A modd of decisions under uncertainty is characterized by:

aset of aternative choices C, a set of possible states of theworld S,

autility function u:CxS - R, and a probability distribution p in A(S).
Suppose that C and S are nonempty finite sets.

Here we use the notation A(S) = {qeR®| q()>0Vs, Yosq(0) = 1}.

The expected utility hypothesis says that an optimal decision should
maximize expected utility Eu(c) = Eu(c|p) = Y.ees p(6)u(c,0) over dl cinC,
for some utility function u that is appropriate for the decision maker.

Example 1. Consider an example with choicesC ={T,M,B}, state S={L,R}, and

u(c,s): L R
T 7 2
M 2 7
B 5 6

To describe the probability distribution parametrically, let r be the probability of state R.
So Eu(T) =7(1-r)+2r, Eu(M) = 2(1-r)+7r, Eu(B) = 5(1-r)+6r.

Then B isoptimal when 5(1-r)+6r > 2(1-r)+7r and 5(1-r)+6r > 7(1-r)+2r,

which are satisfied when 3/4 = (5-2)/[(5-2)+(7-6)] > r > (7-5)/[(7-5)+(6-2)] = 1/3.
T isoptimal whenr < 1/3. M isoptima when r > 3/4.

Fact: Given the utility function u:CxS-R and some choice option de C, the set of probability distributions
that make d optimal is a closed convex (possibly empty) subset of A(S).

This set (of probabilities that make d optimal) is empty if and only if there exists some randomized strategy
o in A(C) such that u(d,s) < Yc.c o(c)u(c,s) VseS.

When these inequalities hold, we say that d is strongly dominated by o.

[Proof: {xeR®| JoeA(C) St. Xs < Yecc o(C)U(C,S) Vs} isaconvex subset of RS,

d is strongly dominated iff (u(d,s))ses isin itsinterior. Use supporting-hyperplane thm, MWG p. 949.]

Example 2: Asabove, C={T,M,B}, S={L,R}, and uissame except u(B,R) = 3.

u(c,s): L R
T 7 2
M 2 7
B 5 3

As before, B would be the second-best choice in either state (if the state were known).

B would be an optimal decision under uncertainty when

5(1-r)+3r > 7(1-r)+2r and 5(1-r)+3r > 2(1-r)+7r,

which are satisfied when r > 2/3 and 3/7 > r, which isimpossible! So B cannot be optimal.
T isoptimal whenr<1/2. M isoptimal when r>1/2.

Now consider arandomized strategy that chooses T with some probability o(T)

and chooses M otherwise, with probability o(M) = 1-o(T).

B would be strongly dominated by this randomized strategy o if

5<6(T)7 +(1-6(T))2 (Bworsethanc instatel), and

3<0(T2+ (1-0(T))7 (B worsethano in state R).

Theseinequalities are satisfied when 3/5 < 6(T) < 4/5. For example, o(T) = 0.7 works.
That is, B is strongly dominated by 0.7[T]+0.3[M],

as5<0.7x7+0.3x2 =5.5and 3 < 0.7x2+0.3x7 = 3.5.



Separ ating Hyperplane Theorem (MWG M.G.2; or JR A2.23 with C={w—X| xeX}):
Suppose X is aclosed convex subset of RY, and w isavector in RV,

Then exactly one of the following two statementsistrue: Either (1) w € X,

or (2) there exists avector ye R" such that y'w > max,cx y'x

(but not both). (Here y'w = yix;+...+ynXn, Withy = (Yi,...,yn) @nd X = (Xg,...,Xn)-)

Supporting Hyperplane Theorem (MWG M.G.3; or JR A2.24 with A={w} & B=interior(X)):
Suppose X isaconvex subset of RY, and w isavector in RN. Then exactly one of the following two
statementsistrue: Either (1) wisin theinterior of X (relativeto RM),

or (2) there exists avector ye R" suchthat y#0 and y'w > maXycx y'X

(but not both). Here 0=(0,...,0).

Fact If X isaconvex and compact (closed and bounded), then max,.x y'x isafinite number, and this
maximum must be achieved at some extreme point in X. (MWG p 946.)

Fact For any nonempty finite set C and any ve RE MaXseac) 2ocec O(C)Ve = MaXcec Ve
and argmaXscac) 2cec 0(C)Ve = { o€ A(C)|{d| o(d)>0} < argmaxccc Ve}.

Strong domination Theorem. Given the nonempty finite sets C={ choices}, S={ states}, the utility
function u:CxS-R, and the choice de C, exactly one of these two statementsis true:

Either (2) IpeA(S) such that >s.s p(S)u(d,s) = MaXeec 2ses P(SU(C,9), [disoptimal for some beliefs]
or (1) doeA(C) suchthat u(d,s) < Xc.c o(c)u(c,s) VseS. [d is dominated by a randomized strategy]

Proof. Let X ={xeR% JoeA(C) St. Xs < Xeec o(C)U(C,S) Vs}. X isaconvex subset of RS,

Condition (1) hereis equivalent to: (1') the vector u(d) = (u(d,s))scs isin theinterior of X.

By the Supporting Hyperplane Thm, (1') isfaseiff

(2') 3peR® such that p£0 and Ye.s P(S)u(d,9) > Maxyex ses P(S)Xs.

We must have p(s)=0 for al s, because x in X can have X approaching - .

S0 Y sesp(s) >0, from p>0and p#£0. Dividing by this sum, we can make >s.sp(s) = 1 (wlog).
Furthermore, the maximum of the linear function p’x over xe X must be achieved at one of the extreme
pointsin X, which are vectors (u(c,s))s.s for the various ceC:

MaXyex 2ses P(S)Xs = MaXgeac) Lses P(S) 2eec 0(C) U(C,S) = MaXcec Lses P(SU(C,S).

So (2) is equivaent to condition (2) in the theorem here.

Expected Utility Theorem. Let N be afinite set of prizes, and consider afinite sequence of pairs of
lotteries p(i) e A(N) and q(i)e A(N), for ieM={1,....m}. (M indexes comparisons. "p(i) preferred to g(i).")
(Here p(i) = (pi(i))jen, and q(i) = (g;(i))jen.) Then exactly one of these two statements is true:

Either (1) 3o€A(M) suchthat Xicwm o(i)p;(i) = Ziem o(i)g;(i) VjeN, [substitution axiom is violated]
or (2) 3ueR" suchthat Yoy pi(i)y; > Xjen Gy VieM. [preferences satisfy utility theory]

Proof. Let X ={Yicw o(i)(q(i)-p(i))| seA(M)}. Then X isaclosed convex subset of R".

Condition (1) hereis equivaent to: (1') the N-vector Oisin X.

By the Separating Hyperplane Thm, (1') isfalseiff

(2") Jue R such that 0= u’0 > Maxy.x U'X.

The extreme points of X are vectors (q(i)-p(i)) = (q;(i)-pi(i))jen, and thelinear function u’x = ¥jcn XjU;
must achieve its maximum over xe X at an extreme point: MaXyex U'X = MaXicm 2jen Ui (0()—pi(i))-
So (2') isequivaent to (2) in the theorem here.

Fact. Suppose the utility-representation condition (2) is satisfied by u = (Uj)jen.
Then (2) is also satisfied by 0 if there exists A>0 and B such that 0; = Auj+ B VjeN.



Linear Duality Theorem (Farkas'slemma, theorem of the alter natives)
exactly one of the following two conditionsis true;

Q) Ix € R" suchthat Ax > b.

2 Jy e R™ suchthat y> 0, yA=0, andy’b>0.

Here 0 denotes a vector of zeroes in some appropriate number of dimensions.
Vector inequalities denote systems of numerical inequalities:

Ax >b means: Yi;"gx > b Vie{l,...m},

y'A =0 means X" Vi a; =0 Vje{1,..,n},

y'’b>0 means X"y b >0,

y>0 means y; > 0 Vie{l,...m}.

Wemay let R,™ ={yeR™| y>0} denote the nonnegative orthantin R".

Y (AX-b) = Zi-" yi (Xi=1" & X)) - by).

Proof. Conditions (1) and (2) cannot both be true for any x and y,
because y > 0 and Ax > b would imply y'(Ax-b) > O,

while y'A =0 and y’'b>0 wouldimply y'(Ax-b) <0, acontradiction.
S0 (2) must befalseif (1) istrue.

Now suppose that (1) isfalse. This hypothesis means that the vector b is not in the set

{Ax-z| x e R", ze R™, z > O}.

This set is convex and closed. So by the separating hyperplane theorem (MWG p948),

there must exist someye R™ such that

y'b>max{y'(Ax-2)| xeR", zeR"™, z>0}.

This max must be nonnegative (because x and z could be 0), and it must be finite.

[In fact, this max must be exactly O, because if we could achieve any 0 < a = y’(Ax-2z) withxeR", ze R",
Z>0, then doubling x and z could achieve 20, and so the max would be +«.]

If the component y; were negative, then choosing large positive z could drive this max to +e.

If the j'th component of y’A were nonzero, then choosing x; with the same sign and large absolute value
could also drive this max to +o.

Sowemust have y'b>0, yA=0, and y > 0.

S0 (2) must be trueif (1) isfalse.

Thus, (2) istrueif and only if (1) isfalse. QED.

[This argument skips over one tricky detail: proving that the set {Ax-z| x € R", ze R™, z > O} isclosed.
Hereis asketch of the proof. Let Jbeaminimal set of columns of the A matrix that linearly span the rest
of A's columns. Then you can add the restriction that x;=0 for all j¢J, without changing the set. Let | bea
maximal set of rows of the A matrix such that there exists some x such that Ax>0 and Ax is strictly
positivein al thel rows. Then you can also add the restriction that z=0 for all iel. With these
restrictions, you can show that any sequence Ax(k)-z(k) that convergesto afinite limit must have x(k) and
z(K) converging to finite limits.]



First duality application: strong domination. Suppose that there is afinite set of choice aternatives C, a

finite set of possible states S, and u(c,s) denotes the utility payoff for the decision-maker if the stateis s.

Consider any given choice alternatived in C. By duality, exactly one of the following two conditionsistrue.
The dual variable for each constraint is shown at right in red italics:

(1) JIpeR® suchthat Yes(u(d,s) - u(c,9) p(s) = 0 VceC, a(C)
p(s) > 0 VseS, o(s)
and Yesp(s) > 1. a

2 3(08,0) € R, x R,°x R, suchthat Yccco(c)(u(d,s) - u(c,9) +3(s) + a =0 VseS, p(s)
and a > 0.

