficient, it can be arguably considered an equilibrium for

the adverse-selection market with competitive uninformed buyers, because of the following fact.

Fact.  If the best separable plan is incentive efficient then, for any other incentive-compatible plan, the

buyers must expect losses from the seller-types that would prefer this plan to the best separable plan.

If not, then letting each type of seller choose its preference among this alternative plan and the best

separable plan would also be an incentive-compatible plan that would interim Pareto-dominate the

best separable plan, contradicting our assumption that the best separable plan is incentive-efficient.
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In the high-p  case when  p  > 2/3,  however, the best separable plan for this example can be interimH    H

dominated by a pooling plan such as  q  = q  = 1,  w  = w  = 50p  + 30(1!p ) = 30+20p  > 43.33.ˆ   ˆ     ˆ   ˆ
L  H    L  H  H  H   H

For example, when p =0.8, a pooling price 46 yields  U (L) = 26  and  U (H) = 6 with  U  = 0.H        1       1      2

In this market with many competitive buyers, any one of whom could use all the sellers' supply, we

may anticipate that buyers' competition should drive their expected profits to 0 in equilibrium.

If the buyers' expected profits were positive, then one buyer could deviate and increase his price

offers (w ,w ) slightly, to make greater profit by attracting all the sellers.H L

In the low-p  case when p  # 2/3,  the seller's best separable plan (q =1, w =30, q =1/3, w =50/3)H   H         L  L  H  H

is incentive-efficient and we have seen that it may then be considered a competitive equilibrium here.

In high-p  cases with p >2/3, however, it is harder to say what a market equilibrium should be. H   H

In these cases, the only incentive-efficient plans are pooling plans in which the buyers profit from

trading with H-sellers but suffer losses from trading with L-sellers.

If the trading plan that is offered by the buyers in the market is not incentive-efficient, then a buyer

could gain by a dominating deviation, that is, by deviating to offer an interim Pareto-dominating plan

that attracts all types of sellers and gives the buyer greater expected profits, when we average over all

types according to their given (p ,p ) distribution.H L

On the other hand, if the trading plan in the market is a pooling plan or any other plan in which

buyers lose from trading with L-types, then a deviating buyer could do better by making an offer that

is slightly better for H-sellers and slightly worse for L-sellers, thus only attracting the profitable H-

types.  That is, if the other buyers are offering an incentive-compatible plan with 50q !w  > 0 andH H

30q !w <0, then a deviating buyer could do better by offering to buy some quantity q = q !g for aL L                 H
ˆ

payment w = w !*  such that g is small and positive and 40g>*>20g. ˆ
H

Then with w!40q > w !40q , the H-types will prefer the deviator's offer; and with g small, the H-ˆ ˆ
H H

types will still yield positive profits 50q!w>0.  But with w!20q < w !20q  # w !20q , the L-typesˆ ˆ     ˆ ˆ
H H  L L

will prefer to trade with other buyers, and the deviator will gain by avoiding the unprofitable L-trades.

This tactic of leaving unprofitable types to trade with others in the market is called cream-skimming.

Another approach to this problem of defining equilibrium with competitive uninformed buyers is to

model it as a game where each of two buyers independently announces an incentive-compatible plan

(q ,w ,q ,w ), and then each informed seller chooses the plan that he prefers (given his type).˜ ˜ ˜ ˜
H H L L

The above argument shows that this game has no pure-strategy equilibrium when p >2/3.H

A symmetric randomized equilibrium can be found.  Let us consider the case of  p  = 0.8.  H

In this equilibrium, each buyer independently chooses his q  from a uniform distribution on [1/3,1],˜
H

and then lets  w  = 2+44q ,  q  = 1,  and  w  = 20q  + w  ! 20q  = 22 + 24q .  ˜   ˜   ˜       ˜   ˜   ˜   ˜     ˜
H  H   L      L  L  H  H    H

The low end q =1/3 is best separable plan where L-sellers get U (L)=10, H-sellers get U (H)=10/3.˜
H         1    1

The high end q =1 is the pooling plan with  w = p B +p B  = 46,  U (L)=26,  U (H)=6.˜        ˜
H          H H L L    1   1
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All sellers choose whichever buyer offers the higher q , and this buyer gets zero expected profits,˜
H

because these plans all satisfy  0.2(30q !w ) + 0.8(50q !w ) = 0.2(8!24q ) + 0.8(6q !2) = 0.˜ ˜   ˜ ˜   ˜   ˜
L L   H H   H   H

The winning buyer gains from H-sellers but loses from L-sellers.  When the other buyer's offer is

uncertain, no alternative offer could expect to earn positive profits from the types that would prefer it.

But ex post, for any plan that buyer 1 might offer, when buyer 2 observes it then buyer 2 could do

better either by deviating either to a profitable dominating plan that attracts all types, or to a cream-

skimming plan that attracts only H-types and leaves buyer 1 with the unprofitable L-types.

So this approach seems unsatisfactory, as it relies too heavily on any assumption that buyers must

commit themselves simultaneously to offers that they then cannot revise.

To formulate a concept of market equilibrium for which general existence can be proven, we must

find some way for equilibria to deter some of these dominating or cream-skimming deviations.

Two general ways have been suggested.

One is to allow buyers some ability to react to each others' deviation from the anticipated equilibrium.

The other is to allow that the self-selected sellers who accept a deviator's offer might not be

representative of the overall population of sellers.  We consider each in turn.

Threats of competitive reactions could make any market uncompetitive.  Buyers could sustain

monopsonistic collusion if they could threaten to increase their offers against any buyer's deviation.

But such collusion could not be sustained if buyers were only allowed to withdraw their offers in

response to a deviation.  In a standard market without adverse selection, a buyer's profit could never

be reduced by other buyers withdrawing some competitive offers.

But in a market with adverse selection, seemingly profitable cream-skimming deviations could be

made unprofitable by withdrawing competitive offers that the deviation itself has made unprofitable.

For example, with p =0.8, the efficient pooling plan with zero expected profit for buyers has q=1 andH

w = p B +p B  = 46.  A cream-skimming challenge that attracts the profitable H-types but not theH H L L

unprofitable L-types must have q=1!g and w=46!* where 40g > * > 20g.  But then the average priceˆ   ˆ

per unit must be w'q > (46!40g)'(1!g) > 46, and so the deviation would become unprofitable if theˆ ˆ

other buyers withdrew their offers that were supposed to attract the unprofitable L-types.

The problem is that, by treating the type-L sellers so well, the efficient pooling plans actually make it

easier for a competitive challenger to design terms of trade that appeal only to profitable H types.

Thus, the possibility of defensive withdrawal of offers could deter cream-skimming deviations and

thus could sustain the efficient 0-profit pooling plan as a market equilibrium.

The other way of sustaining an equilibrium is by dropping the assumption that a deviating buyer can

confidently expect to attract all sellers of any type that prefer the deviator's offer.

We normally think of a competitive equilibrium as being characterized by many small competitors,

each of whom serves only a small fraction of the market.  (If the buyers were few, each with a large

share of the market, it would be hard to justify an assumption that they could not react to each other.)
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For a small buyer, a deviation could be worthwhile if it profitably increased the buyer's share of the

market, even if it could not hope to suddenly recruit all sellers in the market.

After such a deviation, a small buyer would recruit a self-selected sample of sellers who are attracted

by the new offer, and their types might not be representative of the overall type distribution.

Of course, types that prefer the market equilibrium will not do business with the deviator; but other

types could also be under- or over-represented in the sample drawn by the deviator.

For a deviation that would attract two or more types, if any of them would be unprofitable for the

deviator, then the deviation could be deterred by fear of over-sampling the unprofitable types.

So a dominating deviation by a pooling plan against an inefficient separable plan (in the high-pH

case) could be deterred by fear of L-types being adversely over-represented in the deviator's sample.

