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A model of decisions under uncertainty is characterized by: 
a set of alternative choices C, a set of possible states of the world S,  
a utility function u:C×S 6ℝ, and a probability distribution p in Δ(S). 
Suppose that C and S are nonempty finite sets. 
Here we use the notation  Δ(S) = {q∈ℝS* q(s)$0 œs,  3θ∈S q(θ) = 1}. 
The expected utility hypothesis says that an optimal decision should  
maximize expected utility  Eu(c) = Eu(c*p) = 3θ∈S p(θ)u(c,θ)  over all c in C,  
for some utility function u that is appropriate for the decision maker. 
 
Example 1.  Consider an example with choices C = {T,M,B}, state S = {L,R}, and 
u(c,s):  L R 

T 7 2 
M 2 7 
B 5 6  

To describe the probability distribution parametrically, let r be the probability of state R. 
So  Eu(T) = 7(1!r)+2r,  Eu(M) = 2(1!r)+7r,  Eu(B) = 5(1!r)+6r. 
Then B is optimal when  5(1!r)+6r ≥ 2(1!r)+7r  and  5(1!r)+6r ≥ 7(1!r)+2r, 
which are satisfied when  3/4 = (5−2)/[(5−2)+(7−6)] ≥ r ≥ (7−5)/[(7−5)+(6−2)] = 1/3.   

T is optimal when r ≤ 1/3.  M is optimal when r ≥ 3/4. 
 
Fact:  Given the utility function u:C×S6ℝ and some choice option d∈C, the set of probability distributions 
that make d optimal is a closed convex (possibly empty) subset of Δ(S).  
This set (of probabilities that make d optimal) is empty if and only if there exists some randomized strategy 
σ in Δ(C) such that  u(d,s) < 3c∈C σ(c)u(c,s)  œs∈S. 
When these inequalities hold, we say that d is strongly dominated by σ. 
[Proof:  {x∈ℝS* ›σ∈Δ(C) s.t. xs # 3c∈C σ(c)u(c,s) œs}  is a convex subset of ℝS.   
d is strongly dominated iff (u(d,s))s∈S is in its interior.  Use supporting-hyperplane thm, MWG p. 949.] 
 
Example 2: As above, C = {T,M,B}, S = {L,R}, and u is same except  u(B,R) = 3. 
u(c,s):  L R 

T 7 2 
M 2 7 
B 5 3 

As before, B would be the second-best choice in either state (if the state were known). 
B would be an optimal decision under uncertainty when  
5(1!r)+3r $ 7(1!r)+2r  and  5(1!r)+3r $ 2(1!r)+7r, 
which are satisfied when  r $ 2/3  and  3/7 $ r,  which is impossible!  So B cannot be optimal. 
T is optimal when r#1/2.  M is optimal when r$1/2. 
Now consider a randomized strategy that chooses T with some probability σ(T)  
and chooses M otherwise, with probability σ(M) = 1!σ(T).   
B would be strongly dominated by this randomized strategy σ if 
5 < σ(T)7 + (1!σ(T))2   (B worse than σ in state L), and 
3 < σ(T)2 + (1!σ(T))7   (B worse than σ in state R). 
These inequalities are satisfied when 3/5 < σ(T) < 4/5.  For example, σ(T) = 0.7 works. 
That is, B is strongly dominated by 0.7[T]+0.3[M],  
as 5 < 0.7×7+0.3×2 = 5.5 and 3 < 0.7×2+0.3×7 = 3.5. 
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Separating Hyperplane Theorem (MWG M.G.2; or JR A2.23 with C={w−x| x∈X}):   
Suppose X is a closed convex subset of ℝN, and w is a vector in ℝN.   
Then exactly one of the following two statements is true:  Either (1) w ∈ X,  
or (2) there exists a vector y∈ ℝN such that  yNw > maxx∈X yNx 
(but not both).  (Here  yNw = y1x1+...+yNxN,  with y = (y1,...,yN) and x = (x1,...,xN).) 

Supporting Hyperplane Theorem (MWG M.G.3; or JR A2.24 with A={w} & B=interior(X)):   
Suppose X is a convex subset of ℝN, and w is a vector in ℝN.  Then exactly one of the following two 
statements is true:  Either (1) w is in the interior of X (relative to ℝN),  
or (2) there exists a vector y∈ ℝN such that  y=/ 0  and  yNw $ maxx∈X yNx 
(but not both).  Here  0 = (0,...,0). 

Fact  If X is a convex and compact (closed and bounded), then  maxx∈X yNx  is a finite number, and this 
maximum must be achieved at some extreme point in X. (MWG p 946.) 

Fact  For any nonempty finite set C and any v∈ℝC,  maxσ∈Δ(C) ∑c∈C σ(c)vc = maxc∈C vc , 
and  argmaxσ∈Δ(C) ∑c∈C σ(c)vc = {σ∈Δ(C)| {d| σ(d)>0} ⊆ argmaxc∈C vc}. 

Strong domination Theorem.  Given the nonempty finite sets C={choices}, S={states}, the utility 
function u:C×S6ℝ, and the choice d∈C, exactly one of these two statements is true: 
Either  (2) ›p∈Δ(S)  such that  ∑s∈S p(s)u(d,s) = maxc∈C ∑s∈S p(s)u(c,s),      [d is optimal for some beliefs] 
or  (1) ›σ∈Δ(C)  such that  u(d,s) < ∑c∈C σ(c)u(c,s)  œs∈S. [d is dominated by a randomized strategy] 

Proof.  Let  X = {x∈ℝS* ›σ∈Δ(C) s.t. xs # ∑c∈C σ(c)u(c,s) œs}.  X is a convex subset of ℝS.   
Condition (1) here is equivalent to: (1N) the vector  u(d) = (u(d,s))s∈S  is in the interior of X. 
By the Supporting Hyperplane Thm, (1N) is false iff  
(2N) ›p∈ℝS such that p=/ 0 and  ∑s∈S p(s)u(d,s) $ maxx∈X ∑s∈S p(s)xs. 
We must have p(s)$0 for all s, because x in X can have xs approaching !4. 
So  3s∈S p(s) > 0,  from p$0 and p=/ 0.  Dividing by this sum, we can make  ∑s∈S p(s) = 1 (wlog). 
Furthermore, the maximum of the linear function pNx over x∈X must be achieved at one of the extreme 
points in X, which are vectors (u(c,s))s∈S for the various c∈C:  
maxx∈X ∑s∈S p(s)xs = maxσ∈Δ(C) ∑s∈S p(s) ∑c∈C σ(c) u(c,s) = maxc∈C ∑s∈S p(s)u(c,s). 
So (2N) is equivalent to condition (2) in the theorem here. 

Expected Utility Theorem.  Let N be a finite set of prizes, and consider a finite sequence of pairs of 
lotteries p(i)∈Δ(N) and q(i)∈Δ(N), for i∈M={1,...,m}.  (M indexes comparisons: "p(i) preferred to q(i).") 
(Here  p(i) = (pj(i))j∈N,  and  q(i) = (qj(i))j∈N.)  Then exactly one of these two statements is true:  
Either  (1) ›σ∈Δ(M)  such that  ∑i∈M σ(i)pj(i) = ∑i∈M σ(i)qj(i) œj∈N,   [substitution axiom is violated] 
or  (2) ›u∈ℝN  such that  ∑j∈N pj(i)uj > ∑j∈N qj(i)uj  œi∈M.            [preferences satisfy utility theory] 

Proof.  Let  X = {3i∈M σ(i)(q(i)!p(i))* σ∈Δ(M)}.  Then X is a closed convex subset of ℝN. 
Condition (1) here is equivalent to: (1N) the N-vector 0 is in X. 
By the Separating Hyperplane Thm, (1N) is false iff 
(2N) ›u∈ ℝN such that  0 = uN0 > maxx∈X uNx. 
The extreme points of X are vectors (q(i)!p(i)) = (qj(i)!pj(i))j∈N, and the linear function uNx = 3j∈N xjuj 
must achieve its maximum over x∈X at an extreme point:  maxx∈X uNx = maxi∈M ∑j∈N uj (qj(i)−pj(i)). 
So (2N) is equivalent to (2) in the theorem here.  

Fact.  Suppose the utility-representation condition (2) is satisfied by u = (uj)j∈N.   
Then (2) is also satisfied by û if there exists A>0 and B such that ûj = Auj+ B œj∈N.
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Linear Duality Theorem (Farkas's lemma, theorem of the alternatives)  

Given any m×n matrix A = (aij)i∈{1,...,m},j∈{1,...n} and any vector b = (bi)i∈{1,...,m} in ℝm,  

exactly one of the following two conditions is true: 

(1) ›x ∈ ℝn  such that  Ax $ b. 

(2) ›y ∈ ℝm  such that  y $ 0,  yNA = 0,  and yNb > 0. 
 
Here 0 denotes a vector of zeroes in some appropriate number of dimensions. 

Vector inequalities denote systems of numerical inequalities: 

Ax $ b  means:  ∑j=1
n aij xj $ bi  œi∈{1,...,m},  

yNA = 0  means  ∑i=1
m yi aij = 0  œj∈{1,...,n}, 

yNb > 0  means  ∑i=1
m yi bi > 0, 

y $ 0  means  yi $ 0  œi∈{1,...,m}.  

We may let  ℝ+
m  = {y∈ℝm* y$0}  denote the nonnegative orthant in ℝm. 

yN(Ax!b) = ∑i=1
m yi ((∑j=1

n aij xj) ! bi). 
 
Proof.  Conditions (1) and (2) cannot both be true for any x and y,  

because  y $ 0  and  Ax $ b  would imply yN(Ax!b) $ 0,  

while  yNA = 0  and  yNb > 0  would imply  yN(Ax!b) < 0,  a contradiction. 

So (2) must be false if (1) is true. 
 
Now suppose that (1) is false.  This hypothesis means that the vector b is not in the set  

{Ax!z* x ∈ ℝn,  z ∈ ℝm,  z $ 0}. 

This set is convex and closed.  So by the separating hyperplane theorem (MWG p948),  

there must exist some y∈ℝm such that 

yNb > max{yN(Ax!z)* x∈ℝn , z∈ℝm, z$0}.   

This max must be nonnegative (because x and z could be 0), and it must be finite. 

[In fact, this max must be exactly 0, because if we could achieve any 0 < α = yN(Ax!z) with x∈ℝn , z∈ℝm, 

z$0, then doubling x and z could achieve 2α, and so the max would be +4.] 

If the component yi were negative, then choosing large positive zi could drive this max to +4. 

If the j'th component of yNA were nonzero, then choosing xj with the same sign and large absolute value 

could also drive this max to +4.   

So we must have  yNb > 0,  yNA = 0,  and  y $ 0.   

So (2) must be true if (1) is false. 
 
Thus, (2) is true if and only if (1) is false.   QED. 
 
[This argument skips over one tricky detail: proving that the set {Ax!z* x ∈ ℝn,  z ∈ ℝm,  z $ 0} is closed. 

 Here is a sketch of the proof.  Let J be a minimal set of columns of the A matrix that linearly span the rest 

of A's columns.  Then you can add the restriction that xj=0 for all jóJ, without changing the set.  Let I be a 

maximal set of rows of the A matrix such that there exists some x such that Ax$0 and Ax is strictly 

positive in all the I rows.  Then you can also add the restriction that zi=0 for all i∈I.  With these 

restrictions, you can show that any sequence Ax(k)!z(k) that converges to a finite limit must have x(k) and 

z(k) converging to finite limits.] 
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First duality application: strong domination.  Suppose that there is a finite set of choice alternatives C, a 
finite set of possible states S, and u(c,s) denotes the utility payoff for the decision-maker if the state is s.  
Consider any given choice alternative d in C.  By duality, exactly one of the following two conditions is true. 
  The dual variable for each constraint is shown at right in red italics: 
(1)    ›p∈ℝS  such that  3s∈S (u(d,s) ! u(c,s)) p(s) $ 0  œc∈C,   σ(c) 

p(s) $ 0  œs∈S,   δ(s) 
and  3s∈S p(s) $ 1. α 

(2)    ›(σ,δ,α) ∈ ℝ+
C × ℝ+

S × ℝ+  such that  3c∈C σ(c)(u(d,s) ! u(c,s)) + δ(s) + α = 0  œs∈S,   p(s) 
and α > 0. 

