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MORAL HAZARD IN HIGH OFFICE AND THE DYNAMICS OF ARISTOCRACY 

by Roger B. Myerson 

 

1.  Introduction.  

 Dynamic moral-hazard models offer economic insights into the problems of maintaining 

long-term trust of agents who exercise delegated power in a relationship or organization.  Becker 

and Stigler (1974), after noting that reliable law enforcement was regularly taken for granted as 

an essential assumption in economic analysis, formulated a model of dynamic moral hazard to 

analyze how government officials could be efficiently motivated to enforce laws.  Since then, 

many models of dynamic moral hazard have been studied in economic theory, because problems 

of trust are fundamental to every institution in society. 

 Moral-hazard agency theory begins with the basic observation that, in positions that offer 

opportunities for profitable abuse of power, agents must be motivated to behave appropriately by 

expectations of better rewards for good performance.  When alternative outcomes for bad 

performance are bounded below by agents' ability to evade penalties (limited liability), the 

required rewards for good performance may be more than what agents would demand simply to 

accept the position.  Thus, agents who hold such responsible positions must be promised surplus 

rewards, called moral-hazard rents.  In dynamic moral-hazard problems, the costs of moral-

hazard rents can be reduced by postponing substantial rewards until late in agents' careers, 

because the prospect of a late-career reward for good long-term performance can motive good 

behavior throughout an agent's career.  Becker and Stigler suggested that the net cost of such 

incentives could be further reduced if, before taking the position, an agent could be required to 

make some initial payment for the expected benefits that the position will entail. 

 These basic observations of moral-hazard agency theory have fundamental implications 

for any organization that delegates substantial powers to responsible agents.  The savings from 

deferring moral-hazard rents can be realized only if agents in responsible positions expect long-

term careers in the organization.  Thus, an efficient incentive plan should minimize turnover in 

positions of power.  However, long-term promises of deferred rewards become costly debts of 

the organization, and the organization could subsequently profit from denying such debts if its 

future credit would not be harmed.  Thus, like any creditors, the responsible agents of an 

organization need some mechanism to enforce their claims. 
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 Among the organizations of society that delegate power to responsible officials, none is 

more important than government.  High government officials regularly hold wide powers that 

could be profitably abused.  So the moral-hazard agency theory should have fundamental 

applications for understanding the structures of political systems throughout history.  This paper 

develops a simple dynamic moral-hazard model to try to highlight some basic implications of 

agency theory for political science. 

 In an agency model of government, moral-hazard rents become benefits of a privileged 

political elite.  The advantages of minimizing turnover, to reduce the expected cost of such rents, 

suggests that efficient political organizations may tend to minimize future entry into the political 

elite, which may then become an entrenched aristocracy.  However, the need for mechanisms to 

guarantee the long-term allocation of moral-hazard rents in government can be a fundamental 

force for the development of political institutions that constrain rulers and regulate the allocation 

of power.  Thus, an agency model of government may offer insights into both the dynamics of 

aristocratic privilege and the foundations of constitutional government. 

 An economic theory of elite privileges does not have to be an apology for them.  If we 

would reduce political inequality in a good society then we need to understand the economic 

forces that have made such inequality so common throughout history.  But here, even as our 

theory finds forces for long-term privileges of a political elite, it also finds forces for 

constitutional government and institutions of law.  Indeed, the historical development of modern 

democracy has been based on such institutions, whose function was gradually extended from 

guaranteeing the allocation of aristocratic privileges to protecting the rights of all citizens. 

 For example, among the early roots of the Western political institutions that forged the 

modern world, the Court of the Exchequer stands out from the twelfth century as the central 

institution underlying the growth of royal power in medieval England (Warren, 1973, ch 6-8; 

FitzNigel, 1983).  The Exchequer maintained accounts of the king's transactions with his sheriffs, 

who were the primary agents of royal power in the counties of England.  But the rules and 

procedures of the Exchequer required that the sheriffs' transactions must be witnessed in detail by 

a panel of high officials and barons of the Exchequer.  The Court of the Exchequer was designed 

so that, if the king needed to punish one of his sheriffs for malfeasance, a broad group of high 

officials could certify the grounds for such punishment.  Thus, this institution served to maintain 

the basis for trust between powerful agents of local government and high officials of the central 
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government. 

 Institutions with similar functions can be found in successful political systems throughout 

history.  In ancient Rome, the Senate was an institutional forum where rights of senior 

government officials could be protected.  As early as 1500 BCE, the Hittite king Telipinu created 

a similar institutional structure.  To end conflict among his royal relatives who governed the 

provinces of the Hittite empire, Telipinu constrained himself with a new constitutional rule: that 

the king should never punish any member of the royal family without a formal trial before the 

assembled royal council or Panku (van den Hout, 1997, Beckman, 1982).  So this ancient Hittite 

council, like the medieval Exchequer, was an institution designed to help maintain trust between 

the king and those on whom he relied as the regional agents of state power. 

 Our understanding of government is incomplete if we do not recognize why such 

institutions should be so important in the foundations of the state.  The model of this paper is 

intended to highlight the basic agency problem that these institutions can help to solve. 

 In a previous paper (Myerson, 2008), I considered a different model, which focused on 

the problem of binding a sovereign political leader to fulfill his promises to reward the supporters 

who helped him win power.  Initial supporters must be motivated by expectation of future 

rewards if they win.  A leader who would be an absolute monarch would have difficulty 

recruiting support to win power if nothing could constrain him to fulfill past promises when his 

rivals have been defeated.  Myerson (2008) showed that, in negotiation-proof equilibria of a 

model of sequential contests for power, a contender for power can recruit a competitive force of 

supporters only by organizing them into a group that could depose him if he cheated any one of 

them.  Thus, a leader's need to raise a competitive army of supporters to win power is itself a 

fundamental force for constitutional constraints in government. 

 Here we derive a similar conclusion, but where Myerson (2008) focused on a political 

leader's need for trust of supporters (captains) in winning power, this paper here focuses on a 

ruler's need for trust of high officials (governors) in wielding power.  The state's captains and 

governors are like a firm's investors and managers: all need some institutional protection for their 

promised future rewards. 

 The principal-agent model that we consider here is a simple variant of standard dynamic 

moral-hazard models in the literature, with the principal interpreted here as an established 

political leader or prince, and the agent interpreted as a powerful government official or 
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governor.  Our main results depend on several distinguishing features of our model. 

First, we drop the common assumption that an agent can guarantee herself a good record 

by good behavior.  Thus, under an incentive plan that can deter corrupt abuse of power, officials 

who have served correctly may nevertheless have bad outcomes and so must face a positive 

probability of being denied the promised rewards that motivated their good behavior. 

Second, we assume that job candidates can pay some positive amount for promotion to a 

valuable high office but do not have sufficient funds to pay the full expected value of their 

promotion.  When new officials cannot pay for the full value of the bonuses that they will expect 

in office, the leader's ex ante expected net cost is minimized by promising an employment policy 

that minimizes the expected turnover of his officials.  But when new officials can pay some 

positive amount for their promotion to office, the leader actually profits ex post whenever he 

dismisses an official without rewards and promotes a new candidate.  Thus, an effective leader 

may need to commit himself by creating institutions that constrain and regulate his ability to 

opportunistically dismiss officials. 

Third, in addition to the possibility of hidden corruption by officials, we admit a second 

way that they can abuse their power, by open rebellion, which could become optimal for them if 

they knew that they were about to be punished.  The need to deter both hidden corruption and 

open rebellion here compels the leader to use a randomized strategy in judging high officials 

when they have bad outcomes.  But others cannot verify that such a randomized judgment 

strategy has been implemented correctly without directly monitoring the process by which the 

judgment has been determined.  This result is significant because a formal trial in an 

institutionalized court is, in essence, a judicial process that is designed for such monitoring. 

Fourth, to introduce limits on the credibility of the leader's promises in the simplest 

possible way (without introducing multilateral game-theoretic complexity into our principal-

agent problem), we add a parametric bound on the value of the deferred compensation that the 

leader can be trusted to owe any one official.  We show that raising this bound always improves 

the leader's ex ante expected value but can ultimately reduce the expected turnover rate toward 

zero.  Thus, a high trust bound implies that, in the long run, high officials will become 

entrenched in office and will accumulate large expensive claims on the state's resources. 

 For computational tractability, we analyze here a continuous-time Poisson agency model.  

However, to clarify the methodological basis for this analysis, we explicitly derive our results for 
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this continuous-time agency model from limits of discrete-time agency models. 

 The basic structure of our dynamic agency model is introduced in section 2 below.  The 

optimal solution for the discrete-time version of the model is characterized in section 3, and the 

continuous-time limit is derived in section 4.  Section 5 characterizes the steady-state distribution 

of outcomes of this optimal incentive plan that would result in the long run from applying it to 

many high offices.  Other interpretive aspects of the solution are considered in section 6. 

 While most of this paper assumes that the incentive plan must deter high officials from 

corruption, section 7 admits the possibility of tolerating some corruption, which will require us to 

take account of its potential costs for the leader.  When the expected costs of corruption would be 

high, the analysis of section 7 justifies the assumptions of the previous sections.  In other cases, 

however, we find that low credit bounds can cause soft budget constraints to become optimal for 

the leader, so that governors' losses may be forgiven and their corruption may be tolerated when 

their credit is low. 

 Other possible assumptions about the circle of trust around a political leader are discussed 

in section 8, and section 9 summarizes conclusions from our analysis.  Mathematical proofs of 

the main results are collected in section 10. 

 As noted above, the model here is a simple variant of standard dynamic moral-hazard 

models in the literature going back to Becker and Stigler (1974), Lazear (1981), Shapiro and 

Stiglitz (1984), and Akerlof and Katz (1989).  Ray (2002) offers a general characterization of 

conditions for efficient dynamic incentive plans to back-load an agent's rewards (see also 

Thomas and Worrall, 2010).  Bounds on the agent's ability to make initial payments to the 

principal are essential for these results, as is shown by the alternative stationarity results of Levin 

(2003) (see also Fong and Li, 2012). 

 Biais, Marriotti, Rochet, and Villeneuve (2010) have a recent model that is particularly 

close to ours, but where they prevent infinite back-loading of an agent's rewards by assuming that 

the agent is less patient than the principal, here we instead introduce a credit bound on what 

principal can credibly promise the agent.  Abreu, Milgrom and Pearce (1991), Macleod (2007), 

and Sannikov and Skrzypacz (2010) have also studied models where agents must be motivated to 

minimize crises that occur as Poisson process whose rate depends on hidden effort variables.  

Our soft budget constraint results in section 7 here are similar to what Zhu (2013) has 

independently found for a model where an agent controls the drift of a Brownian motion. 
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 Implications of agency theory for political science have been explored by others since 

Barro (1973) and Ferejohn (1986); for a broad overview see Besley (2006).  Adverse selection 

problems in relationships between rulers and powerful ministers have been analyzed by Egorov 

and Sonin (2011).  Other recent models of agency in politics include Acemoglu, Robinson, and 

Verdier (2004), Padro-Miquel (2007), Acemoglu, Golosov, and Tsyvinski (2008), Debs (2010), 

and Padro-i-Miquel and Yared (2012). 

 

2.  A dynamic agency model of governors 

To analyze the problems of motivating high government officials, we consider a dynamic 

agency model in which a high official, whom we may call a governor, serves under a political 

leader, whom we may call the prince.  For clarity, we use female pronouns for governors and 

male pronouns for the prince.  At any point in continuous time, the governor has three options: 

she may serve correctly as a good governor, or she may act corruptly, or she may openly rebel.  