Condition (1) holds iff there is some probability distribution on the states such that d maximizes expected
utility (because we could divide p by its sum to make it a probability distribution). Condition (2) holds iff
there exists some probability distribution o on the set of choice aternatives (arandomized strategy) such that
u(d,s) < Ycec o(c) u(c,s) VseS. (When (2) holds, the o(c) cannot al be zero, and so we could divide
(0,0,0) by Y ¢ o(c) to make ¢ a probability distribution.) So disoptimal for some beliefsiff it is not strongly
dominated by some randomized strategy. (Myerson, 1991, Theorem 1.6)

Second application: Utility theory. Suppose there are n possible prizes numbered 1,...,n.

We ask adecision maker m questions. In the i'th question, we ask whether he prefers alottery p(i), which
offers each prize j with probability p(i), or alottery q(i) which offers each prizej with probability g;(i). In
each case, suppose p(i) denotes the lottery that he strictly prefers.

Let £ be any positive number. By duality, exactly one of the following two conditionsis true:

(1) JueR"suchthat Y;=1" (pi(i) - (i) uy; > & Vie{1,...m}. oi
2 JoeR,™ suchthat €)-1" 6;>0, and Y,-1" o (p(i) - q(i)) =0 Vje{1,...,n}. U
Condition (1) holds iff we can find a utility function for which his revealed preferences are compatible with
expected utility maximization. Condition (2) holds iff we can find aviolation of the substitution axiom in
compound lotteries. (Renormalize so that }'; o; =1, then consider the first compound lottery that gives each
p(i) lottery with probability o;, and the second compound lottery that gives each q(i) lottery with probability
o;. After thefirst stage of the compound lotteries, the first would always seem better than the second, but the
ex ante probability of each prizej isequal in the two compound lotteries.) So the revealed preferences are
compatible with expected utility maximization iff thereis no violation of the substitution axiom.

(Conjecture of Daniel Bernoilli, 1738, verified by Von Neumann and Morgenstern, 1947.)

Third application: weak domination. Let S, C, u, and d be asin the previous example. Let ¢ be any small
positive number. By duality, exactly one of the following two conditionsistrue.

(D) JpeRS such that Y s (u(d,s) - u(c,s)) p(s) > 0 VeeC, o(C)
and p(s) > ¢ VseS. o(s)
2) J(0,8) € R.¢ x R, suchthat ¥ c.c o(c)(u(d,9) - u(c,9) +8(s) =0 VseS, p(s)

and €Y ss3(s) >0.
Condition (1) holdsiff there is some probability distribution p on the set of states such that every state has
strictly positive probability and d maximizes expected utility over all choicesin C.
Condition (2) holdsiff there exists some probability distribution ¢ on the set of choice alternatives such that
u(d,s) < ¥cco(c) u(c,s) VseS, with at least one strict inequality (<) for somes.
So disoptimal for some beliefs where all states have positive probability iff d is not weakly dominated by
some randomized strategy. (Myerson, 1991, Theorem 1.7)



Duality in linear programming (LP) (MWG appendix M.M, Myerson 1991 pp 125-127.)

Consider the primal linear-programming problem:
choose x in R" to minimize ¢’x subject to Ax=b.
This problem is equivalent to: minimize, max {c’'x +y'(b-Ax)| yeR™ y>0},
because if x violated constraint the constraints then b- Ax would have some positive components and so the
max here would become +« (very bad when we are minimizing).
If we reversed the order of min and max, we would get
choosey in R™to maximize min{y’b + (¢'-y’A)x| xeR"} subjecttoy > 0.
This problem is (similarly) equivalent to the dual linear-programming problem:
chooseyin R™ to maximizey’b subjectto y’A=c’ and y > O.

Duality Theorem of Linear Programming. Suppose that the constraints of the primal and dual LP problems
both have feasible solutions. Then these problems have optimal solutionsx and y such that ¢’x =y’b
(equal vaues) and y’'(b-Ax) =0 (complementary slackness).

Proof If x and y satisfy the primal and dual constraints then we must have
c'’x>c'x+y'(b-Ax) =y'b+ (c'-y'A)x =y'b. *)
So both the primal and dual problems must have bounded optimal values.
Dual boundedness implies that we cannot find any § such that §’A=0’, ¥>0, and §'b>0,
because otherwise we could infinitely improve any dua solution by adding multiples of .
Now for any number 6, linear duality implies that exactly one of the following is true:
(1) 3xe R" suchthat Ax >b and -c¢'x > -0.
(2) 3(y,0) e R"x R suchthaty>0, ®>0, y'A- ¢’ =0, and y’b - w6 > 0.
But when (2) is true, we must have ©>0, or else we would have the vector § described above.
So we could divide any solution of (2) through by ©>0 to get a solution of (2) with ®=1.
So whenever (2) holds, we must aso have
(2') Iy e R™ suchthat y> 0, y'A=c’, and y’'b>0.
So the dua maximization can do better than any value 6 that is below the minimal value of the primal.
Thus, the optimal values of the primal and dual problems must be equal.
It can be shown that the set of feasible values for each problem is a closed set, and so optimal solutions
actually exist. At optimal solutions x and y, we have y’b=c’x,
which (by (*) above) implies the complementary slackness equation y’(b-Ax) =0. QED.

[Our basic linear duality thm can also be seen as a special case of dudlity in linear programming.
Given the matrix A and the vector b from basic linear duality, suppose we let c=0in R".

Then the constraints of the dual LP problem always have afeasible solution y=0.

So LP dudlity implies that this primal isfeasible (3x s.it. Axx>b) if and only if

its and its dual share the same optimal value, which must bec’x =0'x = 0,

and so any y>0 with y’A=0 must have y'b<0.]



In game theory we assume that players are rational and intelligent.

Here rational means that each player acts to maximize his own expected utility, and intelligent means that
the players know everything that we know about their situation when we analyze it game-theoretically.
Intelligence implies that game model that we analyze must be common knowledge among the players,
that is, all players know (that all players know)* the model, vk={0,1,2,...}.

A strategic-form gameis characterized by (N, (Cjicn, (U)ien) Where

N ={1,2,...,n} isthe set of players, and, for each player i:

Ci isthe set of aternative actions or (pure) strategies that are feasible for i in the game, and
U:CixCyx...xCy~ R is player i's utility function in the game.

We generally assume that each player i independently chooses an action in C;.

If ¢ =(cy,Cy,...,Cn) iSthe combination (or profile) of actions chosen by the players

then each player i will get the expected utility payoff ui(c;,Ca,...,Cn).

Welet C = C;xCyx...xCp = oy C; denote the set of al combinations or profiles of actions that the players
could choose. Let C_; denote the set of all profiles of actions that can be chosen by players other than i.
When ceC isaprofile of actions for the players, ¢; denotes the action of each player i,

c_; denotes the profile of actions for players other than i where they act asin c,

and (c_;;d;) denotes the profile of actionsin which i's action is changed to d; but al others choose the same
actionasin c. (We may use this notation even if player i is not the "last” player.) So ¢ =(c;c).

A randomized strategy (or mixed strategy) for player i is a probability distribution over C;,
s0 A(C;) denotes the set of all randomized strategies for player i. (pure=nonrandomized.)
An action d, for player i is strongly dominated by a randomized strategy o; € A(C)) if
ui(ciidi) <Zgec oila) ui(ciia) VeieC.
An action d; for player i is weakly dominated by a randomized strategy o; € A(C)) if
Ui (cisdi) <Zgeg oi(c) uicisa) Ve C., withstrictinequality (<) for at least onec...
The set of player i's best responses to any profile of opponents actionsc ; is
Bi(c-) = argmaxy . ui(ciid) = idi € Cilui(cuidh) = maxgeg, Ui(ciiic))
Similarly, if i's beliefs about the other players actions can be described by a probability distribution p in
A(C.), then the set of player i's best responses to the beliefs u is
Bi(W) = argmax . Tq e, Mlci) ui(cisdi).

Fact. If weiteratively eliminate strongly dominated actions for all players until no strongly dominated
actions remain, then we get a reduced game in which each remaining action for each player is a best
response to some beliefs about the other players actions. These remaining actions are rationalizable.

If each player j independently uses a strategy o; in A(C)), then player i's expected payoff is
ui(c) = u(o-i;6i) = Ui(61,62,...,6n) = Y.cec ([ Jjen 65()) ui(c)
= Teec; 01 (0) Zeiec; [Tiend 05 (c))ui (cise) = Sgeq, 01 (6) ui (o[l
Here [6]€A(C) with [c](6) = L, [G](d) = 0if dic;. Notice 3¢, oi (c)(ui (-i:[ci]) — ui () = 0.
Fact o € argmax_ ) Ui(o.iii) if andonlyif {ceCjai(c) >0} < argmax, . ui(o-i:[dil)-
The set { ¢| 6i(¢;)>0} of actionsthat have positive probability under o; is called the support of o;.

A Nash equilibrium is a profile of actions or randomized strategies such that each player is using a best
response to the others. That isc = (61,...,0n) isaNash equilibrium in randomized strategies iff

o € AgMaX_ () Ui(o-i;ti) forevery playeriinN.

Fact. Any finite strategic-form game has at least one Nash equilibrium in randomized strategies.



Computing randomized Nash equilibria for games that are larger than 2x2 can be difficult,
but working afew examples can help you better understand Nash's subtle concept of equilibrium.
We describe here a procedure for finding Nash equilibria, from section 3.3 of Myerson (1991).

We are given some game, including a given set of players N and, for eachi in N, agiven set of feasible
actions C; for player i and a given payoff function u;:Cyx...xC,~R for player i.

The support of arandomized equilibrium is, for each player, the set of actions that have positive probability
of being chosen in this equilibrium.

To find aNash equilibrium, we can apply the following 5-step method:

(1) Guess asupport for al players. That is, for each player i, let S be a subset of i's actions C;,
and let usguessthat S isthe set of actions that player i will use with positive probability.

(2) Consider the smaller game where the action set for each player i isreduced to S, and try to find an
equilibrium where all of these actions get positive probability.

To do this, we need to solve a system of equations for some unknown quantities.

The unknowns: For each player i in N and each action s ini's support S, let o;(s) denote i's probability of
choosing s, and let w; denote player i's expected payoff in the equilibrium. (ci(a)=0if a¢S.)

The equations. For each player i, the sum of these probabilities c;(s) must equal 1.

For each player i and each action s in S, player i's expected payoff when he chooses s but al other players
randomize independently according to their o; probabilities must be equal to w;.

Let u(o-j,[a]) = Eu(alo) denote player i's expected payoff when he chooses action a and al other players
are expected to randomize independently according to their o; probabilities.