Condition (1) holds iff there is some probability distribution on the states such that d maximizes expected 
utility (because we could divide p by its sum to make it a probability distribution).  Condition (2) holds iff 
there exists some probability distribution σ on the set of choice alternatives (a randomized strategy) such that 
 u(d,s) < 3c∈C σ(c) u(c,s)  œs∈S.  (When (2) holds, the σ(c) cannot all be zero, and so we could divide 
(σ,δ,α) by 3c σ(c) to make σ a probability distribution.)  So d is optimal for some beliefs iff it is not strongly 
dominated by some randomized strategy.  (Myerson, 1991, Theorem 1.6) 
 
Second application: Utility theory.  Suppose there are n possible prizes numbered 1,...,n. 
We ask a decision maker m questions.  In the i'th question, we ask whether he prefers a lottery p(i), which 
offers each prize j with probability pj(i), or a lottery q(i) which offers each prize j with probability qj(i).  In 
each case, suppose p(i) denotes the lottery that he strictly prefers. 
Let ε be any positive number.  By duality, exactly one of the following two conditions is true: 
(1) ›u0ℝn such that  3j=1

n (pj(i) ! qj(i)) uj $ ε  œi0{1,...,m}. σi 
(2) ›σ0ℝ+

m  such that  ε3i=1
m σi > 0,  and  3i=1

m σi (pj(i) ! qj(i)) = 0 œj0{1,...,n}. uj 
Condition (1) holds iff we can find a utility function for which his revealed preferences are compatible with 
expected utility maximization.  Condition (2) holds iff we can find a violation of the substitution axiom in 
compound lotteries.  (Renormalize so that 3i σi =1, then consider the first compound lottery that gives each 
p(i) lottery with probability σi, and the second compound lottery that gives each q(i) lottery with probability 
σi.  After the first stage of the compound lotteries, the first would always seem better than the second, but the 
ex ante probability of each prize j is equal in the two compound lotteries.)  So the revealed preferences are 
compatible with expected utility maximization iff there is no violation of the substitution axiom. 
(Conjecture of Daniel Bernoilli, 1738, verified by Von Neumann and Morgenstern, 1947.) 
 
Third application: weak domination.  Let S, C, u, and d be as in the previous example.   Let ε be any small 
positive number.  By duality, exactly one of the following two conditions is true. 
(1) ›p0ℝS such that  3s0S (u(d,s) ! u(c,s)) p(s) $ 0  œc0C,   σ(c) 

and  p(s) $ ε  œs0S. δ(s) 
(2) ›(σ,δ) 0 ℝ+

C × ℝ+
S  such that  3c0C σ(c)(u(d,s) ! u(c,s)) + δ(s) = 0  œs0S,   p(s) 

and  ε 3s0S δ(s) > 0. 
Condition (1) holds iff there is some probability distribution p on the set of states such that every state has 
strictly positive probability and d maximizes expected utility over all choices in C. 
Condition (2) holds iff there exists some probability distribution σ on the set of choice alternatives such that 
 u(d,s) # 3c0C σ(c) u(c,s)  œs0S,  with at least one strict inequality (<) for some s. 
So d is optimal for some beliefs where all states have positive probability iff d is not weakly dominated by 
some randomized strategy.  (Myerson, 1991, Theorem 1.7) 
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Duality in linear programming (LP)  (MWG appendix M.M, Myerson 1991 pp 125-127.) 
Suppose that we are given m×n matrix A = (aij)i0{1,...,m},j0{1,...n},  
and vectors  b = (bi)i0{1,...,m} 0 ℝm  and  c = (cj)i0{1,...,n} 0 ℝn . 
Consider the primal linear-programming problem: 

choose x in ℝn to minimize cNx subject to Ax$b. 
This problem is equivalent to:  minimizex  max {cNx + yN(b!Ax)*  y0ℝm, y$0}, 
because if x violated constraint the constraints then b!Ax would have some positive components and so the 
max here would become +4 (very bad when we are minimizing). 
If we reversed the order of min and max, we would get 

choose y in ℝm to maximize  min{yNb + (cN!yNA)x* x0ℝn}  subject to y $ 0. 
This problem is (similarly) equivalent to the dual linear-programming problem: 

choose y in ℝm  to maximize yNb  subject to  yNA = cN  and  y $ 0. 
 
Duality Theorem of Linear Programming.  Suppose that the constraints of the primal and dual LP problems 
both have feasible solutions.  Then these problems have optimal solutions x and y such that  cNx = yNb  
(equal values) and  yN(b!Ax) = 0  (complementary slackness). 
 
Proof  If x and y satisfy the primal and dual constraints then we must have 

cNx $ cNx + yN(b!Ax) = yNb + (cN!yNA)x = yNb. (*) 
So both the primal and dual problems must have bounded optimal values. 
Dual boundedness implies that we cannot find any ŷ such that  ŷNA=0N, ŷ$0, and ŷNb>0, 
because otherwise we could infinitely improve any dual solution by adding multiples of ŷ. 
Now for any number θ, linear duality implies that exactly one of the following is true: 

(1)   ›x 0 ℝn  such that  Ax $ b  and  !cNx $ !θ. 
(2)   ›(y,ω) 0 ℝm × ℝ  such that y$0, ω$0,  yNA! ωcN = 0,  and  yNb ! ωθ > 0. 

But when (2) is true, we must have ω>0, or else we would have the vector ŷ described above. 
So we could divide any solution of (2) through by ω>0 to get a solution of (2) with ω=1. 
So whenever (2) holds, we must also have 

(2N)  ›y 0 ℝm  such that  y $ 0,  yNA = cN,  and  yNb > θ. 
So the dual maximization can do better than any value θ that is below the minimal value of the primal.  
Thus, the optimal values of the primal and dual problems must be equal. 
It can be shown that the set of feasible values for each problem is a closed set, and so optimal solutions 
actually exist.   At optimal solutions x and y, we have yNb=cNx,  
which (by (*) above) implies the complementary slackness equation  yN(b!Ax) = 0. QED. 
 
[Our basic linear duality thm can also be seen as a special case of duality in linear programming.  
Given the matrix A and the vector b from basic linear duality, suppose we let c=0 in ℝn.  
Then the constraints of the dual LP problem always have a feasible solution y=0. 
So LP duality implies that this primal is feasible (›x s.t. Ax$b) if and only if  
its and its dual share the same optimal value, which must be cNx = 0Nx = 0, 
and so any y$0 with yNA=0 must have  yNb#0.]  
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In game theory we assume that players are rational and intelligent. 
Here rational means that each player acts to maximize his own expected utility, and intelligent means that 
the players know everything that we know about their situation when we analyze it game-theoretically. 
Intelligence implies that game model that we analyze must be common knowledge among the players,  
that is, all players know (that all players know)k the model, ∀k={0,1,2,...}.  

A strategic-form game is characterized by (N, (Ci)i∈N, (ui)i∈N) where  
N = {1,2,...,n} is the set of players, and, for each player i: 
Ci is the set of alternative actions or (pure) strategies that are feasible for i in the game, and 
ui:C1×C2×...×Cn6ℝ is player i's utility function in the game. 
We generally assume that each player i independently chooses an action in Ci.   
If c = (c1,c2,...,cn) is the combination (or profile) of actions chosen by the players  
then each player i will get the expected utility payoff ui(c1,c2,...,cn). 
We let C = C1×C2×...×Cn = ×i∈N Ci denote the set of all combinations or profiles of actions that the players 
could choose.  Let C−i denote the set of all profiles of actions that can be chosen by players other than i. 
When c∈C is a profile of actions for the players, ci denotes the action of each player i,  
c!i denotes the profile of actions for players other than i where they act as in c, 
and (c!i;di) denotes the profile of actions in which i's action is changed to di but all others choose the same 
action as in c.  (We may use this notation even if player i is not the "last" player.)  So c = (c−i;ci). 
 
A randomized strategy (or mixed strategy) for player i is a probability distribution over Ci,  
so Δ(Ci) denotes the set of all randomized strategies for player i.  (pure=nonrandomized.) 
An action di for player i is strongly dominated by a randomized strategy σi ∈ Δ(Ci) if   

Cc  )c;c(u )c(  < )d;c(u i-i-ii-iiiCcii-i ii
∈∀σΣ ∈ .  

An action di for player i is weakly dominated by a randomized strategy σi ∈ Δ(Ci) if   

Cc  )c;c(u )c(   )d;c(u i-i-ii-iiiCcii-i ii
∈∀σΣ≤ ∈ ,  with strict inequality (<) for at least one c!i.  

The set of player i's best responses to any profile of opponents' actions c!i is 

βi(c!i) = )d;c(u argmax ii-iCd ii∈
 = { })c;c(u max = )d;c(u |Cd ii-iCcii-iii ii∈∈ .  

Similarly, if i's beliefs about the other players' actions can be described by a probability distribution μ in 
Δ(C!i), then the set of player i's best responses to the beliefs μ is 

βi(μ) = )d;c(u )c(  argmax ii-ii-CdCd i-i-ii
μΣ ∈∈ .   

Fact.  If we iteratively eliminate strongly dominated actions for all players until no strongly dominated 
actions remain, then we get a reduced game in which each remaining action for each player is a best 
response to some beliefs about the other players' actions.  These remaining actions are rationalizable. 

If each player j independently uses a strategy σj in Δ(Cj), then player i's expected payoff is  
ui(σ) = ui(σ!i;σi) = ui(σ1,σ2,...,σn) = 3c∈C (Jj∈N σj(cj)) ui(c)   

=  ( ) )c;c(u )c(   )c( ii-ijjiN-jCciiCc i-i-ii σ∏ΣσΣ ∈∈∈  = ])c[;(u )c( ii-iiiCc ii σσΣ ∈ . 

Here [ci]∈Δ(Ci) with [ci](ci) = 1, [ci](di) = 0 if di≠ci.  Notice ( )  .0)(u])c[;(u)c( iii-iiiCc ii
=σ−σσΣ ∈   

Fact   σi ∈ );(u argmax ii-i)C( ii
τσΔ∈τ   if and only if  {ci∈Ci| σi(ci) > 0} ⊂ ])d[;(u argmax ii-iCd ii

σ∈ . 

The set {ci| σi(ci)>0} of actions that have positive probability under σi is called the support of σi. 

A Nash equilibrium is a profile of actions or randomized strategies such that each player is using a best 
response to the others.  That is σ = (σ1,...,σn) is a Nash equilibrium in randomized strategies iff   

σi ∈ );(u argmax ii-i)C( ii
τσΔ∈τ   for every player i in N. 

Fact.  Any finite strategic-form game has at least one Nash equilibrium in randomized strategies. 
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Computing randomized Nash equilibria for games that are larger than 2×2 can be difficult,  
but working a few examples can help you better understand Nash's subtle concept of equilibrium. 
We describe here a procedure for finding Nash equilibria, from section 3.3 of Myerson (1991). 

We are given some game, including a given set of players N and, for each i in N, a given set of feasible 
actions Ci for player i and a given payoff function ui:C1×...×Cn6ℝ for player i. 
The support of a randomized equilibrium is, for each player, the set of actions that have positive probability 
of being chosen in this equilibrium. 
To find a Nash equilibrium, we can apply the following 5-step method: 

(1) Guess a support for all players.  That is, for each player i, let Si be a subset of i's actions Ci,  
and let us guess that Si is the set of actions that player i will use with positive probability. 