The option of rebellion may also be interpreted as intensively looting the province and then 

fleeing abroad with the resulting treasures.  We let D denote the expected total payoff to a 

governor when she rebels.  The prince could observe any such rebellion. 

The governor's choice among her other two alternatives, of good service or corruption, 

cannot be directly observed by the prince, but the prince can observe certain crises that may occur 

in the governor's province.  When the governor serves correctly, crises will occur in her province 

as a Poisson process with rate α.  On the other hand, when the governor acts corruptly, crises will 

occur in her province as a Poisson process with rate β, and the corrupt governor will also gain an 

additional secret income worth γ per unit time.  That is, in any short time interval of length ε, if 

the governor is serving correctly then the probability of a crisis during this interval is 1!e!αε . 

αε; but if the governor is acting corruptly then the probability of a crisis during this interval is 

1!e!βε . βε, and the corrupt governor would get an additional secret income worth γε during this 

interval.  We assume that β > α. 

We assume that the governor observes any crisis in her province shortly before the prince 

observes it.  After any crisis, the governor can make a short visit to the prince's court, and the 

governor cannot rebel during such a short visit.  The lengths of these short intervals may be 

considered as infinitesimals in our continuous-time model. 

The possibility of profiting from rebellion or corruption can make the office of governor 
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very valuable.  The moral hazard-rents of the office, which the prince must pay to deter such 

misbehavior, are the surplus above the alternative that a candidate could expect out of office 

(which we may normalize to 0).  To minimize net costs, the prince would not give away an office 

when equally good candidates would pay for it.  But we assume that all candidates for promotion 

to governor have limited wealth, which is denoted by K.  (If governors could prepay the prince 

for all expected moral-hazard rents then the prince would have no reason to minimize them by 

back-loading rewards; see Levin, 2003.)  We assume that the potential profit for a rebellious 

governor is strictly greater than what any candidate could pay for the office; that is,  K < D.  

We assume (until section 7) that the prince's regime would suffer a large expected cost 

from any crisis or rebellion, and so the prince wants to always deter governors from rebellion or 

corruption.  So we seek an incentive plan that make a governor always prefer to serve correctly.  

We assume that each individual is risk neutral and discounts future payments at the rate δ 

per unit time.  Thus, we can analyze this agency problem with a recursive model in which the 

overall payoffs for the prince and governor are the sum of the payments that they get in some 

short time period, plus the expected present discounted value of all their future payments after 

this period.  (See for example Abreu, Pearce, and Stacchetti, 1990.)  At any point in time, the 

governor's expected discounted value of future payments may be called the governor's credit, and 

it effectively summarizes the quality of the governor's expected future relationship with the 

prince after this point in time. 

The governor's credit is a debt owed by the prince.  The prince can derive some advantage 

from deferring payments to a governor, but the prince's temptation to sack a governor will 

increase with the debt that is owed to her.  To describe the bounds on trust of the prince, we let H 

denote the largest credit owed to a governor that the prince could be trusted to pay.  If the prince's 

debt to a governor ever became larger than H, then the prince would abuse his own power to 

eliminate the governor and the debt. 

Thus, our simple model is characterized by the seven parameters (D,α,β,γ,K,H,δ), which 

are all assumed to be positive numbers.  In section 7 we will introduce a parameter L to denote 

the prince's cost from any crisis, but for now we may simply assume that this cost is sufficiently 

large that the prince will always want to deter corruption, to keep the expected cost of crises 

always constant at its minimal value (αL per unit time). 
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3.  A discrete-time model  

Our continuous-time model can be formally understood as the limit of a discrete-time 

model, where each period is separated from the next by a short interval of time ε.  The basic 

principles of analysis can be clarified by considering a discrete-time model first, but its solutions 

become easier to compute numerically in the limit as the time interval ε goes to 0.  So in this 

section we formulate our discrete-time model, and then we characterize the continuous-time limit 

of its solutions in the next section. 

In our discrete-time model, each period has a sequence of four stages.  First, the governor 

can make a short visit to the prince's court, where the governor may be paid some amount εy and 

may be dismissed with some probability q.  If the governor were dismissed then a new candidate 

would pay K to the prince to be appointed as the new governor.  Second, the governor decides 

between serving correctly or acting corruptly.  If she acts corruptly then she takes the corrupt 

income εγ.  Third, an observable crisis occurs with probability εα if the governor is serving 

correctly but with probability εβ if the governor is acting corruptly.  Fourth, after observing 

whether there is a crisis or not, the governor decides whether to rebel or not.  If she rebels, then 

the governor takes the terminal payoff D and exits the game.  Otherwise, at the end of the period, 

the prince's incentive plan should implicitly promise the governor some future credit, the 

expected discounted value of her future payoffs, which may depend on whether a crisis has 

occurred or not.  Let r denote the governor's expected future credit if a crisis did not occur this 

period, but let r!z denote the expected discounted value of the governor's future payoffs if a 

crisis occurred this period.  That is, z here denotes the amount by which the governor's promised 

future credit would be reduced by a crisis this period.  In each period, the expected pay rate y and 

the probability of dismissal q, and the future-credits amounts r and z are decision variables to be 

chosen by the prince as a function of the past history. 

To recursively formulate one period of this discrete-time model, let the parameter u 

denote the credit that was promised to the incumbent governor at the end of the previous period.  

Given the past credit u (which may depend on the entire past history), the decision variables 

(y,q,r,z) in this period can be chosen by the prince subject to several constraints.  For this period's 

pay and future credit to fulfill the promise of credit u from the previous period, when the 

governor serves correctly, the promise-keeping constraint is 

(1)  εy + (1!q)[(1!εα)r + εα(r!z)] $ (1+εδ)u. 
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Here 1/(1+εδ) is the discount factor for one period in this discrete-time model.  If dismissed, the 

former governor would get 0 thereafter.  The inequality in the constraint (1) represents an 

assumption that the prince could always reduce a governor's utility by unproductive punishment, 

which could be applied if the left side were strictly larger than the amount required on the right. 

 To deter the governor from behaving corruptly, the no-corruption incentive constraint is 

(2)  (1!εα)r + εα(r!z) $ εγ + (1!εβ)r + εβ(r!z). 

This constraint says that the corrupt income εγ is not worthwhile for the governor when she takes 

account of the increased probability ε(β!α) of suffering the crisis penalty is z.  Constraint (2) is 

equivalent to  z $ γ'(β!α).  Let τ denote this minimal deterrent penalty 

τ = γ'(β!α). 

Then the no-corruption constraint (2) can be rewritten equivalently: 

(2N)  z $ τ. 

 To deter rebellion after a crisis, the no-rebellion incentive constraint is 

(3)  r!z $ D. 

As the penalty z must be nonnegative, from (2N), this constraint also implies that the governor 

would not want to rebel in a period when there has not been a crisis. 

 The upper bound on how much the prince can credibly promise is 

(4)  r # H. 

 Finally, we have nonnegativity constraints on the governor's wage rate y (as she already 

paid her endowment K for the appointment) and for the dismissal probability q: 

(5)  y $ 0,  0 # q # 1. 

Constraints (2)-(3) together imply that, in a period when there is no corruption, the 

governor's future credit r cannot be less than D+τ.  Let G denote this minimal non-crisis credit: 

G = D+τ = D + γ'(β!α). 

So constraints (2)-(4) require that the given parameters must satisfy 

H $ G. 

A feasible incentive plan characterizes how these decision variables should be chosen by the 

prince as a function of the past credit u 

(y,q,r,z) = (y(u), q(u), r(u), z(u)) 

subject to (1)-(5) for all possible credit levels u between the rebellion threshold D and the trust 

bound H.   
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Now we can recursively characterize the prince's value function.  Let v0 denote the 

prince's minimal expected discounted value of future costs when a new governor is appointed.  

Let V(u) denote the prince's minimal expected discounted value of future costs at the end of a 

period when the incumbent governor expects credit u.  So the prince's optimal expected value 

when a new governor is appointed must satisfy the initial equation 

(6)  v0 = minimumy,r,z  !K + εy  + (1!εα)V(r) + εαV(r!z) 

subject to (2)!(5). 

Here the initial !K represents the payment from the new governor, which is a negative cost.  

Then for any credit u that the governor could expect at the end of any period, the prince's 

expected discounted future value V(u) must satisfy the recursion equation 

(7)  V(u) = minimumy,q,r,z  {εy  + qv0 + (1!q)[(1!εα)V(r) + εαV(r!z)]}'(1+εδ) 

subject to (1)!(5). 

These recursive optimality conditions (6) and (7), for all u in the interval [D,H] determine the 

value function V and the optimal solution for this discrete-time model.  

Constraints (2)-(4) imply  r!z $ D = G!τ  and  r $ G,  and so the governor's expected 

end-of-period credit (1!εα)r+εα(r!z) cannot be less than G!εατ, which would correspond to 

(G!εατ)'(1+εδ)  in the previous period.  Let us denote this amount by Gε: 

Gε = (G!εατ)'(1+εδ). 

Before a period where there is no chance of punishment or dismissal, the governor's expected 

future credit would have to be at least Gε.  It will also be useful to define  Hε = (H!εατ)'(1+εδ).  

We assume that the time interval ε is small enough that 

τ > ε(δH+ατ). 

This implies  τ!εατ > εδH,  and so  G!εατ > (1+εδ)D > K  and  Gε > D. 

The optimal discrete-time solution is characterized by the following theorem, which is 

proven in section 10. 

Theorem 1.  In the discrete-time model with short period length ε, the value function V(u) 

is an increasing convex function of u in the interval [D,H], and its slope VN(u) is always between 

K'(G!εατ) and 1.  For a new appointment, the optimal policy in (6) has 

(8)      y = 0,  r = G,  z = τ,  and so  v0 = (1!εα)V(G) + εαV(D) ! K. 

When the incumbent governor had credit u at the end of the previous period, the optimal policy 
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in (7) depends on u as follows.  For  u < Gε: the optimal policy is   

(9)      y=0,  z=τ,  r=G,  q=1!u'Gε,   

and so the value function is 

(10)      V(u) = [(1!εα)V(G) + εαV(D) ! (1!u'Gε)K]'(1+εδ),  œu#Gε. 

For  u $ Gε,  the optimal policy is   

(11)      q=0,  z=τ,   r = min{u+εδu+εατ, H},  εy = max{0, u+εδu+εατ!H},   

and so the value function is 

(12)      V(u) = [(1!εα)V(u +εδu+εατ) + εαV(u +εδu+εατ!τ)]'(1+εδ),  œu0[Gε,Hε], 

(13)      V(u) = [u+εδu+εατ ! H + (1!εα)V(H) + εαV(H!τ)]'(1+εδ),  œu0[Hε,H]. 

 

4.  The continuous-time limit 

Now let us consider the limit of this model as the period length ε goes to 0.  In this 

continuous-time limit, crises occur as a Poisson process with rate α as long as the governor is 

serving correctly.  But if the governor instead acted corruptly over any interval of time then crises 

would occur as a Poisson process with the higher rate β. 

When ε goes to 0, Gε goes to G and Hε goes to the upper credit bound H.  Under the 

optimal policy from Theorem 1, when the incumbent governor's credit u is less than G, the 

optimal policy (by (9)) is either to promote the governor to credit G, with probability u'G, or 

else to dismiss the governor, with probability q=1!u'G.  If the incumbent is dismissed then (by 

(8)) a new governor is appointed who gets initial credit G after paying K for her appointment.  