Then the equations can be written: Y 4.5 oi(s) =1 VieN; and u(c_i,[s]) =w; VieN VseS,.

(Here vV means "for al", € means"in".) We have as many equations as unknowns (w;, i(s)).

(3) If the equationsin step 2 have no solution, then we guessed the wrong support,
and so we must return to step 1 and guess a new support.
Assuming that we have a solution from step (2), continue to (4) and (5)

(4) The solution from (2) would be nonsense if any of the "probabilities’ were negative.

That is, for every player i in N and every action s ini's support S, we need oi(s) > 0.

If these nonnegativity conditions are not satisfied by a solution, then we have not found an equilibrium with
the guessed support, and so we must return to step 1 and guess a new support.

If we have a solution that satisfies all these nonnegativity conditions, then it is arandomized equilibrium of
the reduced game where each player must can only choose actionsin S,.

(5) A solution from (2) that satisfies the condition in (4) would still not be an equilibrium of the origina
game, however, if any player would prefer an action outside the guessed support.

S0 next we must ask, for each player i and for each action a that isin C; but is not in the guessed support S,
could player i do better than w; by choosing g when all other players randomize independently according to
their o; probabilities? Recall u(c.i,[s]) =w; fordlsins§.

Now, for every action g that isin C; but isnot in § (so ci(&)=0), we need ui(c_;,[a]) < Wi.

If our solution satisfies all these inequalities then it is an equilibrium of the given game.

But if any of theseinequalitiesis violated (some ui(c_;,[&]) > w;), then we have not found an equilibrium
with the guessed support, and so we must return to step 1 and guess a new support.

In afinite game, there are only a finite number of possible supports to consider.

Thus, an equilibrium o = (6i(a))scciien With payoffs w = (W))ieny Must satisfy: 2 aecici(@) =1 VieN;

and oi(a) >0 and ui(o,[a]) <w; with at least one equality (complementary slackness) VaeC;, VieN.
The support for each player i isthe set of actions s in C; for which oi(s) >0, sothat u(c_,[S]) = Wi




Example. Find all Nash equilibria (pure and mixed) of the following 2x3 game:

Player 2
Player 1 L M R
T 7,2 2,7 3,6
B 2,7 7,2 4,5

There are 3x7=21 possible supports. But it is easy to see that this game has no pure-strategy equilibria
(2'sbest responseto T isM, but T isnot 1's best response to M; and 2's best response to B isL, but B is not
1'sbest responseto L). Thiseiminatesthe six cases where each player's support is just one action.
Furthermore, when either player isrestricted to just one action, the other player always has a unique best
response, and so there are no equilibria where only one player randomizes.

That is, both players must have at |east two actions in the support of any equilibrium.

Thus, we must search for equilibria where the support of player 1's randomized strategy is{ T,B}, and the
support of player 2's randomized strategy is{L,M,R} or {M,R} or {L,M} or {L,R}.

We consider these alternative supportsin this order.

Guess support is{T,B} for 1 and {L,M,R} for 2?

We may denote 1's strategy by o1 = p[T]+(1—p)[B] and 2's strategy by o, = q[L]+(1-g-r)[M]+r[R],
thatis p=o01(T), 1-p =061(B), g=0,(L), r = 62(R), 1-q-r = 65(M).

Player 1 randomizing over { T,B} requires w; = uy(T,c2) = uy(B,02),

and so w; = 7q+2(1-q-r)+3r = 29+7(1-q-r)+4r.

Player 2 randomizing over {L,M,R} requires w, = Uyx(o3,L) = Ux(c1,M) = Ux(61,R),

and so W, = 2p+7(1-p) = 7p+2(1-p) = 6p+5(1-p).

We have three equations for three unknowns (p,q,r), but they have no solution (as the two indifference
equations for player 2 imply both p=1/2 and p = 3/4, which isimpossible).

Thus there is no equilibrium with this support.

Guess support is{T,B} for 1 and {M,R} for 2?

We may denote 1's strategy by p[T]+(1-p)[B] and 2's strategy by (1-r)[M]+r[R]. (g=0)

Player 1 randomizing over { T,B} requires wj = uUy(T,02) = uy(B,62), SO wy =2(1-r)+3r = 7(1-r)+4r.
Player 2 randomizing over { M,R} requires w; = Uy(61,M) = Uy(61,R), SO W, = 7p+2(1-p) = 6p+5(1-p).
These solution for these two equations in two unknownsis p = 3/4 and r =5/4.

But this solution would yield 6,(M) = 1-r = -1/4 < 0, and so there is no equilibrium with this support.
(Notice: if player 2 never chose L then T would be dominated by B for player 1.)

Guess support is{T,B} for 1 and {L,M} for 2?

We may denote 1's strategy by p[T]+(1-p)[B] and 2's strategy by q[L]+(1-q)[M]. (r=0)

Player 1 randomizing over { T,B} requires w; = uy(T,0,) = uy(B,62), so wy = 7q+2(1-q) = 2q+7(1-Q).
Player 2 randomizing over {L,M} requires w, = uy(c1,L) = Ux(61,M), SO W, = 2p+7(1-p) = 7p+2(1-p).
These solution for these two equations in two unknownsis p=1/2 and = 1/2, with w; =4.5=ws,.
This solution yields nonnegative probabilities for al actions.

But we also need to check that player 2 would not prefer deviating outside her support to R.

However uy(o1,R) = 6p+5(1-p) = 6x1/2+5x1/2 = 5.5 > W, = Uy(o,L) = 2x1/2+7x1/2 = 4.5.

So there is no equilibrium with this support.

Guess support is{T,B} for 1 and {L,R} for 2?

We may denote 1's strategy by p[T]+(1-p)[B] and 2's strategy by q[L]+(1-q)[R]. (r=1-Qq)

Player 1 randomizing over { T,B} requires w; = uy(T,02) = Uy(B,0,), so w; =7g+3(1-q) = 2g+4(1-Q).
Player 2 randomizing over {L,R} requires w; = Uy(o1,L) = Ux(61,R), SO w, =2p+7(1-p) = 6p+5(1-p).
These solution for these two equations in two unknownsis p=1/3 and q= 1/6.

This solution yields nonnegative probabilities for al actions.

We aso need to check that player 2 would not prefer deviating outside her support to M;

Up(61,M) = 7p+2(1-p) = 7xU3+2x2/3 = 11/3 < W, = Up(o3,L) = 2x1/3+7x2/3 = 16/3.

Thus, we have an equilibrium with this support: ((/3)[T]+(2/3)[B], (1/6)[L]+(5/6)[R]).

The expected payoffsin this equilibrium are w; = Eu; = 7x1/6+3x5/6 = 2x1/6+4x5/6 = 11/3 = 3.667
and w; = Eu, = 2x1/3+7x2/3 = 6x1/3+5x2/3 = 16/3 = 5.333.




A First Bayesian Game Bayesian games are models of one-stage games where players choose actions
simultaneoudly, but where each player may have private information, called histype.

Let us consider an example where player 2 is uncertain about one of player 1's payoffs.

Each player must independently decide whether to act with generosity (g;) or hostility (hy).

Player 1 might be the kind of person who would be contented (type 1c) or envious (type 1€) of player 2.
Player 2 thinks that each of 1's possible types has probahility 0.5.

The players payoffs (u,u,) depend on their actions and 1's type as follows:

If I'stypeis ic: 0 h, p(1c) =05
01 7,7 0,4
h; 4,0 4.4

If I'stypeis le: o h, p(le) = 0.5
O1 3,7 0,4
hy 4,0 44

How shall we analyze about this game? Let mefirst sketch acommon mistake.

To deal with the uncertainty about 1's payoff from (g1,92), Some students try to analyze the game where
player 1's payoff from (g1,0,) is the expected utility 0.5(7)+0.5(3) = 5. So these students consider a 2x2
payoff matrix that differs from the second (1€) case only in that the payoff 3 would be replaced by 5, and
then they find an "equilibrium™ at (g;,02) (as 5>4 for player 1 and 7>4 for player 2).

Such analysis would be nonsense, however. This "equilibrium" would correspond to a theory that each
player is sure to choose generosity. But player 2 knows that if player 1 istype 1e then he will not choose g;,
because g; would be dominated by h; for player 1 when histypeisle. Thus, player 2 must believe that there
isat least a probability 0.5 of player 1 having the envious type 1e and thus choosing hostility h;.

A correct analysis must recognize this fact.

To find a correct approach, we may consider the situation before the players learns any private information,
but when they know that each will learn his private type information before he acts in the game.

A strategy for a player is a complete plan that specifies afeasible action for the player in every possible
contingency that the player could find.

Before player 1 learned his type, he would have 4 strategies { 9c0e, 9che, eGe, hche} because he will learn his
type before acting. (For example, g:he denotes the strategy "act generous if type 1c, act hostileif type 1e.")
Player 2 would have only two strategies { g», hy}, because she must act without learning 1's type.

For each pair of strategies, we can compute the expected payoffs to each player, given that each of 1'stypes
has probability 1/2. So the normal representation in strategic form of this Bayesian gameis:

O h,
0c0e 57 0,4
Oche 55,35 2,4
heQe 35,35 2,4
h:he 4,0 4,4

This strategic game has one equilibrium: (h¢he, hy), where both are hostile and get payoffs (4,4).
In this strategic game, g.ge and h.ge are strictly dominated for 1 (by gche and h.h, respectively).
When we eliminate these dominated strategies, then g, becomes dominated (by hy) for player 2,
and then h¢h, is the unique best response for player 1 against 2's remaining strategy hs.

(The students' mistake above was to consider only the strategies g.ge and h¢he here.)

A Bayesian game is defined by a set of players N; a set of actions C;, aset of types T;, and a utility function
Ui:(Xjen C)x(xjet Tj)~ R, for each i in N; and a probability distribution pe A(xjen Tj)

The Bayesian game (N, (C;, Ti,upicn,P) is assumed to be common knowledge among the playersin the game,
but each player i also privately knows his own actual type f;e T;, which is a random variable in the mode!.

Mixed strategies for player i are probability distributions over functions from T; to C;, in A(C;™).

But nobody cares about correlations among plans of i's different types; so we can instead analyze
behaviora strategies, which are functions from T; to probability distributions over C;, in A(C)".

A behavioral strategy o; specifies conditional probabilities o;(Gft;)) = Prob(i does ¢| fi=t), V¢ eC;, VtieT,.




Increasing differences and increasing strategiesin Bayesian games

We may consider Bayesian games where each player i first learns his type t;, and then each player i chooses
his action a. We assume here that each player i's type is drawn from some probability distribution p;,
independently of all other players' types, and so the joint probability distribution of the players' types can be
written p((t)ien) = [ien Ri(t), Where pi(t) = Prob(fi = t;).