(2)  Consider the smaller game where the action set for each player i is reduced to Si, and try to find an 
equilibrium where all of these actions get positive probability. 
To do this, we need to solve a system of equations for some unknown quantities. 
The unknowns:  For each player i in N and each action si in i's support Si, let σi(si) denote i's probability of 
choosing si, and let wi denote player i's expected payoff in the equilibrium.  (σi(ai)=0 if ai∉Si.) 
The equations:  For each player i, the sum of these probabilities σi(si) must equal 1. 
For each player i and each action si in Si, player i's expected payoff when he chooses si but all other players 
randomize independently according to their σj probabilities must be equal to wi. 
Let  ui(σ!i,[ai]) = Eui(ai|σ−i)  denote player i's expected payoff when he chooses action ai and all other players 
are expected to randomize independently according to their σj probabilities. 
Then the equations can be written:  3si∈Si σi(si) = 1  œi∈N;  and  ui(σ!i,[si]) = wi  œi∈N  œsi∈Si. 
(Here œ means "for all", ∈ means "in".)  We have as many equations as unknowns (wi, σi(si)). 

(3)  If the equations in step 2 have no solution, then we guessed the wrong support,  
and so we must return to step 1 and guess a new support. 
Assuming that we have a solution from step (2), continue to (4) and (5) 

(4) The solution from (2) would be nonsense if any of the "probabilities" were negative. 
That is, for every player i in N and every action si in i's support Si, we need  σi(si) $ 0. 
If these nonnegativity conditions are not satisfied by a solution, then we have not found an equilibrium with 
the guessed support, and so we must return to step 1 and guess a new support. 
If we have a solution that satisfies all these nonnegativity conditions, then it is a randomized equilibrium of 
the reduced game where each player must can only choose actions in Si. 

(5)  A solution from (2) that satisfies the condition in (4) would still not be an equilibrium of the original 
game, however, if any player would prefer an action outside the guessed support. 
So next we must ask, for each player i and for each action ai that is in Ci but is not in the guessed support Si, 
could player i do better than wi by choosing ai when all other players randomize independently according to 
their σj probabilities?   Recall  ui(σ!i,[si]) = wi  for all si in Si. 
Now, for every action ai that is in Ci but is not in Si (so σi(ai)=0), we need  ui(σ!i,[ai]) # wi. 
If our solution satisfies all these inequalities then it is an equilibrium of the given game. 
But if any of these inequalities is violated (some ui(σ!i,[ai]) > wi), then we have not found an equilibrium 
with the guessed support, and so we must return to step 1 and guess a new support. 
In a finite game, there are only a finite number of possible supports to consider.  

Thus, an equilibrium  σ = (σi(ai))ai∈Ci,i∈N  with payoffs  w = (wi)i∈N  must satisfy:  ∑ai∈Ci σi(ai) = 1  ∀i∈N;  
and  σi(ai) ≥ 0  and  ui(σ−i,[ai]) ≤ wi  with at least one equality (complementary slackness)  ∀ai∈Ci,  ∀i∈N. 
The support for each player i is the set of actions si in Ci for which  σi(si) > 0,  so that  ui(σ−i,[si]) = wi. 
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Example.  Find all Nash equilibria (pure and mixed) of the following 2×3 game: 
        Player 2 

Player 1      L    M    R  
     T    7, 2  2, 7  3, 6 
     B    2, 7  7, 2  4, 5 

There are 3×7=21 possible supports.  But it is easy to see that this game has no pure-strategy equilibria  
(2's best response to T is M, but T is not 1's best response to M; and 2's best response to B is L, but B is not 
1's best response to L).  This eliminates the six cases where each player's support is just one action. 
Furthermore, when either player is restricted to just one action, the other player always has a unique best 
response, and so there are no equilibria where only one player randomizes. 
That is, both players must have at least two actions in the support of any equilibrium. 
Thus, we must search for equilibria where the support of player 1's randomized strategy is {T,B}, and the 
support of player 2's randomized strategy is {L,M,R} or {M,R} or {L,M} or {L,R}. 
We consider these alternative supports in this order. 
Guess support is {T,B} for 1 and {L,M,R} for 2? 
We may denote 1's strategy by  σ1 = p[T]+(1−p)[B]  and 2's strategy by  σ2 = q[L]+(1!q!r)[M]+r[R],  
that is  p = σ1(T), 1!p = σ1(B), q = σ2(L), r = σ2(R), 1!q!r = σ2(M). 
Player 1 randomizing over {T,B} requires  w1 = u1(T,σ2) = u1(B,σ2),  
and so  w1 = 7q+2(1!q!r)+3r = 2q+7(1!q!r)+4r. 
Player 2 randomizing over {L,M,R} requires  w2 = u2(σ1,L) = u2(σ1,M) = u2(σ1,R),   
and so  w2 = 2p+7(1!p) = 7p+2(1!p) = 6p+5(1!p). 
We have three equations for three unknowns (p,q,r), but they have no solution (as the two indifference 
equations for player 2 imply both p=1/2 and p = 3/4, which is impossible). 
Thus there is no equilibrium with this support. 
Guess support is {T,B} for 1 and {M,R} for 2? 
We may denote 1's strategy by p[T]+(1−p)[B] and 2's strategy by (1!r)[M]+r[R].  (q=0) 
Player 1 randomizing over {T,B} requires   w1 = u1(T,σ2) = u1(B,σ2),   so  w1 = 2(1!r)+3r = 7(1!r)+4r. 
Player 2 randomizing over {M,R} requires  w2 = u2(σ1,M) = u2(σ1,R),  so  w2 = 7p+2(1!p) = 6p+5(1!p). 
These solution for these two equations in two unknowns is  p = 3/4  and  r = 5/4. 
But this solution would yield σ2(M) = 1!r = !1/4 < 0, and so there is no equilibrium with this support.  
(Notice: if player 2 never chose L then T would be dominated by B for player 1.) 
Guess support is {T,B} for 1 and {L,M} for 2? 
We may denote 1's strategy by p[T]+(1−p)[B] and 2's strategy by q[L]+(1!q)[M].  (r=0) 
Player 1 randomizing over {T,B} requires   w1 = u1(T,σ2) = u1(B,σ2),   so  w1 = 7q+2(1!q) = 2q+7(1!q). 
Player 2 randomizing over {L,M} requires  w2 = u2(σ1,L) = u2(σ1,M),  so  w2 = 2p+7(1!p) = 7p+2(1!p). 
These solution for these two equations in two unknowns is  p = 1/2  and  q = 1/2,  with  w1 = 4.5 = w2. 
This solution yields nonnegative probabilities for all actions. 
But we also need to check that player 2 would not prefer deviating outside her support to R. 
However  u2(σ1,R) = 6p+5(1!p) = 6×1/2+5×1/2 = 5.5 > w2 = u2(σ1,L) = 2×1/2+7×1/2 = 4.5. 
So there is no equilibrium with this support. 
Guess support is {T,B} for 1 and {L,R} for 2? 
We may denote 1's strategy by p[T]+(1−p)[B] and 2's strategy by q[L]+(1!q)[R].  (r=1!q) 
Player 1 randomizing over {T,B} requires  w1 = u1(T,σ2) = u1(B,σ2),  so  w1 = 7q+3(1!q) = 2q+4(1!q). 
Player 2 randomizing over {L,R} requires  w2 = u2(σ1,L) = u2(σ1,R),  so  w2 = 2p+7(1!p) = 6p+5(1!p). 
These solution for these two equations in two unknowns is   p = 1/3  and  q = 1/6. 
This solution yields nonnegative probabilities for all actions. 
We also need to check that player 2 would not prefer deviating outside her support to M; 
u2(σ1,M) = 7p+2(1!p) = 7×1/3+2×2/3 = 11/3 < w2 = u2(σ1,L) = 2×1/3+7×2/3 = 16/3. 
Thus, we have an equilibrium with this support:  ((1/3)[T]+(2/3)[B], (1/6)[L]+(5/6)[R]). 
The expected payoffs in this equilibrium are  w1 = Eu1 = 7×1/6+3×5/6 = 2×1/6+4×5/6 = 11/3 = 3.667 
and  w2 = Eu2 = 2×1/3+7×2/3 = 6×1/3+5×2/3 = 16/3 = 5.333.
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A First Bayesian Game  Bayesian games are models of one-stage games where players choose actions 
simultaneously, but where each player may have private information, called his type.  
Let us consider an example where player 2 is uncertain about one of player 1's payoffs. 
Each player must independently decide whether to act with generosity (gi) or hostility (hi).   
Player 1 might be the kind of person who would be contented (type 1c) or envious (type 1e) of player 2. 
Player 2 thinks that each of 1's possible types has probability 0.5. 
The players' payoffs (u1,u2) depend on their actions and 1's type as follows:  
 If 1's type is 1c:     g2   h2  p(1c) = 0.5 

 g1  7,7  0,4 
 h1  4,0  4,4  

 If 1's type is 1e:     g2   h2  p(1e) = 0.5 
 g1  3,7  0,4 
 h1  4,0  4,4 

How shall we analyze about this game?  Let me first sketch a common mistake. 
To deal with the uncertainty about 1's payoff from (g1,g2), some students try to analyze the game where 
player 1's payoff from (g1,g2) is the expected utility  0.5(7)+0.5(3) = 5.  So these students consider a 2×2 
payoff matrix that differs from the second (1e) case only in that the payoff 3 would be replaced by 5, and 
then they find an "equilibrium" at (g1,g2) (as 5>4 for player 1 and 7>4 for player 2). 
Such analysis would be nonsense, however.  This "equilibrium" would correspond to a theory that each 
player is sure to choose generosity.  But player 2 knows that if player 1 is type 1e then he will not choose g1, 
because g1 would be dominated by h1 for player 1 when his type is 1e.  Thus, player 2 must believe that there 
is at least a probability 0.5 of player 1 having the envious type 1e and thus choosing hostility h1. 
A correct analysis must recognize this fact. 

To find a correct approach, we may consider the situation before the players learns any private information, 
but when they know that each will learn his private type information before he acts in the game. 
A strategy for a player is a complete plan that specifies a feasible action for the player in every possible 
contingency that the player could find. 
Before player 1 learned his type, he would have 4 strategies {gcge, gche, hcge, hche} because he will learn his 
type before acting.  (For example, gche denotes the strategy "act generous if type 1c, act hostile if type 1e.") 
Player 2 would have only two strategies {g2, h2}, because she must act without learning 1's type. 
For each pair of strategies, we can compute the expected payoffs to each player, given that each of 1's types 
has probability 1/2.  So the normal representation in strategic form of this Bayesian game is: 

     g2     h2 
  gcge     5, 7    0, 4 
  gche   5.5, 3.5    2, 4 
  hcge   3.5, 3.5    2, 4 
  hche     4, 0    4, 4 

This strategic game has one equilibrium: (hche, h2), where both are hostile and get payoffs (4,4). 
In this strategic game, gcge and hcge are strictly dominated for 1 (by gche and hche respectively). 
When we eliminate these dominated strategies, then g2 becomes dominated (by h2) for player 2,  
and then hche is the unique best response for player 1 against 2's remaining strategy h2. 
(The students' mistake above was to consider only the strategies gcge and hche here.) 

A Bayesian game is defined by a set of players N; a set of actions Ci, a set of types Ti, and a utility function 
ui:(×j∈N Cj)×(× j∈T Tj)6ℝ, for each i in N; and a probability distribution p∈Δ(×j∈N Tj) 
The Bayesian game (N,(Ci,Ti,ui)i∈N,p) is assumed to be common knowledge among the players in the game, 
but each player i also privately knows his own actual type tĩ∈Ti, which is a random variable in the model. 

Mixed strategies for player i are probability distributions over functions from Ti to Ci, in Δ(Ci
Ti). 

