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Abstract. When people interact in familiar settings, social conven-
tions usually develop so that people tend to disregard alternatives outside the
convention. For rational players to usually restrict attention to a block of con-
ventional strategies, no player should prefer to deviate from the block when
others are likely to act conventionally and rationally inside the block. We ex-
plore two set-valued concepts, coarsely and finely tenable blocks, that formalize
this notion for finite normal-form games. We then identify settled equilibria,
which are Nash equilibria with support in minimal tenable blocks. For a generic
class of normal-form games, our coarse and fine concepts are equivalent, and
yet they differ from standard solution concepts on open sets of games. We
demonstrate the nature and power of the solutions by way of examples. Set-
tled equilibria are closely related to persistent equilibria but are strictly more
selective on an open set of games. With fine tenability, we obtain invariance
under the insertion of a subgame with a unique totally mixed payoff-equivalent
equilibrium, a property that other related concepts have not satisfied.
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1. Introduction
Schelling (1960) pointed out the importance and subtlety of pure coordination prob-
lems, that is, problems in which the participants have common interests but there
are multiple ways to coordinate. Sometimes one of the solutions may be “salient”
(Schelling, 1960). However, in many situations we must in practice rely on what
Lewis (1969) calls precedent in order to solve coordination problems. If all partici-
pants know that a particular coordination problem has been solved in a particular
way many times before, and this is common knowledge, then this may help them
solve a current coordination problem.
More generally, consider a large population that plays familiar games, not nec-

essarily coordination games, in a historical and cultural context where individuals
know how similar games have been played in the past. When people interact in such
settings, social norms or conventions usually develop, specifying which actions or de-
cision alternatives individuals are expected to, or should, consider.1 Such informal
institutions, norms or conventions develop over time and people tend to disregard
alternatives that are physically available to them but fall outside the norm or con-
vention. Arguably, this is a pervasive phenomenon in all societies. Social institutions
are sustained in a larger natural interactive context by viewing such unconventional
actions as “illegal” (Hurwicz, 2008). Conformity with social norms helps simplify
people’s decision-making and coordination. When people are generally expected to
act rationally within the conventional norms, unconventional alternatives should not
be advantageous.2

We here elaborate a theory which permits the endogenous formation of such con-
ventions in finite games given in normal form. A block in such a game is a non-empty
set of pure strategies for each player role. We view a block as a potential norm or
convention, a candidate for what strategies individuals are likely to seriously consider
when called upon to play the game in their player role. The associated block game
is the restricted game in which all players are confined to their block strategies. A
robustness requirement on a block to be a potential convention is that nobody should
be able to do better by choosing a strategy outside the block when others are very
likely to use strategies in the block. Any absorbing block (Kalai and Samet, 1984) or
any curb block (Basu and Weibull, 1991) meets this robustness requirement. How-
ever, such blocks are sometimes very large, and, moreover, may depend on aspects
that arguably should be regarded strategically inessential. This is why we here ex-

1By a convention we mean a pattern of behavior that is customary, expected, and self-enforcing,
see Lewis (1969) and Young (1993,1998).

2The idea to embed a strategic interaction in a larger societal context is not new to game theory.
In his Ph.D. thesis, John Nash mentioned such a perspective, his so-called mass-action interpretation
in which there for each player role in the game is a population of boundedly rational individuals
(Nash, 1950).
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plore weaker block properties, coarse and fine tenability, that are arguably sufficient
for maintaining conventions and yet less sensitive to details.
We call blocks that satisfy a slightly weaker robustness requirement coarsely ten-

able. The weakening is that this robustness should hold at least when the overall
population play constitutes an equilibrium. People tend to forget or disregard un-
used strategies, and minimality of the block allows players to disregard as many
unused pure strategies as possible. This simplifies the convention and saves on play-
ers’ cognitive costs.3 A coarsely settled equilibrium is any Nash equilibrium (of the
whole game) with support in a minimal coarsely tenable block (that is, one that does
not contain any other coarsely tenable block). Minimality can also be viewed as re-
quirement of “internal stability”. For while “external stability” could mean that no
player should be able to gain by deviating from the block when others are likely to
act conventionally and rationally (but may occasionally act unconventionally and/or
irrationally), “internal stability” would mean that the block does not properly con-
tain any subblock that, by itself, is externally stable.4 So in a sense, minimal coarsely
tenable blocks exhibit both a form of “internal” and “external” stability.
Coarse tenability imposes no constraint on “non-conventional” players, those who

consider other strategy subsets than the conventional block. In other words, if player
types specify what strategy subsets players consider when choosing their strategy,
robustness is required under any probability distribution over player types that as-
signs sufficient probability on the conventional types. However, given the emphasis
that game theory traditionally places on rationality, a relevant restriction on such
type distributions would be that, among the unconventional types, “more rational”
types should be much more prevalent than “less rational” types. Arguably, a “more
rational” decision-maker considers more options before making a decision than a “less
rational” decision-maker.5 We accordingly study with particular interest those type
distributions that assign much less probability to one player type than another if
the second type only considers a (strict) subset of the strategies considered by the
first. We call a block finely tenable if there is no strategy outside the block that
would be a better reply for such “rationality biased” type distributions. Since we
impose additional assumptions on what individuals are likely to consider when not
conventional, every coarsely tenable block is, a fortiori, also finely tenable. Under

3See e.g. Halpern and Pass (2009) and their references.
4See the discussion of stable sets in von Neumann and Morgernstern (1944): “... the rules of

rational behavior must provide definitely for the possibility of irrational conduct on the part of
others” (4.1.2), "... it appears that the sets of imputations which we are considering correspond to
the ’standards of behavior’ connected with a social organization” (4.6.1), and “Thus our solutions
S correspond to such ’standards of behavior’ as have an inner stability: once they are generally
accepted they overrule everything else and no part of them can be overruled within the limits of the
accepted standards." (4.6.2).

5See Remark 3 for a weakinging of this monotonicity requirement.
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any “rationality ε-biased” type distribution with respect to a finely tenable block,
any Nash equilibrium at the population level induces an ε-proper strategy profile in
the given game. We accordingly define a finely settled equilibrium as any proper
equilibrium with support in a minimal finely tenable block.
The four mentioned block properties are nested: curb implies absorbing, absorbing

implies coarsely tenable, and coarsely tenable implies finely tenable. So fine tenability
admits the most blocks, but this implies that it yields the smallest minimal admissible
blocks.
As shown in Ritzberger and Weibull (1995), every curb block contains a hyper-

stable set and hence the support of a proper equilibrium. Moreover, proper equi-
libria are known to induce a (realization equivalent) sequential equilibrium in every
extensive-form game with the given normal form (van Damme, 1984). In other words,
the most stringent block property, curb, is consistent with equilibrium theory in a
very refined form. We show that even the least stringent block property considered
here, that of fine tenability, also has this property.
While the notions of coarse and fine tenability in general differ, they in fact coin-

cide for generic normal-form games. By contrast, while Nash equilibria are generically
perfect and proper, this is not true for coarsely and finely settled equilibria. The lat-
ter, while being generically identical, constitute a strict subset of the Nash, perfect,
proper and persistent equilibria, respectively, in an open set of normal-form games.
Before entering the analysis, let us briefly consider a simple coordination game,

L R
L α, β 0, 0
R 0, 0 γ, δ

(1)

where α, β, γ, δ > 0. Such a game has three Nash equilibria; two pure and strict
and one mixed. All three are proper equilibria and, when viewed as singleton sets,
each of them is also strategically stable in the sense of Kohlberg and Mertens (1986).
If the game is played only once by rational players, in the absence of a cultural,
historical or social context, the mixed equilibrium may be a reasonable prediction.
Indeed, in these games any strategy profile is rationalizable and thus compatible with
common knowledge of the game and the players’ rationality (Bernheim, 1984; Pearce,
1984; Brandenburger and Dekel, 1987; Tan and Werlang, 1988). Hence, when played
once, common knowledge of the game and the players’ rationality has no predictive
power. However, if such a game is often played in culturally familiar settings, the
mixed equilibrium appears very unlikely. One would expect individuals to develop an
understanding that coordinates their expectations at one of the strict equilibria. This
intuition is captured by the solution concepts developed here and also by persistent
equilibrium. However, in other games, our solutions differ from persistence and this
is true even under arguably minor elaborations of the game (1), such as when one or
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both of the zero-payoff outcomes is replaced by a zero-sum game; then persistence
accepts the mixed equilibrium while the present approach still rejects it. We also
show that our approach rejects the mixed equilibrium strategy in game (1) even if
this mixed strategy is represented as a third pure strategy. Hence, the rejection does
not depend on our minimality requirement per se.
The rest of the paper is organized as follows. Notation and established definitions

are given in Section 2. Our model of player types and consideration sets is developed
in Section 3. Coarsely tenable blocks and coarsely settled equilibria are introduced
in Section 4, while finely tenable blocks and finely settled equilibria are defined and
studied in Section 5. In Section 6 we shows that coarsely and finely tenable blocks
generically coincide. The nature and power of tenability and settledness is demon-
strated in examples throughout the text, but Section 7 provides additional examples
that show how the present solutions may differ significantly from established solutions
in important classes of games. Section 8 concludes.

2. Preliminaries
We consider finite normal-form games G = hN,S, ui, where N = {1, . . . , n} is the
set of players, S = ×i∈NSi is the non-empty and finite set of pure-strategy profiles,
u : S → Rn is the combined payoff function, where ui (s) ∈ R is i’s payoff under
pure-strategy profile s. Let mi be the number of elements of Si and let ∆ (Si) denote
the set of mixed strategies available to player i:

∆ (Si) =

(
σi ∈ Rmi

+ :
X
si∈Si

σi (si) = 1

)
.