Thus, the possibility of such adverse selection against a deviator could deter dominating deviations

and thus could sustain the best separable plan at an equilibrium even when it is inefficient.

Consider a dynamic version of this market into which a flow of informed sellers continuously enter,

search for a suitable buyer, and then exit when they find an offer that seems competitively optimal.

In any time interval, suppose that 80% of the entering sellers are H-types, 20% are L-types.

Suppose that all buyers' offers are very close to some part of the best separable plan, but most offer

only (q ,w ) = (1/3!g,50(1/3!g)) for H-types, and L types must search longer to find (q ,w )=(1,30).H H              L L

So at any point in time, the stock of searching sellers, from whom a deviating buyer must sample,

might consist of mostly L-types, and then a short-term deviator could not gain by a pooling plan.

Thus, the best separable plan could be sustained as an equilibrium by a version of Gresham's law: 

that the bad (L) types circulate more than the good (H) types.

Fact.  If both defensive withdrawals and adverse selection are possible against deviators, 

then any feasible plan that (weakly) interim dominates the best separable plan is sustainable.

For such a sustainable equilibrium, buyers could also offer the best separable plan, which no sellers

would be expected to accept (because the given feasible plan interim Pareto-dominates it).  

But if any buyer deviated to another offer, then the other buyers could withdraw to the best separable

plan, and then the deviator could not earn profits from its self-selected sellers if the fraction of H-

types among them were in the low range (below 2/3, where this separable plan cannot be dominated).

[Some parametric variants.  If the parameters were  2 =30,  B =20,  2 =40,  B =50,  then the bestL   L   H   H

separable plan for the sellers would have no trade at all, even with high p :  0=q =q , 0=w =w .H   L H  L H

Here buyers fear to trade with L sellers, with whom they cannot profitable trade.

If the parameters were  2 =20,  B =50,  2 =40,  B =30,  then the best separable plan for the sellersL   L   H   H

would be  q =1, w =40, 0=q =w ,  which lets buyers earn strictly positive profits.  Here fear ofL  L  H H

trading with H-sellers could deter buyers from offering more than 40 for L-sellers who are worth 50.]
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Diagram of the MWG example 23.F.3, with 2 =20, B =30, 2 =40, B =50, p =0.8 .
L  L  H  H  H

The lowest dashed line (blue) is where the buyer's expected profit is zero with low type, the highest

dashed line (green) is where the buyer's expected profit is zero with high type, and the middle dashed

line (grey) is where the buyer's expected profit is zero with both types pooled, given fractions p  andH

p =1!p .  The solid lines with lower slope (blue) are lines of constant profit to low-type sellers, andL H

the solid lines with higher slope (green) are lines of constant profit to high-type sellers.

The seller's best separable plan is indicated by the two large squares, the low type at the blue square

getting q =1 and w =30, the high type at the green square getting q =1/3, w =50/3.L   L          H  H

In this case, because p  > 2/3, the best separable plan can be interim pareto-dominated by poolingH

plans.  The large grey triangle at q=1, w=46 denotes the best pooling plan for the sellers.  But if

sellers expected get this pooling plan with buyers, then a buyers who offered the smaller green

triangle (at q = 0.86, w = 41.8 = 48.60q) could hope to make a profit by attracting high sellers but not

low sellers.  Notice that this small green triangle is wedged in between two short lines that are parts of

the indifference curves through the pooling plan (q=1,w=46) for the two types of seller, above the 

green indifference curve of the high type, below the blue indifference curve of the low type, and it is

profitable for the buyer with high-type sellers, as it is below the green (highest) dotted line.

But it is above the grey dotted line, so it would become unprofitable if it attracted both types, as

would happen if the grey-triangle offer were withdrawn.
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Signalling.  In the above example, suppose now that there is a signal that sellers could make which

would cost c >0 for L-types but would cost c >0 for H-types.L       H

Let us apply sequential equilibrium to a market game in which the informed sellers must make their

choices about whether to get the costly signal before the buyers compete for them.

Suppose there are excess buyers in the market, and the terms of trade that these competitive buyers

offer to any seller will depend only on what the buyers observe about the seller's signal.

So for each observable signal-value, the competitive buyers should just break even, paying exactly the

value of the seller's asset conditional on his signal.

For what values of c  and c  could there be an equilibrium where the seller would choose to signalH  L

when his type is H but not when his type is L?

When the low type is separated, its competitive bids from buyers will be B  = 30, and so type-LL

sellers will get expected gain B !2  = 30!20 = 10 from their nonsignaling separation.L L

But signaling in this separating scenario becomes evidence of type H, and so those sellers who signal

can get competitive bids of B  = 50 from the buyers.  H

So for the low types to not signal, we must have  B  ! 2  ! c  # B !2 .H  L  L  L L

For the high types to signal, we must have  B !2 !c  $ max{0, B !2 }.H H H   L H

So this separating scenario is an equilibrium when  50!20!c  # 30!20  and  50!40!c  $ 0,L      H

that is, when  c  $ 20  and  c  # 10.L      H

For this equilibrium to be better for the H-sellers than the best separable plan that we found

previously, we also need  50!40!c  > (50!40)'3,  and so  c  < 6.67  (with  c  $ 20).H       H      L

Lagrangean analysis explains why the costly signal can change the sellers' best separable plan only

when  c 'c  > 3.  The best separable plan here maximizes a Lagrangean (from the low-p  case withL H              H

"  = 0.5p ) in which the H-type's value of his asset is transformed from 2  to the virtual value |L  H             H

2 +(2 !2 )" 'p  = 1.52 !0.52 .  That is, in this Lagrangean, an H-type's virtual utility is 1.5H H L *L H  H L

times the actual H utility minus 0.5 times the utility that an L type would get.  

So the signal's virtual cost for H is  1.5c !0.5c ,  which becomes a positive virtual benefit (aH L

negative virtual cost) when  c  > 3c  > 0.L  H

For what values of c  and c  could there be an equilibrium where both types choose to signal?H  L

If both types are expected to signal, then at best they could both sell the asset for  p B +p B .H H L L

The worst that buyers could infer about a seller is that his type is L, in which case they would pay up

to B =30 for his object.  So a seller always has two alternatives to signaling: he can sell it for B =30,L                    L

or he can keep the asset himself and get zero gains from trade.

Thus, for both types of seller to actually want to use this signal in an equilibrium, we must have

(p B +p B ) ! 2  ! c  $ max{B !2 , 0}  and  (p B +p B ) ! 2  ! c  $ max{B !2 , 0}.H H L L   H  H  L H      H H L L   L  L  L L

In this example, this becomes  p 50+(1!p )30 ! 40 ! c  $ 0,  p 50+(1!p )30 ! 20 ! c  $ 30!20, H H     H    H H     L

and so we must have  20p  ! 10 $ c   and  20p  $ c . H    H    H  L

The former condition cannot be satisfied by any positive c  unless  p  > 1/2.H   H

But when  p  = 0.8,  for example, this pooling scenario is an equilibrium if  c  # 6  and  c  # 16.H              H      L

This may be called a "rat-race equilibrium," as the costly signal does nobody any good.
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A general model of markets with adverse selection

Consider a large market where sellers have private information, and each seller must be matched with

one buyer, but each buyer can be matched with any number of sellers.

(We may think of the sellers as workers, and buyers as employers.)

Each seller privately knows his own type t, which is in some finite set of possible types T, 

but a seller can misrepresent his type if he not given an incentive for honesty.

Let p(t) be the fraction of type-t sellers among new arrivals into the market over any interval of time.

Let M denote the set of possible terms of trade or transactions between a matched seller and buyer.

Each transaction m in M includes a full specification of the quantity sold and the price paid (and any

required signals by the seller), but for simplicity we treat M here as a finite set (possibly very large).

Let u (m,t) and u (m,t) denote the utility values to the seller and buyer respectively of transaction m1   2

when the seller's type is t.