But nobody cares about correlations among plans of i's different types; so we can instead analyze 
behavioral strategies, which are functions from Ti to probability distributions over Ci, in Δ(Ci)

Ti.   
A behavioral strategy σi specifies conditional probabilities  σi(ci|ti) = Prob(i does ci| tĩ=ti), ∀ci∈Ci, ∀ti∈Ti.
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Increasing differences and increasing strategies in Bayesian games 
We may consider Bayesian games where each player i first learns his type tĩ, and then each player i chooses 
his action ai.  We assume here that each player i's type is drawn from some probability distribution pi, 
independently of all other players' types, and so the joint probability distribution of the players' types can be 
written  p((ti)i0N) = Ji0N pi(ti),  where  pi(ti) = Prob(tĩ = ti). 
The payoffs of each player i may depend on all players' types and actions according to some utility payoff 
function ui(c1,...,cn,t1̃,...,tñ).  Suppose that types and actions are ordered as numbers (ci ∈ Ci ⊆ ℝ, tĩ ∈ Ti ⊆ ℝ). 
A function f:ℝ6ℝ is increasing (in the weak sense) iff, for all x and x̂,  x̂ $ x  implies  f(x̂) $ f(x). 
A function f:ℝ6ℝ is strictly increasing iff, for all x and x̂,  x̂ > x  implies  f(x̂) > f(x). 
 
Consider a two-player Bayesian game where player 1 has two possible actions, T and B.   
Player 1 has several possible types, and each possible type is represented by a number t1.   
Player 2 may have many possible actions c2 and many possible types t2. 
Suppose that player 2's type t2 is independent of player 1's type t1. 
The difference in player 1's payoff in switching from B to T is  u1(T,c2,t1,t2) ! u1(B,c2,t1,t2). 
This difference depends on player 1's type t1, player 2's action c2, and player 2's type t2. 
We say that player 1's payoffs satisfy (weakly or strictly) increasing differences if this difference  
u1(T, c2, t1, t2) ! u1(B, c2, t1, t2) is a (weakly or strictly) increasing function of t1,  
no matter what player 2's action c2 and type t2 may be. 
That is, increasing differences (in the weak sense) means that, for every r1, t1, c2, and t2: 
if  r1 $ t1  then  u1(T, c2, r1, t2) ! u1(B, c2, r1, t2) $ u1(T, c2, t1, t2) ! u1(B, c2, t1, t2). 
Strictly increasing differences means that, for every r1, t1, c2, and t2: 
 if  r1 > t1 then  u1(T, c2, r1, t2) ! u1(B, c2, r1, t2) > u1(T, c2, t1, t2) ! u1(B, c2, t1, t2). 
With increasing differences, 1's higher types find T relatively more attractive than lower types do. 
Player 1 is using a cutoff strategy if there is some number θ (the cutoff) such that, for each possible type t1 of 
player 1:  if  t1 > θ  then type t1 would choose [T] for sure in this strategy, 
if  t1 < θ  then type t1 would choose [B] for sure in this strategy, 
if  t1 = θ  then type t1 may choose T or B or may randomize in this strategy. 
Comparing cutoff strategies, the probability of 1 choosing T decreases as the cutoff θ increases. 
Fact. If player 1's payoffs satisfy increasing differences then, no matter what strategy player 2 may use, 
player 1 will always want to use a cutoff strategy.  Thus, when we are looking for equilibria, the increasing-
differences property assures us that player 1 must be using a cutoff strategy. 
 
More generally, in games where player 1's action can be any number in some range, we say that 
player 1's payoffs satisfy (weakly or strictly) increasing differences if, for every pair of possible actions c1 
and d1 such that c1>d1, the difference  u1(c1, c2, t1, t2)!u1(d1, c2, t1, t2)  is a (weakly or strictly) increasing 
function of player 1's type t1, no matter what player 2's action c2 and type t2 may be. 
If u1 is differentiable then the condition for increasing differences is  M2u1/Mc1Mt1 $ 0. 
Fact.  If 1's payoffs satisfy weakly increasing differences, then, against any strategy of player 2, player 1 will 
have some best-response strategy s1:T16C1 that is weakly increasing (r1$t1 => s1(r1)$s1(t1)). 
Fact. When 1's payoffs have strictly increasing differences then all player 1's best-response strategies must 
be weakly increasing:  if  r1 > t1  and, against some strategy σ2 for player 2, action c1 is optimal for type t1 
and action d1 is optimal for type r1,  then  d1 ≥ c1.  So in equilibrium, if type t1 would choose c1 with positive 
probability, and type r1 > t1 would choose d1 with positive probability, then d1 ≥ c1. 
(By optimality,  Eu1(c1,σ2,t1,t2̃) − Eu1(d1,σ2,t1,t2̃) ≥ 0  and  0 ≥ Eu1(c1,σ2,r1,t2̃) − Eu1(d1,σ2,r1,t2̃),   
but this would contradict strictly increasing differences if we had c1 > d1 with r1 > t1.)
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Example:  The set of player 1's possible types t1 is {0, .1, .2, .3}, and each has probability p1(t1) = 1/4.   
Player 2 has no private information.  1's actions are {T,B}, 2's actions are {L,R}. 
Given 1's type t1, the payoff matrix is 

  L    R 
T  t1, 0  t1, !1 
B  1, 0 !1, 3 
So 1's utility difference in switching from B to T depends on 2's action and 1's type as follows: 
U1(T,L,t1)!U1(B,L,t1) = t1!1, U1(T,R,t1)!U1(B,R,t1) = t1+1. 
Notice that these differences increase in t1.  So higher types t1 always find T relatively more attractive than 
lower types, and player 1 will use a cutoff strategy.  Thus, although player 1 has 24=16 pure strategies in this 
Bayesian game, we only need to consider 1's cutoff strategies with the following 9 possible supports: 
C (θ>.3)  every type would choose [B], so 2 thinks the probability of T is P(T)=0; 
C (θ=.3)  {0,.1,.2} would choose [B], but .3 would randomize in some way, so 2 thinks 0 ≤ P(T) ≤ 1/4; 
C (.2<θ<.3)  {0,.1,.2} would choose [B], but .3 would choose [T], so 2 thinks P(T) = 1/4; 
C (θ=.2)  {0,.1} would choose [B], .2 could randomize, .3 would choose [T], so 2 thinks 1/4 ≤ P(T) ≤ 1/2; 
C (.1<θ<.2)  {0,.1} would choose [B], {.2,.3} would choose [T], so 2 thinks P(T) = 1/2; 
C (θ=.1)  0 would choose [B], .1 could randomize, {.2,.3} would choose [T], so 2 thinks 1/2 ≤ P(T) ≤ 3/4; 
C (0<θ<.1)  0 would choose [B], {.1,.2,.3} would choose [T], so 2 thinks P(T) = 3/4; 
C (θ=0)  0 would randomize in some way, {.1, .2,.3} would choose [T], so 2 thinks 3/4 ≤ P(T) ≤ 1; 
C (θ<0)  every type would choose [T], and so 2 thinks P(T) = 1. 
If player 2 uses  σ2 = q[L]+(1!q)[R],  then player 1's optimal cutoff θ would have the property: 
t1$ θ <=> qt1+(1!q)t1 = U1(T,σ2,t1) $ U1(B,σ2,t1) = q(1)+(1!q)(!1). 
This implies  qθ+(1!q)θ = q(1)+(1!q)(!1).  So the cutoff θ is optimal for 1 when  q = (θ+1)/2. 
 
There is obviously no equilibrium in which player 2 chooses L for sure or R for sure. (check!) 
To make player 2 willing to randomize, we must have EU2(L) = EU2(R), that is,  
P(T)(0) + (1!P(T))(0) = P(T)(!1) + (1!P(T))(3),  and so P(T) = 3/4. 
Here P(T) denotes the (unconditional) probability of player 1 choosing T as assessed by player 2, who does not 
know 1's type t1. 
But 1's equilibrium strategy σ1 must specify, for each possible type t1 in {0,.1,.2,.3}, the conditional probability 
σ1(T|t1) of player 1 doing T when his type is t1. 
These unconditional and conditional probabilities of T must satisfy the equation:  P(T) = ∑t1 p1(t1)σ1(T|t1). 
For a cutoff strategy with σ1(T|t1)=1 for t1>θ and σ1(T|t1)=0 for t1<θ, this is  P(T) = p1(θ)σ1(T|θ) + ∑t1>θ p1(t1). 
So to get P(T)=3/4, the cutoff θ must be between 0 and .1 (0 would choose [B], {.1,.2,.3} would choose [T]). 
Now let q denote the probability of 2 choosing L.  To make 1's cutoff strategy optimal for him, 2's randomized 
strategy q[L]+(1!q)[R] must make player 1 prefer B when t1=0, but must make player 1 prefer T when t1 = .1. 
EU1(T*t1=0) # EU1(B*t1=0)  implies  (q)(0)+(1!q)(0) # (q)(1)+(1!q)(!1),  and so  1/2 # q. 
EU1(T*t1=.1) $ EU1(B*t1=.1)  implies  (q)(.1)+(1!q)(.1) $ (q)(1)+(1!q)(!1),  and so  q # 11/20. 
That is, to get a cutoff θ such that 0 ≤ θ ≤ .1, we must have 1/2 ≤ q = (θ+1)/2 ≤ 11/20. 
So in equilibrium, 1 chooses B if t1=0, 1 chooses T if t1$.1, and 2 randomizes, choosing L with some 
probability q that is between 1/2 and 11/20. 

Now suppose instead player 1 has five possible types {0, .1, .2, .3, .4}, each with probability p1(t1)=1/5. 
To make player 2 willing to randomize, player 1 must use a strategy such that P(T) =  3/4. 
For that to occur in an increasing cutoff strategy, the cutoff must be at θ=.1.  So t1=0 chooses B; and when t1>.1 
(which has probability 3/5) player 1 chooses T.  The remaining 3/4!3/5 = 0.15 probability of T must come from 
player 1 choosing T with probability  σ1(T|.1) = 0.15/p1(.1) = 0.15/0.2 = 0.75  when t1=.1 . 
To make type t1=θ =.1 willing to randomize, player 2's probability of choosing L must be q = (.1+1)/2 =11/20.
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Example.  Player 1's type t1 is drawn from a Uniform distribution on the interval from 0 to 1, and payoffs 
(u1,u2) depend on 1's type as follows, where ε is a number between 0 and 1 (say ε=0.1): 

    L      R 
T  εt1, 0  εt1, !1 
B    1, 0  !1, 3 
Player 1's payoffs satisfy increasing differences, so player 1 should use a cutoff strategy, 
doing T if t1>θ1, doing B if t1 < θ1,  where θ1 is some number between 0 and 1. 
Then player 2 would think that the probability of 1 doing T is  Prob(t1 > θ) = 1!θ. 
You can easily verify that there is no equilibrium where player 2 is sure to choose either L or R. 
For player 2 to be willing to randomize between L and R, both L and R must give her the same expected 
payoff, so  0 = (!1)(1!θ1) + (3)θ1,  and so θ1 = 0.25. 
So in equilibrium, player 1 must use the strategy: do T if t1 > 0.25, do B if t1 < 0.25. 
For player 1 to be willing to implement this strategy, he must be indifferent between T and B when his type 
is exactly t1 = θ1 = 0.25.  Let q denote the probability of player 2 doing L. 
Then to make type θ1 indifferent between T and B, q must satisfy  εθ1 = (1)q+ (!1)(1!q), 
which implies  q = (1 + εθ1)/2 = (1 + 0.25ε)/2.   (So as ε60, q approaches 0.5.) 