A strategy σi ∈ ∆ (Si) is totally mixed if it assigns positive probability to all
pure strategies. Write ∆o (Si) for this subset. Likewise, a strategy profile is totally
mixed if all strategies are totally mixed. Let M (S) = ×i∈N∆ (Si) denote the set of
mixed-strategy profiles on S and let Mo (S) = ×i∈N∆

o (Si). We extend the domain
of each payoff function ui in the usual way from S to M (S) by

ui (σ) =
X
s∈S

[Πj∈Nσj (sj)] · ui (s) .

We use ui (s−i, s0i) to denote the payoff that player i obtains from pure strategy
s0i ∈ Si when everyone else plays according to s ∈ S, and likewise for mixed strate-
gies. Likewise, let ui (σ−i, [si]) be the (expected) payoff that player i obtains from
pure strategy si ∈ Si when everyone else plays according to σ ∈ M (S). Two pure
strategies, s0i, s

00
i ∈ Si, are payoff equivalent if u (s−i, s0i) = u (s−i, s

00
i ) for all s ∈ S. A

purely reduced normal form game is a game in which no pure strategies are payoff
equivalent.6 Two pure strategies, s0i, s

00
i ∈ Si, are payoff equivalent for player i if

6This is also called the semi-reduced normal form, see e.g. van Damme (1991).



6

ui (s−i, s
0
i) = ui (s−i, s

00
i ) for all s ∈ S. A pure strategy si ∈ Si is weakly dominated

if there exists a σ0i ∈ ∆ (Si) such that ui (σ−i, σ0i) ≥ ui (σ−i, [si]) for all σ ∈ M (S)
with strict inequality for some σ ∈M (S). A Nash equilibrium is any strategy profile
σ ∈M (S) such that

ui(σ−i, [si]) < max
ri∈Si

ui(σ−i, [ri]) ⇒ σi (si) = 0.

A Nash equilibrium is strict if any unilateral deviation incurs a payoff loss.

Definition 1 [Myerson, 1978]. For any ε > 0, a strategy profile σ ∈ Mo (S) is ε-
proper if

ui(σ−i, [si]) < ui(σ−i, [ri]) ⇒ σi (si) ≤ ε · σi (ri) .
A proper equilibrium is any limit of ε-proper strategy profiles as ε→ 0.

The proper equilibria constitute a non-empty subset of the Nash equilibria. We
next turn to the concepts of a persistent retract and a persistent equilibrium. Every
finite game has a persistent retract and a persistent equilibrium.

Definition 2 [Kalai and Samet, 1984]. A retract is any set X = ×i∈NXi such that
∅ 6= Xi ⊆ ∆ (Si) is closed and convex ∀i ∈ N . A retract X is absorbing if it has a
neighborhood U ⊆M (S) such that for all σ0 ∈ U :

max
σi∈Xi

ui(σ
0
−i, σi) = max

si∈Si
ui(σ

0
−i, [si]) ∀i ∈ N.

A persistent retract is any minimal absorbing retract. A persistent equilibrium
is any Nash equilibrium belonging to a persistent set.

We will use the following terminology and notation: a block is any set T = ×i∈NTi
such that ∅ 6= Ti ⊆ Si ∀i ∈ N . The associated block game is the game GT = hN,T, ui
(with u restricted to T ). We embed its mixed strategies in the full strategy space of
the game G: M(T ) = {σ ∈ M(S) : σi(si) = 0 ∀si /∈ Ti,∀i ∈ N}. If T is a block,
then clearly M (T ) is a retract. By a slight abuse of language, we will call a block
T absorbing if M (T ) is absorbing. A strategy profile σ has support in a block T if
σi(si) = 0 for all players i ∈ N and strategies si /∈ Ti. Write σ (T ) for the probability
that a mixed-strategy profile σ ∈M (S) puts on a block: σ (T ) =

P
s∈T [Πi∈Nσi (si)].

Thus σ ∈M (T ) iff σ (T ) = 1.

Definition 3. A Nash equilibrium of a block game GT is any strategy profile
σ ∈M (T ) such that

σi (si) > 0 ⇒ si ∈ argmax
ti∈Ti

ui(σ−i, [ti]).
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Clearly every block game has at least one Nash equilibrium.

Definition 4 [Basu and Weibull, 1991]. A block T is curb (“closed under rational
behavior”) if

argmax
si∈Si

ui(σ−i, [si]) ⊆ Ti

for every strategy profile σ ∈M (T ) and every player i ∈ N .

Every finite game has a minimal curb block. As noted in Ritzberger and Weibull
(1995), every curb block is absorbing.7 The game in the introduction has two minimal
curb blocks, the supports of its two strict equilibria. Hence, the mixed equilibrium
is not persistent. However, in a slight elaboration of that game, the only absorbing
block is the full pure-strategy space, so persistence then looses all its cutting power
on the set of Nash equilibria.

Example 1. Consider the extensive-form game

‐2 2
2

‐2
2 ‐2

h t h t

L R L R

h t

L R

1
1

0
0 1

2
‐2

2

2

1

1 1

This is an elaboration of game (1) for α = β = γ = δ = 1, where the added subgame
is a zero-sum matching-pennies game with value zero. Hence, backward induction
requires the players to attach value zero to the subgame, which arguably renders the
elaborated game “strategically equivalent” with the original game.

7To see this, suppose that T is curb. By continuity of payoff functions and the finiteness of the
game, there exists a a neighborhood U of M (T ) ⊆M (S) such that all mixed-strategy profiles in U
have all best replies in the block.
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The purely reduced normal-form representation of the elaboration is

Game 1:

L Rh Rt
Lh 1, 1 2,−2 −2, 2
Lt 1, 1 −2, 2 2,−2
R 0, 0 1, 1 1, 1

This game has three Nash equilibrium components: A, B and C = {σm}, where A
consists of all strategy profiles of the form σ = (p[Lh] + (1 − p)[Lt] , [L]) for 1/4 ≤
p ≤ 3/4, B consists of all strategy profiles of the form σ = ([R] , q[Rh] + (1− q)[Rt])
for 1/4 ≤ q ≤ 3/4, and

σm = (
1

2
[R] +

1

4
[Lh] +

1

4
[Lt]) ,

1

2
[L] +

1

4
[Rh] +

1

4
[Rt]).

There are three proper equilibria: σa = (1
2
[Lh] + 1

2
[Lt], [L]) ∈ A, σb = ([R], 1

2
[Rh] +

1
2
[Rt]) ∈ B, and σm. The only absorbing retract is M (S), so S is the only curb set
and all Nash equilibria are persistent. The last conclusion is valid for all games (1)
with (α, β, γ, δ) in an open set containing (1, 1, 1, 1).

The mixed equilibrium σm in this example would arguably be non-robust as a
convention, since individuals would presumably learn to avoid the zero-sum subgame
and instead be likely to end up in an equilibrium component that corresponds to a
strict equilibrium in the original game (1). The solution concepts to be developed
below formalize such intuitions.

Remark 1. Other related ideas in the recent literature are so-called prep sets (Voorn-
eveld 2004, 2005) and p-best response sets (Tercieux, 2006 a,b). A prep set (or
preparation) is a block T that contains at least one best reply for each player to every
mixed strategy on the block. Every pure Nash equilibrium (viewed as a singleton
block) is thus a prep set and every curb set is a prep set. Voorneveld (2004) shows
that minimal prep sets generically coincide with minimal curb sets and Voorneveld
(2005) establishes that prep sets also generically coincide with persistent retracts (T
being a prep set and M (T ) an absorbing retract). Tercieux (2006a) defines a p-best
response set as a block that contains all best replies to all beliefs that put at least
probability p on the block, where beliefs are not constrained to treat other players’
strategy choices as statistically independent (a constraint we here impose). Tercieux
(2006b) weakens the requirement “all best replies” to “some best reply,” and calls the
first notion strict p-best response sets. For all finite two-player games: (a) any strict
p-best response set with p < 1 is curb, and every curb set is a strict p-best response
set for some p < 1 (see Lemma 2 in Ritzberger and Weibull, 1995), and (b) if a block
T is a (weak) p-best response set with p < 1, then M (T ) is an absorbing retract,
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and if M (T ) is an absorbing retract, then T is a (weak) p-best response set for some
p < 1. It follows that T is a minimal (weak) p-best response set for some p < 1 if
and only if X =M (T ) is a persistent set.
A second related idea appears in some papers in epistemic game theory. See Bran-

denburger, Friedenberg and Keisler (2008), Brandenburger and Friedenberg (2010),
and Battigalli and Friedenberg (2012). In these studies, players face uncertainty about
the play of the game but interactions take place in social contexts where conventions
may form, and these conventions can influence participants’ beliefs about what others
will do (and not do). However, in that framework beliefs may be incorrect, while we
here assume that participants’ beliefs are correct at the population level. Hence, the
solution concepts are distinct and predictions differ.
A third related idea is the refined best-response correspondence in Balkenborg,

Hofbauer, and Kuzmics (2013,2014). Their correspondence shares many properties
with the usual best-response correspondence–such as being upper hemi-continuous,
closed- and convex-valued–but generically differs in games with more than two play-
ers. However, in two-player normal form games it generically coincides with the usual
best-response correspondence. Hence, their solutions generically differ from ours.

3. Consideration-set games
We proceed to construct a framework within which one can make precise the idea that
conventions or norms should be such that when people are generally expected to act
rationally within the convention or norm at hand, unconventional alternatives should
not be advantageous. We do this in terms of a situation in which individuals are very
likely to consider only the strategies in some conventional block, but allowing for the
possibility that some individuals may also consider strategies outside the block. An
individual’s effective strategy set, to be called his or her consideration set, a non-
empty subset of the full strategy set, will be treated as his or her type in a game of
incomplete information where types are private information.8

More precisely, let G = hN,S, ui be a finite game. As in Nash’s mass action
interpretation, let there for each player role i ∈ N be a large population of individuals
who are now and then randomly called upon to play the game G in that player role.
Let the type space for each player role i ∈ N be Θi = C (Si), where C (Si) denotes the
collection of non-empty subsets Ci of Si. Let μi be any probability distribution over
C (Si), where μi (Ci) ∈ [0, 1] is the probability that the individual drawn to play in role
i will be of type θi = Ci, that is, have Ci as his or her consideration set. These random
draws of types, one draw for each player population, are statistically independent.