Thus, whenever an incumbent governor's credit drops below G, the governor must be 

immediately called to the prince's court for a trial to determine whether the governor is to be 

replaced or not, but either way, after the trial the prince will owe credit G to the (new or old) 

governor.  (This equality follows from the fact that r=G in both (8) and (9).)  So in the continuous 

time, the incumbent governor's credit must almost always be between G and H. 

Now consider the case when the incumbent governor's credit u satisfies G # u < H.  

Under the optimal policy from Theorem 1, during any interval of time when there are no crises, 

the incumbent governor continues in office without pay (q=0, y=0) but her credit grows at rate 

uN = δu+ατ = limε60 (u+εδu+εατ ! u)'ε. 

This credit growth rate is the limit, as ε60, of the governor's credit growth rate from u to 
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r=u+εδu+εατ in any ε time period of the discrete-time model in Theorem 1.  But when a crisis 

occurs, the governor incurs the penalty τ=γ'(β!α) and her credit drops from u to u!τ.  If u!τ is 

less than G, then the governor must be called to the prince's court for a trial, as specified in the 

preceding paragraph.  Notice that u!τ is not below the rebellion threshold D, because u$G=D+τ. 

When the governor's credit reaches the upper bound H, then the governor is paid at rate  

y = δH+ατ  and her credit stays constant at H as long as there are no crises.  These results come 

from condition (11) in Theorem 1, which with u=H yields  εy = u+εδu+εατ!H = εδH+εατ  and  

r=H.  But when a crisis occurs for a governor with credit H, her credit must drop to H!τ, which 

takes us back either to the preceding paragraph if H!τ$G or to the paragraph before that if 

H!τ<G.  In effect, the pay rate y is covering the interest on the amount H that is owed to the 

governor plus the penalty risk rate ατ to which the governor is exposed by serving in office.  

These results may be summarized as follows. 

Theorem 2.  In the continuous-time model (with ε=0), the optimal policy depends on the 

incumbent governor's credit as follows.  A newly appointed governor always starts at credit G, 

after paying K for the position.  While the governor's credit u satisfies u<H, it grows between 

crises at rate uN = δu+ατ.  Any crisis causes the governor's credits to drop by the penalty 

amount τ.  If the resulting post-crisis credit u!τ is less than G, the governor is called to a trial 

which reinstates her at credit G with probability (u!τ)'G, and otherwise the governor is 

dismissed and a new governor is appointed.  The governor is paid only when her credit reaches 

the bound H, and then she gets income at rate y=δH+ατ per unit time until the next crisis causes 

her credit to drop to H!τ. 

A continuous-time (ε60) limit of the prince's value function V must exist, because these 

values are bounded for all ε.  For example, a policy of keeping governors at credit u, with 

replacement probability τ'u after any crisis, would be feasible for any ε with pay rate y = δu+ατ, 

and this policy would make the prince's discounted costs equal to  u+ατ'δ.  The prince's 

expected discounted cost can never be less than the amount u that is owed to the current 

incumbent.  So the value V(u) in any ε-discrete-time model must be between u and u+ατ/δ. 

For any positive ε, the value equations (10), (12), and (13) in Theorem 1 imply   

VN(u) = K'(G!εατ)  when  u < Gε ,  
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V(u+εδu+εατ)!V(u) = εδV(u) + εα[V(u+εδu+εατ)!V(u+εδu+εατ!τ)]   

when  Gε # u # Hε , 

and  VN(u) = 1  when  u > Hε . 

Taking limits as ε60, the continuous-time value function must satisfy 

(14)  VN(u) = K'G , œu < G;  

(15)  VN(u) = [(δ+α)V(u)!αV(u!τ)]'(δu+ατ),  œu0[G,H]; 

(16)  VN(H) = 1. 

The continuous-time value function V is continuous and convex on its domain [D,H]. but it has a 

kink at u=G, where the right derivative  VN(G) = [(δ+α)V(G)!αV(D)]'(δG+ατ)  may be strictly 

greater than the left derivative K'G.  But the derivative VN(u) is continuous at u=H, because 

equation (13) at u=H implies that all discrete-time models satisfy the equation 

(δ+α)V(H)!αV(H!τ) = δH+ατ. 

We may also define the value function V(0) to be the prince's expected discounted value 

of net costs when the position of governor is unfilled.  Since the optimal policy then is to 

immediately hire a new governor who gets credit G after paying K for her office, we have 

(17)  V(0) = V(G)!K. 

That is, the linear slope VN(u) = K'G can be applied over the whole interval from 0 to G, and so 

the convex function V(u) can be extended to any u in the interval [0,H]. 

We now show how the continuous-time value function V can be computed numerically.  

The trick is to consider the function Ψ such that 

Ψ(u) = (V(u) ! uK'G)'V(0),  œu0[0,H]. 

With equations (14)-(17), this function Ψ satisfies the equations 

(18)  if  u # G  then  Ψ(u) = 1, 

(19)  if  u $ G  then  ΨN(u) = [(δ+α)Ψ(u) ! αΨ(u!τ)]'(δu+ατ). 

(To verify (19), notice that the differential equation in (15) is linear in V, and it would also be 

satisfied by the linear function uK'G.)  The following result, which is proven in section 10, 

shows that this function Ψ gives us a practical method for computing the continuous-time value 

function V. 

Theorem 3.  An increasing convex function Ψ can be uniquely characterized by equations 

(18) and (19). This function Ψ(u) is continuous, but its derivative ΨN(u) has one discontinuity at 
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u=G, where equation (19) yields the right derivative ΨN(G) = δ'(δG+ατ) that applies for small 

increases u$G.  When u$G, the derivative ΨN(u) is strictly increasing in u.  Then in the 

continuous-time limit (ε=0), the optimal value function V that satisfies equations (14)-(16) can 

be computed from Ψ by the formula 

V(u) = uK'G + Ψ(u)(1!K'G)'ΨN(H),  œu0[0,H]. 

The fact that ΨN(u) is strictly increasing in u when u$G also imply the following 

important comparative-statics result for  V(0) = (1!K'G)'ΨN(H). 

 Theorem 4.  When all other parameters are held fixed, an increase of the trust bound H 

would strictly decrease V(0), the expected present-discounted value of the prince's cost when a 

new governor is first appointed. 

To illustrate this solution, let us consider a numerical example where the discount rate is 

δ = 0.05,  the normal crisis rate is α = 0.1, the corrupt crisis rate is β = 0.3, the corrupt income 

rate is γ = 1, the expected value of rebellion is D = 5,  candidates have payable assets worth 

K = 1, and the upper bound on the prince's debt to any governor is H = 25.  With these 

parameters, the crisis penalty is  τ = γ'(β!α) = 5,  and the minimal credit for governors is  

G = D+τ = 10.  

Figure 1 shows the how the prince's expected cost V(u) depends on the debt u that is 

owed to the current governor.  The prince's expected cost when appointing a new governor would 

be V(0) = V(G)!K = 10.44 for this example.  The slope of the cost function VN is 0.1 from u=0 

to u=G=10, but there is a kink at u=10 where the slope jumps to 0.622, and then the slope 

increases continuously to 1 at H=25. 

[Insert Figures 1 and 2 about here] 

Figure 2 shows how the prince's expected cost V(G)!K would change if the upper bound 

H were changed, holding fixed all other parameters of this example.  The curve in Figure 2 is 

computed by applying the formula V(G)!K = (1!K'G)'ΨN(H), where Ψ(u) can be extended to 

all u$G by the differential equation (19).  The curve cannot be extended to H<G, because the 

incentive constraints (2)-(4) would become impossible to satisfy if the credit bound H were less 

than the minimal credit level G = D+γ'(β!α).  Increasing the credit bound H would decrease the 

prince's expected cost V(G)!K when a new governor is appointed, here from an expected cost of 
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18 when the credit bound is 10, to an expected cost of 10.42 when the credit bound approaches 

infinity.  This negative slope in Figure 2 is implied by Theorem 4 above.  

 

5.  Properties of the long-run stationary distribution 

 When a new state is established, its prince can promise the minimal credit G to newly 

appointed governors in all provinces.  But as the optimal incentive policy is applied over time, 

the credit owed to the governor of each province will move randomly over the interval [G,H] 

according to an independent stochastic process.  Assuming that there are many provinces, the 

distribution of governors' credits across all provinces should be expected to converge in the long 

run to a stationary distribution.  Thus, the stationary distribution of governors' credits indicates 

the magnitude of agency debts that may be rationally incurred by the prince in a mature state. 

 So now let us consider the long-run stationary distribution of the governor's credit u under 

the optimal incentive plan in the continuous-time model.  Let F denote the strict cumulative 

distribution of u in this stationary distribution; that is, F(u) denotes the probability that the 

governor's credit is strictly less than u.  The governor almost always has a credit in the interval 

[G,H].  (The governor's expected credit may be between D and G during post-crisis trials, but 

they are assumed to be infinitesimally brief.)  So this strict cumulative F satisfies 

F(u) = 0  if  u#G,   

F(u) = 1  if  u>H. 

We can have  F(H) < 1,  and 1!F(H) denotes the probability that the governor's credit is H. 

 Now consider any u between G and H.  F(u+τ)!F(u) is the probability of a governor being 

at u or above by less than the penalty amount τ, and the probability of incurring a penalty τ during 

a short interval of length ε is approximately εα.  So to a first-order approximation in ε, the 

probability of the governor's credit dropping across u in a crisis during a short interval of length ε 

is εα[F(u+τ)!F(u)].  FN(u) is the probability density at u, and near u the governor's credit 

increases between crises at the rate  uN = δu+ατ.  So the probability of a governor being below u 

by a small amount  ε(δu+ατ)  such that the governor's credit would increase across u during a 

short interval of length ε, is  ε(δu+ατ)FN(u),  to a first-order approximation in ε.  In the stationary 

distribution, the probability of crossing u in each direction must be the same.  Thus, F must 

satisfy the differential equation 

(δu+ατ)FN(u) = α[F(u+τ)!F(u)],  œu0[G,H]. 



 
 

17

To compute F, we may consider the function Ω defined by 

Ω(u) = 0  œu>H,  Ω(H) = 1, 

!ΩN(u) = α[Ω(u)!Ω(u+τ)]'(δu+ατ)  œu#H. 

This function Ω satisfies the same differential equation as F but with different boundary 

conditions. The differential equation can used to numerically compute Ω(u) continuously for all 

u#H.  But [1!F(u)]'[1!F(H)] satisfies the same conditions as Ω(u) when u$G, and so  

Ω(u) = [1!F(u)]'[1!F(H)],  œu$G. 

Then with F(G)=0, we get Ω(G) = 1'[1!F(H)],  and so F can be computed from Ω by 

F(u) = 1!Ω(u)'Ω(G),  œu$G. 

The stationary distribution F has a continuous probability density  

FN(u) = !ΩN(u)'Ω(G)  

on the interval [G,H), but there is also has a discrete probability mass 1!F(H) at the upper bound 

H, where the governor gets paid. 

Figure 3 shows the cumulative distribution F for our example from section 4, with α=0.1, 

β=0.3, δ=0.05,  D=5, K=1, and H=25.  In the stationary distribution, the probability of a governor 

being at the credit bound H is 1!F(H) = 0.68.  

[Insert Figure 3 about here] 

The pay rate for governors at H is  δH+ατ = 0.05H25 + 0.1H5 = 1.75 here.  So in the 

stationary distribution, the prince's expected wage-expense rate is  

(δH+ατ)(1!F(H)) = 1.19. 

A crisis can cause a governor to be dismissed only when the governor's pre-crisis credit was 

between G and G+τ, which is between 10 and 15 for this example, but the stationary probability 

of this interval is F(15) = 0.015.  The expected rate of dismissals in the stationary distribution is 

Iu0[G,G+τ] α[1!(u!τ)'G)] dF(u)  = 0.00030, 

So in the stationary distribution, the prince's expected discounted value of net wage costs (wage 

expenses, minus payments from new governors) is 

(1.19!0.00030K)'δ = 23.8. 