Suppose that M includes the null transaction m  for which  u (m ,t) = 0 = u (m ,t)  œt0T. 0    1 0     2 0

A transaction plan is a function from types to probability distributions over transactions,  µ:T6)(M).

That is, to describe the anticipated plan of transactions in such a market, we may let µ(m*t) denote the

probability that a seller of type t will get a transaction m in the market.

So transaction plan µ must satisfy the probability constraints:

[1] µ(m*t) $ 0, œm0M,  œt0T;  and  3  µ(m*t) =1,  œt0T. m0M

The expected utility for a type-t seller in the plan µ may be written

U (µ,t) = 3  µ(m*t)u (m,t).  1   m0M 1

Because customers can misrepresent their types, such a market plan must be incentive compatible,

that is, it must satisfy the informational incentive constraints:

[2] 3  µ(m*t)u (m,t) $ 3  µ(m*s)u (m,t),  œt0T, œs0T. m0M 1   m0M 1

Buyers should not expect to lose from these transactions.  In the overall market, the

p-pooled break-even constraint says that aggregate net profit of all buyers must be nonnegative:

[3] U (µ,p) = 3  3  p(t)µ(m*t)u (m,t) $ 0.2   t0T m0M 2

We say that a plan µ is a feasible with the type-distribution p (or p-feasible) iff µ satisfies [1]-[3].

Such a trading plan could be derived from informed sellers' choosing among a menu of buyers' offers.

In a competitive market, the buyers could announce offers specifying the transactions that they are

willing to make with sellers, and then each seller could choose the offer that is best for his type.

For convexity, let us assume buyers can offer lotteries that randomly assign sellers to transactions in

M according to any specified probability distribution in  )(M) = {T0ú |  T(m)$0,  3  T(m)=1}.M
m0M

Then the menu of offers available in the market would be some a subset of )(M), say  S f )(M).

The market trading plan would then be derived from the sellers' choices among the buyers' offers.

Sellers' type-dependent selections in a menu S would yield an incentive-compatible plan µ such that

µ(C*t) 0  argmax  3  T(m)u (m,t),  œt0T.  Here µ(C|t) denotes the vector  µ(C|t) = (µ(m|t)) .T0S m0M 1             m0M 

We will consider the possibility that buyers might withdraw some offers, in response to a deviation.

If buyers were to withdraw some offers from the menu S, then the smaller menu S' f S would yield a
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new incentive-compatible plan µ' that cannot be better for any type:  U (µ',t) # U (µ,t)  œt0T.1   1

So a fallback from µ could be any incentive-compatible plan µ' such that  U (µ',t) # U (µ,t)  œt0T.1   1

Any such fallback could be implemented with menus  S' = {µ'(C|t)| t0T}  and  S = S'c{µ(C|t)| t0T}.

If buyers lose money trading with some types, then individual buyers would want to find ways of

avoiding those types that yield negative profits for buyers.  Such incentives to manipulate the

selection process will exist unless the market plan satisfies the following separate break-even

constraints, which assert that buyers do not expect to lose with any type:

[4] U (µ,t) = 3  µ(m*t)u (m,t) $ 0,  œt0T. 2   m0M 2

We may say that a transaction plan µ is separable iff µ satisfies [1], [2], and [4].

Condition [4] implies that the p-pooled break-even constraint [3] is satisfied for any distribution p.

A separable plan µ is best for the sellers iff, for every other separable plan µ,  U (µ,t) $ U (µ,t) œt0T.G               G
1   1

Fact 1.  There exists a separable plan µ that is best for the sellers of all types.G

Proof.  With M and T being finite sets, the set of separable plans that satisfy [1], [2], and [4] is closed,

bounded, and convex.  It is also nonempty because the plan µ  that always puts probability one on m0       0

(µ (m *t)=1 œt) satisfies all the constraints.0 0

Now pick any vector of positive weights 8(t)>0 for all types t.  (We could let 8(t)=p(t), for example.) 

The plan µ will be an optimal solution to the problem G

[5] choose µ to maximize  3  8(t) U (µ,t)  subject to the constraints [1], [2], and [4].  t0T  1

Now to verify that an optimal solution of [5] is best for all types of seller, suppose to the contrary that

there is some other separable plan µ that some types prefer. ˆ

Let S(µ) denote the set of types that prefer this plan, so  S(µ) = {s0T: U (µ*s) > U (µ*s)}.ˆ             ˆ    ˆ   G
1   1

Then let µ be the plan that gives each type its preference among µ and µ; that is:ˆ   G

µ(m*t) = µ(m*t)  if  t 0 S(µ),  and  µ(m*t) = µ(m*t)  otherwise.ˆ       ˆ       G

It is straightforward to check that this µ is also a separable plan, and so it would be a strictly better

solution to problem [5] if S(µ) were nonempty.  QEDˆ

Let )(T) be the set of probability distributions over T,  )(T) = {r0ú *r(t)$0 œt0T, 3  r(t)=1}.  T
t0T

For any r in )(T), a transaction plan µ is r-feasible iff it satisfies [1]-[3] with the type-distribution r

replacing p in the buyers' break-even constraint [3]:  U (µ,r) = 3  3  r(t)µ(m*t)u (m,t) $ 0.2   t0T m0M 2

Being separable, the plan µ is r-feasible with any other type-distribution r in )(T).G

An r-feasible plan µ is r-efficient for the informed sellers iff there exists no r-feasible plan µ* such

that   U (µ*,t) $ U (µ.t)  œt0T  with a strict inequality  U (µ*,t) > U (µ,t)  for some type t.1   1          1   1

Fact 2.  There exists a type-distribution r in )(T) such that the best separable plan µ is r-efficient forG         G   G

the informed sellers.

Proof:  The above problem [5] (with 8) that characterizes µ is a linear programming problem.G

So the optimal solution µ of [5] is supported by nonnegative Lagrange multipliers (",() such thatG

µ maximizes the following Lagrangean subject to only the probability constraints [1]G
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     L(µ;",() = 3  8(t)U (µ,t) + 3  3  "(s*t) 3  [µ(m*t)!µ(m*s)]u (m,t)t0T 1   t0T s0T  m0M 1

+ 3  ((t) 3  µ(m*t)u (m,t),t0T  m0M 2

and we have the following complementary slackness conditions

     "(s*t) $ 0  and  "(s*t) 3  [µ(m*t) !µ(m*s)]u (m,t) = 0,  œt0T,  œs0T,m0M  1
G  G

     ((t) $ 0  and  ((t) [3  µ(m*t)u (m,t)] = 0,  œt0T.m0M 2
G

The complementary slackness conditions imply that the maximized value of the Lagrangean is just

     L(µ;",() = 3  8(t) U (µ,t).G     G
t0T  1

Let  ' = 3  ((t) $ 0.  Choose r in )(T) so that  r(t)' = ((t), œt0T.t0T
G

(If ' is 0 then let r be any distribution in )(T); otherwise, with '=/ 0, let  r(t) = ((t)''  œt.)G           G

If µ is feasible with the type-distribution r, then we have  3  [µ(m*t)!µ(m*s)]u (m,t) $ 0 œt œs,G
m0M 1

and  3  ((t) 3  µ(m*t)u (m,t) = ' 3  r(t)3  µ(m*t)u (m,t) $ 0.t0T  m0M 2    t0T m0M 2
G

So Lagrangean-optimality of µ implies  3  8(t)U (µ,t) = L(µ;",() $ L(µ;",() $ 3  8(t)U (µ,t).G     G   G
t0T 1       t0T 1

With all 8(t)>0, if any s has U (µ,s)>U (µ,t), then another type t must have U (µ,t) <U (µ,t).  QED.1 1        1  1
G         G

Rothschild-Stiglitz (1976) showed that simple concepts of competitive equilibrium in markets with

adverse selection may yield no equilibria in many cases.  Wilson (1977) and Hellwig (1987)

suggested that, to get equilibrium existence, we should admit that buyers could react against another

buyer's deviation by withdrawing some offers that the deviation may make unprofitable.