8The term “consideration set” is borrowed from management science and marketing. The basic
idea is that decision-makers may not consider all choices available to them. The term originates with
Wright and Barbour (1977). For recent contributions to this literature, see Manzini and Mariotti
(2007, 2014), Salant and Rubinstein (2008), and Eliaz and Spiegler (2011).
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A vector μ = (μ1, .., μn) ∈ ×i∈N∆ (C (Si)) is thus a type distribution, where the
probability that any given block T = ×i∈NTi will be the actual consideration block is
the product of the probabilities for each player role; μ1 (T1) · . . · μn (Tn). With some
abuse of notation, we will write μ (T ) for this product probability.
Each type distribution μ defines a gameGμ = hN,F, uμi of incomplete information

in which a pure strategy for each player role i ∈ N is a function fi : C (Si)→ Si such
that fi (Ci) ∈ Ci for all Ci ∈ C (Si). In other words, a pure strategy fi prescribes for
each type θi ∈ Θi a pure strategy in the type’s consideration set Ci. Let Fi be the set
of such functions and write F = ×i∈NFi. Each pure-strategy profile f ∈ F induces
a mixed-strategy profile σf,μ ∈ M (S) in G, where the probability that player i ∈ N
will use pure strategy si ∈ Si is

σf,μi (si) =
X

Ci∈C(Si)

μi (Ci) · 1fi(Ci)=si.

The resulting expected payoff to each player i is uμi (f) = ui
¡
σf,μ

¢
. This defines the

payoff functions uμi : F → R for all players i ∈ N in Gμ. The consideration-set game
Gμ, so defined, is finite. Payoffs to mixed-strategy profiles can be defined in the usual
way. By Nash’s existence theorem, each consideration-set game Gμ has at least one
Nash equilibrium in pure or mixed strategies.9

For any mixed-strategy profile τ ∈ M (F ), player role i ∈ N and strategy subset
Ci ∈ C (Si), let τ i|Ci ∈ ∆ (Si) be the conditional probability distribution over the
strategy set Si, given that θi = Ci is i’s type (in particular, τ i|Ci (si) = 0 ∀si /∈ Ci).
When a mixed-strategy profile τ ∈M (F ) is played in Gμ, pure strategy si ∈ Si will
be used with probability

τμi (si) =
X

Ci∈C(Si)

μi (Ci) · τ i|Ci (si) . (2)

This defines the mixed-strategy profile τμ ∈ M (S) induced by τ in the underlying
game G. We will sometimes refer to τμ as the projection of τ ∈ M (F ) to M (S)
under the type distribution μ.
A strategy profile τ ∈ M (F ) is a Nash equilibrium of Gμ if and only if for all

player roles i ∈ N and consideration sets Ci ∈ C (Si),

μi (Ci) > 0 ⇒ ui(τ
μ
−i, τ i|Ci) = max

si∈Ci
ui(τ

μ
−i, [si]). (3)

It is easily verified that the projections of Nash equilibria of Gμ to G converge to
Nash equilibria of GT as μ (T )→ 1.

9A special case of this set-up is when μ (S) = 1. Then Gμ is effectively the same as G; the
probability is then one that all players will consider all pure strategies at their disposal in G.
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4. Coarsely tenable blocks and coarsely settled equilibria

Let G = hN,S, ui be any finite game and let T be any block, interpreted as a potential
convention. Call an individual in player population i ∈ N conventional if his or her
type is θi = Ti. The following definition formalizes the robustness requirement on
such a convention that if the type distribution μ is such that individuals are very likely
to be conventional, and if their average play would constitute a Nash equilibrium of
the associated game of incomplete information, Gμ, then nobody could do better by
choosing a strategy outside the block.

Definition 5. A block T is coarsely tenable if there exists an ε ∈ (0, 1) such that

max
ti∈Ti

ui(τ
μ
−i, [ti]) = max

si∈Si
ui(τ

μ
−i, [si]) ∀i ∈ N (4)

for every type distribution μ with μi (Ti) > 1− ε ∀i ∈ N and every Nash equilibrium
τ of Gμ.

Clearly the full block T = S is coarsely tenable in this sense. Also a singleton
block that is the support of any pure strict equilibrium is coarsely tenable, and so is
any curb block and any absorbing block. To see why the last claim holds, let T be
an absorbing block. By definition, there then exists an ε ∈ (0, 1) such that

max
ti∈Ti

ui(σ−i, [ti]) = max
si∈Si

ui(σ−i, [si]) ∀i ∈ N

if σ ∈ M (S) is such that σi (Ti) > 1− ε for all players i ∈ N . Let τ ∈ M (F ) be a
Nash equilibrium of any consideration-set game Gμ such that μi (Ti) > 1− ε for this
ε and for all players i. Then τμi (Ti) > 1− ε for all players i ∈ N .10 Thus (4) holds.
We also note that the equilibria of the block game associated with a coarsely

tenable block coincide with the equilibria of the original game that have support in
the block. In other words, oblivion of strategies outside a coarsely tenable block
comes at no cost. In sum:

Proposition 1. Every absorbing block is coarsely tenable. If a block T is coarsely
tenable, then the Nash equilibria of the block game GT are precisely the Nash equi-
libria of G that have support in T .

10By definition,

τμi (Ti) =
X
ti∈Ti

τμi (ti) =
X
ti∈Ti

X
Ci∈C(Si)

μi (Ci) · τ i|Ci (ti) ≥ μi (Ti) ·
X
ti∈Ti

τ i|Ti (ti) = μi (Ti) > 1− ε.
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Proof : To prove the last claim, let T be any block in any finite game G. First,
if σ ∈ M (T ) is a Nash equilibrium of G, it is, a fortiori, a Nash equilibrium of GT .
Secondly, suppose that σ ∈M (T ) is a Nash equilibrium of GT . Let μ (T ) = 1 and let
τ ∈M (F ) be such that τ i|Ti = σi. Then τμ = σ, and by (3), τ is a Nash equilibrium
of Gμ. If T is coarsely tenable:

ui(σ) = ui(τ
μ
−i, τ i|Ti) = max

ti∈Ti
ui(τ

μ
−i, [ti]) = max

si∈Si
ui(τ

μ
−i, [si]) = max

si∈Si
ui(σ−i, [si]) ∀i ∈ N.

Q.E.D.

Kalai and Samet (1984) show that elimination of weakly dominated strategies
and/or payoff-equivalent strategies from the full strategy space S results in an ab-
sorbing retract.11 Since absorbing blocks are coarsely tenable, qualitatively similar
conclusions hold for coarsely tenable blocks. More precisely, for each player i in G,
let Ti ⊆ Si be such that every pure strategy not in Ti is weakly dominated by some
mixed strategy with support in Ti. Then T is coarsely tenable, since each player i
will have some (globally) best reply in Ti to the projection τμ of any mixed-strategy
profile τ ∈ M (F ) in any consideration-set game Gμ. Likewise, for each player i, let
Ti ⊆ Si be such that for every pure strategy not in Ti there exists a strategy in Ti
that is payoff-equivalent for player i. Then T is coarsely tenable.
Conventions tend to simplify the interaction at hand by focusing on few strate-

gies. Hence, if a block of strategies would start to become a convention and if it
would properly contains a subblock that, by itself, would have the same “external
stability” property as the initial block, then play would presumably, over time, tend
towards one such subblock. This suggests that minimal coarsely tenable blocks are
particularly relevant for prediction, that is, coarsely tenable blocks that do not con-
tain other coarsely tenable blocks. The games we study are finite and hence admit
at least one such block. The following definition formalizes an equilibrium notion
that combines the (simplicity and internal stability) requirement of minimality of the
set of conventional strategies with the (rationality and external stability) requirement
that individuals should not be able to benefit by using unconventional strategies when
others are likely to use conventional strategies and population play is in equilibrium.

Definition 6. A coarsely settled equilibrium is any Nash equilibrium of G that
has support in some minimal coarsely tenable block T .

Evidently, any pure strict equilibrium is coarsely settled. By contrast, the mixed
equilibrium in game (1) is not, since it does not have support in a minimal coarsely

11Here “payoff equivalent” can be interpreted in the weak sense of payoff equivalence for the player
in question (see Section 2).
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tenable block.12 In that example, also the notion of persistent equilibrium rejects the
mixed equilibrium. In the elaborated version of this game, Game 1 in Example 1, the
totally mixed Nash equilibrium was seen to be persistent, although one may argue
that the elaboration is strategically irrelevant and hence should not affect the set of
solutions. However, the totally mixed equilibrium in the elaboration is not coarsely
settled. This follows from the fact that Game 1 has two minimal coarsely tenable
blocks, associated with each of the two continuum Nash equilibrium components, A
and B. These blocks are TA = {Lh,Lt} × S2 and TB = S1 × {Rh,Rt}. To see that
TA is coarsely tenable, note that in all Nash equilibria of the associated block game,
GTA, player 2 only uses strategy L. Hence, since the projections of Nash equilibria
of Gμ converge to Nash equilibria of GTA as μ

¡
TA
¢
→ 1, strategy R is not a best

reply for player 1 in any Nash equilibrium of Gμ when μ
¡
TA
¢
is close to 1, and hence

(4) holds for all ε > 0 sufficiently small. The coarsely settled equilibria of Game 1
are thus the Nash equilibria in the equilibrium components A and B, with outcomes
identical with those in the two strict equilibria of the original game (1).