This stationary discounted cost is much greater than the prince's expected discounted cost 

when he appoints a new governor, which is  V(G)!K = 10.44  for this example.  When a new 

governor is appointed, the prince can reduce the expected discounted value of his costs by 
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planning to defer compensation until his debts reach the credit bound H.  But then the prince's 

costs will become greater after the debt of H has been incurred, and the stationary distribution 

takes this ex-post perspective. 

For comparison, if the credit bound H were at the smallest feasible level H = G = 10, 

holding fixed the other parameters of this example, then the prince would always pay his 

governor y = δG+ατ = 1, and governors would be dismissed at the expected rate α[1!(G!τ)'G] = 

0.05.  So the prince's expected costs when would normally be worth  V(G) = (y!0.05K)'δ = 19, 

which would decline to V(G)!K = 18 when a new governor is appointed.  Thus, a lower credit 

bound H would make the prince worse off ex ante, when a new governor is first appointed, but it 

could make the prince better off ex post, in the long-run stationary distribution. 

In this example, the prince's ex-post stationary expected cost rate actually declines as the 

credit bound H increases from 10 to 15, but it becomes increasing in H when H > 15.  This result 

for large H can be shown to hold in broad generality.  The following theorem tells us that, if H is 

large, then a governor's credit is unlikely to be far from H in the stationary distribution.  The 

proof can be found in section 10. 

Theorem 5.  The stationary strict cumulative distribution F satisfies, for any integer m$0,  

if  u # H!mτ  then  F(u) # [ατ'(δG+ατ)]m+1.  

When credit u is drawn from the stationary distribution F, its expected value satisfies  

E(u) $ H!ατ2'(δG), 

and its probability of being at the upper bound H satisfies 

P(u=H) = 1 ! F(H) $ (δH ! ατ2'G)'(δH+ατ). 

 The bounds in Theorem 5 imply that the long-run stationary probability of being at the 

upper credit bound H goes to 1 as H becomes large, that is, 1!F(H)61 as H64.  So when H is 

large, the leader is in the long run usually paying high wages δH+ατ to each governor. The long-

run expected pay rate (δH+ατ)(1!F(H)) is bounded below by δH!ατ2'G, which goes to infinity 

as H becomes large. 

We have seen (as in Figure 2) that the prince's expected discounted costs when a new 

governor is appointed are strictly decreasing in the upper bound H.  Thus, even when the leader 

is secure in power and is as patient as his agents (discounting the future at the same rate δ), 
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agency costs can give the leader an incentive to accumulate large expensive debts to governors. 

The governors' turnover rate is bounded above by the inequality 

Iu0[G,G+τ] α[1!(u!τ)'G)] dF(u) # αF(G+τ). 

The bounds in Theorem 5 imply that F(G+τ) goes to 0 as H becomes large.  So when the prince 

has a high credit bound H, successful governors tend to become entrenched in office as a closed 

aristocracy.  The prince prefers such a system that minimizes new entry into high office, because 

he expects to lose G!K whenever he promotes an outside candidate who can only pay K for an 

position that is worth G.  

 

6.  Analysis of the solution 

Whenever a new governor is appointed, the prince incurs a liability worth G in exchange 

for a smaller payment K, and so the prince's expected net cost from any promotion must be 

G!K.  The prince's total expected discounted cost is equal to the expected present discounted 

value of his net costs from all future appointments.  Thus, the optimal incentive plan for the 

prince should minimize the expected frequency of replacing governors.   

In a model that is similar to ours, Akerlof and Katz found no advantage to delayed wage 

increases, but they assumed that crises do not occur when an official serves correctly.  That is, in 

our terms, their model assumed that α would equal zero.  But in our model, with α>0, deferring a 

governor's compensation until the credit bound H is reached can help to reduce the prince's 

expected discounted cost by reducing the expected turnover of governors, because some crises 

can be punished by temporary suspension of wages instead of by dismissal. 

Ex post, however, the (unanticipated) replacement of a governor who has been promised 

u$G would yield benefits to the prince worth  K+V(u)!V(G) > 0.  Thus, although the prince 

wants ex ante to promise a low rate of turnover among his governors, they must always be 

suspicious that ex post he may try to find excuses to violate this promise and deny their promised 

rewards.  In our model, the parameter H represents the bound on how much the prince can 

credibly promise any governor. 

We have seen that, to deter his governors from corruption and rebellion, the prince's 

credit bound H cannot be less than the minimal credit level G that a loyal governor requires.  If 

governors could not trust the prince to pay them future rewards worth D, then they would rebel 

immediately.  If the prince's credit bound were between D and G, then he could deter governors 
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from rebellion, but he could not penalize crises sufficiently to deter governors from corruption. 

In the optimal incentive plan, by (9), the prince randomizes between dismissal and 

reinstatement of the current governor after crises when the governor's prior credit was below 

G+τ.  The threat of dismissal must be moderated by randomization here, because otherwise it 

would incite governors to rebel after crises.  Within our model, any procedure in the prince's 

court that implements this randomization could be considered a "fair trial" for the governor.  But 

in such a trial, the prince would actually prefer to dismiss rather than reinstate because, after a 

dismissal, he can get a new candidate to pay K>0 for promotion into the office of governor.  

Thus, the positive probability of reinstatement in such trials can be credible only if it is 

guaranteed by some institutional constraint on the prince. 

The fairness of these trials must be actively monitored, because the correct outcome of 

the trial cannot depend only on the facts of the case but must also depend on some unpredictable 

element in the trial itself.  If the correct outcome of a governor's trial depended predictably on the 

nature of the crisis in her province, then the governor would rebel before any trial that was to 

result in her dismissal, because the governor observes the crisis before she is called to court.  

Thus, the outcome of the trial must depend on unpredictable random events in the trial, and the 

correctness of the outcome can be verified only by people who have observed the process of the 

trial in detail. 

Who can punish a sovereign prince for wrongly dismissing a governor in an unfair trial?  

We have not formally modeled the prince's payoffs here, but we have assumed that corruption 

and rebellion would be very costly for the prince, perhaps because they could terminate his 

reign.  So governors and other high officials, as a group, have the power to punish such 

misbehavior by the prince.  If the prince were known to have wrongly dismissed a governor in an 

unfair trial, then other governors could lose trust in future trials, so that they would rebel after 

any crisis.  That is, the prince could be deterred from cheating a governor by the threat that his 

perceived credit bound would drop below G if such cheating were observed.  Thus, within our 

model, the prince can guarantee the fairness of a governor's trials by inviting other governors to 

observe it.  The effectiveness of the threat here depends on a sense of identity among the high 

officials who serve the prince, so that they would all lose faith in the prince's promises if he 

cheats any one of them.  (See Myerson, 2008, for further discussion of this crucial point.  

Enforcement by loss of reputations with future agents has also been modeled by Bull, 1987.) 
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 Other alternatives to randomized trials would be more costly to the prince in our model.  

Our analysis allowed for the possibility that governors could be punished or given severance pay, 

but neither is used in the optimal solution.  For example, consider the situation when a governor's 

expected credit drops to u!τ<G after a crisis.  Dismissing the governor with severance pay u!τ 

would make the prince's expected cost V(G)+u!τ!K, as a new governor would pay K for 

appointment to credit G.  On the other hand, reinstating the old governor at the minimal credit G 

after inflicting a corporal punishment that hurts her as much as an income loss of G!(u!τ) would 

make the prince's expected cost V(G), given that such corporal punishments have no benefit to 

the prince.  With 0<K<G, both of these expected costs are strictly greater than the prince's 

expected cost  V(u!τ) = V(G)+(u!τ)K'G!K  under the optimal plan with randomized 

dismissal.  Severance pay is not optimal because it increases the expected rate of turnover, which 

is costly for the prince when K<G.  Corporal punishment could decrease the expected rate of 

turnover but is not optimal because, when K>0, the prince would have to pay more to 

compensate governors for their anticipated risk of corporal punishment than the prince could gain 

by reducing turnover. 

 

7.  Tolerating low effort with a soft budget constraint 

Now let us relax the assumption that the prince will never tolerate corruption.  To 

endogenize the decision about whether deterrence of corruption is worthwhile, we need to take 

the cost of corruption into account.  To keep things simple, let us assume that the prince's loss 

from corruption is entirely due to the increased rate of crises that it causes, where each crisis 

costs the prince some amount L.  We continue to assume here that the prince's (unspecified) cost 

of rebellions is large enough that he wants to always deter rebellion, so the prince's trust bound 

cannot be less than the governor's rebellion payoff, that is, H$D.   Also for simplicity, let us 

assume now that candidates for governor cannot pay anything for promotion to governor, that is, 

K=0.  

What we have been calling corruption may be reinterpreted as low effort against crises, 

and good service is high effort.   It will be convenient for us now to reinterpret γ as the governor's 

unmonitorable cost for high effort that can reduce the expected rate of crises (instead of as the 

governor's hidden income from corruption that would increase the rate of crises).  So we assume 

now that the prince must pay an additional rate γ to the governor to cover these costs whenever 
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high effort is demanded.  To make sure that high effort would be economically efficient if it were 

observable, let us make the parametric assumption   

βL > αL+γ,  that is,  L > γ'(β!α) = τ. 

This γ expenditure allowance is not counted as income to the governor because she is supposed 

to be spending it on the high effort against crises, but there is a moral-hazard problem because 

the prince cannot directly observe the governor's effort expenditures.  So although the prince may 

demand high effort and pay the allowance necessary for it, the governor can always choose low 

effort and spend the γ allowance on her own consumption instead.  The governor would prefer 

this low-effort alternative if her expected penalty for new crises were less than  τ = γ'(β!α). 

 Let W(u) denote the optimal expected present-discounted value of prince's future costs 

when the governor has been promised credit u, including now the cost of crises and the effort 

cost γ which the prince must pay when the governor is supposed to choose high effort.  So this 

value W(u) differs from the value V(u) that we analyzed above in that W(u) also includes the 

expected discounted cost of crises and high effort, which would be (αL+γ)'δ  in the case where 

the governor always maintains high effort. 

Recall from section 3 the discrete-time model with time periods of length ε.  To 

accommodate our new assumptions, this model must be revised by permitting that, at the first 

stage of each period, the prince also has the option to advise the governor to exert low effort, in 

which case the prince would not pay the εγ effort-cost allowance.  So in each period the prince 

would now have two additional decision variables, the probability p of the governor being 

advised to exert low effort, and the expected future credit s for the governor at the end of the 

period if low effort was advised.  Then the promise-keeping constraint (1) becomes 

(1N)  εy + ps + (1!q!p)[(1!εα)r + εα(r!z)] $ (1+εδ)u. 

The noncorruption constraint (2) or (2N) remains the same (for the event that high effort is 

advised, which now has probability 1!q!p), and the other constraints are changed only by 

appropriate upper and lower bounds for s and q: 

(2N)  z $ τ, 

(3N)  r!z $ D,  s $ D, 

(4N)  r # H,  s # H, 

(5N)  y $ 0,  p $ 0,  q $ 0,  p+q # 1. 

When a new governor is appointed, the prince's optimal expected value becomes 
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(6N)      w0 = minimumy,p,s,r,z  εy  + p[W(s)+εβL] + (1!p)[(1!εα)W(r) + εαW(r!z)+εαL+εγ] 

subject to (2N)!(5N). 