We should not allow buyers to add new offers in reaction to a deviation, however, because such

reactions could make any market uncompetitive.  Buyers could sustain monopsonistic collusion if

they could threaten to increase their offers against another buyer's deviation.  But in a conventional

market without adverse selection, a buyer's profit cannot be reduced by his competitors withdrawing

offers, and so theats of offer-withdrawals could not be used to sustain collusion among the buyers.

In a market where buyers' offers yield a plan µ, suppose a buyer is considering a deviation that offers

another incentive-compatible plan 0 that can attract at least one type t such that  U (0,t) > U (µ,t).1   1

In response to this deviation, the other buyers could withdraw some of their offers so that their

reduced menu would yield a fallback plan µ' such that  U (µ',t) # U (µ,t)  œt0T.1   1

Seller types t with  U (0,t) # U (µ',t)  would have no incentive to select into the deviation 0, and the1   1

deviating buyer could send any such types away to trade with the other buyers who offer µ'.

So the types selecting 0 could have a distribution r such that  r(t)=0  unless  U (0,t) > U (µ',t).1   1

A plan µ is sustainable with adverse selection iff µ is feasible with the given type-distribution p, and,

for every incentive-compatible deviation 0 such that  {t0T| U (0,t) > U (µ,t)} =/  O',  there exists a1   1

p-feasible fallback plan µ', satisfying  U (µ'|t) # U (µ|t)  œt0T,  and there exists a type-distribution r1   1

such that  {t0T| r(t)>0} f {t0T| U (0,t) > U (µ',t)}  and 0 is not r-feasible.1   1

When 0 is incentive compatible, not being r-feasible means  U (0,r) < 0.2

Fact 3.  A p-feasible plan µ is sustainable with adverse selection iff  U (µ,t) $ U (µ,t)  œt0T,  where µ1   1
G      G

is the best separable plan.  Any such µ can be sustained against a deviation 0 by the fallback  µ' = µG

and distribution r such that any t in S = {s0T* U (0,s)>U (µ,s)}  has probability  r(t) = r(t)'3  r(s).1 1        s0S
G        G  G
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Proof.  If there is any type t such that U (µ,t) < U (µ,t), then µ cannot be sustainable, because the best1   1
G

separable plan µ is a deviation that would be feasible with any type-distribution r. G

Now consider any µ such that U (µ,t) $ U (µ,t) œt0T, so that µ can be a fallback from µ.1   1
G     G

Consider any incentive-compatible deviation 0  such that {s0T* U (0,s)>U (µ,s)} =/  O'.  1 1

Let  S = {s0T* U (0,s)>U (µ,s)}.  1 1
G

Define the plan 0 such that  0(m*t) = 0(m*t)  if  t0S,  and otherwise 0(m*t) = µ(m*t).˜     ˜           ˜   G

It is straightforward to verify that 0 must be incentive compatible for the sellers, because it could be˜

implemented by letting each type of seller choose between the incentive-compatible plans 0 and µ.G

We have  U (0,t) > U (µ,t) $ U (µ,t)  for all t in S,  U (0,t) = U (µ,t)  for all other t.1   1   1         1   1
˜     G         ˜   G

So 0 is Pareto-superior to the best separable plan µ for the informed sellers.˜         G

Thus, by Fact 2, 0 cannot be feasible with the type distribution r.˜         G

That is, we must have  3  r(t) 3  0(m*t)u (m,t) < 0.t0T  m0M 2
G   ˜

In this negative sum, the terms for types that choose µ are all nonnegative, and the other types are allG

in S where 0 is the same as 0.  Thus,  3  r(t) 3  0(m*t)u (m,t) < 0.˜           G
t0S  m0M 2

So some t in S must have r(t) > 0.  Then we can let  r(t) = r(t)'3  r(s)  for all t in S, and let r(t) = 0G            G  G
s0S

for all other t.  So U (0,r)<0 and 0 is not r-feasible, as required for µ to be sustained against 0.  QED.2

Reaction to deviations may not actually be needed to sustain a plan µ such that  U (µ,t) $ U (µ,t) œt.1   1
G

We are assuming that sellers are continuously flowing into the market with the type-distribution p.

But when sellers apply for a transaction in µ, a small (infinitesimal) fraction of them could be put into

a special wait list from which they will be matched according to the best separable plan µ. G

Because  U (µ,t) $ U (µ,t)  for all t, sellers in this wait list would be more eager than others of the1   1
G

same type to trade with any buyer who deviates from the µ system.

Different types could have different probabilities of entering the wait list (after revealing types while

expecting the incentive-compatible µ); so the type-distribution in the wait list could be r from Fact 2.G

So if all sellers are matched with buyers quickly except for those going on the wait list, then the stock

of sellers who are available in the market at any point in time may consist almost entirely of the wait

list with plan µ and type-distribution r, from which no deviation 0 can profitable sample (by Fact 2).G    G

The key idea here, that the stock of traders who are actually available at any point in time may differ

adversely from the flow of traders who enter the market over any interval of time, is really a version

of Gresham's law: that bad types may circulate more than good types.

See also R. Myerson, "Sustainable matching plans with adverse selection," Games and Economic

Behavior 9:35-65 (1995); or Game Theory section 10.9.
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Finding the distribution r for an example.G

Recall again the example where the seller's cost-types are 2 =20 and 2 =40, the correspondingL   H

buyer's values are B =30 and B =50.L   H

The set of possible transactions is the set of all (q,w) in M = [0,1]×ú.  This is an infinite set, but the

linearity of utility functions will make the problem [5] that characterizes the best separable plan a

linear programming problem as follows:  Choose (q ,w ,q ,w )  to H H L L

maximize 8 (w !40q ) + 8 (w !20q )  subject toH H H   L L L

w !40q  ! (w !40q ) $ 0 [" ]H H  L L   *H

w !20q  ! (w !20q ) $ 0 [" ]L L  H H   *L

50q !w  $ 0 [( ]H H   H

30q !w  $ 0 [( ]L L  L

1$q $0,  1$q $0.H   L

Lagrangean conditions for w  and w  yield  0 = 8  + "  ! "  ! ( ,  0 = 8  + "  !"  !( .H  L     H  *H  *L  H     L  *L *H L

To support a separable plan with 1 > q  > 0 and slack in the *H-incentive constraint, we must have  H

0 = 50(  + 20"  ! 40(8 +" )  and  "  = 0.  H  *L  H *H     *H

These four equations give us  

"  = (1/3)8 ,  (  = 8 !"  = (2/3)8 ,  (  = 8  + "  = 8 +(1/3)8 .*L  H   H  H *L  H   L  L  *L  L H

Then q  has Lagrangean cocfficient  30(  + 40"  ! 20(8 +" ) = 108  + (10/3)8  > 0,  for  q =1.L     L  *H  L *L   L  H      L

From above, these Lagrange multipliers yield an r distribution that sustains the best separable plan:G

r  = ( '(( +( ) =  (2/3)'(8 '8  + 1),   r  = ( '(( +( ) =  1!r .G           G      G
H  H H L    L H     L  L H L    H

As the given 8 '8  can range from 0 to infinity, this can yield any r  between 0 and 2/3.L H           H
G

So we confirm that the seller's best separable plan becomes incentive-efficient when the fraction of

H-sellers is less than 2/3.
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Motivating an agent with a linear type drawn from a continuous distribution on an interval.

Suppose that the agent's type t is a random variable drawn from an interval [A,B].

The agent's type t is his cost of effort, and his utility for income w and effort q is   w ! t q.

Consider any contract (w(C),q(C)) where the terms of trade for each type 2 would be  (w(t),q(t)).

Let  U(w,q*t) = w(t) ! tq(t)  denote the expected utility of type t under this contract.