Now consider a game with two-sided incomplete information from Myerson (1991) section 3.10. 
Suppose player 1's type t1 is drawn from a Uniform distribution on the interval from 0 to 1,   
player 2's type t2 is drawn independently from a Uniform distribution on the interval from 0 to 1,  
and the payoffs depend on 1's type as follows, for some given number ε between 0 and 1: 

    L       R 
T  εt1, εt2   εt1, !1 
B    1, εt2    !1, 3 
With increasing differences, the action T becomes more attractive to higher types of player 1. 
Similarly, the action L becomes more attractive to higher types of player 2.   
So we should look for an equilibrium where each uses a cutoff strategy of the form 
C player 1 does T if t1 > θ1, player 1 does B if t1 < θ1, 
C player 2 does L if t2 > θ2, player 2 does R if t2 < θ2, 
for some pair of cutoffs θ1 and θ2.   
It is easy to check that neither player's action can be certain to the other,  
and so these cutoffs θ1 and θ2 must be strictly between 0 and 1. 
With t1 Uniform on 0 to 1, the probability of player 1 doing T (t1>θ1) is 1!θ1. 
Similarly, the probability of player 2 doing L (t2>θ2) is 1!θ2. 
The cutoff types must be indifferent between the two actions.  So we have the equations 
εθ1 = (1)(1!θ2) + (!1)θ2,   εθ2 = (!1)(1!θ1) + (3)θ1. 
The unique solution to these equations is  θ1 = (2+ε)/(8+ε2),   θ2 = (4!ε)/(8+ε2). 
Unless a player's type exactly equals the cutoff (which has zero probability), he is not indifferent between his 
two actions, and he uses the action yielding a higher expected payoff given his type. 
As ε60, these equilibria approach the randomized strategies (.75[T]+.25[B], .5[L]+.5[R]). 

These examples show how randomized equilibria can become pure-strategy equilibria in Bayesian games 
where each player has minor private information that determines his optimal action in equilibrium. 
This is called purification of randomized equilibria by Bayesian games (Harsanyi, IJGT, 1973.)
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Introduction to auctions. Consider n=2 bidders in a first-price auction to buy an object for which they have 
independent private values drawn from a Uniform distribution on 0 to M. 
The set of players is N={1,2}.  Each player i's type set is Ti = [0,M], where the type ti is i's value of the 
object being sold.  Player i's action is a bid ci which must be a nonegative number in ℝ+.  
The high bidder gets the object, which is worth his type to him, but the winner must pay the amount that he 
bid.  Losers pay nothing.  So the utility function for each player i is 
ui(c1,c2,t1,t2) = ti!ci  if  ci>c!i,  ui(c1,c2,t1,t2) =0  if  ci<c!i,  ui(c1,c2,t1,t2) = (ti!ci)/2  if  ci=c!i. 
A strategy for player i specifies i's bid as some function of i's type, say  ci = bi(ti).   
Let us try to find a symmetric equilibrium of this game, and let us guess that the equilibrium strategy is 
linear, of the form bi(ti) = αti for some α>0.  Can this be an equilibrium, for some α?   
Consider the problem of player 1's best response, when player 2 uses such a strategy, so  c̃2 = αt2̃. 
When player 1 knows his type is t1, player 1's expected payoff from choosing bid c1 would be 
EU1(c1*t1) = (t1!c1) P(c̃2 < c1) =  (t1!c1) P(αt2̃ < c1) = (t1!c1) P(t2̃ < c1/α) = (t1!c1)(c1/α)/M, 
(assuming that c1 is between 0 and αM). So the first-order optimality conditions are  
0 = MEU1(c1*t1)/Mc1 = (t1!2c1)/(αM),  which implies  c1 = t1/2. 
So player 1's best-response strategy is the same linear function as 2's strategy if α = 1/2. 
Thus, bidders 1 and 2 each bidding half of his/her type-value (ci=bi(ti)=ti/2) is an equilibrium in this auction. 
E(payment from i*tĩ=ti) = (ti/2) P(t!̃i/2 < ti/2) = (ti/2)(ti/M) = ti

2/(2M). 

Now let us change the game to an all-pay-own-bid auction, with the same bidders and types.   
As before, there are two bidders with independent private values drawn from Uniform [0,M],  
and the high bidder gets the object.  But now each pays his own bid whether he wins or loses. 
So now i's payoff is:  ui = ti!ci  if  ci>c!i,  ui = !ci  if  ci<c!i,  ui = ti/2!ci  if  ci=c!i. 
There is no linear symmetric equilibrium to this game.  (If 2 used the linear strategy  c̃2 = αt2̃  then 1's best 
response would be to bid c1=αM if t1>αM and c1=0 if t1<αM, which is not linear!) 
With increasing differences, we can look more generally for some increasing strategy b(•) such that each 
player bidding ci = b(ti) is a symmetric equilibrium.  Let us guess that b(•) is continuous and differentiable. 
Type 0 must bid b(0)=0.  No one should bid more than the highest possible opposing bid, so player 1 should 
only consider bids in the range of 2's possible bids, that is, bids c1 such that c1=b(s) for some s∈[0,M]. 
When player 1 knows his type is t1, player 1's expected payoff from choosing bid c1 = b(s) would be 
EU1(b(s)*t1) = t1 P(c̃2<b(s)) − b(s) = t1 P(b(t2̃)<b(s)) − b(s) = t1P(t2̃<s) − b(s) = t1(s/M) − b(s).  

Then the first-order condition for an optimal bid b(s) is  0 = MEU1(b(s)*t1)/Ms = t1/M − b′(s). 

But in symmetric equilibrium, b(s)=b(t1) is optimal for type t1.  So we get  b′(t1) = t1/M,  ∀t1∈[0,M]. 
Thus, integrating from b(0)=0, we find a symmetric equilibrium where each player i bids  b(ti) = ti

2/(2M). 

Finally, let us change the game to a second-price auction.  As in the first-price auction, the high bidder wins 
the object and is the only bidder to pay anything (the loser pays nothing), but now the amount that the high 
bidder pays is the second-highest bid, submitted by the other bidder. 
So now i's payoff is:  ui = ti!c!i  if  ci>c!i,  ui = 0  if  ci<c!i,  ui = (ti!c!i)/2  if  ci=c!i. 

For any cumulative distribution  F(c2) = P(b2(t2̃) ≤ c2),  Eu1(c1|t1) =  ∫0
c1 (t1−c2)dF(c2)  is maximized by c1=t1. 

So in this auction, there is an equilibrium in which each bidder honestly bids his value ci = bi(ti) = ti. 
In fact bidding ci=ti weakly dominates any other strategy.  Higher bids only add unprofitable wins with c!i>ti. 
Lower bids don't reduce what i pays and may lose profit opportunities when c!i<ti. 
E(payment from i*tĩ=ti) = E(t!̃i*t!̃i<ti) P(t!̃i<ti) = (ti/2)(ti/M) = ti

2/(2M) 

Fact.  Given any type ti, i's expected payment is ti
2/(2M) in these equilibria of different auctions. 

Given i's type ti, i's expected profit in each eqm is  EUi(ti) = ti P(t!̃i<ti) ! ti
2/(2M) = ti

2/(2M). 

The seller's expected revenue from the bidders is  2E(tĩ
2/(2M)) = 2 ∫0M (t2/(2M)) dt/M = M/3.  
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A first-price auction with common values (from Myerson 1991, section 3.11). 
Consider n=2 bidders in a first-price auction to buy an object which would have the same common value Ṽ 
to either bidder, if he were to win it.  Each bidder has different private information about this common value. 
Each bidder i observes an independent signal tĩ drawn from a Uniform distribution on the interval 0 to 1,  
and the object's common value depends on these signals according to the formula  Ṽ = A1t1̃+A2t2̃. 
So each player i's payoff ui(c1,c2,t1,t2) depends on the bids (c1,c2) and the types (t1,t2) as follows: 
ui = A1t1+A2t2!ci  if  ci>c!i,  ui = 0  if  ci<c!i,  ui = (A1t1+A2t2!ci)/2  if  ci=c!i. 
A strategy for player i specifies i's bid as some function of i's type, say  ci = bi(ti). 

Let us guess that the equilibrium strategies are linear, of the form bi(ti) = αiti for some αi>0.  
Nobody would want to bid more than his opponent's highest possible bid, and so we must have α1 = α2 = α, 
so that both bidders have the same range [0,α] of possible bids in equilibrium. 
Now suppose that bidder 1, believing that 2 will bid b2(t2̃) = αt2̃, knows his type t1 and is thinking of bidding 
some other c.  Then player 1 will win if  αt2̃ < c,  that is,  t2̃ < c/α. 
Then 1's expected payoff would be   

EU1(c*t1) = ∫0
c/α (A1t1+A2t2−c)dt2 = A1t1(c/α) + 0.5A2(c/α )2 − c(c/α) = cA1t1/α − c2(1−0.5A2/α)/α  

    = [A1t1 + 0.5A2c/α ! c](c/α) = [E(Ṽ| t1̃=t1, αt2̃<c) ! c] P(αt2̃<c).  
First-order conditions for c to be an optimal bid are then  
0 = MEU1(c*t1)/Mc = [A1t1 + A2c/α ! 2c]/α,  and so  c = A1t1/(2!A2/α). 
Thus, for 1's optimal bid here to be  c = αt1,  we need  α = A1/(2!A2/α),  
and so our equilibrium must have  α = 0.5(A1+A2).   
(With this α and A1>0,  we get  (1−0.5A2/α) = A1/(A1+A2) > 0,  so c=αt1 uniquely maximizes EU1(c*t1).) 
This symmetric formula for α also works for player 2, who wants to bid αt2 when 1 is expected to bid αt1̃. 
So the expected profit for type t1 of player 1 when he bids  b1(t1) = αt1 = 0.5(A1+A2)t1  in this equilibrium is  
EU1(t1) = [A1t1 + 0.5A2t1 ! 0.5(A1+A2)t1]t1 = 0.5A1t1

2. 

Let  ṽi = Aitĩ  denote the value that player i has privately seen going into the object here. 
So in this model, each ṽi is an independent Uniform random variable on the interval from 0 to Ai. 
In terms of his privately observed value vi, player i's equilibrium bid is  0.5(1+A!i/Ai)vi,  
and player i's conditional expected profit given his type is  0.5vi

2/Ai. 

Example: Suppose A1 =A2 = 100.  If  t1̃ = 0.01  then 1 bids  100t1 = 1  and gets  P(win) = 0.01. 
Notice  E(Ṽ* t1̃=0.01) = 51,  but  EU1(c1* t1̃=0.01) = (1+0.5c1 ! c1)(c1/100) < 0  if  c1 > 2.  

Example: Suppose  A1 = ε,  A2 = 100−ε,  for some small ε>0.  In equilibrium, each bids bi(tĩ)=50tĩ. 
Both bids are Uniform random variables on [0,50], but 2's bid is much more highly correlated with Ṽ. 
In the limit as ε→0, we get an equilibrium where 2's bid is  b2(t2̃) = 50t2̃ = Ṽ/2,  which is perfectly 
correlated with the value Ṽ, but the uninformed bidder 1's bid is independent of Ṽ.  

Now let t0̃ be another Uniform [0,1] random variable that is observed by both bidders. 
If we increased the common value by the commonly known amount A0t0̃, then the equilibrium bid  
for each type of each bidder would increase by this commonly known amount A0t0̃. 
That is, if the common value were  Ṽ = A0t0̃+A1t1̃+A2t2̃,  where bidder 1 observes t0̃ and t1̃  
and bidder 2 observes t0̃ and t2̃, then the equilibrium bidding strategies would be 
b1(t0̃, t1̃) = A0t0̃ + 0.5(A1+A2)t1̃  and  b2(t0̃,t2̃) = A0t0̃ + 0.5(A1+A2)t2̃.  