Then for any credit u that the incumbent governor could expect at the end of the end of any 

period, the prince's expected future value W(u) must satisfy the recursion equation: 

(7N)      W(u) = minimumy,q,p,s,r,z  {εy  + qw0 + p[W(s)+εβL] + 

+ (1!q!p)[(1!εα)W(r) + εαW(r!z)+εαL+εγ]}'(1+εδ)   

subject to (1N)!(5N). 

The optimal solution to this problem will depend on whether the value function V from 

Theorem 1 satisfies the following inequality 

V(D) # (βL!αL!γ)'δ. 

For reasons that will be discussed below, the case when this inequality is satisfied may be called 

the hard budget constraint or HBC case.  The case when V(D) > (βL!αL!γ)'δ  may be called 

the soft budget constraint or SBC case.  As β>α and V(D) does not depend on the parameter L, 

the HBC case applies whenever L is large enough.  Notice that, with K=0 here, we have 

V(D) = V(0) = V(Gε) = v0'(1+εδ) = [(1!εα)V(G)+εαV(D)]'(1+εδ) 

which converges to V(G) as ε→0. 

The prince's optimal policy is characterized in the following theorem.  In the HBC case, 

the optimal policy is the same as before, and a governor has a positive probability of being 

dismissed whenever her credit drops below Gε after a crisis.  But in the SBC case, the optimal 

policy always has q=0, which means that a governor is never dismissed under this policy.  So the 

policy in this SBC case corresponds to a soft budget constraint because, no matter how many 

crises the governor may cause, the prince will bear the cost of them all without dismissing the 

governor.  A new governor starts at the low credit D, just enough to deter rebellion, and must 

wait a long time (duration approximately LN(G'D)'δ) before the prince will invite her to begin 

exerting high effort.  Then, when high effort is recommended, the governor will begin getting the 

γ effort-cost allowance, and her credit will begin rising from G at rate δu+ατ, but she will be 

exposed to τ penalty losses when crises occur, just as in the HBC case.  In both the SBC and 

HBC cases, the governor is paid an income y above the effort-cost allowance only when her 

credit gets close to the trust bound H.  The theorem is proven in section 10. 

Theorem 6.  Let V be the prince's value function from the discrete-time model in 
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Theorem 1 (where low effort could not be tolerated) with short period length ε and with K=0. 

Now consider the incentive problem when low effort can be tolerated.  If  V(D) # (βL!αL!γ)'δ  

(the HBC case) then the prince's optimal policies in (6N) and (7N) have p=0 always, so that low 

effort is never recommended, and have (y,r,z,q) always the same as in Theorem 1, and the 

optimal values are 

W(u) = V(u) + (αL+γ)'δ,  œu0[D,H]. 

If  V(D) > (βL!αL!γ)'δ  (the SBC case), then for a new governor the optimal policy in (6N) has 

y = 0,  p = 1,  s = D,  r = G,  z = τ,  and so  w0 = εβL + W(D); 

and, for any value u of an incumbent governor's credit, optimal policies in (7N) have   

z = τ,  r = max{G, min{u+εδu+εατ, H}},  εy = max{0, u+εδu+εατ!H},  

(which are the same as in Theorem 1) and have 

  if   u < Gε  then  q = 0,  s = min{u+εδu, Gε},  and  p = (Gε!u)'[Gε!s'(1+εδ)], 

if  u $ Gε  then  q = 0,  p = 0,  and s is irrelevant; 

and the optimal values are 

W(u) = u + (V(u)!u)(βL!αL!γ)'(δV(D)) + (αL+γ)'δ,  œu$D. 

Taking the limit as ε60, these optimal solutions can be extended to a continuous-time 

model where low effort can be tolerated, where the V function is as in Theorem 3.  In this 

continuous-time limit, the governor's credit grows between crises at rate u′ = δu when u < G and 

at rate u′ = δu+ατ when G ≤ u < H. 

In the parametric case where H=G, we would get V(D) = V(G) = (δG+ατ)'δ, because 

motivating high effort while maintaining credit G would require a constant wage δG+ατ.  The 

HBC case applies at this H=G case when (δG+ατ)'δ # (βL!αL!γ)'δ,  which is equivalent to 

   L $ (δG+ατ+γ)'(β!α). 

With higher H, V(D) becomes smaller, and so parametrically increasing H can never cause a 

switch from the HBC case to the SBC case.  Thus, if  L $ (δG+ατ+γ)'(β!α)  then the HBC case 

applies with any trust bound H$G.  On the other hand, if the prince's cost of crises satisfies  

L < (δG+ατ+γ)'(β!α)  then the SBC case applies at H=G, but increasing the trust bound H may 

cause a switch to the HBC case. 

To illustrate, let us consider examples where, as before,  α=0.1,  β=0.3,  γ=1,  δ=0.05,  

and  D=5,  but now  K=0.  To satisfy the assumption  αL+γ < βL,  we must have  L > τ = 5. 
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For the lowest possible trust bound H=D, high effort can never be motivated, and so the 

prince's total discounted cost must be  W(D) = D+βL'δ = 5+6L.  This solution applies with any 

H less than G. 

Now consider the case of H=G=10, the smallest credit bound where high effort is 

possible.  For the HBC case to hold with H=G, we would need  L $ (δG+ατ+γ)'(β!α) = 10.  So 

with L$10 and H=G here, the new governor would be started right away with credit G, and 

would always be expected to exert high effort, but would be dismissed with probability τ'G = 

0.5 whenever a crisis occurs.  For any L between 5 and 10, the SBC case holds, and so the 

governor would start at credit D, and she would be expected to exert low effort until her credit 

grew to u=G after a growth period of length LN(G'D)'δ = 13.86, but then she would be paid at 

rate δG+ατ+γ=2 for high effort until the next crisis (after which her pay and high efforts would 

again be suspended for another time interval of length 13.86).  With such an SBC incentive plan, 

the governor would never be dismissed. 

Now let the crisis cost be L=9, keeping other parameters as above.  Then a low trust 

bound H near G=10 would put us in the SBC case, and so the governor would never be 

dismissed.  But increasing the parameter H would reduce V(D) from Theorem 3.  When H>12.4 

with L=9, the expected cost V(D) falls below (βL!αL!γ)'δ, and then the hard budget constraint 

applies.  That is, when the trust bound H is greater than 12.4, governors are started at the initial 

credit level G, are always expected to exert high effort, and have a positive probability of 

dismissal whenever their credit drops below G after a crisis.  Thus we see that increasing the 

upper bound on what the prince can credibly promise to the governors can switch the optimal 

incentive policy from one characterized by a soft budget constraint to one characterized by a hard 

budget constraint. 

[Insert Figure 4 about here] 

Figure 4 shows where the soft and hard budget constraints policies are optimal for 

different (L,H) pairs, keeping the other parameters kept as above.  For any L between 7.9 and 10, 

an increase of the trust bound H above G=10 can cause the optimal policy to switch from soft to 

hard budget constraint in this example. 

When the soft budget constraint becomes optimal for the prince here, it is not caused by 

any intrinsic cost for the prince to dismiss a governor (as in Kornai, Maskin, and Roland, 2003).  

Instead, the soft budget constraint is caused here by the prince's short-term benefit from 
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dismissing a governor who is owed a large credit.  When the prince is less able to resist this 

short-term temptation to dismiss high-credit governors, the trust bound H becomes low, then the 

soft budget constraint can become optimal.  When the trust bound is too low, governors' credits 

cannot be far from the range where each crisis would require a risk of dismissal under the hard 

budget constraint, and so the hard-budget-constraint policy would entail too many dismissals, 

which become costly for the prince when they are anticipated by the governors.  Thus, the 

center's temptation to dismiss high-credit governors can be a reason for avoiding difficult 

judgments and reducing performance standards with a soft-budget-constraint policy. 

 

8.  Other assumptions about the prince's circle of trust 

 The analysis here has considered the prince's problem of filling a single governor's office, 

where the characteristics of this office (the moral-hazard opportunities associated with it) are 

given exogenously.  Such governorships are assumed here to be uniquely powerful positions in 

society, because the wealth that a governor can earn (G = D+γ'(β!α)) is substantially larger than 

what anyone could possibly earn outside of these offices (K).  Our model could be appropriate 

for a state that is naturally partitioned into a given set of provinces, each of which requires an 

official to locally represent the authority of the state.  But the validity of our assumptions may 

become weaker in a world with many different offices. 

For example, suppose instead that there are so many governorships that vacancies in these 

offices occur frequently.  Under this assumption, when a governor deserves some u!τ < G after a 

crisis, the governor could be temporarily retired or furloughed, and the required expectation u!τ 

could be derived from her prospects of returning to high office when some future vacancy 

occurs.  For such a plan to be feasible, the expected discount factor after the furlough period 

E(e!δT) must match the probability of reinstatement (u!τ)'G in the randomized fair trials of our 

plan from sections 3 and 4.  Under this furlough plan, however, the prince must be constrained to 

respect the right of a former governor to return to high office, after an appropriate period in 

disgrace.  Ex post, however, the prince would prefer to disavow his implicit debt to the disgraced 

former governor and instead sell the office to a new candidate for K. 

The prince could do even better when there are many different offices with greater and 

lesser opportunities for moral hazard.  For example, suppose that a lower office exists where the 

lesser opportunities for corruption can be deterred by promising future rewards that are worth K 
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when the official serves correctly.  The prince would lose nothing by selling this office to an 

outside candidate for the amount K.  But then suppose that, instead of paying the lower official, 

the prince simply increased her credit over time until the official's credit reached the amount G 

that a new governor needs.  Then the prince could promote this official to governor without loss.  

In this state, since each promoted candidate pays the full value of her office, the prince would 

have no cost of turnover, and so the prince would derive no advantages from increasing the credit 

bound H above G and decreasing the rate of turnover below α.  For this plan to work, however, 

the lower officials must share the higher officials' confidence that the prince will honor debts of 

size G or more to them.  In effect, the lower officials must be members of the same circle of trust 

with the high officials. 

Of course, if everybody could trust the prince to faithfully repay debts of size G or 

greater, then the prince could simply offer a savings plan where citizens would be invited to 

deposit their private wealth K along with all subsequent interest on these deposits, until they 

accumulate enough to pay the full value G for a governorship.  Such savings accounts would 

invalidate our initial assumption of a gap between the greatest value K that common citizens can 

accumulate and the least value G that a governor must expect.  But in this alternative world, the 

prince would be tempted to expropriate the citizens' deposits, just as he would prefer to disavow 

his implicit debt to an individual who has served without pay in a lower office.  

Thus, the realism of our model depends on recognizing that, in many societies, 

individuals may have very different abilities to defend valuable claims against the state.  

Throughout history, many rulers have been able to hold political power without trust or support 

from the great mass of common people, but no ruler can hold power for long without the trust 

and support of the governors and captains who are the principal instruments of his power.  That 

is, any successful political leader must be able to credibly promise large future rewards (at least 

G here) to the high officials of his government, but the same leader may be unable to credibly 

restrain his government from cheating common citizens of much smaller amounts.  Indeed, the 

leader's need to maintain faith with his high officials may prevent him from punishing them for 

expropriating commoners' assets, and the expected income from such expropriations from 

commoners may be counted as part of the officials' compensation.  In such a situation, as our 

model assumes, the leader would be able to guarantee large debts H to the elite members of his 

inner circle, while others in the population could not hold assets worth more than K without 
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serious risk of expropriation, where K < G < H.  