The payoffs of each player i may depend on all players types and actions according to some utility payoff
function ui(c,...,Cn,t1,...,T). Suppose that types and actions are ordered as numbers (¢; € Cic R, fi e Tic R).
A function f:R-R isincreasing (in the weak sense) iff, for all x and X, X > x implies f(X) > f(x).

A function f:R-R isstrictly increasing iff, for al x and X, X >x implies f(X) > f(x).

Consider atwo-player Bayesian game where player 1 has two possible actions, T and B.
Player 1 has several possible types, and each possible type is represented by a number t;.
Player 2 may have many possible actions ¢, and many possible typests.
Suppose that player 2'stypet, isindependent of player 1'stypet,.
The differencein player 1's payoff in switching from B to T is uy(T,Co,ty,10) - ui(B,Co,t1,10).
This difference depends on player 1'stypet;, player 2's action c,, and player 2's type t,.
We say that player 1's payoffs satisfy (weskly or strictly) increasing differences if this difference
uy(T, ¢, 1y, 1) - Ui(B, ¢y, 1y, o) isa(weakly or strictly) increasing function of ty,
no matter what player 2's action c, and type t, may be.
That is, increasing differences (in the weak sense) means that, for every ry, ty, ¢;, and t,:
if >t then U]_(T, Cy, I'1, tz) - U]_(B, Cy, I'1, t2) > U]_(T, Cy, 1, tz) - U]_(B, Cy, 1, tz)
Strictly increasing differences means that, for every ry, t;, ¢, and t,:
if ry>tpthen uy(T, ¢y 1y, t2) - Ul(B, Cp, 11, 1) > Ug(T, Co, tg, 1) — Ug(B, Cy, 1y, o).
With increasing differences, 1's higher typesfind T relatively more attractive than lower types do.
Player 1 isusing a cutoff strategy if there is some number 8 (the cutoff) such that, for each possible type t; of
player 1. if t; >0 then typet; would choose[T] for surein this strategy,
if t; <0 thentypet; would choose [B] for surein this strategy,
if t; =0 thentypet; may choose T or B or may randomize in this strategy.
Comparing cutoff strategies, the probability of 1 choosing T decreases as the cutoff 6 increases.
Fact. If player 1's payoffs satisfy increasing differences then, no matter what strategy player 2 may use,
player 1 will always want to use a cutoff strategy. Thus, when we are looking for equilibria, the increasing-
differences property assures us that player 1 must be using a cutoff strategy.

More generally, in games where player 1's action can be any number in some range, we say that

player 1's payoffs satisfy (weakly or strictly) increasing differencesif, for every pair of possible actions ¢,
and d; such that ¢;>d,, the difference uy(cy, Cy, t1, to)-Us(dy, Co, ty, 1) isa(weakly or strictly) increasing
function of player 1'stypet;, no matter what player 2's action ¢, and type t, may be.

If u; is differentiable then the condition for increasing differencesis d°U;/dcidt > 0.

Fact. If 1's payoffs satisfy weakly increasing differences, then, against any strategy of player 2, player 1 will
have some best-response strategy s,:T1-C; that isweakly increasing (ry>t; => s,(r1) > S (t1)).

Fact. When 1's payoffs have strictly increasing differences then all player 1's best-response strategies must
be weakly increasing: if r; >t; and, against some strategy o, for player 2, action ¢ isoptimal for typet;
and action d, is optimal for typers, then d; > ¢;. Soin equilibrium, if type t; would choose ¢; with positive
probability, and type r; > t; would choose d; with positive probability, then d; > ¢;.

(By optimality, Eus(Cy,62,t1,12) — Euy(d1,02,t1,T2) >0 and 0 > Euy(Cy,02,11,T2) — Euy(d1,02,r,1),

but this would contradict strictly increasing differencesif we had ¢; > d; with ry > t;.)
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Example: The set of player 1's possible typest; is{0, .1, .2, .3}, and each has probability p,(t;) = 1/4.
Player 2 has no private information. 1'sactionsare{T,B}, 2'sactionsare{L,R}.
Given 1'stypet;, the payoff matrix is

L R
T t,, 0 t, -1
B 1,0 -1,3

So 1's utility difference in switching from B to T depends on 2's action and 1's type as follows:
Uy(T,L,t)-Uy(B,L,ty) =t3-1, Uy(T,R,t))-U4(B,R,ty) = t;+1.

Notice that these differencesincreasein t;. So higher typest; alwaysfind T relatively more attractive than
lower types, and player 1 will use a cutoff strategy. Thus, although player 1 has 2°=16 pure strategies in this
Bayesian game, we only need to consider 1's cutoff strategies with the following 9 possible supports:

. (6>.3) every type would choose [B], so 2 thinks the probability of T is P(T)=0;

. (6=.3) {0,.1,.2} would choose [B], but .3 would randomize in some way, so 2 thinks 0 < P(T) < 1/4;

. (.2<0<.3) {0,.1,.2} would choose[B], but .3 would choose [T], so 2 thinks P(T) = 1/4;

. (6=.2) {0,.1} would choose [B], .2 could randomize, .3 would choose [T], so 2 thinks 1/4 < P(T) < 1/2;
. (.1<6<.2) {0,.1} would choose[B], {.2,.3} would choose[T], so 2 thinks P(T) = 1/2;

. (6=.1) Owould choose[B], .1 could randomize, {.2,.3} would choose [T], so 2 thinks 1/2 < P(T) < 3/4;
. (0<6<.1) 0would choose [B], {.1,.2,.3} would choose[T], so 2 thinks P(T) = 3/4;

. (6=0) 0 would randomize in someway, {.1, .2,.3} would choose[T], so 2 thinks 3/4 < P(T) < 1,

. (6<0) every type would choose [T], and so 2 thinks P(T) = 1.

If player 2 uses o, = q[L]+(1-g)[R], then player 1's optimal cutoff 6 would have the property:
t1> 0 <=> qgt+(1-q)ty = Uy(T,02,t1) > U1(B,o2,t1) = q(1)+(1-0)(- 1).
Thisimplies g6+(1-g)6 = g(1)+(1-qg)(-1). So the cutoff 6 isoptimal for 1 when q=(6+1)/2.

Thereis obvioudly no equilibrium in which player 2 chooses L for sure or R for sure. (check!)

To make player 2 willing to randomize, we must have EU,(L) = EUx(R), that is,

P(T)(0) + (1-P(T))(0) = P(T)(-1) + (1-P(T))(3), and so P(T) = 3/4.

Here P(T) denotes the (unconditional) probability of player 1 choosing T as assessed by player 2, who does not
know 1'stypet;.

But 1's equilibrium strategy o1 must specify, for each possible typet; in {0,.1,.2,.3}, the conditional probability
o1(Tty) of player 1 doing T when histypeist;.

These unconditional and conditional probabilities of T must satisfy the equation: P(T) = X pi(t)o1(Tlty).

For a cutoff strategy with o1(T|t;)=1 for t;>0 and o(T|t;)=0 for t;<0, thisis P(T) = p1(0)c1(T|0) + 2156 P1(ts).
So to get P(T)=3/4, the cutoff 6 must be between 0 and .1 (0 would choose [B], {.1,.2,.3} would choose [T]).
Now let g denote the probability of 2 choosing L. To make 1's cutoff strategy optimal for him, 2's randomized
strategy q[L]+(1-q)[R] must make player 1 prefer B when t;=0, but must make player 1 prefer T whent; = .1.
EU1(T|t;=0) < EU4(B|t;=0) implies (q)(0)+(1-g)(0) < (a)(1)+(1-g)(-1), andso 1/2 < q.

EUL(T|t;=.1) > EUy(B|t;=.1) implies (q)(-1)+(1-0)(.1) > (q)(1)+(1-qg)(-1), and so g < 11/20.

That is, to get a cutoff 6 suchthat 0< 0 < .1, wemust have 1/2 < g = (6+1) /2 < 11/20.

So in equilibrium, 1 chooses B if t;=0, 1 chooses T if t;>.1, and 2 randomizes, choosing L with some
probability g that is between 1/2 and 11/20.

Now suppose instead player 1 hasfive possible types{0, .1, .2, .3, .4}, each with probability pi(t;)=1/5.

To make player 2 willing to randomize, player 1 must use a strategy such that P(T) = 3/4.

For that to occur in an increasing cutoff strategy, the cutoff must be at 6=.1. So t;=0 chooses B; and when t;>.1
(which has probability 3/5) player 1 chooses T. The remaining 3/4-3/5 = 0.15 probability of T must come from
player 1 choosing T with probability o;(T|.1) = 0.15/p;(.1) = 0.15/0.2 = 0.75 whent;=.1.

To make type t;=6 =.1 willing to randomize, player 2's probability of choosing L must be q = (.1+1) /2 =11/20.

11



Example. Player 1'stypet; is drawn from a Uniform distribution on the interval from 0 to 1, and payoffs
(ug,u,) depend on 1'stype as follows, where ¢ is a number between 0 and 1 (say £=0.1):
L R
T et,0 ey, -1
B 1,0 -1,3
Player 1's payoffs satisfy increasing differences, so player 1 should use a cutoff strategy,
doing T if t;>8,, doing B if t; < 6;, where 6, is some number between 0 and 1.
Then player 2 would think that the probability of 1 doing T is Prob(t; > 6) = 1-6.
Y ou can easily verify that there is no equilibrium where player 2 is sure to choose either L or R.
For player 2 to be willing to randomize between L and R, both L and R must give her the same expected
payoff, so 0=(-1)(1-6,) + (3)61, and so 6, = 0.25.
So in equilibrium, player 1 must use the strategy: do T if t; > 0.25, do B if t; < 0.25.
For player 1 to be willing to implement this strategy, he must be indifferent between T and B when his type
isexactly t; = 6; = 0.25. Let g denote the probability of player 2 doing L.
Then to make type 0, indifferent between T and B, q must satisfy €60, = (1)g+ (- 1)(1-q),
which implies q=(1 +¢6,)/2=(1+0.25¢)/2. (Soase-0, q approaches0.5.)

