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ABSTRACT
Methods of estimating two-locus sample probabilities under a neutral model are extended in several

ways. Estimation of sample probabilities is described when the ancestral or derived status of each allele
is specified. In addition, probabilities for two-locus diploid samples are provided. A method for using
these two-locus probabilities to test whether an observed level of linkage disequilibrium is unusually large
or small is described. In addition, properties of a maximum-likelihood estimator of the recombination
parameter based on independent linked pairs of sites are obtained. A composite-likelihood estimator, for
more than two linked sites, is also examined and found to work as well, or better, than other available
ad hoc estimators. Linkage disequilibrium in the Xq28 and Xq25 region of humans is analyzed in a sample
of Europeans (CEPH). The estimated recombination parameter is about five times smaller than one would
expect under an equilibrium neutral model.

LINKAGE disequilibrium is widely recognized as an multiple linked polymorphic sites. However, at present,
these Monte Carlo methods are extremely computation-important aspect of variation in natural popula-

tions (Lewontin 1964, 1974; Langley et al. 1974; Lang- ally intensive, and it has been difficult to assess when a
valid estimate of the likelihood is obtained and evenley 1977). Despite this recognition, there appears to

be no consensus about how to analyze linkage disequilib- more difficult to assess the properties of any statistical
inference based on these methods.rium or even to summarize the levels of observed linkage

In summary, quantifying and interpreting observeddisequilibrium when two or more polymorphic sites are
patterns of linkage disequilibrium remain a challenge.observed in a sample of chromosomes. One approach
To address this challenge, we propose in this articlehas been to calculate D2 or r2 for all pairs of polymorphic
that one consider polymorphic sites in pairs and utilizesites and plot these values as a function of the distance
likelihood methods appropriate for analyzing a pair ofbetween each pair of sites. (For examples, see Langley
polymorphic sites. That is, we suggest that it may be of1977; Chakravarti et al. 1984; Langley et al. 2000;
use to interpret observed two-site sample configurationsTaillon-Miller et al. 2000.) Since the moments of
in light of the two-site sampling distribution under athese summary statistics are known at least approxi-
simple neutral model, without summarizing the data inmately under standard neutral models (Ohta and Kim-
a statistic such as D2 or r2. When more than two linkedura 1969, 1971; Kimura and Ohta 1971; Hill 1975),
polymorphisms appear in a data set, this approach willthis has been useful. However, much information is
entail some loss of information, but a great deal is gainedlost in these summary statistics. An alternative analysis
in tractability relative to the full multisite-likelihood ap-consists of reporting the P value of an exact test of
proach. In this article, we describe some methods ofindependence for all pairs of sites (e.g., Macpherson et
calculating (or estimating) two-site sampling distribu-al. 1990; Langley et al. 2000; Vieira and Charlesworth
tions and some applications of these distributions for2000; however, see Lewontin 1995 for an alternative
the analysis of samples from natural populations.to this approach). Unfortunately, this approach gives

Although methods of calculating or estimating two-little sense of whether observed levels of linkage disequi-
locus sample probabilities have been previously de-librium are higher or lower than expected for pairs of
scribed (Golding 1984; Hudson 1985; Ethier andtightly linked sites.
Griffiths 1990), very little use has been made of theseRecently, methods for estimating likelihoods under
distributions, in part because of the computational ef-simple neutral models have been introduced (Grif-
fort that has been necessary to obtain these probabili-fiths and Marjoram 1996; Kuhner et al. 2000; Nielsen
ties. However, even inexpensive desktop computers are2000). In principle these methods should allow the most
now sufficiently fast to calculate these probabilities, atpowerful analyses to be carried out on samples with
least for small sample sizes. Furthermore, the required
sampling distributions can be made available over the
Internet.
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sidering samples in which the ancestral/derived states primary interest, and most results will be for the limiting
case as � → 0.of alleles are taken into account. Also, two-locus diploid

sample probabilities are calculated. In addition, we de-
scribe how these distributions can be used to assess

OBTAINING SAMPLE PROBABILITIES
observed levels of linkage disequilibrium between sites