 

9.  Conclusions 

 We have considered a simple dynamic moral-hazard agency model to emphasize the 

crucial problems of judging and punishing high officials of the state.  For high officials to be 

deterred from abusing their power, they must be confident that loyal service will bring great 

expected rewards.  We have seen that an inability of the state to credibly promise sufficiently 

great rewards for good service may sometimes cause the state to demand less of its agents when 

their credit is low, forgiving costly losses that are evidence of low effort or corruption, as in 

Kornai's soft budget constraint.  When the stakes are high enough to justify a system of hard 

budget constraints, some punishment of loyal hard-working officials may be unavoidable because 

monitoring is imperfect.  But such punishments raise a fundamental problem of trust at the center 

of the state because, ex post, penalties reduce the debt of the state, and dismissals can become 

profitable opportunities for the head of state to resell valuable offices.  The need to apply a 

randomized punishment strategy, to deter rebellions, requires that the process of judging high 

officials must be monitored in detail.  Thus, we have argued that a political leader needs to 

guarantee the credibility of his incentive plan for high officials by a constitutional system in 

which high officials cannot be punished without a trial that is witnessed by others in an 

institutionalized court or council. 

 When these institutionalized protections apply only to the small governing elite, so that 

people outside this elite cannot accumulate the wealth that high officials must be guaranteed, 

then the leader's optimal incentive plan should minimize the expected turnover of high officials.  

Such minimization of turnover can be accomplished by deferring compensation and increasing 

the leader's debt to his officials, so that most crises can be penalized by temporarily suspending 

some payments on this debt without actually dismissing the responsible official.  Thus, moral-

hazard problems can provide a positive incentive for political leaders to accumulate the largest 

possible debts to their officials, even when leaders and officials discount the future at the same 

rate.  In the long run, however, this accumulation of such debts will create an elite aristocracy 

that holds large expensive claims on the state.   

Such accumulated debts of aristocratic privileges can ultimately weaken the state by 

decreasing the resources that it can apply to defend itself against other challenges.  But these 
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institutionalized debts can be repudiated only when a new dynasty begins with a leader who is 

not bound by any inherited promises of predecessors to their governing elite.  Thus, our model 

may offer some explanation of traditional dynastic declines in history.  Such declines could, 

however, call into question our simplifying assumption that the prince's trust bound H is 

parametrically constant over time.  In a more realistic (but much more complicated) model, the 

trust bound H might decrease as the prince's debts to other agents grow. 

Notice that the rationale here for vesting high offices in the members of an elite 

aristocracy is not based on any assumption of innate inequality among individuals.  Indeed, our 

analysis implicitly assumed an innate equality among individuals, because we have not 

considered any possibility that a policy of recruiting broadly from the mass of poor commoners 

might yield more capable officials than the leader can find among his trusted inner circle of 

aristocrats.  In our analysis, elitism results instead from a scarcity of social trust: trust by a leader 

that his agents will not abuse delegated powers for short-term private gain, and trust by agents 

that their leader will actually pay them deferred rewards for long years of loyal service. 

In essence, the expected rewards that must be associated with high offices make them 

valuable assets, for which qualified candidates would be willing to pay ex ante, to the extent that 

they have the means.  But these expected rewards are also a liability of the state, and the leader of 

the state would profit ex post by repudiating such liabilities.  So high officials must be 

recognized as having acquired valuable rights to their offices, and these rights require 

institutional protection and legal enforcement, like any other property rights.  People generally 

look to the state for enforcement of property rights, but in this case we are considering the 

enforcement of debts owed by the leader of the state himself.  The key to enforcement in this case 

may be the observation that the leader cannot get loyal service from his high officials if they lose 

their trust that he will fulfill his promises.  If high officials have a shared sense of identity, then 

the wrongful dismissal of any one of them can cause others to lose trust in the leader.  So when 

there is any question about whether a high official has been wrongly dismissed by the leader, the 

jury for deciding this question can be found among the other high officials.  Thus, the leader's 

essential credibility can be maintained by instituting a court or council where any judgment 

against a high official will be scrutinized by others in their privileged class. 

Throughout history, successful governments have developed such institutions to serve 

this essential function of regulating punishment of powerful government agents.  The Hittite 
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Panku council, the Roman Senate, and the English Exchequer are just a few examples that we 

have noted here.  The importance of the medieval Exchequer can be particularly appreciated 

when we contrast it with the centrifugal forces of feudalism in the same period.  The king's 

ability to exercise authority throughout the realm depended critically on the sheriffs' confidence 

that loyal service would earn the king's reward, but a policy of never punishing sheriffs would 

constitute surrender to feudal disintegration of the state.  Strong centralized government required 

credible guarantees that punishment of local government agents would occur only in carefully 

limited circumstances situations, and such guarantees required formal institutions to protect the 

agents' rights.  From this perspective, we can also see how the subsequent development of 

parliamentary representation in England (from the thirteenth century) could further strengthen 

royal government, by enabling kings to credibly guarantee privileges to a broader class of local 

government agents than could be practically assembled at court (Coss, 2005, ch 7). 

In the absence of such institutional guarantees, when governors and local commanders 

lose trust that their ruler will treat them fairly, the results can be disastrous for the state, as the 

Hittite king Telipinu warned 3500 years ago.  For one example, the collapse of the Ming dynasty 

in China began in 1630 when the Ming emperor was seen to unjustly execute his commander 

against the Manchus, Yuan Chonghuan, whose string of celebrated victories had been broken by 

one reversal.  Thereafter, other Chinese commanders regularly defected to the Manchus, who 

soon replaced the Ming as rulers of China (Mote, 1999, ch 30).  The moral-hazard constraints in 

our model are a simple stylized representation of the standards of expected behavior that a leader 

must satisfy to avoid such disasters and maintain the state. 

 

10.  Proofs 

Proof of Theorem 1.   Notice first that the optimal value function V(u) always is weakly 

increasing in u, because increasing u can only tighten constraint (1) in the minimization (7). 

Because V is weakly increasing, the optimal value with a new governor must be 

v0 = miny,r,z  !K + εy  + (1!εα)V(r) + εαV(r!z) 

subject to  z $ τ,  r!z $ D,  r # H,  y $ 0 

     = (1!εα)V(G) + εαV(D) ! K, 

with the minimum achieved by  y=0,  r!z = D,  and  r = D+τ = G,  as in condition (8). 

For any bounded function V̂ on [D,H], let   
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θ0(V̂) = (1!εα)V̂(G) + εαV̂(D) ! K,   

and let Ξ(V̂) denote the function defined by 

  Ξ(V̂)(u) = miny,q,r,z  {εy + qθ0(V̂) + (1!q)[(1!εα)V̂ (r) + εαV̂(r!z)]}'(1+εδ) 

subject to  z $ τ,  r!z $ D,  r # H,  y $ 0,  0 # q # 1, 

and  εy + (1!q)[(1!εα)r + εα(r!z)] $ (1+εδ)u, 

With εδ>0, Ξ is a contraction mapping, satisfying 

maxu0[D,H]  |Ξ(V̂)(u)!Ξ(V̂)(u)| # maxu0[D,H]  |V̂(u)! V̂(u)|'(1+εδ). 

So there will be a unique bounded fixed point V that satisfies V = Ξ(V), and this unique fixed-

point V must be the optimal value function V satisfying condition (7) at all u with  v0 = θ0(V).  

The contraction-mapping property implies that the value function V could be computed from any 

initial guess V̂ by iteratively applying Ξ to get  V(u) = limn64  Ξn(V̂)(u). 

We now claim that, if V̂ is a convex function on [D,H] that has slopes always between 

K'(G!εατ) and 1, Ξ(V̂) is also convex and has slopes always between K'(G!εατ) and 1.  This 

claim implies that, if we start from an initial guess that is convex and has slopes between 

K'(G!εατ) and 1 (such as the identity function V̂(u)=u), then all Ξn(V̂) and the limiting optimal 

value V will be convex and have slopes always between K'(G!εατ) and 1.  In the rest of this 

proof, we will prove this claim and show that it implies the optimal policies described in 

conditions Theorem 1. 

So henceforth assume that V̂ is a convex function on [D,H] that has slopes always 

between K'(G!εατ) and 1.  Recall  Gε = (G!εατ)'(1+εδ)  and  Hε = (H!εατ)'(1+εδ). 

First consider any u in [Gε,Hε].  For the minimization that defines Ξ(V̂)(u), a Lagrangean 

function with multiplier λ for the promise-keeping constraint (1) can be written as follows: 

{εy  + qθ0(V̂) + (1!q)[(1!εα)V̂(r) + εαV̂(r!z)]}'(1+εδ) 

+ λ{(1+εδ)u ! εy ! (1!q)[(1!εα)r + εα(r!z)]}. 

Let the Lagrange multiplier be 

λ = [(1!εα)V̂N(u+εδ+εατ) + εαV̂N(u+εδu+εατ!τ)]'(1+εδ). 

(Here the derivative V̂N can be taken to be the right-hand slope of V̂ for small increases, which is 

well defined for the convex function V̂ even where it has a nondifferentiable kink.)  Given any q 

between 0 and 1, this Lagrangean is convex in y, r, and z, and it is minimized subject to the linear 

constraints y$0 and z$τ by letting  

y=0,  z=τ,  and  r = u+εδu+εατ. 
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First-order optimality conditions can be verified at this solution, given that V̂N is increasing and 

always between 0 and 1.  With these optimal values of (y,r,z), the Lagrangean reduces to 

{qθ0(V̂) + (1!q)[(1!εα)V̂(r) + εαV̂(r!τ)]}'(1+εδ) + 

 + {(1+εδ)u!(1!q)(r!εατ)}[(1!εα)V̂N(r)+εαV̂N(r!τ)]'(1+εδ). 

This is an increasing function of q because the convexity of V̂ and the bounds on its slope imply: 

θ0(V̂) ! [(1!εα)V̂(r) + εαV̂(r!τ)] + (r!εατ)[(1!εα)V̂N(r)+εαV̂N(r!τ)] 

= θ0(V̂) ! [(1!εα)V̂(r) + εαV̂(r!τ)] ! (G!r)[(1!εα)V̂N(r)+εαV̂N(r!τ)] 

+ (G!εατ)[(1!εα)V̂N(r)+εαV̂N(r!τ)] 

$ θ0(V̂) ! [(1!εα)V̂(G) + εαV̂(G!τ)] + (G!εατ)[(1!εα)V̂N(r)+εαV̂N(r!τ)] 

$ !K + (G!εατ)K'(G!εατ) = 0. 

So the reduced Lagrangean is minimized over q$0 by letting q=0.  These optimal values satisfy 

all constraints and satisfy the promise-keeping constraint with equality.  Thus, for this case of 

Gε#u#Hε, the optimal policy is as specified in condition (11) of the theorem.  This optimal 

solution yields 

Ξ(V̂)(u) = [(1!εα)V̂(u+εδu+εατ) + εαV̂(u+εδu+εατ!τ)]}'(1+εδ). 

The slope is   

Ξ(V̂)N(u) =  (1!εα)V̂N(u+εδu+εατ) + εαV̂N(u+εδu+εατ!τ),   

which is increasing in u and always between K'(G!εατ) and 1, given these properties for V̂N. 

For the case of  Hε < u # H,  the above argument fails because u+εδu+εατ>H.  But in this 

case we can let the multiplier of the promise-keeping constraint be λ = 1'(1+εδ), so that the 

Lagrangean becomes 

{εy  + qθ0(V̂) + (1!q)[(1!εα)V̂(r) + εαV̂(r!z)]   

+ [(1+εδ)u ! εy ! (1!q)(r!εαz)]}'(1+εδ). 