Now consider a game with two-sided incomplete information from Myerson (1991) section 3.10.
Suppose player 1'stypet; is drawn from a Uniform distribution on the interva from 0 to 1,
player 2'stypet; is drawn independently from a Uniform distribution on the interval from 0 to 1,
and the payoffs depend on 1's type as follows, for some given number £ between 0 and 1:
L R
T gty, €ty ety, -1
B 1, ety -1,3
With increasing differences, the action T becomes more attractive to higher types of player 1.
Similarly, the action L becomes more attractive to higher types of player 2.
So we should look for an equilibrium where each uses a cutoff strategy of the form
. player 1 doesT if t; > 64, player 1 does B if t; < 64,
. player 2 doesL if t; > 6,, player 2 does R if t, < 05,
for some pair of cutoffs 6, and 6.
It is easy to check that neither player's action can be certain to the other,
and so these cutoffs 6, and 6, must be strictly between 0 and 1.
With t; Uniform on O to 1, the probability of player 1 doing T (t;>0,) is 1-6,.
Similarly, the probability of player 2 doing L (1>8,) is 1-6,.
The cutoff types must be indifferent between the two actions. So we have the equations
€01 = (1)(1-02) + (-1)02, €02 = (-1)(1-01) + (3)01.
The unique solution to these equationsis 0, = (2+¢)/(8+¢?), 0, = (4-¢)/(8+&?).
Unless a player's type exactly equals the cutoff (which has zero probability), heis not indifferent between his
two actions, and he uses the action yielding a higher expected payoff given histype.
As e-0, these equilibria approach the randomized strategies (.75[T]+.25[B], .5[L]+.5[R]).

These examples show how randomized equilibria can become pure-strategy equilibriain Bayesian games
where each player has minor private information that determines his optimal action in equilibrium.
Thisis called purification of randomized equilibria by Bayesian games (Harsanyi, 1JGT, 1973.)
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Introduction to auctions. Consider n=2 bidders in afirst-price auction to buy an object for which they have
independent private values drawn from a Uniform distribution on 0 to M.

The set of playersisN={1,2}. Each player i'stype setisT; =[0,M], where the typet; isi's value of the
object being sold. Player i's action isabid ¢; which must be a nonegative number in R..

The high bidder gets the object, which is worth his type to him, but the winner must pay the amount that he
bid. Loserspay nothing. So the utility function for each player i is

Ui(Cl,Cz,tl,tz) =t-¢ if c>c, Ui(Cl,Cz,tl,tz) =0 if c<c, Ui(Cl,Cz,tl,tz) = (t|—C|)/2 if c=c.;.

A strategy for player i specifiesi's bid as some function of i'stype, say ¢ = bi(t).

Let ustry to find a symmetric equilibrium of this game, and let us guess that the equilibrium strategy is
linear, of the form by(t;) = at; for some a>0. Can this be an equilibrium, for some a.?

Consider the problem of player 1's best response, when player 2 uses such a strategy, so &, = af.

When player 1 knows histypeist;, player 1's expected payoff from choosing bid c; would be

EU]_(C1|t1) = (t]_* C]_) P(éz < C]_) = (t]_* C]_) P((sz < C]_) = (t]_* C]_) P(fz < C]_/(I) = (t]_* C]_)(Cj_/(l)/M,

(assuming that c; is between 0 and aM). So the first-order optimality conditions are

0 =0EU4(c4|ty)/0cy = (t1-2¢4) /(@M), whichimplies ¢; =t;/2.

So player 1's best-response strategy is the same linear function as 2's strategy if o = 1/2.

Thus, bidders 1 and 2 each bidding half of his’her type-value (¢i=bi(t)=ti/2) is an equilibrium in this auction.
E(payment from i |f|=t|) =(/2) P(f,|/2 <t/2)=i/2)(ti/M) = t,z/(ZM)

Now let us change the game to an all-pay-own-bid auction, with the same bidders and types.

As before, there are two bidders with independent private values drawn from Uniform [0,M],

and the high bidder gets the object. But now each pays his own bid whether he wins or loses.

So now i'spayoff is: u =ti-¢ if ¢>c, u=-¢ if g<c;, u=t/2-¢ if ¢g=C.;.

Thereisno linear symmetric equilibrium to thisgame. (If 2 used the linear strategy &, = af, then 1's best
response would be to bid ¢;=aM if t;>aM and ¢;=0 if t;<aM, which is not linear!)

With increasing differences, we can ook more generally for some increasing strategy b(e) such that each
player bidding ¢ = b(t;) isasymmetric equilibrium. Let us guessthat b(e) is continuous and differentiable.
Type 0 must bid b(0)=0. No one should bid more than the highest possible opposing bid, so player 1 should
only consider bidsin the range of 2's possible bids, that is, bids ¢; such that ¢,=b(s) for some se[0,M].
When player 1 knows histypeist;, player 1's expected payoff from choosing bid c; = b(s) would be
EU4(b(s)|t1) =ty P(E<b(s)) — b(s) = t; P(b(t;)<b(s)) — b(s) = t;P(t<s) — b(s) = ty(S/M) — b(S).

Then the first-order condition for an optimal bid b(s) is 0 =0EU(b(s)|t;)/ds=1t;/M —b'(s).

But in symmetric equilibrium, b(s)=b(t,) is optimal for typet;. Soweget b'(t) =t./M, Vt;[0,M].
Thus, integrating from b(0)=0, we find a symmetric equilibrium where each player i bids b(t) = t/(2M).

Finaly, let us change the game to a second-price auction. Asin the first-price auction, the high bidder wins
the object and is the only bidder to pay anything (the loser pays nothing), but now the amount that the high
bidder pays is the second-highest bid, submitted by the other bidder.

So now i'spayoff is. u =t-c; if ¢g>c;, =0 if ¢g<c;, u=(t-c;)/2 if ¢=c..

For any cumulative distribution F(c,) = P(by(f) < ¢), Eus(cifts) = Jo™ (ti—c,)dF(c,) is maximized by c,=t,.
So in this auction, there is an equilibrium in which each bidder honestly bids his value ¢ = bi(t;) = t.

In fact bidding ¢ci=t; weakly dominates any other strategy. Higher bids only add unprofitable wins with c_;>t;.
Lower bids don't reduce what i pays and may lose profit opportunities when c_i<t;.

E(payment fromi |fi=ti) = E(f,i ‘f7i<ti) P(f,i<ti) = (t|/2)(t|/M) = tiz/ (ZM)

Fact. Given any typet;, i's expected payment ist®/(2M) in these equilibria of different auctions.
Given i'stypet;, i's expected profit in each egmis EUi(t) = t; P(Li<t;) - t°/(2M) = t2/(2M).
The seller's expected revenue from the biddersis 2E(E2/(2M)) = 2 [o* (£2/(2M)) dt/M = M/3.
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A first-price auction with common values (from Myerson 1991, section 3.11).

Consider n=2 biddersin afirst-price auction to buy an object which would have the same common value V
to either bidder, if he wereto winit. Each bidder has different private information about this common value.
Each bidder i observes an independent signal f; drawn from a Uniform distribution on the interval 0to 1,

and the object's common value depends on these signals according to the formula V = At +A .

So each player i's payoff ui(cy,Co,t1,t2) depends on the bids (c,,C;) and the types (t3,t,) asfollows:

u = Ati+Ast-¢ if ¢>c;, u =0 if ¢g<c., u = (A1t1+A2t2*Ci)/2 if ¢=c.;.

A strategy for player i specifiesi's bid as some function of i'stype, say ¢ = bi(t).

Let us guess that the equilibrium strategies are linear, of the form by(t;) = a;t; for some a;>0.
Nobody would want to bid more than his opponent's highest possible bid, and so we must have a; = o, = a,
so that both bidders have the same range [0,a] of possible bidsin equilibrium.
Now suppose that bidder 1, believing that 2 will bid by(t,) = af,, knows histypet; and is thinking of bidding
some other ¢. Then player 1 will winif af, <c, thatis, T, <c/a.
Then 1's expected payoff would be
EUs(c|ty) = o™ (Asti+Ast—)dt, = Asti(c/a) + 0.5A5(c/a )= c(c/a) = CAsty /o — A(1-0.5A,/0) /o

= [Asts + 0.5Ac/a - c](c/a) = [E(V]T1=ty, af<c) - ¢] P(af<c).
First-order conditions for ¢ to be an optimal bid are then
0=0EU,(c|ty)/oc=[Ats + Axc/a - 2¢]/a, and so c= Aty /(2-Az/a).
Thus, for 1's optimal bid hereto be c=at;, weneed a=A1/(2-A/a),
and so our equilibrium must have a = 0.5(A1+A,).
(With thisa. and A;>0, weget (1-0.5A,/a) = A1/ (A1+A) >0, so c=at; uniquely maximizes EU,(c|ty).)
This symmetric formulafor o also works for player 2, who wants to bid at, when 1 is expected to bid of;.
So the expected profit for typet; of player 1 when he bids by(t;) = at; = 0.5(A1+A)t; inthisequilibriumis
EU1(t) = [Ast; + 0.5A.t; - 0.5(A+A)t]t; = 0.5A ;%

Let ¥ = Al denotethe valuethat player i has privately seen going into the object here.

So in thismodel, each ¥; is an independent Uniform random variable on the interval from 0 to A;.
Interms of his privately observed value v;, player i's equilibrium bid is 0.5(1+A_;/A)vi,

and player i's conditional expected profit given histypeis 0.5v;%/A..

Example: Suppose A; =A,= 100. If f,=0.01 then 1 bids 100t,=1 and gets P(win) = 0.01.
Notice E(V| £,=0.01) =51, but EU(c;| §;=0.01) = (1+0.5¢; - ¢;)(c1/100) <0 if ¢;> 2.

Example: Suppose A;=¢, A,=100-¢, for some small £>0. In equilibrium, each bids b;(t)=50t..
Both bids are Uniform random variables on [0,50], but 2's bid is much more highly correlated with V.
In the limit as e—0, we get an equilibrium where 2'sbid is by(f;) = 50, = V/2, whichis perfectly
correlated with the value V, but the uninformed bidder 1's bid is independent of V.

Now let f, be another Uniform [0,1] random variable that is observed by both bidders.

If we increased the common value by the commonly known amount A, then the equilibrium bid
for each type of each bidder would increase by this commonly known amount Afo.

That is, if the common value were V = Agto+A T +AL, where bidder 1 observest, and f;

and bidder 2 observes i, and t,, then the equilibrium bidding strategies would be

b]_(fo, f]_) = Aofo + 0.5(A1+A2)f1 and bz(fo,fz) = Aofo + O.5(A1+A2)f2.