Recursion equations method: Numerical values ofand how they may be used to estimate the recombina-
qu(n; �, �) can be obtained for small samples by solving ation rate parameter of a neutral model.
recursion, originally due to Golding (1984) and further
analyzed by Ethier and Griffiths (1990). The reader
should consult these articles for details. For sample sizesTHE MODEL AND NOTATION
�40, the linear systems of equations that need to be

We consider a selectively neutral two-locus random solved become quite large. For example, with a sample
union of gametes model with discrete generations and of size 40, the last set of equations that must be solved
Wright-Fisher sampling to produce succeeding genera- has �20,000 equations. However, the system is sparse,
tions (Karlin and McGregor 1968; Ewens 1979; Grif- having only nine or fewer nonzero coefficients in each
fiths 1981). The population size, assumed constant, is equation. A program to numerically solve Golding’s re-
denoted N. We assume that each locus has the same cursion was written by the author and is available at
neutral mutation rate, although relaxing this assump- http://home.uchicago.edu/�rhudson1. The program
tion is trivial. An infinite-allele model of mutation is utilizes a conjugate gradient method and indexed stor-
assumed, although we focus primarily on the case in ages of the sparse matrices as described by Press et al.
which mutation rates are small, in which case the model (1992) to solve the linear systems.
becomes essentially the same as the infinite-sites muta- Random-genealogies Monte Carlo method: An alter-
tion model. The neutral mutation rate at each locus is native to solving Golding’s recursion is to estimate the
denoted u, and the recombination rate between the two two-locus sample probabilities by the method of Hud-
loci is denoted r. For large populations the sampling son (1985). This method is practical for samples of sizes
properties are functions of the composite parameters, up to 100 and perhaps somewhat larger. Briefly, the
4Nu (� �) and 4Nr (� �) (Ohta and Kimura 1969, estimate is obtained by generating a large number of
1971; Hill 1975). independent two-locus genealogies (under the neutral

We focus our attention on samples with exactly two model with the appropriate value of �) using standard
alleles at each locus. The two alleles at the first locus coalescent machinery (Hudson 1983). For each geneal-
are designated A0 and A1; the two alleles at the other ogy, one calculates the probability of the sample con-
locus are designated B0 and B1. (At this point the labeling figuration of interest. The average of these probabilities
is arbitrary, although later, when ancestral and mutant is an estimate of qu(n; �, �). Because it is of use later, we
alleles are specified, the labeling will be meaningful.) describe the method in more detail. Before proceeding
A sample of n gametes is randomly drawn from a popula- with this description we note that Monte Carlo Markov
tion at stationarity under the neutral model. The unor- chain methods, such as that of Nielsen (2000), are
dered sample configuration is denoted by n � (n00, n01, likely to be very much faster than the method described
n10, n11), where nij is the number of sampled gametes below. Nielsen’s method estimates essentially the same
that carry allele Ai at the A locus and allele Bj at the probability that we consider here but can be used on
B locus. Hence, n00 � n01 � n10 � n11 � n. The frequen- the much more difficult problem of more than two
cies of the A1 allele and the B1 allele in the sample are linked sites. However, for estimating the probabilities
p1 � (n10 � n11)/n and q1 � (n01 � n11)/n, respectively, of all possible configurations for a pair of sites and a
and the frequency in the sample of the A1B1 gamete is given sample size, the method of Hudson (1985) may
p11 � n11/n. In this notation, D � p11 � p1q1 and r2 � be competitive with the Monte Carlo Markov chain
D2/(p1(1 � p1)q1(1 � q1)) are two commonly employed methods. (For small sample sizes, the point may be
sample measures of linkage disequilibrium. moot, since the sample probabilities have already been

The probability of a particular sample configuration, calculated and tabulated, as described in results and
n � (i, j, k, l), is denoted qu((i, j, k, l); �, �) or when no applications. For larger sample sizes, the issue remains
ambiguity results as qu(n; �, �). This sample probability important.) We now describe the method of Hudson
corresponds to the probability given by Ethier and (1985).
Griffiths (1990, Equation 2.14) and the quantity �M A two-locus genealogy is produced by generating a
of Golding (1984). We note that qu((i, j, k, l); �, �) � random sequence of events, proceeding backward in
qu((i, k, j, l); �, �), since we assume that the mutation time from the present, as described by Hudson (1983).
rate is the same at the two loci. It is qu(n; �, �) and The events are coalescent events, in which two lineages
closely related probabilities that are the main foci of merge into a single common ancestor, and recombina-
this article. Because we are interested in polymorphism tion events, in which a single ancestral chromosome