5. Finely tenable blocks and finely settled equilibria

Imposing restrictions on the type distributions in the consideration-set games be-
yond the requirement that they should attach high probabilities to the conventional
types, could allow for smaller blocks–a finer block structure. The following definition
formalizes the notion that (a) individuals are very likely to be of the conventional
types for the block (as under coarse tenability), (b) all types have positive proba-
bility, and (c) unconventional types (those with other consideration sets than those
constituting the block) are much more likely to have larger than smaller considera-
tion sets (in terms of set inclusion). In other words, these type distributions place
much more probability weight on “more rational types” (who consider more strategic
alternatives) than “less rational types” (who consider fewer strategic alternatives).
In particular, the most likely among the unconventional types is the “standard” type
of player in game theory, the type who considers all strategies available in his or her
player role. Formally and more precisely, we now focus on type distributions of the
following variety:

Definition 7. For any block T and any ε ∈ (0, 1), a type distribution μ is ε-proper
on T if ⎧⎨⎩ (a) μi (Ti) > 1− ε

(b) μi (Ci) > 0 ∀Ci ∈ C (Si)
(c) Ti 6= Ci ⊂ Di ⇒ μi (Ci) ≤ ε · μi (Di)

for every player i ∈ N .

12In Section 7 we show that this conclusion holds also when the mixed equilibrium is represented
as a pair of pure strategies added to the game.
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The following remark shows that a type distribution has this “rationality bias”
property if every unconventional individual’s inattention is statistically independent
across his or her strategy set.

Remark 2. Let G = hN,S, ui be a finite game and let T be a block, interpreted as
a potential convention. For all players i ∈ N and all consideration sets Ci other than
Ti, let

μi (Ci) = ε ·Πsi∈Ci (1− δi (si)) ·Πsi /∈Ciδi (si) (5)

(with the last product defined as unity in case Ci = Si). This can be interpreted
as follows. For each player role i ∈ N in the game there is a large population of
individuals who are now and then called upon to play the game, just as in Nash’s mass-
action interpretation. The fraction 1− ε of each player population are conventional;
their consideration sets are those that define the block. Among the unconventional
individuals, who make up the population fraction ε ∈ (0, 1), each pure strategy
si ∈ Si is ignored with some probability δi (si) ∈ (0, 1), and these are statistically
independent events for all pure strategies and individuals, hence the formula (5).13

Such a type distribution μ is ε-proper on T if all probabilities δi (si) are sufficiently
small. To see this, let kδik = maxsi∈Si δi (si). Clearly μi (Ti) > 1− ε and μi (Ci) > 0
for all Ci ∈ C (Si). Suppose that Ci,Di ∈ C (Si), Ci ⊂ Di and Ci 6= Ti. Then

μi (Ci) ≤ μi (Di) ·
Y

si∈Di\Ci

δi (si)

1− δi (si)
≤ kδik
1− kδik

· μi (Di) .

The factor in front of μi (Di) is less than ε if kδik < ε/ (1 + ε).14

By requiring robustness only to type distributions that are ε-proper on the block
in question, one obtains the following weaker block property:

Definition 8. A block T is finely tenable in G = hN,S, ui if there exists an ε ∈
(0, 1) such that

max
ti∈Ti

ui(τ
μ
−i, [ti]) = max

si∈Si
ui(τ

μ
−i, [si]) ∀i ∈ N

holds for every type distribution μ that is ε-proper on T and every Nash equilibrium
τ of Gμ.
13If an individual would in this way ignore all pure strategies in his player role, then he would

"wake up" and consider the conventional set. This follows from (5):

μi (Ti) = (1− ε) + ε · [Πsi∈Ti (1− δi (si)) ·Πsi /∈Tiδi (si) +Πsi∈Siδi (si)]

14See Manzini and Mariotti (2013) for decision-theoretic foundations for such statistically inde-
pendent inattention, and for relations with random-utility models.
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Since every coarsely tenable block is, a fortiori, also finely tenable, there are,
in general, more finely than coarsely tenable blocks. In particular, minimal finely
tenable blocks may be smaller than the minimal coarsely tenable blocks.

Example 1 continued. In each of the two minimal coarsely tenable blocks in
Game 1 in Example 1, there are pure strategies not used in any block equilibrium.
Player 2 uses only pure strategy L in all block equilibria in TA and player 1 uses
only pure strategy R in all block equilibria in TB. Nevertheless, for these blocks to
be coarsely settled, all 2’s strategies need to be included in TA and all 1’s strategies
in TB, since otherwise there will be block equilibria with a better reply outside the
block. In particular, the subblock T ∗ = {Lh,Lt} × {L} of the coarsely tenable block
TA is not coarsely tenable. However, it is finely tenable. To see this, let ε ∈ (0, 1)
and let μ be any ε-proper type distribution on T ∗. Consider any Nash equilibrium
τ ∈ M (F ) in the associated consideration-set game Gμ. Then τμ1 (Lh) = τμ1 (Lt).
For suppose that τμ1 (Lh) > τμ1 (Lt). By (2) we then have, for ε sufficiently small,
τμ2 (Rh) = μ2 ({Rt}) and τμ2 (Rt) ≥ μ2 ({Rh,Rt}). Since μ is ε-proper on T ∗, we
also have

μ2 ({Rh}) ≤ ε · μ2 ({Rh,Rt}) ,
so τμ2 (Rh) < ε · τμ2 (Rt). Then Lt is a best reply for player 1, and τμ1 (Lh) < τμ1 (Lt),
a contradiction. By the same token, τμ1 (Lh) > τμ1 (Lt) is not possible. A similar
argument establishes τμ2 (Rh) = τμ2 (Rt). These two equations imply that each player
i has a best reply to τμ in T ∗i , that is, (4) holds and T ∗ is finely tenable.

The naming of the considered type distributions is due to the following observa-
tion: when a block is finely tenable, the projection of any Nash equilibrium in any
consideration-set game Gμ where the type distribution μ is ε-proper on T , constitutes
an ε-proper strategy profile in the original game G.

Proposition 2. Let T be a finely tenable block and let ε be as in Definition 8. If μ
is any type distribution that is ε-proper on T , and if τ ∈M (F ) is a Nash equilibrium
of Gμ, then τμ ∈M (S) is an ε-proper strategy profile in G.

Proof : To show that τμ is an ε-proper strategy profile in G we first note that
since each Ci ∈ C (Si) has positive probability of being the consideration set under μ,
τ i (fi) = 0 for all pure strategies fi ∈ Fi such that fi (Ci) /∈ argmaxsi∈Ci ui(τ

μ
−i, [si])

for some Ci ∈ C (Si). Secondly, let ri, si ∈ Si be such that ui(τ
μ
−i, [ri]) < ui(τ

μ
−i, [si])

and let Ri ⊆ C (Si) be the collection of sets Ci ∈ C (Si) such that

ri ∈ argmax
ci∈Ci

ui(τ
μ
−i, [ci]).
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Clearly Ci ∈ Ri ⇒ si /∈ Ci. Moreover, Ti /∈ Ri, since T is finely tenable and thus
contains a pure best reply to τμ. For each Ci ∈ Ri:
(i) {si} = argmaxs0i∈Ci∪{si} ui(τ

μ
−i, [s

0
i]),

(ii) μi (Ci) ≤ ε · μi (Ci ∪ {si}) and
(iii)

P
Ci∈Ri

μi (Ci ∪ {si}) ≤ τμi (si)
(where (iii) follows from the fact that, in equilibrium, pure strategy si is necessarily

used when it is the unique best reply within the consideration set at hand). Hence,

τμi (ri) ≤
X
Ci∈Ri

μi (Ci) ≤ ε ·
X
Ci∈Ri

μi (Ci ∪ {si}) ≤ ε · τμi (si) .

(where the first inequality follows from the fact that, in equilibrium, pure strategy ri
is not used when it is not a best reply within the consideration set at hand). This
establishes that τμ ∈Mo (S) is an ε-proper strategy profile in G. Q.E.D.

Remark 3. The above proof holds also for weaker versions of fine tenability. One
such version is obtained when the hypothesis in condition (c) in Definition 7 is
strengthened to also require that Di contains a strategy that is “strategically rel-
evant” to the player in the sense of being a strictly better reply to some strat-
egy profile. Formally, one may replace condition (c) by the condition (c’) that if
Ti 6= Ci ⊂ Di and maxsi∈Ci ui(σ−i, [si]) < maxsi∈Di ui(σ−i, [si]) for some σ ∈ M (S),
then μi (Ci) ≤ ε · μi (Di).

The following result is immediately obtained from Proposition 2, establishing the
existence of at least one proper equilibrium with support in any given finely tenable
block.

Corollary 1. Every finely tenable block contains the support of a proper equilibrium.

Proof : By the Bolzano-Weierstrass theorem, every sequence from a nonempty
compact set has a convergent subsequence with limit in the set. Given T finely
tenable, let τ ∗ be such a limit point of a sequence

­
τk
®
k∈N of Nash equilibria τk ∈

M (F ) of consideration-set games Gμk where each μk is an εk-proper type distribution
on T and εk → 0. Let σk and σ∗ ∈ M (S) be the projections of τk and τ ∗ in G. By
construction, σ∗ is a proper equilibrium of G. Moreover, σ∗ has support in T , because
μk (T )→ 1 and thus ∀si ∈ Si,

σki (si) =
X

Ci∈C(Si)

μki (Ci) · τki|Ci (si) → σ∗i (si) = τ ∗i|Ti (si) ,

so σ∗i (si) = 0 if si /∈ Ti. Q.E.D.
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Remark 4. The above machinery provides a behavioral micro foundation for proper
equilibrium. For by Proposition 2 as applied to T = S, all limit points (as ε→ 0) to
projections of sequences of Nash equilibria in the associated consideration-set games
are proper equilibria.