Example:  A0 = ε = A1,  A2 = (100−ε).  Then equilibrium strategies are  bi(t0̃,tĩ) = εt0̃ + 50tĩ ,  for i=1,2. 
Notice that 1's two signals are equally minor in their impact on the value of the object,  
but 1's bid depends much more on his private information t1̃ than his shared information t0̃.  
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Move probabilities, belief probabilities and sequential equilibria  
Suppose that we are given some extensive game with imperfect information. 
Given any randomized strategy for any player i, at any information set ti of player i that could occur with 
positive probability when he plays this strategy, we can compute a probability distribution over the set of 
possible actions {di} for player i at this information set. 
These probabilities σi(di*ti) are called move probabilities (or action probabilities). 
That is, the move-probability for any move di at any information state ti of any player i denotes the 
probability that player i will choose move di if information set ti occurs in the game. 
A behavioral strategy σi for player i is a vector that specifies a move-probability distribution for each of 
player i's information sets. 
A behavioral-strategy profile σ is a vector that specifies a behavioral strategy σi for each player i, and so it 
must specify an move probability σi(di*ti) for every possible move di at every possible information set ti of 
every player i in the game. 
Given σ, a profile of behavioral or randomized strategies for all players in the game, the prior probability 
P(x|σ) of any node x in the tree is the multiplicative product of all chance-probabilities and move-
probabilities on the path that leads to this node from the starting node.  
(Here the chance probabilities on all branches that follow chance nodes are part of the given structure of the 
extensive game.  We assume that these chance probabilities are all positive.) 
A full-support behavioral strategy profile assigns strictly positive probability (σi(di*ti)>0) to every possible 
move di at every information set ti of every player i, so that every node x in the tree has positive probability. 
When player i moves at his information set ti, the belief probability that player i should assign to any node x 
in this information set should be, by Bayes's formula, 

μi(x|ti) = P(x|σ)/∑y∈ti P(y|σ). 

That is, the belief probability μi(x|ti) should equal the prior probability of x divided by the sum of prior 
probabilities of all nodes in the information set ti, whenever this formula is well-defined (not 0/0). 
A belief system μ is a vector that specifies a belief-probability distribution μi(C*ti) over the nodes of each 
information set ti of each player i in the game. 
Bayes's formula yields a unique belief system for any full-support behavioral strategy profile. 
But for strategy profiles that do not have full support, Bayes's formula may leave some belief probabilities 
undefined, at any information set where all nodes have zero prior probabilities. 
A beliefs system μ is consistent with a behavioral strategy profile σ iff there exists a  
sequence of full-support behavioral strategies σ̃k that converge to σ (all σ̃k

i(di*ti) 6 σi(di*ti)) 
and yield Bayesian beliefs μ̃k that converge to μ as k64 (all μ̃k

i(x*ti) 6 μi(x*ti)). 
A behavioral-strategy profile σ is sequentially rational given a beliefs system μ iff, at each information set ti 
of each player i, σi(C*ti) assigns positive move-probabilities only to moves that maximize i's expected payoff 
at ti, given i's beliefs μi(C*ti) about the current node in the information set ti and given what the behavioral-
strategy profile σ specifies about players' behavior after this information set. 
A sequential equilibrium is a pair (σ,μ), where σ is a behavioral strategy profile and μ is a belief system, 
such that σ is sequentially rational given the beliefs system μ, and the beliefs system μ is consistent with the 
behavioral-strategy profile σ.  
 
A game has perfect information if every information set consists of just one node. 
A game with perfect information can have only one possible beliefs system, which trivially assigns 
belief probability 1 to every decision node. 
For a game with perfect information, a behavioral strategy profile σ is a subgame-perfect equilibrium if it 
would form a sequential equilibrium together with this (trivial) beliefs system μ.
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The Holdup Problem  Player 1 can invest to improve an asset which he may later sell player 2. 

First player 1 chooses an amount e$0 to spend on improving the asset.  With this investment,  

the asset will be worth v1(e) = e0.5 to player 1, but it will be worth v2(e) = 2e0.5 to player 2. 

We consider two different versions of this game, which differ in how they bargain over the price. 
 
Buyer-offer game  First player 1 chooses the amount e$0 to spend on improving the asset. 

Player 2 observes this investment e.   

Then player 2 chooses a price p$0 at which she offers to buy the asset from player 1. 

Player 1 observes this offer, and then can choose to accept or reject it.  Final payoffs are: 

u1(e, p, accept) = p!e,  u2(e, p, accept) = v2(e)!p,  u1(e, p, reject) = v1(e)!e,  u2(e, p, reject) = 0. 
 
There is a unique subgame-perfect equilibrium.   

At the last stage, player 1 accepts if p>v1(e) and rejects if p<v1(e). 

So player 2's optimal offer, given e, must be to offer p=v1(e), which player 1 must accept. 

(Note: Player 1 is actually indifferent between accepting and rejecting, but there would be no optimal offer 

for 2 if player 1 rejected in this case of indifference!) 

So player 1 knows that his payoff from e will be v1(e)!e = e0.5!e, which is maximized by e=0.25 

So the equilibrium outcome is: 1 chooses  e = 0.25,  2 offers  p = 0.250.5 = 0.5,   

and payoffs are  u1 = 0.5!0.25 = 0.25,  u2 = 2×0.250.5!0.5 = 1!0.5 = 0.5. 
 
Seller-offer game. First player 1 chooses his investment e$0.   

Then player 1 chooses the price p$0 at which he offers to sell the asset. 

Player 2 observes e and p, and then can choose to accept or reject 1's offer.  Payoffs are still 

u1(e, p, accept) = p!e,  u2(e, p, accept) = v2(e)!p,  u1(e, p, reject) = v1(e)!e,  u2(e, p, reject) = 0. 
 
In the unique subgame-perfect equilibrium, player 2 accepts if  p # v2(e)  but rejects if  p > v2(e), 

so given e, player 1 offers p = v2(e).  So player 1 chooses e = 1 to maximize 2e0.5!e. 

So the equilibrium outcome is: 1 chooses  e = 1  and offers  p = 2×10.5 = 2,   

and payoffs are  u1 = 2!1 = 1,  u2 = 2×10.5!2 = 0. 

This seller-offer game also has many other Nash equilibria that are not subgame perfect. 

 

Notice that the equilibrium sum of payoffs u1+u2 is greater in the seller-offer game.   

That is, for an efficient outcome, the person who made the first-period investment should have more control 

in the process of bargaining over the price.  If they were about to play the buyernoffer game, the buyer 

would be willing to sell her right to set the price for any payment more than 0.5, and the seller would be 

willing to pay up to 0.75 for the right to set the price. 
 
Both of these games have many other Nash equilibria that are not subgame-perfect.  Consider any (ê,p̂) such 
that  v2(ê) $ p̂ $ ê + maxe (v1(e)!e) = ê+0.25  (such as ê=1, p̂=1.625),  so that each does better than he could 
alone.  With either player offering the price, there is a Nash equilibrium in which 1 invests this ê, and then 
this price p̂ is offered and accepted, but rejection would follow any other investment e=/ ê or any other price-
offer p=/ p̂.  These Nash equilibria violate sequential rationality, however, as threats to reject prices between 
v1(e) and v2(e) would not be credible. 
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Introduction to repeated games   Players 1 and 2 will meet on τ+1 days, numbered 0,1,2,...,τ.  
On each day, each player i must choose to be generous (gi) or  selfish (fi). 
On each day k, they get payoffs (u1k,u2k) that depend on their actions (c1k,c2k) as follows: 
Player 1: \  Player 2:   g2   f2 
     g1   3, 3  0, 5 (Prisoners' dilemma) 
     f1   5, 0  2, 2 
except on the last day τ their payoffs will be: 
Player 1: \  Player 2:   g2   f2 
     g1   5, 5  0, 4 (Trust game) 
     f1   4, 0  2, 2 
On each day, each player knows what both players did on all previous days.  

Each player wants to maximize the expected discounted sum of his payoffs  Vi = ∑k=0
τ δkuik   

for some given discount factor δ between 0 and 1. 

If the first payoff matrix (the prisoners' dilemma) were played once, (f1,f2) would be the unique equilibrium, 
yielding the Pareto-dominated payoff allocation (2,2).   
But in multi-period games, opportunities to respond later can enlarge the set of equilibria.  
Consider the strategy for each player i to choose gi until f1 or f2 is chosen, but thereafter choose fi. 
We can show that it is an equilibrium here for both players to choose this strategy, if  δ$2/3. 

Consider first the case of τ=1, where the prisoners' dilemma is played once, followed by one play of the trust 
game at the end.  Under the strategies described here, on the last day,  
they will play the good (g1,g2) equilibrium of the "trust game" if both were previously generous,  
but they will play the bad (f1,f2) equilibrium if either player was previously selfish. 
So the overall payoffs will depend on their first-day choices as follows: 
Player 1: \  Player 2:         g2          f2 
     g1   3+δ5, 3+δ5  0+δ2, 5+δ2 
     f1   5+δ2, 0+δ2  2+δ2, 2+δ2 
Then (g1g2) is an equilibrium at the first day if  3+5δ $ 5+2δ,  that is, if  δ $ 2/3. 

A similar calculation can be made for any number τ≥1 of repetitions of the prisoners' dilemma. 
The discounted value of payoffs from (f1,f2)-always would be  F(τ) = 2(1−δτ+1)/(1−δ) = 2+δF(τ−1). 

The discounted value of payoffs from (g1,g2)-always would be  G(τ) = 3(1−δτ)/(1−δ)+5δτ = 3+δG(τ−1). 
(We use  w+wδ+wδ2+...+wδs!1 = w(1!δs)/(1!δ).) 

Lemma:  If  1>δ≥2/3  then  G(τ)−F(τ) ≥ 3  for all τ.  (Proof by induction:  G(0)−F(0) = 5−2 = 3,  and then  
for any τ≥1 we get inductively  G(τ)−F(τ) = 3−2 + δ(G(τ−1)−F(τ−1)) ≥ 1 + (2/3)(3) = 3.) 
Now assuming that the strategies described above will be played after the first stage, the players' overall 
payoffs will depend on their first-day choices as follows: 
Player 1: \  Player 2:      g2       f2 
  g1    3+δG(τ−1), 3+δG(τ−1)    0+δF(τ−1), 5+δF(τ−1) 
  f1    5+δF(τ−1), 0+δF(τ−1)    2+δF(τ−1), 2+δF(τ−1)    
With 1>δ≥2/3, for any τ, it is an equilibrium for both to start doing gi, as these strategies specify, because 
3+δG(τ−1) ≥ 5+δF(τ−1).  (Proof:  3+δG(τ−1) − (5+δF(τ−1)) = −2+δ(G(τ−1)−F(τ−1)) ≥ −2+(2/3)(3) = 0.) 

As τ64, overall payoffs in this good equilibrium depend on first-day actions as follows: 
Player 1: \  Player 2:        g2           f2 
     g1   3+δ3/(1!δ), 3+δ3/(1!δ)  0+δ2/(1!δ), 5+δ2/(1!δ) 

     f1   5+δ2/(1!δ), 0+δ2/(1!δ) 2+δ2/(1!δ), 2+δ2/(1!δ) 

The equilibrium condition  3+δ3/(1−δ) ≥ 5+2δ/(1−δ)  is satisfied when  1>δ≥2/3.
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The War-of-Attrition game.  There are two players, numbered 1 and 2, who can meet on day 0, day 1, ... 

through day τ, to try to get a valuable prize that is worth V. 

On each day, if the game has not yet ended, each player can choose to fight or quit. 

The game ends as soon as somebody quits, or it ends after day τ if nobody quits. 

On each day when both choose to fight, they both lose $1.  On any day when one player fights and the other 

player quits, the fighter gets the prize worth $V (and the game ends).  If they both quit on the same day, or if 

they both fight on all days (0 through τ), then nobody gets the prize. 
 
The normal-form strategy for each player i can be described by a number ci chosen from the set {0,1,...,τ+1}, 

where ci represents the day when player i would quit, if the other player does not quit first, except that 

ci=τ+1 represents the strategy "never quit".  So the payoffs functions are  

u1(c1,c2) = V!c2  if  c1 > c2,  but  u1(c1,c2) = !c1  if c1 # c2; 

u2(c1,c2) = V!c1  if  c2 > c1,  but  u2(c1,c2) = !c2  if c2 # c1.  
 