splits into two parental chromosomes. We denote the ithat single nucleotide sites, the case of very small � is of
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event by Ei. The complete ordered sequence of events is Thus to obtain the sample probability, qu(n; �, �), we
sum over all branches j and k and take the expectationdenoted � and is referred to as the E-sequence. Associ-
over the joint distribution of � and the T-sequence,ated with each event is a specification of which lineage

or lineages are involved. The E-sequence completely
qu(n; �, �) � E ��

j,k
I(�, n, j, k)(1 � e��aj)(1 � e��bk)(e��(	A�aj )e��(	B�bk))�determines the topology of the A locus and B locus

gene trees. A complete specification of the two-locus
≈ E ��2�

j,k
I(�, n, j, k)ajbk� , (2)genealogy requires that one also specify the time inter-

vals between the events. We note, however, that under
the constant population size model, the E-sequence can where E( ) designates expectation over random geneal-
be generated without regard to the time intervals be- ogies, j indexes the branches of the A locus tree, and k
tween events. The time interval preceding Ei is denoted indexes the branches of the B locus tree. The approxi-
Ti. The ordered sequence of these time intervals is re- mation is for small � and is obtained by Taylor ex-
ferred to as the T-sequence. Under the constant popula- panding the exponentials and dropping higher-order

terms in �. Since we are interested in small �, we considertion size model and conditional on the E-sequence, the
the following function:time intervals are independent exponentially distrib-

uted random variables. The mean of Ti depends on
hu(n, �) � lim

�→0
qu(n; �, �)/�2

the configuration of the ancestral lineages during the
interval, which, in turn, depends on the E-sequence.

� E ��
j,k

I(�, n, j, k)ajbk�. (3)The calculation of the mean of Ti conditional on the
E-sequence is also described in Hudson (1983).

The two-locus genealogy can be summarized as two This function is perhaps best described as the “scaled,
tip-labeled gene trees, one for the A locus and one for small-�, likelihood function” and is referred to as the
the B locus. We arbitrarily number the branches of the “scaled likelihood.” The value of hu(n, �) at a particular
A locus tree from 1 to 2n � 2 and designate the length value of � can be estimated by generating a large num-
of the ith branch by ai, measuring time in units of 4N ber, m, of two locus genealogies using the specified value
generations. Note that for any particular branch, say the of � and calculating the sum
ith, ai is the sum of one or more consecutive elements of
the T-sequence. Similarly, the branches of the B locus hu

�

(n, �) �
1
m �

m

i�1
�
j,k

I(�i, n, j, k)aj(i)bk(i), (4)
tree are numbered, and their lengths are denoted by
bj. As with the A locus tree, the lengths of the B locus

where �i is the E-sequence of the ith randomly generatedtree are sums of one or more consecutive elements
two-locus genealogy, and aj(i) and bk(i) are the branchof the T-sequence. It is assumed that the number of
lengths on the same two-locus genealogy. In effect, themutations on branch i of the A locus tree, conditional
method simply estimates the expected product of theon its length, is Poisson distributed with mean (�/2)ai.
lengths of pairs of branches that, if mutations occurredThe sum of the ai is denoted 	A and the sum of the
on them, would produce the specified sample configu-lengths of the B locus branches by 	B. For a given two-
ration. To obtain an estimate of qu(n; �, �) we uselocus genealogy, it is a simple matter to check for each

pair of branches, one from the A locus gene tree and �2hu

�

(n, �). This is the method of Hudson (1985).
In the case of the constant population size model,one from the B locus gene tree, whether a mutation

the method of Hudson (1985) can be made more effi-on the A locus branch and a mutation on the B locus
cient by replacing the randomly generated values ofbranch would lead to the specified sample configura-
ajbk by their expectation conditional on the E-sequence.tion, n. This property of the two-locus genealogy de-
That is, we estimate hu(n, �) by

pends only on � and not on the T-sequence. Let I(�, n,
j, k) denote an indicator variable that is one if branch
j on the A locus tree and branch k on the B locus tree

hu

��

(n, �) �
1
m �

m

i�1
�
j,k

I(�i, n, j, k)E(ajbk|�i). (5)are such a pair of branches and zero otherwise. If I(�,
n, j, k) equals one, then the sample configuration, n,