Example: Ap=¢=A;, A,=(100-¢). Then equilibrium strategies are bj(fo,t;) = &ty + 50t;, fori=1,2.
Notice that 1's two signals are equally minor in their impact on the value of the object,
but 1's bid depends much more on his private information t; than his shared information f.
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Move probabilities, belief probabilities and sequential equilibria
Suppose that we are given some extensive game with imperfect information.
Given any randomized strategy for any player i, at any information set t; of player i that could occur with
positive probability when he plays this strategy, we can compute a probability distribution over the set of
possible actions {d;} for player i at thisinformation set.
These probabilities o;(d;|t;) are called move probabilities (or action probabilities).
That is, the move-probability for any move d; at any information state t; of any player i denotes the
probability that player i will choose move d; if information set t; occursin the game.
A behaviord strategy o; for player i isavector that specifies a move-probability distribution for each of
player i'sinformation sets.
A behavioral-gtrategy profile o is avector that specifies a behavioral strategy o; for each player i, and so it
must specify an move probability o;(di|t;) for every possible move d; at every possible information set t; of
every player i in the game.
Given o, aprofile of behavioral or randomized strategies for all playersin the game, the prior probability
P(x|o) of any node x in the tree is the multiplicative product of all chance-probabilities and move-
probabilities on the path that leads to this node from the starting node.
(Here the chance probabilities on al branches that follow chance nodes are part of the given structure of the
extensive game. We assume that these chance probabilities are all positive.)
A full-support behavioral strategy profile assigns strictly positive probability (oi(d;|t;)>0) to every possible
move d; at every information set t; of every player i, so that every node x in the tree has positive probability.
When player i moves at hisinformation set t;, the belief probability that player i should assign to any node x
in thisinformation set should be, by Bayes's formula,

ni(X[t) = P(X|o) / Zyei P(ylo).
That is, the belief probability pi(x[t;)) should equal the prior probability of x divided by the sum of prior
probabilities of al nodesin the information set t;, whenever this formulais well-defined (not 0/0).
A belief system p isavector that specifies a belief-probability distribution pi(e|t;) over the nodes of each
information set t; of each player i in the game.
Bayes's formulayields a unique belief system for any full-support behaviora strategy profile.
But for strategy profiles that do not have full support, Bayes's formula may leave some belief probabilities
undefined, at any information set where all nodes have zero prior probabilities.
A beliefs system p is consistent with a behaviora strategy profile o iff there exists a
sequence of full-support behavioral strategies 6* that converge to o (all 6%(di|t) - oi(dk 1))
and yield Bayesian beliefs (1 that convergeto p as k- (all 015(x|t;) - wi(x|t)).
A behaviord-strategy profile o is sequentially rational given abeliefs system p iff, at each information set t;
of each player i, oi(|t;) assigns positive move-probabilities only to moves that maximize i's expected payoff
at ti, given i's beliefs (e |t;) about the current node in the information set t; and given what the behavioral-
strategy profile o specifies about players behavior after thisinformation set.
A sequentia equilibriumisapair (o,u), where ¢ is abehavioral strategy profile and p is abelief system,
such that o is sequentialy rational given the beliefs system p, and the beliefs system p is consistent with the
behavioral-strategy profile .

A game has perfect information if every information set consists of just one node.

A game with perfect information can have only one possible beliefs system, which trivially assigns

belief probability 1 to every decision node.

For a game with perfect information, a behavioral strategy profile o is a subgame-perfect equilibrium if it
would form a sequentia equilibrium together with this (trivial) beliefs system p.
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The Holdup Problem Player 1 can invest to improve an asset which he may later sell player 2.
First player 1 chooses an amount ex0 to spend on improving the asset. With thisinvestment,
the asset will be worth v,(e) = €”° to player 1, but it will be worth v,(€) = 2e>° to player 2.

We consider two different versions of this game, which differ in how they bargain over the price.

Buyer-offer game First player 1 chooses the amount e>0 to spend on improving the asset.
Player 2 observes thisinvestment e.

Then player 2 chooses a price p>0 at which she offers to buy the asset from player 1.
Player 1 observes this offer, and then can choose to accept or reject it. Final payoffs are:

ui(e, p, accept) = p-e, Ux(e, p, accept) = vo(e)-p, ui(e p, rgect) =vi(e)-e, us(e p, reject) = 0.

Thereis aunique subgame-perfect equilibrium.

At the last stage, player 1 acceptsif p>vi(€) and regjectsif p<vi(e).

So player 2's optimal offer, given e, must be to offer p=v1(€), which player 1 must accept.

(Note: Player 1 isactually indifferent between accepting and rejecting, but there would be no optimal offer
for 2 if player 1 rejected in this case of indifference!)

So player 1 knows that his payoff from e will be v,(e)-e = €**-e, which is maximized by e=0.25

So the equilibrium outcomeis: 1 chooses e=0.25, 2 offers p = 0.25°° = 0.5,

and payoffsare u, = 0.5-0.25=0.25, u, = 2x0.25>°-0.5=1-0.5=0.5.

Seller-offer game. First player 1 chooses hisinvestment e>0.

Then player 1 chooses the price p=0 at which he offersto sell the asset.

Player 2 observes e and p, and then can choose to accept or reject 1's offer. Payoffs are till
ui(e, p, accept) = p-e, Ux(e, p, accept) = Vo(€)-p, ui(e p, reject) =vi(e)-e, Uq(e, p, reject) =0.

In the unique subgame-perfect equilibrium, player 2 acceptsif p < vx(e) but rgectsif p > v,(e),
so given e, player 1 offersp = v,(€). So player 1 chooses e = 1 to maximize 2¢*°-e.

So the equilibrium outcomeis: 1 chooses e=1 and offers p = 2x1°°=2,

and payoffsare u; =2-1=1, u, = 2x1%°-2=0.

This sdller-offer game also has many other Nash equilibriathat are not subgame perfect.

Notice that the equilibrium sum of payoffs u;+u, is greater in the seller-offer game.

That is, for an efficient outcome, the person who made the first-period investment should have more control
in the process of bargaining over the price. If they were about to play the buyer—offer game, the buyer
would be willing to sell her right to set the price for any payment more than 0.5, and the seller would be
willing to pay up to 0.75 for the right to set the price.

Both of these games have many other Nash equilibria that are not subgame-perfect. Consider any (&p) such
that v,(&) > P > &+ max, (vi(e)-€e) = &+0.25 (such as&=1, p=1.625), so that each does better than he could
alone. With either player offering the price, there is a Nash equilibrium in which 1 invests this &, and then
this price p is offered and accepted, but rejection would follow any other investment e£é or any other price-
offer p#£p. These Nash equilibria violate sequential rationality, however, as threats to reject prices between
vi(€e) and v,(e) would not be credible.
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Introduction to repeated games Players 1 and 2 will meet on t+1 days, numbered 0,1,2,...,t.
On each day, each player i must choose to be generous (g;) or selfish (f;).
On each day k, they get payoffs (uy,Uox) that depend on their actions (cy,Cx) as follows:

Player 1:\ Player 2: 02 f,
O 3,3 0,5 (Prisoners dilemma)
fa 50 2,2

except on the last day 1 their payoffs will be:

Player 1.\ Player 2: 02 fa
o)} 55 0,4 (Trust game)
f1 4,0 2,2

On each day, each player knows what both players did on al previous days.
Each player wants to maximize the expected discounted sum of his payoffs V; = Y=o 8 U
for some given discount factor 6 between 0 and 1.

If the first payoff matrix (the prisoners dilemma) were played once, (f1,f2) would be the unique equilibrium,
yielding the Pareto-dominated payoff allocation (2,2).

But in multi-period games, opportunities to respond later can enlarge the set of equilibria.

Consider the strategy for each player i to choose g; until f; or f, is chosen, but thereafter choose f;.

We can show that it is an equilibrium here for both players to choose this strategy, if 6>2/3.

Consider first the case of =1, where the prisoners dilemmais played once, followed by one play of the trust
game at the end. Under the strategies described here, on the last day,

they will play the good (g1,0,) equilibrium of the "trust game" if both were previously generous,

but they will play the bad (f4,f,) equilibrium if either player was previously selfish.

So the overall payoffs will depend on their first-day choices as follows:

Player 1.\ Player 2: 02 fa
O1 3+55, 3+85 0+582, 5+52
fi 5+52, 0+52 2+52, 2+52

Then (g:0.) is an equilibrium at the first day if 3+56 > 5+29, thatis, if 6 > 2/3.

A similar calculation can be made for any number t>1 of repetitions of the prisoners dilemma.

The discounted value of payoffs from (f4,f,)-always would be F(t) = 2(1-8")/(1-8) = 2+8F(t-1).

The discounted value of payoffs from (gy,g,)-adways would be G(r) = 3(1-8%)/(1-8)+58" = 3+8G(t—1).
(We use wWHWa+wd*+...+wd® = w(1-5%/(1-35).)

Lemma: If 1>6>2/3 then G(t)-F(t) >3 for al 1. (Proof by induction: G(0)-F(0) =5-2 =3, and then
for any ©>1 we get inductively G(t)-F(t) = 3-2 + 6(G(t—1)-F(t-1)) > 1 + (2/3)(3) = 3.)

Now assuming that the strategies described above will be played after the first stage, the players overall
payoffs will depend on their first-day choices as follows:

Player 1: \ Player 2: O fa
% 3+5G(1-1), 3+5G(1-1) 0+5F(t—1), 5+8F(t-1)
f, 5+5F(t—1), 0+8F(1-1) 2+5F(t—1), 2+8F(1-1)

With 1>6>2/3, for any t, it isan equilibrium for both to start doing g;, as these strategies specify, because
3+5G(t-1) > 5+6F(1-1). (Proof: 3+3G(1—1) — (5+6F(1—1)) = —2+5(G(t—1)-F(t-1)) > —2+(2/3)(3) = 0.)

As -, overall payoffsin this good equilibrium depend on first-day actions as follows:

Player 1:\ Player 2: 02 fs
01 3+63/(1-9), 3+53/(1-9) 0+62/(1-3), 5+52/(1-9)
f1 5+62/(1-5), 0+62/(1-3) 2+62/(1-3), 2+62/(1-3)

The equilibrium condition 3+383/(1-0) > 5+25/(1-9) issatisfied when 1>6>2/3.
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The War-of-Attrition game. There are two players, numbered 1 and 2, who can meet on day O, day 1, ...
through day T, to try to get a valuable prize that isworth V.

On each day, if the game has not yet ended, each player can choose to fight or quit.

The game ends as soon as somebody quits, or it ends after day t if nobody quits.

On each day when both choose to fight, they both lose $1. On any day when one player fights and the other
player quits, the fighter gets the prize worth $V (and the game ends). If they both quit on the same day, or if
they both fight on al days (0 through 1), then nobody gets the prize.