Suppose player 2 chooses c̃2 randomly, according to a probability distribution σ2(t) = P(c̃2=t). 

Player 1's expected payoff from choosing c1=d is  Eu1(d,c̃2) = 3t<d (V!t)σ2(t) + 3t$d (!d)σ2(t). 

So  Eu1(0,c̃2) = 0, and  Eu1(d+1,c̃2) ! Eu1(d,c̃2) = Vσ2(d) ! 3t>d σ2(t) = (V+1)σ2(d) ! 3t$d σ2(t). 

(After d days, 1's willingness to fight one more day would earn $V if c̃2=d, or lose $1 if c̃2>d.) 
 
There is a symmetric full-support randomized equilibrium in which each player i chooses c̃i randomly 

according to a probability distribution σ1 = σ2.  We can find this σ2 by solving the equations 

0 = Eu1(d+1,c̃2) ! Eu1(d,c̃2) = (V+1)σ2(d) ! 3t$d σ2(t)  for all d in {0,1,...,τ}.   

First,  using  3t$0 σ2(t) = 1,  we get  σ2(0) = 1/(V+1). 

Then σ2(1) = [3t$1 σ2(t)]/(V+1) = [1!σ2(0)]/(V+1) =[1 ! 1/(V+1)]/(V+1). 

Then for all d=1,...,τ,  we can recursively compute   

σ2(d) = [3t$d σ2(t)]/(V+1) = [1!3t<d σ2(t)]/(V+1) = [1! 1/(V+1)]d/(V+1). 

At the end, we have  σ2(τ+1) = 1!3t<τ+1 σ2(t)  (which goes to 0 as τ64). 

On each day d#τ, we have  σ2(d)/3t$d σ2(t) = 1/(V+1).  This ratio is the  

conditional probability of player 2 quitting on day d, given that she has not quit earlier.  

So this mixed strategy corresponds to a behavioral strategy in which, on any given day,  

if nobody has quit earlier, then the probability of player i quitting today is q = 1/(V+1). 

This conditional probability q satisfies the equation   qV+(1!q)(!1) = 0, which makes  

the other player just indifferent between quitting immediately and fighting one more day. 

In this symmetric randomized equilibrium, each player is willing to quit on day 0,  

and so each player's expected payoff is  0 = Eu1 = Eu2. 
 
There is also a nonsymmetric equilibrium in which player 1 is always expected to fight and player 2 is 

expected to quit immediately, so that  c1=τ+1,  c2=0,  u1=V,  and  u2=0. 

There is also a nonsymmetric equilibrium in which player 2 is always expected to fight and player 1 is 

expected to quit immediately, so that  c1=0,  c2=τ+1,  u1=0,  and u2=V. 

These nonsymmetric equilibria can be interpreted as a model of property rights. 
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Infinitely Repeated games 
Infinitely repeated games can be used as simple models of long-term relationships. 
The game will be played at an infinite sequence of time periods numbered 1,2,3,... 
Suppose that the set of players is {1,2}.  In each period k, each player i must choose an action cik in some 
set Ci.   In period k, each player i's payoff uik will depend on both players' actions according to some utility 
function ui:C1×C26ℝ; that is,  uik = ui(c1k, c2k). 
We assume here that the actions at each period are publicly observable, and so each player's action in each 
period may depend on the history of actions by both players at all past periods. 
Given any discount factor δ such that 0 ≤ δ < 1, the δ-discounted sum of player i's payoffs is   
V(ui1,ui2,ui3,...) = ui1 + δui2 + δ2ui3 + ... + δk!1uik + ... 
For a constant payoff x each period, the δ-discounted sum would be x/(1!δ). 
The objective of each player i in the repeated game is to maximize the expected discounted sum of his 
payoffs, with respect to some discount factor δ, where  0 ≤ δ < 1. 
 
Fact. (Recursion formula)  V(ui1,ui2,ui3,...) = ui1 + δV(ui2,ui3,ui4,...) . 
 
We may describe equilibria of repeated games in terms of a various social states. 
At each period of the game, the players will understand that their current relationship is described by one of 
these social states, and their expectations about each others' behavior will be determined by this state.   
This state may be called the state of play in the game at this period. 
(These social states are a characteristic of the equilibrium, not of the game, as they describe the different 
kinds of expectations that the players may have about each others' future behavior.) 
To describe an equilibrium or scenario in terms of social states, we must specify the following: 
(1)  Social states  We must list the set of social states in this equilibrium.  (States may denoted by numbers or 
may be named for the kinds of interpersonal relationships that they represent.) 
(2)  State-dependent strategies.  For each state θ, we must specify a profile of  (possibly randomized) actions 
(s̃1(θ),s̃2(θ)) describing the predicted behavior of the players in any period when this θ is the state of play. 
(3)  Transitions.  For each social state θ, we must specify the profiles of players' actions that would cause the 
state of play in the next period to change from this state to another state.  We may let Θ(a1,a2;θ) denote the 
state of play in the next period after a period when the state of play was θ and the players chose actions 
(a1,a2) (possibly deviating from the prediction (s̃1(θ),s̃2(θ))). 
(4)  Initial state.  We must specify which social state is initial state of play in the first period of the game.  
Here we will generally let state "0" denote this initial state. 
 
Given any scenario as in (1)-(3) above, and given any discount factor δ, let Vi(θ) denote the expected  
δ-discounted sum of player i's payoffs in this scenario when (ignoring (4)) the state of play begins in state θ. 
Given δ < 1, these numbers Vi(θ) can be computed (with algebra) from the equations:   
Vi(θ) = E[ui(s̃1(θ),s̃2(θ))) + δ Vi(Θ(s̃1(θ),s̃2(θ);θ))]. 
 
Fact.  A scenario as in (1)-(3) above is a subgame-perfect equilibrium if, for every player i and every state θ, 
player i could not expect to gain by unilaterally deviating from the prediction s̃i(θ) in a period when the state 
of play is θ.  That is, we have an equilibrium if, for every state θ, 
V1(θ) ≥ E[ui(a1,s̃2(θ))) + δ Vi(Θ(c1,s̃2(θ);θ))],  for all c1 in C1, 
V2(θ) ≥ E[ui(s̃1(θ),c2)) + δ Vi(Θ(s̃1(θ),c2;θ))],  for all c2 in C2.  
(This is the one-deviation condition for a subgame-perfect equilibrium in a repeated game: if nobody could 
ever gain in any state by a one-round deviation, then longer strategic deviations are also not profitable.)  

(The Folk Theorem of Repeated Games says that, when δ is close to 1, subgame-perfect equilibria can be 
constructed to achieve, in some state, almost any feasible payoff allocation which gives each player more 
than the maxmin security level that he could guarantee himself against punitive actions by other players.)



 
 20 

Example 1.  Consider a repeated game where, in each period, the players play the following "Prisoners' 
dilemma" game in which each must decide whether to "cooperate" or "defect". 

 c2   d2 
c1  5, 5  0, 6 
d1  6, 0  1, 1 
Each player wants to maximize his or her δ-discounted sum of payoffs, for some 0≤δ<1. 

We first consider a version of the "grim trigger" equilibrium: 
The states are {0, 1}.  (State 0 represents "trust" or "friendship"; state 1 represents "distrust".) 
The predicted behavior in state 0 is (c1,c2).  The predicted behavior in state 1 is (d1,d2). 
In any period when the current state of play is 0, if the players' action profile is (c1,d2) or (d1,c2) then the state 
of play next period will switch to state 1, otherwise it will remain state 0. 
When the state of play is 1, the future state of play always remains state 1. 
The expected discounted values for the players in the states satisfy the equations: 
V1(0) = u1(c1,c2) + δV1(0),  V1(1) = u1(d1,d2) + δV1(1),  
V2(0) = u2(c1,c2) + δV2(0),  V2(1) = u2(d1,d2) + δV2(1). 
So V1(0) = 5 + δV1(0),  V1(1) = 1 + δV1(1),  and so  V1(0) = 5/(1!δ),  V1(1) = 1/(1!δ). 
Similarly,  V2(0) = 5/(1!δ),  V2(1) = 1/(1!δ). 
For this scenario to be an equilbrium, we need: 
V1(0) ≥  u1(d1,c2) + δV1(1),  V1(1) ≥ u1(c1,d2) + δV1(1),  
V2(0) ≥ u2(c1,d2) + δV2(1),  V2(1) ≥ u2(d1,c2) + δV2(1). 
That is, we need:  5/(1!δ) ≥ 6+δ1/(1!δ)  and  1/(1!δ) ≥ 0+δ1/(1!δ),   

or equivalently (with δ<1),  5 ≥ 6(1−δ)+δ1  and  1 ≥ 0(1−δ)+δ1,  which are satisfied when 1>δ≥1/5. 

Now let's consider another (more forgiving) equilibrium: 
The states are {0, 1, 2}.  (State 0 is "friendship"; state 1 is "punishing 1"; state 2 is "punishing 2".) 
The predicted behavior in state 0 is (c1,c2).  The predicted behavior in state 1 is (c1,d2).   
The predicted behavior in state 2 is (d1,c2). 
When the state of play is 0, if the players choose (d1,c2) then the next state of play will be 1,  
if the players choose (c1,d2) then the state of play next period will be 2, and otherwise the state will remain 0. 
When the state of play is 1, if the players choose (c1,d2) then the next state of play will be 0, otherwise it will 
remain 1.  When the state of play is 2, if the players choose (d1,c2) then the next state of play will be 0, 
otherwise it will remain 2. 
The expected discounted values V1(θ) for player 1 in each state θ satisfy the equations: 
V1(0) = u1(c1,c2) + δV1(0),  V1(1) = u1(c1,d2) + δV1(0),  V1(2) = u1(d1,c2) + δV1(0). 
Thus  V1(0) = 5 + δV1(0),   and so  V1(0) = 5/(1!δ); 
V1(1) = 0 + δ5/(1!δ),   and so  V1(1) = 5δ/(1!δ);  
and  V1(2) = 6 + δ5/(1!δ) = (6!δ)/(1!δ).   

Similarly,  V2(0) = 5/(1−δ),  V2(1) = (6!δ)/(1!δ),  V2(2) = 5δ/(1−δ). 
To have a subgame-perfect equilibrium, we need:   
V1(0) ≥ u1(d1,c2) + δV1(1),  V1(1) ≥ u1(d1,d2) + δV1(1),   V1(2) ≥ u1(c1,c2) + δV1(2),  
and similar conditions for player 2.  These inequalities (for both players) become: 
5/(1!δ) ≥ 6 + δ5δ/(1!δ),  5δ/(1!δ) ≥ 1 + δ5δ/(1!δ),  (6!δ)/(1!δ) ≥ 5+δ(6!δ)/(1!δ). 

With δ<1, these inequalities are equivalent to:  5(1−δ2)/(1−δ) ≥ 6,  5δ ≥ 1,  6!δ ≥ 5. 

With (1!δ2) = (1!δ)(1+δ) (and δ<1), the first inequality further simplifies to 5(1+δ) ≥ 6, 
and so these conditions for a subgame-perfect equilibrium are all satisfied when  1 > δ ≥ 1/5.  
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Example 2.  Consider a repeated game where players 1 and 2 play the game below infinitely often.  
In each round, each player i must decide whether to fight (fi) or not (ni). 

     f2   n2 
 f1  !1, !1  9, 0 
 n1    0, 9  0, 0  
Each player i wants to maximize his or her δi-discounted sum of payoffs, for some 0≤δi<1. 