In the light of Proposition 2 and Corollary 1 it is natural to require properness
when defining settledness with respect to finely tenable blocks:

Definition 9. A finely settled equilibrium is any proper equilibrium that has
support in some minimal finely tenable block.

We call any equilibrium that is both finely and coarsely tenable fully settled.

Proposition 3. Every finite game has at least one fully settled equilibrium.

Proof : Let T be any minimal coarsely tenable block (the existence of which
follows from the finiteness of S). Then T is also finely tenable. If T is not a minimal
finely tenable block, T will contain such a block (again since S is finite). According to
the above corollary, there exist a proper equilibrium with support in that subblock.15

Q.E.D.

In the following elaboration of game (1) for α = β = γ = δ = 1, the only coarsely
tenable block is the whole strategy space S. Arguably, also this elaboration may be
considered strategically inessential, so now also coarse tenability fails this invariance
desideratum. By contrast, fine tenablility passes this test, and the finely settled
equilibria correspond precisely to the two strict equilibria of the original game (1).

Example 2. Reconsider the extensive-form game in Example 1. If one would replace
the (0, 0) end-node by another zero-sum subgame, like the first zero-sum subgame,
the purely reduced normal form (with primed strategy labels in the second zero-sum
game) would be

Game 2:

Lh0 Lt0 Rh Rt
Lh 1, 1 1, 1 2,−2 −2, 2
Lt 1, 1 1, 1 −2, 2 2,−2
Rh0 2,−2 −2, 2 1, 1 1, 1
Rt0 −2, 2 2,−2 1, 1 1, 1

15Since curb ⇒ absorbing ⇒ coarsely tenable ⇒ finely tenable, every finite game in fact admits
a fully settled equilibrium with support in a minimal absorbing block that is a subset of a minimal
curb block.
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Also this elaboration of game (1) has three Nash equilibrium components:

A = {σ = (p[Lh] + (1− p)[Lt] , q[Lh0] + (1− q)[Lt0])) for p, q ∈ (1/4, 3/4)}

B = {σ = (p[Rh0] + (1− p)[Rt0] , q[Rh] + (1− q)[Rt])) for p, q ∈ (1/4, 3/4)}
and C = {σm}, where σm is uniform randomization over each strategy set. The
proper equilibria are σa = (1

2
[Lh] + 1

2
[Lt], 1

2
[Lh0] + 1

2
[Lt0]) ∈ A, σb = (1

2
[Rh0] +

1
2
[Rt0], 1

2
[Rh] + 1

2
[Rt]) ∈ B, and σm. The only curb, absorbing or coarsely tenable

block is the whole pure-strategy space S, so all Nash equilibria are persistent and
coarsely settled. However, T a = {Lh,Lt}×{Lh0, Lt0} and T b = {Rh0, Rt0}×{Rh,Rt}
are finely tenable blocks by similar arguments to those given in Example 1. The game
thus has only two finely, indeed fully, settled equilibria, σa and σb, corresponding to,
and behaviorally indistinguishable from, the two strict equilibria of the original game
(1). In other words, fine tenability treats each zero-sum subgame here as strategically
equivalent to its value.

Examples 1 and 2 show that neither persistence, curb nor coarse tenability is
invariant in the purely reduced normal form under replacement of an end-node in an
extensive-form game by a subgame that has a unique Nash equilibrium, where this
equilibrium is totally mixed and results in the same payoff vector as the end node.16

By contrast, fine tenability exhibits such invariance in these two examples, and we
proceed to show that this is a general property of fine tenability. Suppose that T is
a block in any given finite game G = hN,S, ui, and let r ∈ S be any pure-strategy
profile in the game. Let us construct a new game Ĝ that differs from the given game
in that, for each player i, the strategy ri is replaced by a nonempty set Ri of new
pure strategies. The payoffs û in Ĝ are all the same as in G, with each new strategy
in Ri being payoff equivalent to ri in G except when all players use new strategies
in the block R = ×i∈IRi. Let T̂ be the block in the new game which corresponds to
the block T in the given game. That is, each set T̂i is the same as Ti except that,
if ri ∈ Ti then T̂i includes all strategies in Ri, instead of ri, and if ri /∈ Ti then T̂i
includes no strategy in Ri. Suppose that the block game ĜR = hN,R, ûi in Ĝ has a
unique Nash equilibrium, and suppose this is totally mixed (in the block game) and
results in payoffs u(r) ∈ Rn.

Proposition 4. If the block T is finely tenable in G, then the corresponding block
T̂ is finely tenable in the game Ĝ as constructed above.

16See Mailath, Samuelson and Swinkels (1993) for an analysis of how subgames and information
sets in a finite extensive-form game are represented in its purely reduced normal form.
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Proof: For the new game Ĝ, consider a sequence of ε-proper type distributions
with respect to T̂ and Nash equilibria on the corresponding random consideration-
set games, where ε → 0 in the sequence. Choosing a subsequence if necessary, we
can assume that each player’s preference ordering over his pure strategies, given the
other players’ behavior in the random consideration-set equilibria, is constant over
the sequence. (There are only finitely many ways that each player can weakly order
his pure strategies in Ĝ, and so at least one ordering must be repeated infinitely.) By
compactness we can also assume (again choosing a subsequence if necessary) that,
for each player i, the conditional probability distribution for i’s mixed strategy, given
that i’s choice is in Ri, converges to some limiting conditional mixed strategy in
∆ (Ri).
For each player i, either all or none of Ri is in T̂i. In either case, conditional on

the event that i has a best considered response in Ri (which happens when i considers
something in Ri but nothing in the constant set of alternatives that he would prefer
to every strategy in Ri), the probability of i considering all of Ri goes to 1 as ε→ 0.
Player i’s choice among his new strategies in Ri depends only on the event that
the others are all in the new block R (an event which has positive probability in
the random consideration-set game), because otherwise these new strategies are, by
construction, payoff equivalent for him. So in the limit, the conditional probability
distribution for every player’s mixed strategy, given that the choice is in the set of new
strategies, must converge to the unique equilibrium of the block game ĜR on R (as
in the limit each player i puts conditional probability 1 on his set of best responses
in Ri). This equilibrium is totally mixed, and so all player i’s pure strategies in
Ri must all give him the same expected utility also in the random consideration-set
equilibria, because otherwise the probability of the worst alternative in Ri would have
probability 0 in the limit of i’s conditional mixed strategy in∆ (Ri). But every player
i can be indifferent among all of his new strategies in Ri only if they are all playing
the unique equilibrium on the R block. Thus, conditional on the event that all other
players are in the block R, any strategy in Ri would give player i an expected payoff
equal to ui (r), and in any other event each new strategy in Ri also yields the same
payoffs as strategy ri in the given game.
Now these ε-proper-on-T̂ random consideration-set perturbations of Ĝ induce cor-

responding random consideration-set perturbations of the original game G with re-
spect to T . Here we let the consideration or choice of any strategy in Ri in Ĝ
correspond to the consideration or choice of ri in G, and of course any other pure
strategy corresponds to itself identically across G and Ĝ. (That is, the event in G
of player i considering any set of pure strategies corresponds to the event in Ĝ of i
considering the same set if the set excludes ri, and otherwise it corresponds to the
event in Ĝ of i considering the same elements outside of Ri plus at least one element
in Ri.)
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It can be verified that ε-properness on T̂ for a type distribution μ̂ in Ĝ implies
that the corresponding type distribution μ in G is ε-proper on T . To see this, let μ̂i
be the given ε-proper-on-T̂i type distribution for a player i in the perturbed random
consideration-set game on Ĝ, and let μi be the corresponding distribution for the
perturbed random consideration-set game on G. We need to show that, if Ti 6= Ci ⊂
Di ⊆ Si then μi(Ci) ≤ εμi(Di). If ri /∈ Di then this holds because

μi(Ci) = μ̂i(Ci) ≤ εμ̂i(Di) = εμi(Di).

If ri ∈ Ci, then ri ∈ Di and so

μi(Ci) =
X

Zi∈C(Ri)

μ̂i(Zi ∪ Ci\ri) ≤
X

Zi∈C(Ri)

εμ̂i(Zi ∪Di\ri) = εμi(Di).

(As before, C (Ri) denotes the set of nonempty subsets of Ri). Finally, if ri /∈ Ci but
ri ∈ Di then Ci is a subset of Zi ∪Di\ri for any Zi ∈ C (Ri), and so we get

μi(Ci) = μ̂i(Ci) ≤
X

Zi∈C(Ri)

εμ̂i(Zi ∪Di\ri) = εμi(Di).

Of course if Ci = Ti then we get μi(Ci) = μi(Ti) ≥ μ̂i(T̂i) ≥ 1− ε.
For any player i and any consideration set Ci in G, for all consideration sets in Ĝ

that correspond to Ci, i’s equilibrium best responses in our random consideration-set
perturbations of Ĝ all correspond to the same pure strategies in Ci. So the corre-
sponding random consideration-set perturbation ofG has a corresponding equilibrium
where the probability in G of any player i choosing any pure strategy in any consider-
ation set is the conditional probability in Ĝ of player i choosing a corresponding pure
strategy given that player i is considering one of the corresponding consideration sets
in Ĝ. Corresponding pure strategies for player i give him the same expected payoffs
in both corresponding equilibria. But the block T is finely tenable in G. So when
ε > 0 is small enough, the pure strategies in Ti must be global best responses in
equilibrium for each player i. Hence, the corresponding choices in T̂i must also be
global best responses in equilibrium when ε is small enough. Thus, T̂ is finely tenable
in Ĝ. Q.E.D.

The finely settled equilibria in the Example 2 are also coarsely settled. The next
example shows that is not always the case.