For any pair of possible types t and s in [A,B], the (s*t)-informational incentive constraint says

U(w,q*t) = w(t) ! t q(t) $ w(s) ! t q(s) = U(w,q*s) + (s!t)q(s).

Similarly, the (t*s)-incentive constraint implies  U(w,q*s) $ U(w,q*t) + (t!s)q(t)

So the (t*s) and (s*t) constraints together imply  (s!t)q(t) $ U(w,q*t)!U(w,q*s) $ (s!t)q(s).

So when  s > t  we must have q(t) $ q(s), and so q(t) is a decreasing function of the cost-type t.

These inequalities over many small steps from t up to B yield the information-rent equation: 

U(w,q*t) = U(w,q*B) + I  q(r) dr.  B
t

(Seller type B has the least motivation to trade.)  The expected income of any type t is then  

w(t) = U(w,q*t) + tq(t) = U(w,q*B) + I  q(r) dr  + tq(t) = U(w,q*B) + q(B)B + . B
t

With this w(C), we get  U(w,q*t)![w(s)!tq(s)] = U(w,q|t)!U(w,q|s)!(s!t)q(s) = I  [q(r)!q(s)]dr, s
t

which is always nonnegative (verifying incentive compatibility) if q(s) is weakly decreasing in s. 

Suppose the principal's beliefs about the agent's type are described by the cumulative distribution 

F(t) = P(t # t),  and  f(t) = FN(t)  is the continuous probability density of this distribution, ˜

with f(t)>0 for all t in [A,B].   Here  F(B)=1,  F(A)=0,  and  P(a#t#b) = F(b)!F(a)=I  f(t) dt b
a

whenever  a # b.  Then the expected wage bill is

I  w(t) f(t) dt = I  [U(w,q*B) + tq(t) + I  q(r) dr]f(t) dt  B     B     B
A     A     t

     = U(w,q*B) + I  t q(t) f(t) dt + I   I  f(t) dt q(r) drB      B  r
A      A  A

     = U(w,q*B) + I  t q(t) f(t) dt + I   F(r) q(r) dr = U(w,q*B) + I   q(t) [t + F(t)'f(t)] f(t) dt . B      B        B
A      A        A

So the incentive-compatible expected wage E(w(t)) looks like what the principal would have to pay

without incentive constraints if the cost of each type t were increased to a virtual cost  t+F(t)'f(t). 

This virtual-cost formula expresses the fact that, when we ask more effort from any type t, we

increase the amount that we must pay all types below t, because of incentive constraints.

Example: Akerlof's Lemons.  The "agent" is the seller of a unique object, of which the "principal" is

the only potential buyer.  The seller's type is the value of the object to him, which depends on his

unverifiable private information about its quality.  Then q(t) can be reinterpreted as the probability of

his selling the good if he acts like type t, which must satisfy  0 # q(t) # 1,  and w(t) is his expected

revenue from selling if he acts like type t.  

Suppose t is drawn from a Uniform distribution on the interval from 0 to 100, but the value of the

object to the buyer also depends on the quality (which the buyer would learn only after the

transaction) and would be 1.5t.  So the object would always be worth 50% more to the buyer.

If (w,q) satisfies the incentive constraints and U(w,q*t)$0, the buyer's expected gain from trade is  

I  [1.5tq(t)!w(t)]f(t)dt = I  [1.5t!t!F(t)'f(t)]q(t)f(t)dt!U(w,q*100) 100   100
0    0

= I  [1.5t!2t]q(t)dt'100 ! U(w,q*100) # 0.  The buyer can only expect to lose if any q(t)>0.100
0
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A continuous example:  Now suppose that 2 is drawn from a Uniform distribution on [1,2], keeping

everything else the same as in the previous example, with  B(q*2) = (1+2)q .0.5

So  F(2) = (2!1)'(2!1),  f(2) = 1'(2!1) =1,  F(2)'f(2) = 2!1,  for any 2 in [1,2].

Then the principal's expected gains from trade are 

I  [B(q(2)*2) ! w(2)] f(2) d2  = I  {B(q(2)*2) ! q(2)[2+F(2)'f(2)]}f(2)d2 ! U(w,q*2)2        2
1        1

= I  [(2+1)q(2)  ! q(2)(22!1)] d2 ! [w(2)!2q(2)] .2 0.5
1

To maximize the integrand at every 2, we want

0 = 0.5(2+1)q  ! (22!1),  which yields  q(2) = [0.5(2+1)'(22!1)] .!0.5         2

Because this q(2) is monotone decreasing in 2, we know that it is actually feasible.

[If this q(2) were increasing over any part of the interval, then it would not be feasible, and we would

have an "irregular" case which is more complicated to solve (e.g: Myerson, 1981).]

At the extreme types, we get  q(1) = 1,  q(2) = 0.25.

To get U(w,q*2) = 0, the optimal solution must have  w(2) = 2q(2) = 2×0.25 = 0.5.

Then the information-rent equations give us

U(w,q*2) = I  q(t) dt = 0.25[0.25t + 0.75LN(2t!1) ! 2.25'(4t!2)]* ,2        2
2        2

and  w(2) = 2q(2) + I  q(t) dt.2
2

In particular,  we get  U(w,q*1) = 0.456  and  w(1) = 1.456.

(Recall: In the discrete case where types 2 =1 and 2 =2 each had probability 1/2, the optimal solution also had
L   H

q(1)=1, q(2)=0.25, and w(2)=0.5, but it had w(1)=1.25, so type 1 got a smaller information rent.)

Now let's do the analogous result for the case where the agent is a buyer of some object.

Here the agent's type t is interpreted as his valuation of the object.  

Now let q(t) denote the probability of the agent buying the object if her type is t, and let w(t) denote

expected amount that the agent will have to pay if her type is t.

(If w(t) denotes the price that the type-t agent will pay if she buys, and if she would pay nothing if sheˆ

does not buy the object, then our w(t) is equal to  q(t) w(t).)ˆ

So the expected gains from trade for a type-t buyer are  U(w,q*t) = t q(t) ! w(t).

An incentive compatible trading plan must satisfy, for all types s and t in the interval [A,B],

U(w,q*t) = t q(t) ! w(t) $ t q(s) ! w(s) = U(w,q*s) + (t!s)q(s).

Assuming differentiability,  0 = M/Ms [tq(s)!w(s)]* ,  so  wN(t) = tqN(t),  and  wNN(t) = tqNN(t)+qN(t).s=t 

Then  0 $ M /Ms  [tq(s)!w(s)]*  = tqNN(t)!wNN(t) = !qN(t),  and so a buyer's q(C) must be increasing.2 2
s=t 

Notice  M/Ms [tq(s)!w(s)] = tqN(s)!wN(s) = (t!s)qN(s).  With qN$0, this is #0 if s>t, $0 if s<t.

Then the envelope theorem yields  UN(w,q*t) = d/dt [tq(t)!w(t)] = q(t),  

and so we get the buyer's information-rent equation:  U(w,q*t) = U(w,q*A) + I  q(s) ds.  t
A

(Buyer type A has the least motivation to trade.)  So the expected payment from any type t is  

w(t) = tq(t) ! U(w,q*t) = t q(t) ! I  q(s) ds ! U(w,q*A) = q(A)A +  ! U(w,q*A). t
A

The overall expected payment from the buyer, before her type is known, is 

I  w(t) f(t) dt = I  [t q(t) ! I  q(s) ds ! U(w,q*A)]f(t) dt  B     B    t
A     A    A

   = I   tq(t)f(t)dt ! I  I   f(t)dtq(s)ds ! U(w,q*A)  = I  q(t) [t ! (1!F(t))'f(t)] f(t) dt ! U(w,q*A).  B    B B       B
A    A s        A
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Facts about Uniform distributions.  Suppose that X is a random variable drawn from a Uniform

distribution on the interval from A to B, where A < B.  Then  E(X) = (A+B)'2,  and  œ20[A,B]:  

F(2) = P(X#2) = P(X<2) = (2!A)'(B!A),  f(2) = FN(2) = 1'(B!A),  1!F(2) = (B!2)'(B!A),

E(X*X#2) = E(X*X<2) = (A+2)'2,  E(X*X$2) = E(X*X>2) = (2+B)'2,

2 + F(2)'f(2) = 2 + (2!A) = 22!A,  2 ! (1!F(2))'f(2) = 2 ! (B!2) = 22!B.