This is feasible because aj and bk are sums of one orwould arise if one or more mutations occurred on branch
more consecutive elements of the T-sequence, whichj of the A locus tree, and one or more mutations oc-
are exponentially distributed. If aj and bk share no ele-curred on branch k of the B locus tree, and no mutations
ments of the T-sequence in common, then the expecta-occurred elsewhere on the tree. Thus given � and the
tion of the product is the product of the expectations.T-sequence, the probability of the configuration n being
If they have elements in common, the expectation ofproduced by mutations on branch j of the A locus tree
the product is the product of the expectations plusand branch k of the B locus tree is
the sum of the expectations of the elements that are
common to both. For example, if aj is equal to the sumI(�, n, j, k)(1 � e��aj)(1 � e��bk)e��(	A�aj)e��(	B�bk). (1)
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of T2 � T3 and bk is T3 � T4, then under the constant ing population size can be easily accommodated. A pro-
population size model, the expectation of ajbk is gram to estimate h(n; �) using (4) under these models

is available at http://home.uchicago.edu/�rhudson1.
E((T2 � T3)(T3 � T4)) � (
2 � 
3)(
3 � 
4) � 
3 , Sequenced samples with two polymorphic sites: In

the previous sections, the samples considered are as-where 
i � E(Ti|�). This follows from properties of the
sayed only at two sites. The intervening and flankingexponential distribution. Thus if hu(n; �) is estimated
nucleotide sites may or may not be polymorphic. Thiswith (5) rather than (4), the T-sequence does not need
is exactly the situation considered by Nielsen (2000).to be generated and a lower variance estimate of hu(n;
In contrast, we consider now the case where a set of�) is obtained.
contiguous sites are sequenced in each individual andAncestral and derived alleles: In the previous para-
all sites are therefore examined, and all polymorphismsgraphs, we did not specify which alleles were ancestral
in the sequenced segment are detected. Thus, full hap-and which were the mutant (or derived). It is now com-
lotype information is obtained for all sites in the seg-mon to obtain sequence from a closely related species
ment. This is the situation considered by Griffiths andand infer which alleles are ancestral. The probabilities of
Marjoram (1996) and Kuhner et al. (2000). Nielsensample configurations with specified ancestral/derived

states are no more difficult to calculate than the unspeci- (2000), Griffiths and Marjoram (1996), and Kuhner
fied configurations. A sample in which the ancestral/ et al. (2000) all analyze the very difficult problem of
derived status of each allele is specified is referred to estimating the probability of samples with arbitrary
as an “a-d-specified” sample, and otherwise the sample numbers of linked sites. In contrast, we now limit our-
is “a-d unspecified.” The algorithm we just described selves to the special case where only two sites are found
can be modified to estimate the probabilities of a-d- to be polymorphic in the sample (and the rest are mono-
specified samples by simply changing the indicator func- morphic), because, in this case, the random-genealogies
tion used. Golding’s recursion can also be modified to method of Hudson (1985) can be easily extended to
calculate a-d-specified sample probabilities. We use the calculate these sample probabilities for a sequenced
convention for a-d-specified samples that A0 and B0 de- segment. This can be done as follows.
note the ancestral alleles and A1 and B1 denote the If the segment sequenced is L nucleotides long, we
mutant alleles. For a-d-specified samples, the quantities use an L-locus model, where each locus corresponds to
corresponding to qu(n; �, �) and hu(n; �) are denoted a nucleotide site. We number the nucleotide positions
q(n; �, �) and h(n; �). from 1 (the leftmost site) to L(rightmost site.) Instead

The a-d-unspecified probabilities can be obtained of a two-locus gene genealogy we must consider an L-locus
from the a-d-specified probabilities by summing four gene genealogy. Each site has associated with it a gene
(or fewer) distinct a-d-specified sample probabilities, genealogy or gene tree. The sum of the lengths of the
which result in the same unspecified sample configura- branches of the gene tree of the ith site is denoted 	i.
tion. That is, we can obtain the a-d-unspecified probabil- We denote RL

i �1 	i/L by 	seq. We designate the positions
ities with of the two polymorphic sites by x and y. The branches

of the tree of site x and of the tree site y are numberedqu((i, j, k, l); �, �) � [q((i, j, k, l); �, �) � q((k, l, i, j); �, �)
arbitrarily from 1 to 2n � 2, and the length of branch