The normal-form strategy for each player i can be described by a number ¢; chosen from the set {0,1,...,t+1},
where ¢; represents the day when player i would quit, if the other player does not quit first, except that
c=t+1 represents the strategy "never quit". So the payoffs functions are

U(C,C2) =V -, if ¢ >y, but uy(cy,c) =-c¢; if ¢ < ¢y

Ux(C1,Co) =V -cy if ¢ > ¢y, but ux(cy,c) =-¢; if ¢ < Ch.

Suppose player 2 chooses €, randomly, according to a probability distribution o,(t) = P(C,=t).
Player 1's expected payoff from choosing ¢;=d is Euy(d,&2) = Yi<a (V-t)o2(t) + Y t.a (- d)o2(t).
So Euy(0,&) =0, and Euy(d+1,&;) - Eui(d,&2) = Voo (d) - Y a 02(t) = (V+1)o(d) - Y r.a 02(1).
(After d days, 1'swillingness to fight one more day would earn $V if €,=d, or lose $1 if &,>d.)

There is a symmetric full-support randomized equilibrium in which each player i chooses ¢; randomly
according to a probability distribution 6, = 6,. We can find this o, by solving the equations
0 = Euy(d+1,&;) - Euy(d,&p) = (V+1)ox(d) - Yi.aoo(t) foral din{0,1,...,t}.

First, using Y.002(t) =1, weget 6,(0) =1/(V+1).

Then 65(1) = [Yr.1 02()]/(V+1) = [1-62(0)] / (V+1) =[1 - 1/(V+1)]/(V+D).

Then for al d=1,...,t, we can recursively compute

02(0) = [Yrea 0201/ (V+1) = [1-Yiea 02(t)] / (V41) = [1- 1/ (VH+1)]Y/(V+1).

At the end, we have ox(t+1) = 1-Y i1 02(t) (Which goesto 0 ast-).

On each day d<t, we have o5(d)/) 1.4 02(t) = 1/(V+1). Thisratioisthe

conditional probability of player 2 quitting on day d, given that she has not quit earlier.

So this mixed strategy correspondsto a behaviora strategy in which, on any given day,

if nobody has quit earlier, then the probability of player i quitting today isq=1/(V+1).
This conditional probability q satisfiesthe equation qV+(1-q)(-1) = 0, which makes

the other player just indifferent between quitting immediately and fighting one more day.

In this symmetric randomized equilibrium, each player is willing to quit on day O,

and so each player's expected payoff is 0= Eu; = Eu,.

Thereis aso anonsymmetric equilibrium in which player 1 is always expected to fight and player 2 is
expected to quit immediately, sothat ¢;=t+1, ¢,=0, u;=V, and u,=0.

Thereis aso anonsymmetric equilibrium in which player 2 is always expected to fight and player 1 is
expected to quit immediately, so that ¢;=0, c,=t+1, u;=0, and u,=V.

These nonsymmetric equilibria can be interpreted as a model of property rights.
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Infinitely Repeated games

Infinitely repeated games can be used as simple models of long-term relationships.

The game will be played at an infinite sequence of time periods numbered 1,2,3,...

Suppose that the set of playersis{1,2}. In each period k, each player i must choose an action c;, in some
set G Inperiod k, each player i's payoff uy will depend on both players actions according to some utility
function u;:CxCy-R; that is, Uik = Ui(Cuk, Cox)-

We assume here that the actions at each period are publicly observable, and so each player's action in each
period may depend on the history of actions by both players at al past periods.

Given any discount factor 6 such that 0 < 6 < 1, the 6-discounted sum of player i's payoffsis

V (Uig, Uiz, Uiz,...) = Uig + SUip + 8%Uig + ... + 8% MUy + ...

For a constant payoff x each period, the §-discounted sum would be x/(1-46).

The objective of each player i in the repeated game is to maximize the expected discounted sum of his
payoffs, with respect to some discount factor 6, where 0 <6 < 1.

Fact. (Recursion formula) V (Ui1,Ui2,Uis,...) = Uiz + 3V (Uiz,Uiz,Uig,...) .

We may describe equilibria of repeated games in terms of avarious socid states.

At each period of the game, the players will understand that their current relationship is described by one of
these socia states, and their expectations about each others' behavior will be determined by this state.

This state may be called the state of play in the game at this period.

(These socia states are a characteristic of the equilibrium, not of the game, as they describe the different
kinds of expectations that the players may have about each others future behavior.)

To describe an equilibrium or scenario in terms of social states, we must specify the following:

(1) Social states We must list the set of socid statesin this equilibrium. (States may denoted by numbers or
may be named for the kinds of interpersonal relationships that they represent.)

(2) State-dependent strategies. For each state 6, we must specify a profile of (possibly randomized) actions
(3.(0),5:(0)) describing the predicted behavior of the playersin any period when this 6 is the state of play.

(3) Transitions. For each socia state 6, we must specify the profiles of players actions that would cause the
state of play in the next period to change from this state to another state. We may let ©(ay,a;0) denote the
state of play in the next period after a period when the state of play was 6 and the players chose actions
(a1,&) (possibly deviating from the prediction (5,(6),5:(0))).

(4) Initial state. We must specify which socia state isinitia state of play in the first period of the game.
Herewe will generaly let state "0" denote thisinitial state.

Given any scenario asin (1)-(3) above, and given any discount factor 8, let V;(6) denote the expected
d-discounted sum of player i's payoffsin this scenario when (ignoring (4)) the state of play beginsin state 6.
Given 6 < 1, these numbers V;(8) can be computed (with algebra) from the equations:

Vi(0) = E[i(51(0),5(0))) + 8 Vi(B(5,(8),5(6);0))].

Fact. A scenario asin (1)-(3) above is a subgame-perfect equilibrium if, for every player i and every state 9,
player i could not expect to gain by unilaterally deviating from the prediction 5(0) in a period when the state
of play is8. That is, we have an equilibrium if, for every state 9,

V1(6) > E[ui(an,5(0))) + 8 Vi(0(c1,5(6);6))], fordl c,inC,,

V2(0) = E[ui(5u(6),¢2)) + 8 Vi(O(5:(6),¢2;6))], for al czin Co.

(Thisisthe one-deviation condition for a subgame-perfect equilibrium in arepeated game: if nobody could
ever gain in any state by a one-round deviation, then longer strategic deviations are also not profitable.)

(The Folk Theorem of Repeated Games says that, when & is close to 1, subgame-perfect equilibria can be
constructed to achieve, in some state, ailmost any feasible payoff allocation which gives each player more
than the maxmin security level that he could guarantee himself against punitive actions by other players.)
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Example 1. Consider arepeated game where, in each period, the players play the following "Prisoners
dilemma’ game in which each must decide whether to "cooperate” or "defect”.

Co d2
C 55 0,6
d; 6,0 1,1

Each player wants to maximize his or her 6-discounted sum of payoffs, for some 0<6<1.

Wefirst consider aversion of the "grim trigger" equilibrium:

The statesare {0, 1}. (State O represents "trust” or "friendship"; state 1 represents "distrust”.)

The predicted behavior in state 0 is (c;,¢;). The predicted behavior in state 1 is (dy,ds).

In any period when the current state of play is 0, if the players action profileis (c;,d,) or (dy,c;) then the state
of play next period will switch to state 1, otherwise it will remain state 0.

When the state of play is 1, the future state of play always remains state 1.

The expected discounted values for the playersin the states satisfy the equations:

V1(0) = uy(Cy,C2) +8V1(0), V(1) = uy(dy,d2) +8Va(1),

V2(0) = Uy(Cy,C2) +8V2(0), V(1) = ux(dy,d2) +8Vo(1).

So V4(0) =5+38V4(0), Vi(1) =1+58V4(1), andso V4(0) =5/(1-8), V(1) =1/(1-9).

Similarly, V»(0) =5/(1-3), V(1) =1/(1-3).

For this scenario to be an equilbrium, we need:

V1(0) > uy(dy,Co) +8Va(1), Va(1) > us(cy,dy) +8Va(1),

V2(0) > Upy(Cp,do) + 3V2(1), V(1) 2 Uy(dy,C;) + 3Vo(1).

That is, we need: 5/(1-8) >6+61/(1-8) and 1/(1-8) > 0+51/(1-35),

or equivalently (with 6<1), 5> 6(1-8)+61 and 1> 0(1-8)+61, which are satisfied when 1>6>1/5.

Now let's consider another (more forgiving) equilibrium:

The statesare{0, 1, 2}. (State 0 is"friendship”; state 1 is"punishing 1"; state 2 is "punishing 2".)
The predicted behavior in state 0 is (c;,¢;). The predicted behavior in state 1 is (cy,dy).

The predicted behavior in state 2 is (dy,Cy).

When the state of play is 0, if the players choose (dy,c,) then the next state of play will be 1,

if the players choose (c;,d;) then the state of play next period will be 2, and otherwise the state will remain O.
When the state of play is 1, if the players choose (c,,d,) then the next state of play will be O, otherwise it will
remain 1. When the state of play is 2, if the players choose (dy,c,) then the next state of play will be O,
otherwise it will remain 2.

The expected discounted values V,(0) for player 1 in each state 6 satisfy the equations:

V1(0) = uy(C1,¢2) +6V1(0), V(1) = uy(c,dy) +8V1(0), Vi(2) = uy(dy,co) +6V1(0).

Thus V4(0) =5+ 38V4(0), andso V,(0) =5/(1-9);

V1(1) =0+85/(1-8), andso V(1) =55/(1-9);

and V(2) =6 +85/(1-3) = (6-3)/(1-9).

Similarly, V,(0) =5/(1-3), V2(1) =(6-93)/(1-9), V2(2) =55/ (1-3).

To have a subgame-perfect equilibrium, we need:

V1(0) > uy(d1,C2) + 8V1(1), V(1) = uy(dy,do) +0Va(1), Va(2) > uy(c,Co) + 8Va(2),

and similar conditions for player 2. These inequdlities (for both players) become:

5/(1-8) > 6+ 655/(1-6), 55/(1-8) > 1+ 8556/(1-3), (6-8)/(1-8) > 5+5(6-3)/(1-9).

With 8<1, these inequalities are equivalent to: 5(1-5%)/(1-8) > 6, 56 > 1, 6-8 > 5.

With (1-8%) = (1-8)(1+8) (and 8<1), the first inequality further smplifies to 5(1+3) > 6,

and so these conditions for a subgame-perfect equilibrium are al satisfied when 1> 6 > 1/5.
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Example 2. Consider arepeated game where players 1 and 2 play the game below infinitely often.
In each round, each player i must decide whether to fight (f;) or not (n;).

f2 Ny
fi -1,-1 90
Ny 0,9 0,0

Each player i wants to maximize his or her 6;-discounted sum of payoffs, for some 0<6;<1.