Revenue equivalence in auctions  Let {1,2,...,n}  be n bidders to buy an object, and assume that each

bidder i has an independent private value for this object t  that is drawn from a Uniform distributioni

on an interval A  to B   (A  < B ).  Let unsubscripted t = (t ,...,t ) denote the profile of n bidders'i  i  i  i       1 n

types.  Let Q (t) = Q (t ,...,t ) denote the conditional probability of i winning the object given that thei   i 1 n

type-profile t is equal to t, and let W (t) denote the conditional expected payment from i given thei

same type-profile t.   Let q (t ) = E(Q (t ,t )) = E(Q (t)|t =t )  and  w (t ) = E(W (t ,t )) = E(W (t)|t =t ) i i   i !i i   i i i     i i   i !i i   i i i

denote the conditional probability of i winning and i's conditional expected payment given i's own

type t , but not knowing the others' independent types.  With the Uniform [A ,B ] distribution, i             i i

t  ! (1!F (t ))'f (t ) = 2t !B .  The seller's total expected revenue from the auction is:i  i i i i   i i

3  E(W (t)) = 3  E(w (t )) = 3  E{q (t )[t !(1!F (t ))'f (t )]} ! 3  U (W,Q*A )i i   i i i   i i i i i i i i   i i i

= 3  E[q (t ) (2t !B )] ! 3  U (W,Q*A ) = E [3  Q (t) (2t !B )] ! 3  U (W,Q*A ).  i  i i  i i   i i i    i  i  i i   i i i

Consider a symmetric case where all A =A and all B =B.  Any auction that always delivers the objecti    i

to the bidder who actually values it most would yield  q (t ) = ((t !A)'(B!A))   for all t  in [A,B].i i   i     i
n!1

If it allows no profit to the minimal-value type-A bidders  U (W,Q|A)=0,  then these facts determinei

the seller's expected revenue, regardless of the other details of the auction.

But the formula for expected revenue that we have derived above would be maximized, subject to the

constraints that 3  Q (t) = 1 œt  and all Q (t)$0, by the seller keeping the object when  max  2t !B < 0,i i        i          i i

but otherwise giving it to the bidder with highest t .i

Bilateral bargaining between a seller and a buyer for a single object

The seller is i=1, the buyer is i=2.  Each individual i has an independent private value t  for the objecti

that is drawn from some probability distribution with cumulative probability distribution F (t )  andi i

positive density f (t ) on the interval [A ,B ].i i     i i

Let Q(t) = Q(t ,t ) denote the conditional probability of trade given their types t  and t1 2           1  2

Let q (t ) denote the conditional probability of trade given that i's type is t . i i             i

Here  q (t ) = E(Q(t ,t ))  must be decreasing in t , and  q (t ) = E(Q(t ,t ))  must be increasing in t .1 1   1 2       1    2 2   1 2       2

Let w (t ) be the conditional expected payment to the seller given that his type is t .1 1               1

Let w (t ) be the conditional expected payment from the buyer given that her type is t .2 2               2

Incentive compatibility implies that  E(w (t )) = E(q (t )[t +F (t )'f (t )]) + U (B ),1 1   1 1 1 1 1 1 1   1 1

and  E(w (t )) = E(q (t )[t !(1!F (t ))'f (t )]) ! U (A ).2 2   2 1 2 2 2 2 2   2 2

The difference  ) = E[w (t )) ! E(w (t ))]  is the expected net subsidy (if any).1 1   2 2

So interim participation constraints yield the following inequality, from Myerson-Satterthwaite:

0 # U (B ) + U (A ) = ) + E{Q(t ,t )([t !(1!F (t ))'f (t )] ! [t +F (t )'f (t )]}1 1   2 2     1 2 2 2 2 2 2   1 1 1 1 1

When each t  is Uniform [A ,B ], for no subsidy ()=0) we need  0 # E{Q(t ,t )[2(t !t )!(B !A )]}i   i i           1 2 2 1 2 1
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A Uniform bilateral trading problem like Akerlof's

Let's consider a bilateral trading problem where agent 1 is the seller of some unique object which he

owns, and agent 2 is the only possible buyer of this object.

Depending on the object's quality, it may be worth as little as $40 to agent 1 and $60 to agent 2 (if

its quality is low) or as much as $100 to agent 1 and $120 to agent 2 (if its quality is high).

Player 1 knows the quality of the object.  Let 1's cost type t  is his value of keeping the object.˜
1

With any quality, the object would be worth $20 more to player 2 than to player 1.  

That is, given 1's type t , the value of the object to player 2 would be g(t ) = t +20.˜              ˜
1            1   1

Player 2's belief about t  is described by a Uniform distribution on the interval $40 to $100.˜
1

Game where buyer bids  Suppose first that agent 2 can offer to buy for any positive price r, and

then agent 1 will accept or reject the offer.  If the offer is rejected then they each get profit 0.

If the offer is accepted then 1's profit is  r!t   and 2's profit is g(t )!r.˜       ˜
1      1

In a subgame-perfect equilibrium, agent 1 will accept if  t  < r, but agent 1 will reject if  t  > r.˜           ˜
1          1

Agent 2's expected profit from offering any price r is  Y(r) = P(t <r) [E(g(t )* t <r) ! r].˜  ˜  ˜
1  1  1

For any number r between 40 and 100,  this expected profit is 

Y(r) = P(t <r) [E(t +20* t <r) ! r] = P(t <r) [(E(t * t <r) + 20 ! r] = ˜  ˜  ˜     ˜  ˜  ˜
1  1  1     1  1  1

 = [(r!40)'(100!40)][(40+r)'2 + 20 ! r] = (r!40)(80!r)'120 = (!3200 +120r ! r )'120.2

This quadratic formula is maximized by letting r = 60. 

(The buyer cannot gain by bidding less than 40 or more than 100, because a bid below 40 would be

surely rejected, and a bid above 100 would be worse than the surely-accepted bid of 100.)

So in the unique subgame-perfect equilibrium of this game, agent 2 offers to buy for $60, and

agent 1 accepts if t  < 60.  The probability of trade is  P(trade) = (60!40)'(100!40) = 1/3.˜
1

Game where seller bids  Suppose now that agent 1 can offer to buy for any positive price r, and

then agent 2 will accept or reject the offer.  If the offer is rejected then they each get profit 0.

If the offer is accepted, then 1's profit is  r!t   and 2's profit is g(t )!r.  ˜       ˜
1      1

In this game, the price is named by the agent who has private information, and so signaling effects

give us many equilibria.  

We may also reinterpret this as a market, with many sellers (1) and enough identical buyers (2) to

buy the entire supply, where each seller 1, knowing his own type, publicly commits to a price that

he chooses.  Then he must sell at this price (if any buyer accepts his bid) or keep the object.

Let's look first for an equilibrium where there is some price r such that agent 2 would surely accept

an offer to sell for r but would surely reject an offer to sell for any price higher than r.

In this equilibrium, agent 1 will offer r if  t  < r. ˜
1

For agent 2 to accept the offer r, 2's expected profit from accepting r must not be negative, 

so  0 # E(g(t )* t <r) ! r = E(t +20*t <r) ! r = (40+r)'2 + 20 ! r,  which implies  r # 80.˜  ˜     ˜ ˜
1  1     1 1

For agent 2 to reject any offer to sell at a price higher than r, such a trade must be unprofitable for

agent 2 when she makes the worst inference about agent 1, which is that his type is 40, in which

case the object would be worth  40+20 = $60  to agent 2.