Example 3. Consider a version of the battle-of-the-sexes game where player 1 has
an outside option:
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Its purely reduced normal form (with A representing the two payoff-equivalent strate-
gies AL and AR) is

Game 3:

L R
EL 3, 1 0, 0
ER 0, 0 1, 3
A 2, 0 2, 0

This normal-form game has two Nash equilibrium components, the singleton set T ∗ =
{EL} × {L}, consisting of the strict pure equilibrium s∗ = (EL,L) usually referred
to as the “forward-induction” solution (see Kohlberg and Mertens, 1986, and van
Damme, 1989), and a continuum component in which player 1 plays A for sure while
player 2 plays R with probability at least 1/3. The strict equilibrium s∗ is fully
settled. Another proper equilibrium of this game is so = (A,R), corresponding to the
sequential equilibrium of the extensive-form game in which play of (R,R) is expected
in the battle-of-sexes subgame. (To see that so is proper, note that for all ε > 0 small
enough, σε1 = (ε2, ε, 1− ε− ε2) and σε2 = (ε, 1− ε) make up an ε-proper strategy
profile σε.) Clearly its supporting block T o = {A} × {R} is not coarsely tenable,
since strategy L is the unique best reply if there is a positive probability that 1 plays
EL, which indeed is the case under type distributions that attach arbitrary little,
but positive probability to {EL} being 1’s consideration set, and zero probability to
all other non-conventional consideration sets (that is, other than T o

1 ). Nevertheless,
T o is finely tenable. To see this, let μ be an ε-proper type distribution on T o and
let τ ∈ M (F ) be any Nash equilibrium of Gμ. Then τμ2 (L) < ε, so for ε > 0 small
enough τμ1 (EL) ≤ μ1 ({EL}) ≤ ε · μ1 ({EL,ER}) ≤ τμ1 (ER), which implies that A
and R are best replies to τμ. In sum, while s∗ is fully settled, so is finely but not
coarsely settled.
While coarse tenability requires robustness to “all” type distributions (that assign

much probability to the conventional types), fine tenability only requires robustness
to such “rationality biased” type distributions. So why does this emphasis on rational
types then not imply forward induction? It is true that player 1 would never use the
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strictly dominated strategy ER when she considers her whole strategy set, but that
does not make ER less likely than EL, because she would not use either when she
considers the whole set S1 if player 2 is much more likely to use R than L. The
block T o, while not coarsely tenable, is supported as finely tenable because when
player 2 is much more likely to consider only R, then player 1’s strict preference is
A Â ER Â EL. Hence, when she accidentally considers only {ER,EL}, which by
fine tenability is the most likely way that she will not do A, she will do ER. So ER
is much more likely than EL, and so 2 indeed strictly prefers R over L.17

We proceed to establish that coarsely and finely tenable blocks, and thus also
coarsely and finely settled equilibria, are generically equivalent.

6. Generic normal-form games
The concept of regular equilibrium was introduced by Harsanyi (1973) and slightly
modified by van Damme (1991), who defined a Nash equilibrium of a finite normal-
form game to be regular if the Jacobian, associated with a certain system of equations
closely related to those characterizing Nash equilibrium, is non-singular (op. cit.
Definition 2.5.1).

Definition 10. A game G = hN,S, ui is hyper-regular if, for every block T ⊆ S,
all Nash equilibria of the associated block game GT are regular in the sense of van
Damme (1991).

In a well-defined sense, almost all normal-form games are hyper-regular:

Lemma 1. For any (finite) set of players N and (finite) sets of strategies Si for each
player i ∈ N , the set of payoff functions u ∈ R|N |·|S| such that G = hN,S, ui is not
hyper-regular is contained in a closed set of Lebesgue measure zero.

Proof: The property of regularity of a block gameGT depends only on the payoffs
on T , and this property will fail only for payoff functions in a closed set of Lebesgue
measure zero (van Damme, 1991, Theorem 2.6.1). There are only finitely many blocks
T ⊆ S, and the union of finitely many such sets is still a closed set of measure zero.
Q.E.D.

Proposition 5. If a game G = hN,S, ui is hyper-regular, then any block T is finely
tenable if and only if it is coarsely tenable. Any equilibrium of G is finely settled if
and only if it is coarsely settled.

17See also Battigalli and Siniscalchi (2002) and Battigalli and Friedenberg (2012) for epistemic
analyses of forward-induction reasoning.



23

Proof: We first establish that for a hyper-regular game there cannot exist any
Nash equilibrium τ of any block game GT such that a player i has an alternative
si ∈ Si\Ti with ui(τ−i, [si]) = ui(τ). If this equality would hold, and if we added
si to Ti (obtaining T 0i = Ti ∪ {si}), then we would obtain a block game GT 0 in
which τ would still be a Nash equilibrium but, having an alternative best reply in
T 0 that gets zero probability in τ , τ would not be quasi-strict in this new block
game GT 0. By hyper-regularity of G, τ is a regular equilibrium of GT 0 and hence
τ is quasi-strict (Corollary 2.5.3 in van Damme, 1991), a contradiction.18 So if τ
is a Nash equilibrium of some block game GT , then either ui(τ−i, [si]) > ui(τ) or
ui(τ−i, [si]) < ui(τ). The first of these inequalities, for any i and si, would imply that
T is not coarsely tenable. The second inequality, for all i and si, would imply that T
is coarsely tenable. Thus, in the given hyper-regular game G, a block T is coarsely
tenable if and only if ui(τ−i, [si]) < ui(τ) for all i and si ∈ Si\Ti, at all equilibria τ of
the block game. Coarsely tenable blocks are always finely tenable, so it remains to
prove that, for our hyper-regular game G, any block T that is not coarsely tenable is
not finely tenable.
In order to establish this, consider any Nash equilibrium τ of any block game

GT . The payoff function of GT can be viewed as a vector u in R|N |·|T |. By hyper-
regularity of G, the equilibrium τ is regular, and thus also strongly stable, in GT (van
Damme, 1991, Definition 2.4.4 and Theorem 2.5.5). This means that there is some
open neighborhood V of τ ∈ M (T ) and some open neighborhood U of u ∈ R|N |·|T |
such that, for any perturbation of GT that has a payoff function ũ in U , we obtain a
game G̃T = hN,T, ũi that has exactly one equilibrium τ̃ in V , and this equilibrium
depends continuously on the payoff function ũ. Now let’s think about a consideration-
set game Gμ and a block T . For each player i let ρi : C (Si) \Ti → ∆ (Si) define a
mixed strategy ρi|Ci ∈ ∆ (Ci) for every consideration set Ci other than Ti. Let B (T )
be the set of all such function profiles ρ = (ρ1, .., ρn). Then ρ defines the behavior
of players at all consideration sets other than those of T , and the only question
remaining in Gμ is what a player i would do when considering Ti, which will happen
with probability at least 1− ε. So with any given ε, the consideration-set game Gμ

becomes a perturbation of GT , and its payoff function in R|N |·|T | will be in the open
set U for all ε > 0 sufficiently small, given ρ. In fact, there exists an ε̄ > 0 such that
ũ ∈ U for all ρ. Now, given any ε ∈ (0, ε̄), consider the correspondence that sends any
profile ρ ∈ B (T ) to each player i’s (non-empty, compact and convex) best replies at
every consideration set Ci 6= Ti to the ρ and τ̃ strategies, where τ̃ is the (continuously
defined) equilibrium in V for this perturbation of GT . This correspondence is upper
hemi-continuous in ρ, so, by Kakutani’s fixed-point theorem, for any such ε, there

18A quasi-strict equilibrium (Harsanyi, 1973) is any Nash equilibrium in which all players use all
their pure best replies.
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exists a fixed point ρ∗. This fixed-point ρ∗, together with its corresponding τ̃ at T ,
will constitute an equilibrium of the consideration-set game Gμ. The projection of
this equilibrium to M (S) will be ε-proper with respect to the block T (along the
lines given in Section 5) and these strategy profiles converge to the given block-game
equilibrium τ as ε → 0. But then this sequence would yield a contradiction of T
being tenable if we had ui(τ−i, [si]) > ui(τ) for some player i and some strategy
si ∈ Si\Ti. Thus, if T is not coarsely tenable, then T is not finely tenable either. So
for a hyper-regular game, a block is coarsely tenable if and only if it is finely tenable.
Since all regular equilibria are proper (van Damme, 1991, Theorems 2.5.5, 2.4.7,

2.3.8), an equilibrium in a hyper-regular game is coarsely settled if and only if it is
finely settled. Q.E.D.

The game in the introduction shows that there are generic games in which the
set of settled equilibria is strictly smaller than the set of Nash (perfect, proper)
equilibria. The game in the next example, taken from Table 7 in Myerson (1996),
has an open neighborhood (in the space of 2× 4 normal-form games) in which there
is always a Nash equilibrium which is persistent but not settled. This shows that
settled equilibrium is not generically equivalent with Nash or persistent equilibrium.

Example 4. Consider the game

Game 4:
a2 b2 c2 d2

a1 0, 2 1, 1 0, 0 1,−3
b1 1,−3 0, 0 1, 1 0, 2

(6)

and note that the block game over the “middle” block T bc = {a1, b1} × {b2, c2} is
identical with game (1) for α = β = γ = δ = 1. The diagram below shows the payoffs
to player 2’s pure strategies as functions of the probability p by which player 1 uses
her first pure strategy.