A subgame-perfect equilibrium:   
States: there are three states, numbered 0,1,2.  The initial state in period 1 is state 0. 
(State 1 may be interpreted as "1 has ownership", state 2 may be interpreted as "2 has ownership" 
and state 0 may be interpreted as "fighting for ownership" or war of attrition.) 
Strategies: Let si(θ) denote the move that player i would choose in state θ. 
Player 1's strategy is  s1(1) = f1,  s1(2) = n1,  s1(0) = q1[f1]+(1!q1)[n1] for some q1 such that 0<q1<1. 
Player 2's strategy is  s2(1) = n1,  s2(2) = f1,  s2(0) = q2[f2]+(1!q2)[n2] for some q2 such that 0<q2<1. 
We will need to find what (q1,q2) makes this a subgame-perfect equilibrium. 
Transitions: When the current state is state 0, the state next period would be:  
state 1 if (f1, n2) is played now, state 2 if (n1, f2) is played now, and state 0 if (f1,f2) or (n1,n2) is 
played now.  Once the game is in state 1 or 2, it stays in the same state forever. 
 
Values: Let Vi(θ) denote the expected discounted sum of payoffs for player i in state θ. 
The recursion equations for states 1 and 2 are 
Vi(1) = Ui(f1,n2) + δiVi(1),  for i=1,2, and so V1(1) = 9/(1−δ1) and V2(1) = 0/(1−δ2) = 0; 
Vi(2) = Ui(n1,f2) + δiVi(2),  for i=1,2, and so V1(2) = 0 and V2(2) = 9/(1−δ2). 
To check the equilibrium condition in state 1, notice that  
9/(1−δ1) = V1(1) ≥ U1(n1,n2) + δ1V1(1) = 0 + δ19/(1−δ1) = δ9/(1−δ1) , which is true when 0≤δ1<1; 
0 = V2(1) ≥ U2(f1, f2) + δV2(1) = !1 + δ0 = !(1!δ), which is true when 0≤δ2<1. 
The equilibrium conditions in state 2 are similarly 
9/(1−δ2) = V2(2) ≥ U2(n1,n2) + δ2V2(2) = 0 + δ29/(1−δ2) = δ29/(1−δ2), which is true when 0≤δ2<1; 
0 = V1(2) ≥ U2(f1, f2) + δ1V2(1) = !1 + δ0 = !(1!δ), which is true when 0≤δ1<1. 

In state 0, for player 1 to be willing to randomize between f1 and n1, he must expect the same 
discounted value V1(0) from choosing f1 or n1 this period, and so we must have 
V1(0) = q2(U1(f1,f2) + δ1V1(0)) + (1!q2)(U1(f1,n2)) + δ1V1(1)),  and 
V1(0) = q2(U1(n1,f2) + δ1V1(2)) + (1!q2)(U1(n1,n2)) + δ1V1(0)). 
The latter is V1(0) = q2(1!δ1)0 + q2δ10 + (1!q2)(1!δ1)0 + (1!q2)δ1V1(0),  implying  V1(0) = 0. 
Then  V1(0) = q2(!1) + q2δ1V1(0) + (1!q2)9 + (1!q2)δ19/(1−δ1)  implies  q2 = 9'(10!δ1). 
For player 2 to be willing to randomize between f2 and n2 in state 0, we must have 
V2(0) = q1(U2(f1,f2) + δ2V2(0)) + (1!q1)(U2(n1,f2)) + δ2V2(2)),  and 
V2(0) = q1(U2(f1,n2) + δ2V2(1)) + (1!q1)(U2(n1,n2)) + δ2V2(0)); 
and these equations similarly imply that  V2(0) = 0  and  q1 = 9/(10−δ2). 
When δ1 and δ2 are close to 1 (very patient players), each player's probability of continuing to fight 
each round in state 0 is just close enough to 1 that the expected costs of conflict exactly cancel out 
the expected benefits of winning the prize for the other player.
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Facts about Uniform distributions.  Suppose that X̃ is a random variable drawn from a Uniform 
distribution on the interval from A to B, given A < B.  Then  E(X̃) = (A+B)/2,  and  œθ0[A,B]: 
F(θ) = P(X̃#θ) = P(X̃<θ) = (θ!A)/(B!A),  f(θ) = FN(θ) = 1/(B!A),  1!F(θ) = (B!θ)/(B!A), 

E(X̃| X̃#θ) = E(X̃| X̃<θ) = (A+θ)/2,  and  E(X̃| X̃$θ) = E(X̃| X̃>θ) = (θ+B)/2. 

Fact:  Suppose that X̃ is Uniform on [t−ε, t+ε] and, conditional on X̃, S̃ is Uniform on [X̃−ε, X̃+ε]. 
S̃ has a continuous (triangular) distribution on the interval [t−2ε, t+2ε], symmetric around t, 

and so  P(S̃>t+2ε) = 0 = P(S̃<t−2ε).  For any δ∈[0, 2ε], we get: 

P(S̃>t+δ) = 0.5(1−0.5δ/ε)2,  

E(X̃| S̃>t+δ) = t + (ε+δ)/3, 

P(S̃<t+δ) = 1−0.5(1−0.5δ/ε)2,  and   

E(X̃| S̃<t+δ) = [t − 0.5(1−0.5δ/ε)2(t + (ε+δ)/3)]/[1−0.5(1−0.5δ/ε)2] 

In the case of δ=0, these formulas simplify to: 

P(S̃>t) = 1/2 = P(S̃<t),  E(X̃| S̃>t) = t + ε/3,  E(X̃| S̃<t) = t − ε/3.  

Proof:  Notice first that we cannot get  S̃ > t+δ  unless  X̃ > t+δ−ε. 
Integrals below are transformed using a substitution of  y = (x+ε−t−δ)/ε,  with  dy = dx/ε. 

P(S̃>t+δ) = ∫x∈[t+δ−ε,t+ε] (∫s∈[t+δ,x+ε] ds/(2ε)) dx/(2ε) = ∫x∈[t+δ−ε,θ+ε] (x+ε−t−δ) dx/(4ε2) 

      = ∫y∈[0,2−δ/ε] y dy/4 = (2−δ/ε)2/8 = 0.5(1−0.5δ/ε)2. 

E(X̃| S̃>t+δ) = (∫x∈[t+δ−ε,t+ε] (∫s∈[t+δ,x+ε] x ds/(2ε)) dx/(2ε))/(0.5(1−0.5δ/ε)2)  

      = ∫x∈[t+δ−ε,θ+ε] x(x+ε−t−δ) dx/(0.5ε2(2−δ/ε)2) = ∫y∈[0,2−δ/ε] (εy+t+δ−ε) y dy/(0.5(2−ε/δ)2) 

      = [ε(2−δ/ε)3/3 + (t+δ−ε)(2−δ/ε)2/2]/(0.5(2−ε/δ)2) = t + (ε+δ)/3. 

We get  P(S̃<t+δ) = 1−P(S̃>t+δ)  because the continuous distribution has  P(S̃=t+δ) = 0. 

The expected value for S̃<t+δ is computed from the fact 

t = E(X̃) = P(S̃>t+δ) E(X̃| S̃>t+δ) + P(S̃<t+δ) E(X̃| S̃<t+δ). 

By a symmetric argument, it can also be shown in this model that 

P(S̃<t−δ) = 0.5(1−0.5δ/ε)2  and  E(X̃| S̃<t+δ) = t − (ε+δ)/3. 

 
 

 

 
 



 
 23 

Comparing symmetric equilibria of a symmetric game: risk dominance and global games 
A symmetric equilibrium σ risk-dominates another symmetric equilibrium τ if each player i would strictly 
prefer to play σi over τi when the other players were equally likely to play according to σ−i or τ−i. 
Consider the following example:  1: \ 2:    α2     β2  
     α1   X, X   X, 0 
     β1   0, X   4, 4 
When 2 < X < 4, the α equilibrium risk-dominates the β equilibrium, even though β Pareto-dominates α. 

Following Carlsson and van Damme (1993), we can find a rationale for risk-dominance here by perturbing 
the game to a Bayesian "global game" where players have small uncertainty about X in a wide range. 
Suppose that X is drawn from a Uniform distribution on [−1, 5]; and, given X, each player i's type ti is 
independently drawn from a Uniform distribution on [X−ε,X+ε], where ε is known and satisfies  0 < ε < 0.5. 
Thus, given any type ti with  −1+ε < ti < 5−ε,  player i's belief about X should be Uniform on [ti−ε, ti+ε],  
and so i's expected value of X with type ti would be  E(X| ti) = ti ; and player i would also know that the other 
player's type t−i was between ti−2ε and ti+2ε. 

Given any type ti>4, player i would expect more than 4 from αi and so would choose αi. 
Given any type ti<0, player i would expect less than 0 from αi and so would choose βi. 
Let A denote the smallest number such that each player i would always play αi whenever ti>A, in every 
Bayesian equilibrum of this game.   
Let B denote the greatest number such that each player i would always play βi whenever ti<B, in every 
Bayesian equilibrum of this game.  Obviously 0 ≤ B ≤ A ≤ 4.  We will show that A=B=2. 

Given the type ti, player i's expected payoff from αi here would be  EUi(αi| ti) = E(X| ti) = ti . 
By definition of A, player i knows that, in equilibrium, the other player would not choose α−i unless t−i ≤ A. 
Thus, given the type ti, player i's expected payoff from βi would satisfy  EUi(βi| ti) ≤ 4 P(t−i ≤ A| ti),  
where P(t−i ≤ A| ti) is i's probability of the other player's type being less than or equal to A, given i's type ti.  
The probability P(t−i ≤ A| ti) is a decreasing continuous function of ti (=1 when ti<A−2ε, =0 when ti>A+2ε). 
When ti=A, i's beliefs about X and t−i are symmetric around A, and so we get P(t−i≤A| ti=A) = 1/2, and 
EUi(αi| ti=A) − EUi(βi| ti=A) ≥ E(X| ti=A) − 4 P(t−i≤A| ti=A) = A − 4(1/2) = A−2. 
So if we had  A−2 > 0  then by continuity we could find some small δ>0 such that, for all ti > A−δ: 
EUi(αi| ti) − EUi(βi| ti) ≥ E(X| ti) − 4 P(t−i≤A| ti) = ti − 4 P(t−i≤A| ti) > 0. 
But then player i would play αi in equilibrium with all types such that ti>A−δ, which would contradict the 
assumption that A was the lowest number with this property.  Thus, A−2 ≤ 0, and so  A ≤ 2. 

Similarly, as player i knows that the other player −i plays β−i whenever t−i < B,  
EUi(βi| ti) − EUi(αi| ti) ≥ 4 P(t−i<B| ti) − E(X| ti) = 4 P(t−i≤B| ti) − ti. 
At ti=B this becomes  4 P(t−i<B| ti=B) − E(X| ti=B) = 4(1/2) − B = 2−B. 
P(t−i<B| ti) is a continuous and decreasing function of ti. 
So if we had 2−B > 0 then we could find some some small δ>0 such that, for all ti < B+δ:   
EUi(βi| ti) − EUi(αi| ti) ≥ 4 P(t−i<B| ti) − E(X| ti) = 4 P(t−i<B| ti) − ti > 0. 
But then player i would play βi in equilibrium with all types such that ti<B+δ, which would contradict the 
assumption that B was the greatest number with this property.  Thus, 2−B ≤ 0, and so  B ≥ 2. 

Obviously B cannot be greater than A.  Thus A = B = 2.  That is, the global game has a unique Bayesian 
equilibrium in which each player i chooses αi whenever ti>2, and i chooses βi whenever ti<2. 
As ε→0, the players' information about X becomes almost perfect, but their Bayesian-equilibrium choices 
become the risk-dominant equilibria of the games where X is common knowledge, as the choices can switch 
only at the X where each player is indifferent between αi and βi when the other is equally likely to do either. 

This result can be extended to more general symmetric 2×2 games.  The key is to have types with 
overlapping ranges of local uncertainty that cover a continuous interval of possible payoff-relevant states 
which includes some extreme states where each action becomes a dominant strategy for both players.   