So we can construct such an equilibrium for any r such that  60 # r # 80.  

In such an equilibrium, types higher than r may be expected to make some offer higher than 120,

which agent 2 could never profitably accept.   
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An offer between r and 120 may be rejected by agent 2 because this surprise offer may lead agent 2

to believe that 1's type is 40, in which case the object is only worth 60 to agent 2.  Among these

almost-pooling equilibria, agent 1 most prefers the equilibrium with r = 80.  

In this equilibrium, the probability of trade is  Pr(trade) = Pr(t <80) = (80!40)'(100!40) = 2/3.˜
1

Reinterpretation in market:  We'd get excess demand if r<80, and the market clears only at  r=80.

So an uninformed Walrasian auctioneer who posts a price to clear the market would choose r=80.

There are many other equilibria where different types of seller (1) choose different prices.

Let's look for an equilibrium in which some types of agent 1 would offer to sell for $70, but all

higher types would offer to sell for $100, and agent 2 would be sure to accept $70 but her

probability of accepting $100 would be between 0 and 1.  To find this equilibrium, we have two

unknowns to find:  let q denote the probability that agent 2 would accept an offer of $100,  

and let 2 denote the highest type of agent 1 that would offer $70.

For agent 2 to be willing to randomize between accepting and rejecting $100, her expected profit

from accepting it must be 0, and so  

0 = E(g(t )*t >2) ! 100 = E(t +20*t >2) ! 100 = (2+100)'2 + 20 ! 100,  and so  2 = 60.˜ ˜     ˜ ˜
1 1     1 1

For agent 1 to offer $70 below when his type is below 2 but $100 when his type is above 2, we

need that  70!t  $ q(100!t )  when  t <2,  and  70!t  # q(100!t )  when  t >2.1  1     1     1  1     1

These inequalities imply  70!2 = q(100!2),  and so  q = (70!60)'(100!60) =  1/4.

In this equilibrium,  Pr(trade) = Pr(t <2) + Pr(t >2)q = (20/60) + (40/60)(1/4) = 1/2.  ˜   ˜
1   1

This is also a market equilibrium, with no excess demand at either price:  E(g(t )*t #2) = 70.˜ ˜
1 1

There is a separating equilibrium in which each possible type t  of agent 1 would offer to sell for1

r(t ) = t +20, and the probability of agent 2 accepting would depend on the offer r according to the1   1

formula  Q(r) = e ,  for any  r $ 60.  The derivation is as follows:!(r!60)'20

For  r = t +20  to maximize  Q(r)(r!t ), we need  0 = QN(r)(r!t ) + Q(r)  when  r=t +20, 1      1       1       1

 and so  !1'20 = QN(r)'Q(r) = d/dr LN(Q(r)).

In our usual notation for incentive-compatible trading plans, this separating equilibrium has, 

for any seller's type t, the type-conditional probability of trade  q(t) = Q(t+20) = e   !(t!40)'20

and the type-conditional expected payment  w(t) = (t+20)q(t) = (t+20)e .!(t!40)'20

This function q() could also be derived from the incentive constraints, for all t in [40,100]:

w(t)!tq(t) = max  w(s)!tq(s) = max  q(s)(s+20!t),   which yields  0 = qN(t)(t+20!t) ! q(t)1.s   s

The low-end boundary condition q(40)=1 identifies the best separating equilibrium.

If we compare different types expected gains from trade in these three equilibria, we find that 

low types (t #73) prefer the pooling equilibrium where all trade occurs at the price 80,1

middle types (74#t #94) prefer the two-price equilibrium where trade occurs at 70 or 100,1

and high type (t $95) prefer the separating equilibrium.  But the separating equilibrium is actually1

interim pareto-dominated by the following semi-separating equilibrium:

Low types in [40,60] are pooled together and sell for $70 with probability q=1, 

but any higher type t>60 separates and sells with a probability q(t)<1 at price t+20.

For t=60 to be indifferent between selling for price 70 with probability 1 or selling for price 60+20

with a lower probability, that probability must be  q(60)=0.5.  Then as before, we get qN(t)'q(t) =

!1'20  and so  q(t) = 0.5e .  (Compare:  e  = 0.368 < 0.5.)!(t!60)'20     !(t!40)'20
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Mechanism design with informational incentive constraints: a general framework

i,j 0 {1,...,I} = {agents}.  x 0 X = {feasible allocations}.  s ,2  0 1  = {possible types of agent i}.i i  i

2 = (2 ,...,2 ) = (2 ,2 ) 0  1 = 1 ×...×1 .  2  0 1  = ×  1 .1 I   !i i      1 I   !i  !i  j=/ i j

We restrict our attention to the case where agents' types are independent random variables.

Let p  be the probability distribution of i's type in 1 .  p(2) = J  p (2 ).  p (2 ) = J  p (2 ).i         i     i0N i i   !i !i   j=/ i j j

u :X×1!ú is i's utility function.i

A direct-revelation mechanism is any mapping from type-profiles to allocations  µ:16X.

U (µ*2 ) = .   U (µ,s *2 ) = . i i      i i i
ˆ

µ is incentive compatible iff  œi0{1,...,I}, œ2 01 , œs 01 ,  U (µ*2 ) $ U (µ,s *2 ).i i  i i   i i   i i i
ˆ

A generalized mechanism is of the form (:S ×...×S 6X.  1 I

An equilibrium of such ( is of the form (F :1 6S ,...,F :1 6S ).  1 1 1 I I I

For any equilibrium F of any generalized mechanism (,  µ(2) = ((F (2 ),...,F (2 ))  defines an1 1 I I

equivalent incentive-compatible direct-revelation mechanism.  So without loss of generality, we

may restrict our attention to incentive compatible mechanisms (revelation principle).

A mechanism µ is (strongly) interim (Pareto-)dominated by another mechanism µ iffˆ

U (µ*2 ) > U (µ*2 ),  œi0{1,...,I}, œ2 01 .i i   i i    i i
ˆ

µ:16X is (weakly) (interim) incentive efficient iff µ is incentive compatible and µ is not interim

Pareto-dominated by any other incentive-compatible mechanism µ:16X.ˆ

Fact  µ is interim incentive-efficient iff we can find nonnegative weights 8 (2 ) for all types 2  ofG
i i     i

all agents i such that: at least some 8 (2 )>0, and µ is an optimal solution to the problemi i

     maximize    µ:16X

     subject to  U (µ*2 ) $ U (µ,s *2 )  œi0{1,...,I}, œ2 01 , œs 01 . (s *2  incentive constraint)i i   i i i    i i  i i  i i
ˆ

The Lagrangean of this problem (with constraint multipliers " (s *2 )$0, œi, œ2 , œs ) isi i i   i  i

L(µ;") =  +  

=  3  p(2) 3  [8 (2 ) u (µ(2),2) + 3  " (s *2 )(u (µ(2),2) ! u (µ(2 ,s ),2)]'p (2 ) 2  i i i  i   si i i i i   i !i i i i

=  3  p(2){3  [8 (2 )+3  " (s *2 )]u (µ(2),2) ! 3  " (s *2 )u (µ(2 ,s ),2)}'p (2 ) 2 i i i si i i i i   si i i i i !i i i i

=  3  p(2){3  [8 (2 )+3  " (s *2 )]u (µ(2),2) ! 3  " (2 *s )u (µ(2),(2 ,s ))}'p (2 ) 2 i i i si i i i i   si i i i i !i i i i

= 3  p(2) 3  v (µ(2),2,8,"),  where v  is the (8,")-virtual utility function for agent i, 2  i i    i

defined to be  v (x,2,8,") = [(8 (2 )+3  " (s *2 ))u (x,2) ! 3  " (2 *s ) u (x,(2 ,s )]'p (2 ). i   i i si i i i i   si i i i  i !i i i i

Lagrange multipliers can be positive " (2 *s )>0 only for binding constraints U (µ*s )=U (µ,2 *s ).i i i      i i i i i

With such an incentive-efficient µ, we say that type s  jeopardizes 2  iff the incentive constrainti  i

U (µ*s ) $ U (µ,2 *s ) is binding and has positive multiplier " (2 *s )>0 in the Lagrangean for µ.i i   i i i        i i i
ˆ

Virtual utility of any type 2  of agent i differs from the actual utility of type 2  by exaggerating thei           i

differences from i's other types s  that jeopardize 2 .i   i

The incentive-efficient mechanism µ appears ex-post efficient in terms of such virtual utilities.