� q(( j, i, l, k); �, �) j of the tree of site x is labeled 	x,j, and similarly 	y,k

denotes the length of the kth branch of the tree of site� q((l, k, j, i); �, �)]/�(i, j, k, l), (6)
y. The two-locus sample configuration at sites x and y

where is denoted by n, as before. Hudson (1983) describes
how to generate an L-locus gene genealogy. The E-series
must now include information on where each crossover
event occurs along the segment. We focus on the case

�(i, j, k, l) �







4 if i � j � k � l
2 if i � j and k � l and j � k, or if

i � k and j � l and i � j, or if
i � l and j � k and i � j

1 otherwise.

of small mutation rates, and so the infinite-allele model
is still appropriate for each site. Let u t denote the total
mutation rate for the set of L sites and u t/L the mutation
rate per site. We denote 4Nut by �t. In this notation, ifIn results and applications, we compare scaled-likeli-
�t/L is small, the expected number of polymorphic siteshood curves for one a-d-unspecified sample and the
is ��tE(	seq), and the probability of no polymorphic sitescorresponding a-d-specified configurations. In that sec-
in the sample is �E(e��t 	seq). As before, we define � �tion we also address the issue of whether knowledge of
4Nr, but in this case r is the recombination rate perwhich alleles are ancestral can improve estimates of �.
generation between the leftmost and rightmost sites ofThe method of Hudson (1985) can be extended to
the sequenced segment. The probability of the fullyany neutral model in which the two-locus genealogy
sequenced a-d-specified sample with two polymorphiccan be efficiently generated. In particular, simple island

models of geographic structure and models with chang- sites is denoted qseq(n, x, y; �t, �) and is given by
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be represented by a 10-vector, nd � (n0, n1, . . . , n9).qseq(n, x, y; �t, �) � E ��
j,k

Ix,y(�, n, j, k)(1 � e��t	x, j /L)
We use n0 to denote the number of coupling-phase
double heterozygotes (A0B0/A1B1) and n1 to denote the

� (1 � e��t	y,k/L) number of repulsion-phase double heterozygotes (A0B1/
A1B0). The numbers of each of the other diploid geno-

� (e��t(	seq�	x,j /L�	y,k/L))� types are designated by ni, i � 2, . . . , 9. From the vector,
nd, we can count the number of each of the four possible
chromosomes. That is, the vector nd maps unambigu-≈ E �(�t/L)2�

j,k
Ix,y(�, n, j, k)xjyke��t	seq�,

ously to the underlying haploid data configuration,
(7) which we denote by n(nd). Under random mating, the

probability of nd is q(n(nd); �, �) times the probabilitywhere the approximation is obtained by expanding se-
that 2n haploids of configuration n(nd) when randomlylected exponential terms and dropping terms of order
paired produce nd. In symbols,(�t/L)3 and higher and where Ix,y is an indicator func-

tion, as before, but in this case it depends on the gene qdip(nd; �, �) � b(nd, n(nd))q(n(nd); �, �), (10)
genealogies of site x and of site y. Ix,y is one if the jth

where b(nd, n(nd)) is the probability under randombranch of the tree of site x and the kth branch of the
pairing of getting nd from a haploid configurationtree of site y are such that mutations on them lead
n(nd). By counting up the possible pairings, one findsto the given a-d-specified sample configuration n. This
thatexpression for the probability of a sequenced sample is

essentially the same as the expression for the two-locus
b(nd, n) �

n!

�9
i�0ni!

n00!n01!n10!n11!
(2n)!