Then for any q in [0,1], sufficient first-order conditions for minimizing the Lagrangean over 

(y,r,z) subject to r#H and z$τ are satisfied by 

εy = u+εδu+εατ!H > 0,  r = H,  and  z=τ, 

because V̂ is convex and its slope V̂N is always between 0 and 1.  Then the Lagrangean is 

increasing in q, because, with the slope of V̂ bounded above by 1, we have 

θ0(V̂) ! [(1!εα)V̂(H) + εαV̂(H!τ)] + (H!εατ) 

= !K + [(1!εα)V̂(G)+εαV̂(G!τ)] !  [(1!εα)V̂(H)+εαV̂(H!τ)] + H!εατ 

$ !K + (G ! H) + H!εατ = G!εατ ! K > 0. 
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So the reduced Lagrangean is again minimized over q$0 by letting q=0, and these optimal values 

also satisfy the promise-keeping constraint with equality.  Thus, for this case of u>Hε, the 

optimal policy is also as specified in condition (11) of the theorem.  This solution yields 

Ξ(V̂)(u) = [u+εδu+εατ!H + (1!εα)V̂(H) + εαV̂(H!τ)]}'(1+εδ). 

The slope is  Ξ(V̂)N(u) = 1  for any such u > Hε. 

For the case of  u < Gε,  let the Lagrange multiplier be  λ = K'[(G!εατ)(1+εδ)],  so that 

the Lagrangean becomes 

{εy  + qθ0(V̂) + (1!q)[(1!εα)V̂(r) + εαV̂(r!z)] 

+ [K'(G!εατ)][(1+εδ)u!εy!(1!q)(1!εα)r!(1!q)εα(r!z)]}'(1+εδ). 

For any q between 0 and 1, the Lagrangean is minimized over (y,r,z) subject to y$0, r!z$D, and 

r$G, by letting 

y=0,  r!z = D,  r = G, 

because the slope of V̂ always satisfies  1 $ V̂N $ K'(G!εατ).  Then the Lagrangean reduces to 

{qθ0(V̂) + (1!q)[(1!εα)V̂(G) + εαV̂(D)] 

+ [K'(G!εατ)][u+εδu ! (1!q)(G!εατ)]}'(1+εδ) 

= {!qK + (1!εα)V̂(G) + εαV̂(D)  

+ [K'(G!εατ)][u + εδu + εατ ! G + q(G!εατ)]}'(1+εδ), 

which is independent of q.  So we can minimize the Lagrangean and satisfy the promise-keeping 

constraint (1) with equality by letting 

q = 1!(u+εδu)'(G!εατ) = 1!u'Gε. 

Thus, for u<Gε, an optimal solution satisfies condition (9) in the theorem.  This solution yields 

Ξ(V̂)(u)= {!(1!u'Gε)K + (1!εα)V̂(G) + εαV̂(D)}'(1+εδ), 

The slope is  Ξ(V̂)N(u) =  K'(G!εατ)  for any such u < Gε. 

Our characterizations of the slopes Ξ(V̂)N(u) verify the claim that Ξ(V̂) is convex and has 

slopes between K'(G!εατ) and 1, for all u in [D,H], when V̂ has these properties.  So the fixed-

point V has these properties, and the optimal solutions are as summarized in Theorem 1.   Q.E.D. 

Proof of Theorem 3.  We have seen that the derivative ΨN increases discontinuously at G, 

from ΨN(u)=0 when u<G to ΨN(G) = δ'(δG+ατ) > 0.  At any u$G, differentiating (19) yields 
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ΨNN(u) = [(δ+α)ΨN(u) ! αΨN(u!τ)]'(δu+ατ) 

! [(δ+α)Ψ(u) ! αΨ(u!τ)]δ'(δu+ατ)2 

= [(δ+α)ΨN(u) ! αΨN(u!τ) ! δΨN(u)]'(δu+ατ) 

= α[ΨN(u) ! ΨN(u!τ)]'(δu+ατ). 

This formula yields ΨNN(G)>0, because ΨN(G) = δ'(δG+ατ) > ΨN(G!τ) = 0.  If ΨNN(u) were not 

always strictly positive when u$G, then there would exist some smallest û$G such that ΨNN(û)=0; 

but then ΨNN(u)>0 for all smaller u would imply  ΨN(û) > ΨN(û!τ),  yielding the contradiction  

ΨNN(û) = α[ΨN(û)!ΨN(û!τ)]'(δû+ατ) > 0.  

So ΨNN(u) > 0 for all u$G.  Thus, ΨN(u) is strictly increasing and positive when u$G, and Ψ(u) is 

a convex function of u.  

But the initial conditions and differential equation (18)-(19) that uniquely characterize 

Ψ(u) are satisfied by  

Ψ(u) = (V(u) ! uK'G)'V(0),  

because V satisfies conditions (14)-(15).  Then condition (16), VN(H)=1, implies 

ΨN(H) = (1!K'G)'V(0),  and so  V(0) = (1!K'G)'ΨN(H). 

Thus, the function V can be computed from Ψ by the formulas 

V(u) = uK'G + Ψ(u)V(0) = uK'G + Ψ(u)(1!K'G)'ΨN(H),  œu0[0,H].   Q.E.D 
 

Proof of Theorem 5.  In this theorem, u denotes a random credit drawn from the 

stationary distribution F. 

We first prove that the stationary cumulative distribution F satisfies the following 

equation, for any w in the interval [G,H]: 

(20)      Iu0[G,w) δu dF(u) + Iu0[w,w+τ] α(u!w!τ) dF(u) + Iu0[G,G+τ] α(G+τ!u) dF(u) = 0. 

To prove (20) for any w, consider the quantity 

E(min{0,u!w}) = Iu0[G,w] (u!w) dF(u). 

With the stationary distribution F, this expected value is constant over time.  The left-hand side 

of (20) is the rate at which this expected value would increase over time, starting with the 

distribution F.  The first integral in (20) is  F(w) E(δu* u<w),  which is the expected rate of 

increase of the current governor's credit u when starting from a state with u<w.  The second 

integral is the rate at which newly nonzero (negative) values of min{0, u!w} are created from a 

governor with credit above w having a crisis that brings her credit below w.  When the governor's 
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credit drops below G, credit is raised to G by either reinstatement or replacement, and the rate of 

such raises is αE(max{G+τ!u, 0}),  the third integral.  

Notice that  δG # E(δu* u<w),  and  Iu0[w,w+τ] α(w+τ!u) dF(u) # ατ[F(w+τ)!F(w)],  and 

the third integral in equation (20) is nonnegative.  Together, these inequalities imply 

(21)  F(w) δG # F(w) E(δu* u<w) # Iu0[w,w+τ] α(w+τ!u) dF(u) # ατ[F(w+τ)!F(w)], 

and thus, 

F(w) # F(w+τ) ατ'(δG+ατ),   œw0[G,H]. 

Notice  F(w+τ) = 1  when  w+τ > H.  So by induction, for any integer m$0,  

if  u # H!mτ  then  F(u) # [ατ'(δG+ατ)]m+1. 

These bounds imply that, in the stationary distribution, credit u is unlikely to be far below H, 

satisfying 

E(H!u) = Iu0[G,H] (H!u) dF(u) = Iu0[G,H] F(u) du  

#  3m=0
∞ τ [ατ'(δG+ατ)]m+1 = ατ2'(δG). 

Thus  H!ατ2'(δG) # E(u).   Using (21) with w=H and using F(H+τ)=1, we get 

E(δu) = F(H) E(δu* u<H) + [1!F(H)]δH # ατ[1!F(H)] + [1!F(H)]δH. 

Thus  δH!ατ2'G # E(δu) # [1!F(H)](δH+ατ)  and so we get 

(δH!ατ2'G)'(δH+ατ) # 1!F(H).   Q.E.D. 

Proof of Theorem 6.  The two cases (HBC and SBC) can be unified by the formula 

W(u) = (1!μ)u + μV(u) + (αL+γ)'δ,  œu$D,  where 

μ = min{1, (βL!αL!γ)'(δV(D))}. 

In this proof, let us take W to be defined from V according to this formula, with μ=1 in the HBC 

case, μ<1 in the SBC case.  Then we will show that this function W satisfies the recursive 

optimality conditions (7') with the optimal policies that are described in the theorem. 

To begin, let us derive some useful properties of W that follow from this formula, using 

the properties of V from Theorem 1.  W(u) is convex and has linear segments when u>Hε and 

when u<Gε, because V has these properties.  Above Hε, the slope of W is 

 WN(u) = 1!μ + μVN(u) = 1  when  u>Hε. 

Convexity of W then implies WN(u)#1 for all u.  When u is less than Gε, V(u) is constant (as K=0 

here), and so the slope of W is 

WN(u) = 1!μ $ 0  when  u<Gε, 
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and then, with our formulas for μ and W(u), we get 

W(u) ! uWN(u) = μV(D) + (αL+γ)'δ # βL'δ  when  œu<Gε. 

This last inequality becomes an equality in the SBC case where μ<1, and so 

W(u) = uWN(u) + βL'δ = uWN(D) + βL'δ  when  μ<1 and  u<Gε.. 

When  Gε # u # Hε,  the recursion equation (12) for V give us a similar equation for W: 

(1!εα)W(u+εδu+εατ) + εαW(u+εδu+εατ!τ) + εαL + εγ 

= (1!μ)[(1!εα)(u+εδu+εατ) + εα(u+εδu+εατ!τ)] + 

+ μ[(1!εα)V(u+εδu+εατ) + εαV(u+εδu+εατ!τ)] 

+ (αL+γ)'δ +ε(αL+γ) 

= (1!μ)(u+εδu) + μ(1+εδ)V(u) + (1+εδ)(αL+γ)'δ 

= (1+εδ)W(u)  when  Gε # u # Hε. 

Differentiating this equation yields one more equation that will be useful: 

WN(u) = (1!εα)WN(u+εδu+εατ)+ εαWN(u+εδu+εατ!τ),  œu0[Gε,Hε]. 

Let us now derive w0 from W according to (6N).  Because W is an increasing function, the 

constrained minimization in (6N) can be achieved by making y, s, r!z, and r as small as possible, 

with y=0, s=D, r!z=D and r=D+τ=G, so that (6N) becomes 

w0 = minp0[0,1] p[W(D)+εβL] + (1!p)[(1!εα)W(G)+εαW(D)+εαL+εγ] 

Then, with Gε = (G!εατ)'(1+εδ), the difference between the bracketed terms here is: 

[(1!εα)W(G)+εαW(G!τ) + ε(αL+γ)] ! [W(D)+εβL] 

= (1+εδ)W(Gε) ! [W(D)+εβL] 

= (1+εδ)(Gε!D)WN(D) + εδ[W(D)!βL'δ] 

= (1!μ)(G!εατ!D) + εδ[W(D)!DWN(D)!βL'δ] 

So in the HBC case when μ=1, this difference is nonpositive (as the first term in the last line 

becomes 0); but in the SBC case when μ<1, this difference is positive (as the last bracketed term 

on the last line becomes 0).  Thus, in the HBC case, the optimal policy in (6N) has p=0 and yields 

w0 = (1!εα)W(G) + εαW(D)+εαL+εγ = (1+εδ)W(Gε)  when μ=1;   

but in the SBC case, the optimal policy in (6N) has p=1 and yields   

w0 = W(D)+εβL  when μ<1. 

For any given u, consider a Lagrangean relaxation of the minimization problem in (7'), 

where the promise-keeping constraint is added into the minimand with a multiplier λ.  That is, 

consider the problem of minimizing the Lagrangean: 
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{εy  + qw0 + p[W(s)+εβL] + 

+ (1!q!p)[(1!εα)W(r) + εαW(r!z)+εαL+εγ]}'(1+εδ)   

+ λ[(1+εδ)u ! εy ! ps ! (1!q!p)(r!εαz)], 

subject to the constraints (2N)-(5N): 

z$τ,  r!z$D,  r#H,  s#H,  y$0,  p$0,  q$0,  p+q#1. 