Now suppose agents have separable linear utility for money w , that is, any social choice x can bei

decomposed into a pair x = (q ,w )  such that i's utility is  u (x,2) = u (q ,w ,2) = u (q ,0,2) + w , i i         i   i i i   i i   i

and these money transfers w  are not bounded (no liquidity constraints).  i
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Then all types of all agents must have the same marginal virtual-utility of money (or else

Lagrangean optimality would call for infinite transfers from agents with lower marginal utility of

money to those with higher marginal utility for money).  We may take this constant marginal

virtual-utility for money to equal 1, without loss of generality (if not, just rescale all the 8-

weights).  Then the conditions  Mv ((q ,w ),2,8,")'Mw  = 1  give us the "balance" equations:i i i i

8 (2 ) + 3  " (s *2 ) ! 3  " (2 *s ) = p (2 ),  œi, œ2 .i i   si i i i   si i i i   i i    i

Substituting these equations into the formula for the (8,")-virtual utility function, it simplifies to

v (x,2,8,") = v (x,2,") = u (x,2) + 3  [u (x,2) ! u (x,(2 ,s ))]" (2 *s )'p (2 ). i   i   i   si i   i !i i i i i i i

Fact.  With independent types and linear utility for money, an incentive-compatible mechanism µ

is incentive-efficient iff there exists some vector " of nonnegative Lagrange multipliers 

" (s *2 ) $ 0,  œs , œ2 , œii i i     i  i

that have complementary slackness with the corresponding constraints 

" (s *2 )[U (µ*2 )!U (µ,s *2 )] = 0,  œs , œ2 , œii i i i i i i i     i  i
ˆ

and yield nonnegative 8 weights for all possible types of all individuals

8 (2 ) = p (2 ) + 3  (" (2 *s ) !" (s *2 )) $ 0,  œ2 , œii i   i i   si i i i  i i i     i

such that the mechanism µ maximizes the sum of virtual-utility payoffs for each profile of types

3  v (µ(2),2,")  = max  3  v (x,2,"),  œ2.i i    x i i

[There are examples where player i is a seller with an unknown cost type, and the possible cost

types are {A, A+*, A+2*,..., B}.  If the question is how to maximize the buyer's expected payoff,

then we find that the participation constraint is binding only for i's highest possible type B, and so

only that highest type has positive 8 ; that is  8 (B)=1  and all other 8 (t )=0.  In such examples, wei     i      i i

often find that the incentive constraints that have positive Lagrange multiplier are  " (t *t !*) =i i i

3  p (s).  Then the cost-type t  is associated with the virtual cost  s<ti i      i

t +(t !(t !*))" (t *t !*)'p (t ) = t  + (3  p (s))'(p (t )'*).]i i i i i i i i   i  s<ti i i i
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Revelation principle

For any coordination plan, any equilibrium of people’s (possibly dishonest) reporting and (possibly

disobedient) reactions is equivalent to an incentive-compatible plan that makes it an equilibrium

for everyone to be honest and obedient.  That is, without loss of generality, a trustworthy mediator

can plan to make honesty and obedience the best policy for everyone.
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An optional exercise to verify a randomized equilibrium of the competitive screening game in

MWG 13.D, where two firms simultaneously offer menus of employment contracts:

Consider a discrete example of our basic labor-market model.  There are two types of workers: 

low types with reservation wage 2 =2 and productivity B =3, and high types high types withL    L

reservation wage 2 =4 and productivity B =5.  The fraction of high-type workers in theH    H

population is p =0.8, and so the expected productivity of a randomly-sampled worker is  H

E(B) = 0.2×3+0.8×5 = 4.6.  Each worker has one unit of labor to sell, but he can accept a contract˜

to sell only some fraction q of it to one firm.  So an employment contract specifies the fraction q of

the worker's labor that he will sell, and a total salary w that he will be paid.  

When a worker of type 2 and productivity B accepts contract (q,w), the worker's payoff is  w!2q, 

and the firm's payoff is  B!w.  We may say that a menu of contracts ((q ,w ),(q ,w )) is incentiveL L H H

compatible if, among these two contracts, low types weakly prefer (q ,w ) and high types weaklyL L

prefer (q ,w ).  Given any menu ((q ,w ),(q ,w )), applying the first contract to a low-typeH H      L L H H

worker would give the firm payoff  y  = 3q !w   and give the worker payoff  u  =w !2q , L  L L        L L L

and applying the second contract to a high-type worker would give the firm payoff  y  = 5q !w  H  H H

and give the worker payoff  u  = w !4q .H  H H

We may say that the *L incentive constraint is binding in such an incentive compatible menu if

low types would be indifferent among the two contracts.  (Read "*L" as "given-L.")

(a)  Show that, for any incentive-compatible menu ((q ,w ),(q ,w )), there is an amount w  suchL L H H      L
ˆ

that ((1,w ),(q ,w )) is incentive compatible, the low-type workers would be indifferent betweenˆ
L H H

(1,w ) and (q ,w ), and firms would prefer hiring low-type workers under the (1,w ) contractˆ             ˆ
L   H H           L

than the (q ,w ) contract.  (Thus we can assume without loss of generality that firms only offerL L

such incentive compatible menus where low types work full-time and the *L-constraint is binding.)

(b)  Show that, when ((1,w ),(q ,w )) is an incentive-compatible menu in which the *L-incentiveL H H

constraint is binding, the firm's profits (y ,y ) from hiring each type of worker (in its intendedL H

contract) can be expressed as a linear function of the two worker-types' payoffs (u ,u ).L H

(c)  Suppose firm 1 will announce a randomly generated menu ((1,w ),(q ,w )) such that:˜ ˜ ˜
L H H

w  is drawn from a uniform distribution over the interval from 3 to 4.6 (from B  to E(B)), ˜                  ˜
L               L

w !2 = w !2q   (so the low types would be indifferent between the two contracts), and˜   ˜ ˜
L   H H

0.2(3!w )+0.8(5q !w ) = 0  (so the menu applied to all workers would yield expected profit 0). ˜ ˜ ˜
L H H

With these two equations, q  and w  depend linearly on w .  Show that the resulting menu is˜   ˜     ˜
H  H    L

incentive compatible.  Then show that the two types' expected payoffs under such a random menu

u  = w !2  and  u  = w !4q   are also uniform random variables over certain intervals.˜   ˜     ˜   ˜ ˜
L  L     H  H H

Show the formulas for the cumulative probabilities  F (u) = P(u #u)  and  F (u) = P(u #u).L   L     H   H
˜       ˜

(d)  Given that firm 1 is behaving according to the randomized strategy in (c), show that firm 2

could get zero expected profit by choosing any incentive-compatible menu ((1,w ),(q ,w )) thatL H H

satisfies the conditions  w !2 = w !2q ,  0.2(3!w )+0.8(5q !w ) = 0,  and  3 # w  # 4.6.L   H H   L H H         L

(e)  Now suppose that firm 2 considers any incentive-compatible menu ((1,w ),(q ,w )) in whichL H H

the *L-incentive constraint is binding.  Using your formulas from (b) and (c), show that firm 2's

expected profit per worker  0.2 F (u ) y  + 0.8 F (u ) y   cannot be positive. L L  L   H H  H