-4

-3

-2

-1

0

1

2

3

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

a2
b2
c2
d2

Eu2

p 
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This game has three Nash equilibria, all mixed. In each equilibrium, player 1
uses both her pure strategies while player 2 uses only two of his four pure strategies;
either the two left-most, {a2, b2}, the two middle ones, {b2, c2}, or the two right-
most,{c2, d2}, each equilibrium corresponding to a kink in the upper envelope of the
payoff lines in the above diagram.
The game is hyper-regular. This follows from Theorem 7.4 in Jansen (1981) (see

also Theorem 3.4.5 in van Damme, 1991), according to which a Nash equilibrium of
a finite two-player game is regular if and only if it is essential and quasi-strict.19 It is
not difficult to verify that all block equilibria, of all blocks in this game, have both
properties. Moreover, the game has only one curb block, the whole set S, and it
has only one absorbing retract, the whole set M (S). Hence, all three equilibria are
persistent. However, the “middle” equilibrium is not settled.
More exactly, the three Nash equilibria of this game are

σab =

µ
3

4
[a1] +

1

4
[b1] ,

1

2
[a2] +

1

2
[b2]

¶

σbc =

µ
1

2
[a1] +

1

2
[b1] ,

1

2
[b2] +

1

2
[c2]

¶
σcd =

µ
1

4
[a1] +

3

4
[b1] ,

1

2
[c2] +

1

2
[d2]

¶
Consider first the “middle” block T bc = {a1, b1}×{b2, c2}, the support of σbc. The

associated block contains, in addition to σbc, two (strict pure) block-game equilibria,
each, however, with better replies outside the block. Hence, by Proposition 1, this
block is not coarsely tenable. Arguably, if T bc became the conventional block played in
a population, play might drift towards one of these strict block equilibria, which would
induce a movement out of the block, towards a better reply, and thereby destabilize
the block. By contrast, the supports of each of the two other equilibria, the “side”
blocks T ab = {a1, b1} × {a2, b2} and T cd = {a1, b1} × {c2, d2}, do not contain any
other block equilibria and are coarsely tenable. The only coarsely tenable block that
contains σbc is S, which, however, is not minimal. Hence, while all three equilibria
are persistent, only σab and σcd are coarsely settled. These claims hold for an open
set of payoff perturbations of the game. Thus, the property of being coarsely settled
is not generically equivalent to persistence.
The two minimal coarsely tenable blocks, T ab and T cd, are, a fortiori, also finely

tenable. Since they contain no other finely tenable block, they are minimal and hence

19An essential equilibrium (Wu and Jiang, 1962) is any Nash equilibrium such that every nearby
game, in terms of payoffs, has some nearby Nash equilibrium.
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σab and σcd are also finely settled. Is the middle block T bc finely tenable? As we will
see, this is not the case although T bc is the support of a proper equilibrium, σbc.
First, to see that σbc is proper, let σε1 = (1/2, 1/2) and σε2 = (ε, 1/2− ε, 1/2− ε, ε).
Clearly σε is ε-proper for all ε ∈ (0, 1/2), and σε → σbc as ε→ 0. Second, to see that
T bc is not finely tenable, let ε > 0 and let μ be as in Remark 2 , with δ2 (b2) = ε,
δ2 (d2) = ε · δ2 (c2) = ε2 · δ2 (a2) and kδik < ε/ (1 + ε) for both players i. Then μ is
ε-proper on T bc for all ε > 0. However, for all ε > 0 sufficiently small and all Nash
equilibria τ ∈M (F ) of Gμ we have

u2(τ
μ
1 , τ 2|T2) < u2(τ

μ
1 , [a2]), (7)

so T bc is not finely tenable. In sum: σab and σcd are the only fully settled equilibria
of this game.

7. More examples
Suppose that game (1) was enlarged by letting each player’s mixed Nash-equilibrium
strategy be represented as a new pure strategy. As the following example shows, this
would not affect the collection of minimal tenable blocks.

Example 5. Let α = β = γ = δ = 1, and consider

Game 5:

a2 b2 c2
a1 1, 1 0, 0 λ, λ
b1 0, 0 1, 1 λ, λ
c1 λ, λ λ, λ λ, λ

,

for λ < 1. For λ = 1/2, the new pure strategy ci is payoff equivalent with the
mixed Nash equilibrium strategy σ∗i =

1
2
[ai] +

1
2
[bi], for i = 1, 2, in game (1). For

λ = 1/2, this 3×3-game has infinitely many Nash equilibria; the two strict equilibria
(a1, a2) and (b1, b2), the pure equilibrium (c1, c2), and a continuum of mixed equilibria
where each player i randomizes arbitrarily between σ∗i and ci (thus also including
(c1, c2) as an extreme point). The two strict equilibria are of course fully settled.
Moreover, their supports are the only minimal tenable blocks (and this holds for
an open set of payoffs around α = β = γ = δ = 1). In particular, the singleton
block T c = {c1} × {c2} is not coarsely tenable, and this holds for all λ < 1. The
reason is that for arbitrarily small ε > 0 there are type distributions μ such that
μi ({ci}) > 1− ε for i = 1, 2, under which ci is not a best reply to the projection of
any Nash equilibrium in the associated consideration-set game Gμ. For example, for
each player i let μi ({ci}) = 1− ε/2 and μi ({ai}) = ε/2 (thus all other consideration
sets have probability zero). Let τ be any Nash equilibrium of Gμ. Then τμi (ai) = ε/2
and τμi (bi) = 0, so maxti∈T ci ui(τ

μ
−i, [ti]) = λ while (for any λ < 1)

max
si∈Si

ui(τ
μ
−i, [si]) = 1 · ε/2 + λ · (1− ε/2) > λ.
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Hence, our solution concepts reject the mixed equilibrium in these games even when
this is rendered “minimal” by way of representing it as a pair of pure strategies. Its
rejection is thus not due to the requirement of block minimality.

Established refinements, such as Kohlberg-Mertens stability, are known to have
little “bite” in sender-receiver games. By contrast, settledness effectively discards
arguably implausible equilibria in such games. We illustrate this by way of a simple
example due to Balkenborg, Hofbauer and Kuzmics (2014).20

Example 6. Consider a sender-receiver game in which there are two equally likely
states of nature, ω = A and ω = B. Player 1, the sender, observes the state of nature
and sends one of two messages, a or b, to player 2. Having received 1’s message, 2
takes one of two actions, α or β. Hence, each player has four pure strategies. Assume
that both players receive payoff 2 if action α (β) is taken in state A (B), and otherwise
both players receive payoff zero. The normal form of this game is

Game 6:

αα αβ βα ββ
aa 1, 1 1, 1 1, 1 1, 1
ab 1, 1 2, 2 0, 0 1, 1
ba 1, 1 0, 0 2, 2 1, 1
bb 1, 1 1, 1 1, 1 1, 1

Any strategy pair that assigns equal probability to the two middle strategies is a
Nash equilibrium: if σ1 = (p, q, q, r) ∈ ∆ (S1) and σ2 = (p

0, q0, q0, r0) ∈ ∆ (S2), then
σ is a Nash equilibrium. As pointed out by Balkenborg et al. (2014), every Nash
equilibrium σ of this kind, viewed as a singleton set, is strategically stable in the sense
of Kohlberg and Mertens (1986). In these equilibria the players have not established
a convention in their communication; player 2 does not know if a “means” α and
b “means” β, or if it is the other way round. By contrast, in each of the two pure
and strict equilibria, s∗ = (ab, αβ) and s∗∗ = (ba, αβ), it is as if the players have
established a convention in their communication. For the same reasons as given in
the preceding example, only these two equilibria are settled.

Also voting games are well-known to exhibit a plethora of Nash equilibria, many of
which seem unreasonable and yet resist standard refinements such as perfection and
strategic stability. The next example suggests that the present solutions have good
cutting power, beyond that of perfection and strategic stability, and that it selects
natural equilibria. The example concerns the so-called Duverger’s law, which asserts
that the plurality rule for selecting the winner of elections favors the two-party (or
two-candidate) system, see Riker (1982).

20See also the analysis of related issues in Gordon (2011).
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Example 7. There are three candidates, call them 1, 2, and 3, of whom candidates
1 and 2 are ideologically similar, say on the left of the political spectrum, and then
candidate 3 is on the right side of the spectrum. In the election, each voter must
choose to vote for one candidate, and the candidate with the most votes wins; a tie
for the most would be resolved by random selection among those in the tie. There
are seven voters. Each voter can be characterized by his or her vector v = (v1, v2, v3)
of utilities for each of the three candidates winning the election. Three voters are
rightist partisans of candidate 3 and have utility vector (0, 0, 1). The other four voters
are leftists and can be called 1A with utility vector (4, 1, 0), 1B with utility vector
(3, 2, 0), 2A with utility vector (1, 4, 0), and 2B with utility vector (2, 3, 0). In any
proper equilibrium, all three rightists always vote for the rightist candidate 3.
We find two settled equilibria that have two candidates getting all the votes,

as predicted by Duverger’s law for such plurality elections. In one of these settled
equilibria, all four leftist voters, {1A, 1B, 2A, 2B}, vote for candidate 1, who then
wins the election with probability 1. In the other of these settled equilibria, all four
leftist voters vote for candidate 2, who then wins. In either of these equilibria, if one
leftist voter deviated to vote for the other leftist candidate, there would be a tie, and
the rightist candidate would win with probability 1/2. Each of these Duvergerian
equilibria is a strict pure equilibrium, and its support is a minimal tenable block.
But there is also a third equilibrium, one in which the leftist voters split their

votes among candidates 1 and 2. In this equilibrium, voter 1A votes for candidate
1 for sure, voter 1B randomizes, voting for candidate 1 with probability 0.6 and for
candidate 2 with probability 0.4, voter 2A votes for candidate 2 for sure, and voter
2B randomizes, voting for candidate 2 with probability 0.6 and for candidate 1 with
probability 0.4. In this equilibrium, the rightist candidate 3 wins with probability 0.76
while each of the leftist candidates has probability 0.12 of winning. This equilibrium
violates Duverger’s law, and it is not settled. The support of this equilibrium is not
tenable, because its block game would also have pure-strategy equilibria in which
voters 1B and 2B both vote for the same leftist candidate (candidate 1 or 2), which
would not be an equilibrium of the original game because it would make voter 1A or
2A switch over to also vote for the same leftist candidate. Thus, any tenable block
that includes the support of this mixed equilibrium must also include the support
of both Duvergerian equilibria, and so it is not minimal among all tenable blocks.
Arguably, in rejecting this mixed equilibrium (despite the fact that it is regular),
settledness formalizes the intuition that it does not appear as a likely convention if
this or similar elections were held in a familiar context. Presumably, left-wing voters
would then come to “agree” to support one of the two left-wing candidates.