2n
het , (11)configuration (2), except for the last term, e��t	seq. The

analogue of h(n; �) for sequence data, which we denote
hseq(n, x, y; �, �t), is where nhet is the number of diploid individuals that are

heterozygous at one or two loci and where ni is the ith
h seq(n, x, y; �, �t) � lim

L→∞
qseq(n, x, y; �t, �)/(�t/L)2, (8)

element of nd and nij, i, j � 0, 1 are the elements of n.
Now consider the case where the phase of double

where �t is assumed constant (and does not depend on heterozygotes is not determined by the experimenter.
L). This can be estimated by In this case, we cannot observe n0 or n1, but we do

observe their sum. We denote the sum by ndh. We denote
h seq

�

(n, x, y; �, �t) �
1
m �

m

i�1
�
j,k

Ix,y(�i, n, j, k)xj(i)yk(i)e��t	seq(i),
the diploid data set in this case by nd�9 � (ndh, n2, . . . ,
n9). Given ndh, the actual number of coupling phase(9)
double heterozygotes, n0, could be any value from zero

where �i is the E-sequence of the ith randomly generated to ndh. Each of these possible values corresponds to a
L locus genealogy, and xj(i) and yk(i) are the branch different nd configuration. We denote these possible nd
lengths on the trees of site x and site y, respectively. configurations by nd(i, nd�9), where i � 0, . . . , ndh. That
And 	seq(i) is 	seq for this same L locus genealogy. is, if nd�9 � (ndh, n2, . . . , n9), then nd(i, nd�9) � (i,

In results and applications we compare h(n; �) ndh � i, n2, . . . , n9). Then the probability of a diploid
and hseq(n, x, y; �, �t) to see how much the knowledge configuration nd�9 is obtained by summing up the prob-
that there are no other polymorphisms between or near ability of each of these mutually exclusive possible nd
the focal pair of sites affects an inference about �. The configurations, as:
estimates of hseq(n, x, y; �, �t) obtained as described
here may be useful for checking other algorithms for qdip�9(nd�9; �, �) � �

ndh,

i�0

qdip(nd(i, nd�9); �, �). (12)
estimating sequenced sample configuration probabili-
ties. Thus, with the haploid sample probabilities in hand, it

Diploid samples: Up to this point, we have considered is a simple matter to calculate diploid sample probabili-
samples consisting of haplotypes. It would be useful to ties, using (10), (11), and (12).
have sample probabilities analogous to q(n; �, �) for Conditional probabilities: Most applications of these
the case of diploid samples. We show here how the two-locus sampling distributions will focus only on pairs
probabilities of diploid samples can be expressed in of sites in which both sites are polymorphic in the sam-
terms of the haploid sample probabilities. ple. This means that rather than q(n; �, �), it will be

For diploids, with two alleles segregating at each locus, useful to consider the probability of specific sample
there are 10 distinct diploid genotypes. Often the phase configurations conditional on two alleles segregating in
of double heterozygotes is not determined directly, in the sample at each locus. That is, it is useful to consider
which case there are only 9 distinguishable diploid geno- the conditional probability
types. However, we begin by considering the case where
the haplotypes constituting double heterozygotes are q(n, �, �|2 alleles at each locus) �

q(n; �, �)

�mq(m; �, �)
, (13)

determined experimentally. In this case, the data can
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where the summation is over all configurations, m, with The conditional probabilities qc(n; �) when plotted
as functions of � are conditional-likelihood curves. Esti-two alleles at each locus. In the limit as � tends to zero

this becomes mates of three such curves are shown in Figure 2. Appli-
cation of these likelihood curves for estimating � are

lim
�→0

q(n, �, �|2 alleles at each locus) �
h(n; �)

�mh(m; �)
, (14) described in a subsequent section, Estimating �.

Before proceeding to some applications of these sam-
ple probabilities we consider briefly the effects of know-which we can estimate without specifying �. This condi-
ing which alleles are ancestral and the effects of havingtional probability for small � is denoted qc(n; �).
full sequence data vs. assessing the variation at only twoIt may also be of interest to condition on other events.
specified sites. In Figure 3, we show plots of h(n; �) forFor example, one may wish to limit consideration to
a set of four a-d-specified samples and hu(n; �) for thepolymorphisms in which the rarer allele has frequency
corresponding a-d-unspecified sample. In the plot, we�0.05, or one may wish to condition on precisely the
see that different a-d-specified samples, each corre-marginal allele frequencies observed. These are easily
sponding to the same a-d-unspecified sample, can havecalculated by changing the summation in the denomina-
very different likelihood curves. In this case, two of thetor of the right-hand side of (14). Various conditional
configurations have monotonically decreasing likeli-probabilities are utilized in the following sections.
hood curves, and the other two configurations have a
maximum for intermediate values of �. However, two