First consider u such that  Gε # u # Hε,  and let the Lagrange multiplier be 

λ = WN(u)'(1+εδ) = [(1!εα)WN(u+εδu+εατ)+ εαWN(u+εδu+εατ!τ)]'(1+εδ). 

Then for any p and q, the Lagrangean is minimized over (y,r,z,s) subject to (2N)-(5N) by  

r = u+εδu+εατ,  z = τ,  y = 0,  s=u. 

(To verify this minimization, notice that the Lagrangean is convex in (r,z,y,s), and these values 

satisfy the first-order conditions for minimizing the Lagrangean subject to the linear constraints 

z$τ and y$0.  We use the fact that, by convexity, WN(u) is increasing in u and is never greater 

than 1.)  Then we get  r!εαz = u+εδu,  and the Lagrangean reduces to 

{q w0 + p[W(u)+εβL] + (1!q!p)(1+εδ)W(u) + 

+ WN(u)[(1+εδ)u!pu!(1!q!p)(u+εδu)]}'(1+εδ). 

Notice W(u)!uWN(u) is a decreasing function of u, because W is convex and u>0.  So the 

coefficient of p in the reduced Lagrangean is 

{W(u)+εβL ! (1+εδ)W(u) ! WN(u)u + WN(u)(u+εδu)}'(1+εδ) 

= {εβL ! εδ[W(u)!uWN(u)]}'(1+εδ) 

$  εδ{βL'δ ! [W(D)!DWN(D)]}'(1+εδ) $ 0. 

Similarly, the coefficient of q in the reduced Lagrangean is 

{w0 ! (1+εδ)[W(u) ! uWN(u)]}'(1+εδ), 

which in the HBC case (where W is constant below Gε) becomes  

W(Gε)  ! [W(u)!uWN(u)] $ W(Gε) ! [W(D)!DWN(D)] = 0, 

and which in the SBC case becomes 

{[W(D) + εβL] ! (1+εδ)[W(u)!uWN(u)]}'(1+εδ) 

$ {[W(D)+εβL] ! (1+εδ)[W(D)!DWN(D)]}'(1+εδ) 

= {[W(D)!βL'δ] ! (1+εδ)[W(D)!DWN(D)!βL'δ]}'(1+εδ) 

= DWN(D)'(1+εδ) $ 0. 

Thus, as both coefficients are nonnegative, the Lagrangean is minimized by p=0 and q=0.  As 

this solution also satisfies promise-keeping constraint (1N) with equality, it is also optimal for the 
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original problem (7N).  With this optimal solution, the minimum on the right side of (7N) becomes 

{[(1!εα)W(u+εδu+εατ) + εαW(u+εδu+εατ!τ) + ε(αL+γ)]}'(1+εδ) 

= W(u), 

and so equation (7N) is verified for all u in [Gε,Hε]. 

Next, consider u such that u>Hε, and let the Lagrange multiplier be λ=1'(1+εδ).  Then 

the Lagrangean becomes 

{εy  + qw0 + p[W(s)+εβL] + (1!q!p)[(1!εα)W(r) + εαW(r!z)+ε(αL+γ)] + 

+ [(1+εδ)u ! εy ! ps ! (1!q!p)(r!εαz)]}'(1+εδ). 

By first order conditions, using the fact that WN is never more than 1, the minimization of this 

Lagrangean subject to r#H, s#H and z$τ can be achieved by letting  

s=H,  r=H,  and  z=τ. 

The coefficient of y in this Lagrangean is zero, and so we can minimize the Lagrangean by letting 

εy = (1+εδ)u ! (H!εατ), 

which is nonnegative because  u $ Hε = (H!εατ)'(1+εδ).  Then the Lagrangean reduces to 

{qw0 + p[W(H) + εβL] + (1!q!p)(1+εδ)W(Hε) + 

+ [(1+εδ)u  ! pH ! (1!q!p)(H!εατ)]}'(1+εδ) 

= {qw0 + p[W(H) + εβL] + (1!q!p)(1+εδ)[W(H)+(Hε!H)] + 

+ [(1+εδ)u + (1!q!p)εατ ! (1!q)H]}'(1+εδ). 

(Recall that WN(u)=1 when u>Hε.)  So the coefficient of p in the reduced Lagrangean is 

{W(H)+εβL ! (1+εδ)W(H) + ε(δH+ατ) ! εατ}'(1+εδ) 

= εδ{βL'δ ! [W(H)!HWN(H)]}'(1+εδ) 

$  εδ{βL'δ ! [W(D)!DWN(D)]}'(1+εδ) $ 0. 

Similarly, the coefficient of q in the reduced Lagrangean is 

{w0 ! (1+εδ)W(H) + ε(δH+ατ) ! εατ + H}'(1+εδ), 

= {w0 ! (1+εδ)[W(H) ! HWN(H)]}'(1+εδ), 

which is also nonnegative (as argued in the previous paragraph).  Thus, as both coefficients are 

nonnegative, the Lagrangean is again minimized by p=0 and q=0.  As this solution also satisfies 

promise-keeping constraint with equality, it is also optimal for the original problem on the right-

hand side of (7N).  With this solution, the minimum on the right-hand side of (7N) becomes 

  {(1+εδ)u ! (H!εατ) + [(1!εα)W(H) + εαW(H!τ)+εαL+εγ]}'(1+εδ) 

= u!Hε + W(Hε) = W(u), 
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and so equation (7N) is verified for u>Hε. 

Finally, consider u such that u<Gε, and let the Lagrange multiplier be λ = (1!μ)'(1+εδ).  

In this case, the Lagrangean becomes 

{εy  + qw0 + p[W(s)+εβL] + (1!q!p)[(1!εα)W(r) + εαW(r!z)+ε(αL+γ)] + 

     + (1!μ)[(1+εδ)u ! εy ! ps ! (1!q!p)(1!εα)r  ! (1!q!p)εα(r!z)]}'(1+εδ). 

Using the facts that μ>0, and WN is never less than 1!μ, but W'(s)=1!μ if s<Gε, we find that this 

Lagrangean can be minimized over (y,r,z,s) subject to y$0, r!z$D, and z$τ by choosing 

y = 0,  r!z = D,  z = τ,  s = min{u+εδ, Gε}. 

With these optimal values, the Lagrangean reduces to 

{qw0 + p[W(s)+εβL] + (1!q!p)(1+εδ)W(Gε) + 

      + (1!μ)[(1+εδ)u ! ps ! (1!q!p)(G!εατ)]}'(1+εδ). 

But W(Gε) = W(D)+(1!μ)(Gε!D), because the function W has slope 1!μ between D and Gε..  So 

the coefficient of q in the reduced Lagrangean is 

{w0 ! (1+εδ)W(D) ! (1!μ)(G!εατ!D!εδD) + (1!μ)(G!εατ)}'(1+εδ) 

= {w0 ! (1+εδ)[W(D) !DWN(D)]}'(1+εδ) 

which is nonnegative by the same argument that we applied above.  The coefficient of p in the 

reduced Lagrangean is 

{W(s)+εβL ! (1+εδ)[W(s)+(1!μ)(Gε!s)] + (1!μ)(G!εατ!s)}'(1+εδ) 

   = {εβL ! εδW(s) ! (1!μ)(G!εατ!s!εδs!G+εατ+s)}'(1+εδ) 

= εδ{βL'δ ! [W(s)!sWN(s)]}'(1+εδ) 

which is nonnegative in the HBC case and (with s#Gε) is zero in the SBC case.  So in the SBC 

case, the Lagrangean can be minimized by setting 

q = 0  and  p = (Gε!u)'[Gε!s'(1+εδ)], 

so that the promise-keeping constraint (1N) is satisfied with equality.  This SBC solution yields 

s = u+εδu  and  p = 1  when  u # Gε'(1+εδ), 

s = Gε  and  p = (1!u'Gε)[1+1'(εδ)]  when  Gε'(1+εδ) < u < Gε, 

and the minimum on the right-hand side of (7N) becomes 

{p[W(s)+εβL] + (1!p)(1+εδ)W(Gε)}'(1+εδ) 

= {p[βL'δ+(1!μ)s+εβL] + (1!p)(1+εδ)[βL'δ+(1!μ)Gε]}'(1+εδ) 

= βL'δ + (1!μ)[ps'(1+εδ) + (1!p)Gε] 

= βL'δ + (1!μ)u = W(u). 
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So equation (7N) is verified for the SBC case with u<Gε.  On the other hand, in the HBC case, this 

Lagrangean is minimized by setting  

q = 0  and  p = 0. 

Then the promise-keeping constraint has slack, but its Lagrange multiplier is 1!μ = 0.  So these 

values solve the original minimization problem on the right-hand side of (7N) for this u<Gε, and 

equation (7N) is satisfied because 

[(1!εα)W(G)+εαW(D)+ε(αL+γ)]'(1+εδ) = W(Gε) = W(u) 

in the HBC case where WN(u)=0 for u<Gε.  

Thus we have proven that the W function that is computed from V according to the 

theorem satisfies the recursive optimality equations (7N) with the optimal policies that are 

specified in the theorem.   Q.E.D. 

Finally, we can describe how the solution in Theorem 6 would change with K>0.  Let 

V0(u) denote the value of V(u) in Theorem 1 with K=0 but with all other parameters are as given; 

that is V0(u) is the expected total cost of wages under the HBC plan.  For the SBC plan, expected 

net cost with K>0 would be the same as with K=0 once a governor has been appointed, and so 

WSBC(u) = u + (V0(u)!u)(βL!αL!γ)'(δV0(0)) + (αL+γ)'δ,  œu$D, 

but now WSBC(0) = WSBC(D) ! K.  The high-effort HBC plan has a new wrinkle, however.  When 

we allow that a governor can trust the prince even with credit as low as D, then a new governor 

can be asked to pay K for appointment with credit D, and then, after a short period of time, the 

new governor can be either promoted to credit G, with probability D'G, or else dismissed.  High 

effort cannot be demanded until the governor is promoted to G, but this low-effort period could 

be made arbitrarily short.  With such randomization for new appointments, any dismissal would 

be quickly followed by the prince collecting K from a random number of new governors that has 

expected value G'D.  So we can implement a modified HBC plan that differs from the optimal 

policy in Theorem 1 only in that, after any crisis-penalty dismissal, the prince can resell the 

governor's office for expected revenue KG'D instead of K, and so (applying Theorem 3) the 

expected net cost becomes 

WHBC(u) = u + (V0(u)!u)(1!K'D) + (αL+γ)'δ,  œu$0. 

The SBC plan is optimal when  (βL!αL!γ)'δ < (1!K'D)V0(0),  and otherwise the modified 

HBC plan is optimal. 
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Figure 1.  The leader's expected cost as a function of the credit owed to the  
governor, for an example with α=0.1, β=0.3, δ=0.05, γ=1, D=5,K=1, H=25. 
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Figure 2.  The leader's expected cost when appointing a new governor, as a  
function of the credit bound H, when α=0.1, β=0.3, γ=1, D=5, K=1. 
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Figure 3.  The stationary probability distribution of governors' credit, with  
α=0.1, β=0.3, δ=0.05, γ=1, D=5, K=1, H=25. 
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Figure 4.  Optimality of incentive plans with hard or soft budget constraints,  
with α=0.1, β=0.3, δ=0.05, γ=1, D=5, K=0. 
 
 