Our final example shows that, unlike minimal curb blocks, minimal tenable blocks
may overlap. It also provides yet another illustration of how settledness can be strictly
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more selective than persistence.

Example 8. Consider

Game 8:

a2 b2 c2
a1 3, 1 1, 3 0, 0
b1 1, 3 3, 1 1, 3
c1 0, 0 1, 3 3, 1

This game has three Nash equilibria: σab, in which each player randomizes uniformly
across his or her two first pure strategies, σbc, in which they randomize uniformly
across their last two pure strategies, and the totally mixed strategy profile

σm =

µ
2

9
[a1] +

5

9
[b1] +

2

9
[c1] ,

2

5
[a2] +

1

5
[b2] +

2

5
[c2]

¶
.

The supports of σab and σbc are blocks that both contain the strategy profile (b1, b2).
These blocks are not absorbing, since for certain mixed-strategy profiles near the
profile that puts unit probability on b1 and b2, either player 1 or 2 has no best reply
in the block. However, they are minimal coarsely tenable. The only absorbing block
is the full strategy space S. All Nash equilibria are persistent, while only σab and σbc

are coarsely, indeed, fully settled.

8. Conclusion
This paper has focused on an assumption that, in culturally familiar games, people
will develop social conventions that simplify the game by excluding some strategies
from normal consideration. We feel that such an assumption has substantial realism.
Our assumption, to allow for the possibility that a player may ignore some strategies
that are feasible in the actual game, leads us to analyze consideration-set games
where the strategies that each player conventionally considers may be a subset of
those actually feasible. But we allow players to break free from such conventions and
explore other strategies in the game. Thus, our concepts of tenable strategy blocks
have been defined as conditions for a conventional simplification to justify players’
understanding that they have no reason to consider unconventional alternatives as
long as others are unlikely to do so.
To formalize these ideas, we have embedded the game in a larger game of incom-

plete information, in which players may randomly and independently consider any
nonempty subset of their actual strategy set in the game, and where a player’s actual
consideration set, that is the player’s “type,” is his or her private information. We
defined a coarsely tenable strategy block as a convention such that there could never
be any advantage for any player to consider any unconventional strategy in any pop-
ulation equilibrium in which the probability of other players being conventional, that



30

is, considering precisely the given conventional block, is close to one. This seemed a
good basic definition of “external stability” of a conventional block of strategies. We
obtained “internal stability” by focusing on minimal coarsely tenable blocks, that is
coarsely tenable blocks that do not contain other coarsely tenable blocks that could
become conventions by themselves. However, defining coarsely settled equilibria as
Nash equilibria with support in minimal coarsely tenable blocks, we noted that in
some games this approach failed to exclude some Nash equilibria that seemed un-
reasonable to us, and so we developed a concept of fine tenability that would admit
smaller tenable blocks.
Our concept of fine tenability was derived by restricting the robustness test to a

smaller class of type distributions around any given block. More precisely, we focused
on those type distributions in which any unconventional player would be much more
likely to consider a larger than a smaller subset of the strategies that are available in
his or her player role in the actual game (with “large” and “small” defined in terms of
set inclusion). This restriction on the type distribution thus places more probability
on “more rational” unconventional types than on “less rational” unconventional types.
We accordingly defined a finely tenable strategy block as a convention such that
there could never be any advantage for any player to consider any unconventional
strategy in any population equilibrium in which the probability of other players being
conventional is close to one, and where the type distribution is “rationality biased”
in the said sense. This gives a slightly weaker definition of “external stability” of a
conventional block of strategies. We obtained “internal stability” also for this version
by focusing on minimal finely tenable blocks, and we defined finely settled equilibria
as Nash equilibria with support in such blocks. While every coarsely tenable block
is also finely tenable, a coarsely settled equilibrium need not be finely settled, and
a finely settled equilibrium need not be coarsely settled. We call equilibria with
both properties fully settled. Every finite game admits at least one fully settled
equilibrium. Moreover, in generic normal-form games the coarsely tenable blocks
coincide with the finely tenable blocks and thus also the three versions of settledness
generically coincide.
By way of examples, we showed the nature and power of these solution concepts.

In particular, the rejection of the mixed equilibrium in the coordination game in the
introduction was shown to hold even when one or both of the zero-payoff outcomes
was replaced by a zero-sum game, and also when the mixed Nash equilibrium strategy
was added as a third pure strategy. In other examples we showed that minimal tenable
blocks and settled equilibria make well-behaved and sharp predictions in some games
where standard refinements usually fail. The difference was particularly stark in
a signaling game and in a voting game. In the battle-of-the-sexes game with an
outside-option, the forward-induction solution was seen to be the only fully settled
equilibrium, while the “outside option” equilibrium component contained another
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finely (but not coarsely) settled equilibrium. Yet other examples showed that the
present approach makes sharper predictions than curb and persistence in an open
set of games. A final example demonstrated that there are games in which tenable
blocks overlap.
We here analyzed general type distributions (for coarse tenability) and “rationality

biased” type distributions (for fine tenability) around a conventional strategy block.
However, also other restrictions on the type distribution might be worth studying.
Any other restriction (within the general class admitted in our definition of coarse
tenability) could yield another weak concept of tenability (compared with coarse ten-
ability) which in turn could be used to define associated concepts of settled equilibria.
For example, in games with very large strategy sets (such as chess) it is unrealistic to
assume that a player is able to consider his or her full strategy set. In such games “ra-
tionality biased” type distributions may thus be empirically irrelevant, and it might
be more relevant to instead consider “behavioral” type distributions that attach little
probability to very large consideration sets. We would look forward to future research
on alternative restrictions on type distributions around conventional blocks.
Our concepts of tenability also permit evolutionary interpretations. A (pure or

mixed) strategy in a finite and symmetric two-player game is neutrally (or weakly
evolutionarily) stable if no other strategy does better in the post-entry population
mix that arises under uniform random matching in a large population playing the
game, where almost everybody plays the original “incumbent” strategy and only a
few individuals play the new “mutant” strategy. Any symmetric coarsely tenable
singleton block has this robustness property. To see the connection between neutral
stability and tenability more generally, consider any block T in any finite game G.
Suppose that the game is played recurrently in a large population, with individuals
randomly and uniformly drawn from (infinitely) large player populations, one for each
player role, just as in Nash’s (1950) mass-action interpretation. Suppose that initially
all individuals only use strategies in the block T under consideration. For each player
role i, let σi be any “mutant” strategy that suddenly appears in a small population
share ε in player population i. The introduction of such mutant strategies could be
interpreted as a game with random consideration sets where, in each population i, a
1−ε fraction are “normal” individuals, the “incumbents,” who consider the set Ti but,
for each pure strategy si, an εσi (si) fraction are mutants who consider only {si}. If
the block T is coarsely tenable, no mutant will fare better than the normal players (in
the same player population) when all normal players respond rationally within their
consideration sets. It would be interesting to further explore connections between
the present solution concepts and those in evolutionary game theory, for instance
comparing fine tenability with the set-valued notions of robustness to equilibrium
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entrants in Swinkels (1992a,b).21

The present approach also suggests other avenues for further research, where the
most evident appears to be to apply the present machinery to well-known (finite)
games that represent important interactions in economics, political science and other
social and behavior sciences. Do the solutions suggested here match up with what we
know or believe about the likely outcomes in such interactions? For example, games
with cheap talk, signalling or voting usually have plethora of Nash equilibria, many of
which are arguably unreasonable as predictions of actual behavior, and yet standard
refinements have little cutting power. We conjecture that the present machinery, by
contrast, may have a lot of cutting power in such games.22 A second avenue would be
to study the solutions’ predictive power in controlled laboratory experiments. Will
human subjects in the lab, under random rematching and with some opportunity for
social learning, tend towards minimal tenable blocks and settled equilibria? A third
avenue could be to explore connections between our solutions and explicit models of
population dynamics. There is a handful such models in the economics literature.
Some of these have been shown to converge to minimal curb sets, see Young (1993,
1998), Hurkens (1995) and Sanchirico (1996). In the same vein, Kets and Voorneveld
(2008) establish convergence to minimal prep sets (see Remark 1) when individuals
tend to favor recently used strategies–a form of habit formation. It is also known
from the literature on dynamic learning and evolution in games (see e.g. Nachbar,
1990, and Weibull, 1995) that if such a process meets certain regularity conditions,
and if it converges, then the limit point will necessarily be a Nash equilibrium. In
such dynamic population models, will settled equilibria and minimal tenable blocks
be good predictors?

21Loosely speaking, while Swinkels requires robustness against entrants who play post-entry op-
timal strategies when incumbents do not adjust their behavior, fine tenability requires robustness
against rationality-biased mutant type distributions when incumbents optimally adjust their behav-
ior within the conventional block.
22Laslier and Van den Straaten (2004) show that while perfection has virtually no cutting power

in a class of voting games, "true perfecting" (see Kalai and Samet, 1984) effectively eliminates im-
plausible equilibria. The present machinery may lead to similarly sharp conclusions, since tenability
requires robustness to a wide range of type distributions much in the same way as true perfection
requires robustness to a wide range of strategy perturbations.
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