A subgame-perfect equilibrium:

States: there are three states, numbered 0,1,2. Theinitial statein period 1 is state O.

(State 1 may be interpreted as "1 has ownership", state 2 may be interpreted as "2 has ownership"
and state 0 may be interpreted as "fighting for ownership” or war of attrition.)

Strategies. Let 5(6) denote the move that player i would choose in state 6.

Player 1'sstrategy is si(1) =f1, $1(2) =M, s1(0) = quf1]+(1-q1)[na] for some g; such that 0<q;<1.
Player 2's strategy is Sx(1) = m, $(2) =f1, $2(0) = qp[f2]+(1-g2)[Nn2] for some g, such that 0<g,<1.
We will need to find what (g1,92) makes this a subgame-perfect equilibrium.

Transitions: When the current state is state O, the state next period would be:

state 1 if (f1, np) isplayed now, state 2 if (ny, ) is played now, and state O if (f1,f2) or (ny,ny) is
played now. Oncethegameisin state 1 or 2, it stays in the same state forever.

Values: Let V(0) denote the expected discounted sum of payoffsfor player i in state 0.

The recursion equations for states 1 and 2 are

V,(l) = Ui(fl,nz) + SiVi(l), for i:1,2, and so Vl(l) = 9/(1—81) and Vz(l) = O/(1—82) =0;

V|(2) = Ui(ﬂl,fz) + SiVi(Z), fori=1,2, and so V1(2) =0and V2(2) = 9/(1—82)

To check the equilibrium condition in state 1, notice that

9/(1—81) = V1(1) > U]_(n]_,nz) + 81V1(1) =0+ 819/(1—81) = 89/(1—81) , which is true when 0<8,<1;
0= Vz(l) > Uz(fl, f2) + 8V2(1) =-1+d60= —(1—8), which istrue when 0<8,<1.

The equilibrium conditionsin state 2 are similarly

9/(1—82) = V2(2) > Uz(nl,nz) + 52V2(2) =0+ 629/(1—82) = 629/(1—82), which is true when 0<8,<1;
0=V1(2) > Uy(fy, f2) + 6:V2(1) = -1+ 60 = -(1-9), which is true when 0<3,<1.

In state O, for player 1 to be willing to randomize between f; and n;, he must expect the same
discounted value V1(0) from choosing f; or n; this period, and so we must have

V1(0) = go(Ua(f1,f2) +81V1(0)) + (1-0)(Ua(frnz)) +81V4(1)), and

V1(0) = gp(U1(n1,f2) +61V1(2)) + (1-02)(Ur(M.n2)) + 81V 1(0)).

The latter isV1(0) = g2(1-61)0 + 2010 + (1-02)(1-61)0 + (1-02)3:V1(0), implying V4(0) = 0.
Then V4(0) = d2(-1) + 4281V1(0) + (1-02)9 + (1-02)6:9/(1-81) implies gz =9/(10-51).

For player 2 to be willing to randomize between f, and n; in state 0, we must have

V2(0) = gu(Uz(f1,f2) +82V2(0)) + (1-0n)(Uz(ne,f2)) +82V2(2)), and

V2(0) = qu(Uz(f1,n2) +82V2(1)) + (1-Gu)(Ua(nu,n2)) + 82V 2(0));

and these equations similarly imply that V,(0) =0 and q; = 9/(10-3,).

When 8, and &, are closeto 1 (very patient players), each player's probability of continuing to fight
each round in state O is just close enough to 1 that the expected costs of conflict exactly cancel out
the expected benefits of winning the prize for the other player.
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Facts about Uniform distributions. Suppose that X is a random variable drawn from a Uniform
distribution on the interval from A to B, given A <B. Then E(X) = (A+B)/2, and Y0<[A,B]:
F(0) = P(X <0) = P(X<0) = (0-A)/(B-A), f(8) = F'(0) =1/(B-A), 1-F(0) = (B-0)/(B-A),
E(X| X <0) = E(X| X<6) = (A+0)/2, and E(X|X>0) = E(X| X>0) = (6+B)/2.

Fact: Supposethat X is Uniform on [t—g, t+¢] and, conditional on X, SisUniform on [X—¢, X+¢].
S has a continuous (triangular) distribution on the interval [t—2¢, t+2¢], symmetric around t,

and so P(S>t+2¢) = 0 = P(S<t—2¢). For any 8€[0, 2¢], we get:

P(5>t+8) = 0.5(1-0.58/¢)?,

E(X| S>t+8) =t + (¢+3)/3,

P(5<t+8) = 1-0.5(1-0.58/¢)?, and

E(X| S<t+8) = [t — 0.5(1-0.58/¢)(t + (e+8)/3)] /[1-0.5(1-0.58/¢)?]

In the case of 6=0, these formulas simplify to:

P(S>t) = 1/2 = P(S<t), E(X|S>t) =t +&/3, E(X|S<t) =t — &/3.

Proof: Notice first that we cannot get S> t+5 unless X > t+8—¢.

Integrals below are transformed using a substitution of y = (x+e—t-38) /¢, with dy = dx/e.

P(Sot+8) = Jxeptss-ore] Userrrore 05/(28)) OX/(28) = Ixeprsc.o+ (X+e—t=3) dx/(4e?)
= [yeto2-5 Y dy/4 = (2-8/g)?/8 = 0.5(1-0.58/¢)°.

E(X| $>t+8) = (xeperoere (seprrax+a X ds/(2¢)) dx/(2¢))/(0.5(1-0.58/¢)?)
= [xeqers-s.0vg X(X+e—t=8) dx /(0.567(2-0/e)) = [yc(0.2-5/) (ey+t+3—¢) y dy/(0.5(2—¢/5)?)
= [e(2-8/€)3/3 + (t+8—¢)(2—8/€)?/ 2] / (0.5(2—€/8)?) = t + (+8)/3.

Weget P(S<t+3) = 1-P(S>t+3) because the continuous distribution has P(S=t+3) = 0.
The expected value for S<t+8 is computed from the fact
t = E(X) = P(S>t+3) E(X| S>t+8) + P(S<t+8) E(X| S<t+3).

By a symmetric argument, it can also be shown in this model that
P(5<t—8) = 0.5(1-0.58/¢)* and E(X|S<t+8) =t — (e+8)/3.
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Comparing symmetric equilibria of a symmetric game: risk dominance and global games
A symmetric equilibrium o risk-dominates another symmetric equilibrium t if each player i would strictly
prefer to play o; over 1; when the other players were equally likely to play according to o_; or t_;.
Consider the following example: 1L\2 B2
o1 X, X X,0
B1 0, X 44
When 2 < X < 4, the o, equilibrium risk-dominates the  equilibrium, even though B Pareto-dominates a.

Following Carlsson and van Damme (1993), we can find a rationale for risk-dominance here by perturbing
the game to a Bayesian "global game" where players have small uncertainty about X in awide range.
Suppose that X is drawn from a Uniform distribution on [-1, 5]; and, given X, each player i'stypet;is
independently drawn from a Uniform distribution on [X—¢,X+¢], where ¢ is known and satisfies 0 < ¢ <0.5.
Thus, given any typet; with —1+¢ <t; < 5—¢, player i'sbelief about X should be Uniform on [ti—e, ti+g],

and so i's expected value of X with typet; would be E(X]|t;) =t; ; and player i would also know that the other
player'stypet; was between ti—2¢ and tj+2«.

Given any type t>4, player i would expect more than 4 from o; and so would choose o

Given any type t;<0, player i would expect less than O from o; and so would choose f;.

Let A denote the smallest number such that each player i would always play o; whenever t>A, in every
Bayesian equilibrum of this game.

Let B denote the greatest number such that each player i would aways play ; whenever t<B, in every
Bayesian equilibrum of thisgame. Obviously 0<B <A <4. Wewill show that A=B=2.

Given the typet;, player i's expected payoff from o; here would be EU;(ou| t) = E(X|t) =1t; .

By definition of A, player i knows that, in equilibrium, the other player would not choose a._; unlesst ; < A.
Thus, given the type t;, player i's expected payoff from B; would satisfy EU;(Bi| t;) < 4 P(t; < Al t),

where P(t; < A|t;) isi's probability of the other player's type being less than or equal to A, giveni'stypet..
The probability P(t ;< A|t;) isadecreasing continuous function of t; (=1 when ti<A—2¢, =0 when t;>A+2¢).
When t=A, i'sbeliefs about X and t; are symmetric around A, and so we get P(ti<A|ti=A) = 1/2, and
EUi(OLil tizA) - EU|(B|| tizA) > E(Xl tizA) -4 P(L,SA' tizA) =A- 4(1/2) =A-2.

Soif wehad A-2> 0 then by continuity we could find some small >0 such that, for all t; > A-35:

EUi(oil ) — EUi(Bil t) = E(X| t;) — 4 P(Li<A|t) =t — 4 P(ti<A[t) > 0.

But then player i would play o; in equilibrium with all types such that t;>A-5, which would contradict the
assumption that A was the lowest number with this property. Thus, A-2<0,andso A <2.

Similarly, as player i knows that the other player —i plays B_; whenever t ;< B,

EUi(Bil t) — EUi(aul ti) = 4 P(ti<B| t)) — E(X|t) = 4 P(L.i<B|t) — t.

At ;=B this becomes 4 P(t <B|t=B) — E(X|t=B) = 4(1/2) - B = 2-B.

P(t_i<B| t;) is a continuous and decreasing function of t;.

So if we had 2—-B > 0 then we could find some some small §>0 such that, for al t; < B+8:

EUi(Bil t) — EUi(aul ti) = 4 P(ti<B| t) — E(X|t) = 4 P(t.<B|t) — ;> 0.

But then player i would play B; in equilibrium with all types such that t;<B+3, which would contradict the
assumption that B was the greatest number with this property. Thus, 2-B <0, andso B > 2.

Obvioudly B cannot be greater than A. ThusA =B =2. That is, the global game has a unique Bayesian
equilibrium in which each player i chooses o; whenever t;>2, and i chooses f3; whenever t;<2.

As -0, the players information about X becomes almost perfect, but their Bayesian-equilibrium choices
become the risk-dominant equilibria of the games where X is common knowledge, as the choices can switch
only at the X where each player isindifferent between a; and ; when the other is equally likely to do either.

This result can be extended to more general symmetric 2x2 games. The key isto have types with
overlapping ranges of local uncertainty that cover a continuous interval of possible payoff-relevant states
which includes some extreme states where each action becomes a dominant strategy for both players.
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