RESULTS AND APPLICATIONS of the configurations, which have similar curves, have
much higher probabilities than the other two configu-Example sampling distributions: I have used the Hud-
rations. Thus, although knowledge of which alleles areson (1985) Monte Carlo algorithm (and Equation 4 or
ancestral may in specific instances have an important5) to estimate h(n; �) for all possible two-locus sample
impact on inferences about �, on average, knowledgeconfigurations (with exactly two alleles at each locus)
of which alleles are ancestral may not provide very muchfor samples sizes of 20, 30, 40, 50, and 100 and a range
more information. This suggestion is supported by theof � values between 0 and 100. These are available at
results concerning asymptotic variances of estimates ofhttp://home.uchicago.edu/�rhudson1. The program
� using many pairs of sites, which is described later.used to estimate these quantities is also available at this

The effects of having full sequence data vs. assessingsite. The program actually generates multilocus gene
the variation at only two polymorphic sites are illustratedtrees and simultaneously estimates the sample probabili-
in Figure 4, in which we show plots of h(n; �) and hseq(n,ties for a range of recombination rates and all possible
x, y; �, �t) as functions of � for n � (15, 15, 9, 1) andsample configurations simultaneously. The results for
�t � 0.6. In this case, the curves are very similar in shape.sample size 40 have been compared for several configu-
One should be cautious about generalizing from thisrations to the results of solving the recursions of Gold-
particular result, but it appears that, for the case whereing (1984). No significant discrepancies were found.
only two sites are polymorphic, likelihoods based onThus two very different approaches using entirely inde-
full sequence data may be quite similar to the likelihoodpendent computer code produced essentially the same
based on assays of only the pair of sites that are polymor-values for the probabilities of a large number of sample
phic. For other values of �t this may not hold.configurations over a range of � values. In addition, the

Assessing observed levels of linkage disequilibrium:results for large recombination rates converge on the
With the conditional probabilities described above, itfree recombination configuration probabilities that are
is possible to assess whether or not the level of linkageeasy to calculate with Ewens sampling distribution
disequilibrium observed between a particular pair of(Ewens 1972) and the assumption of independence
sites is compatible with our neutral model and a speci-of the two sites. These two results give considerable
fied value of �. For example, suppose that we have areassurance that the Monte Carlo program functions
sample of 90 gametes in which two sites, 1000 bp apart,correctly. The program can also be used to estimate
are assayed and found to be polymorphic, with sampletwo-locus sample probabilities under the island model
configuration, n � (53, 7, 17, 13). (This is the sampleof spatial structure and under a model with recent expo-
configuration corresponding to n11 � 13 in Figure 1.)nential growth in population size.
Note that the marginal allele frequencies of the derivedFigure 1 shows some conditional sampling distribu-
alleles are 30(� 17 � 13) at one locus and 20(� 7 �tions for a sample of size 90. This figure shows the
13) at the other locus. We ask the question of whetherasymmetric U-shaped distribution of linkage disequilib-
this observed configuration is compatible with the hy-rium, which is typical for low recombination rates, the
pothesis that 4Nrbp (� �bp) equals, say, 0.001, where rbpbroad distribution of linkage disequilibrium for values
is the recombination rate per base pair per generation.of � in the range of 5–20, and the unimodal and nearly
With these assumptions, the relevant recombination pa-normal distribution of linkage disequilibrium for large
rameter for our pair of sites is � � �bp 1000 � 1.0. To�. An application of these distributions is described in

the next section. assess whether the linkage disequilibrium observed is
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Figure 1.—Conditonal prob-
abilities of two-locus sample
configurations for samples of
size 90. The height of each col-
umn gives the probability of
the configuration with n11 tak-
ing the value on the abscissa,
conditional on n11 � n10 � 30
and n11 � n01 � 20. Given these
marginal frequencies, D takes
its minimum possible value
when n11 � 0 and its maximum
possible value when n11 � 20.
These conditional sample
probabilities were calculated

with (14) with the denominator equal to the sum over all configurations with the specified marginal allele frequencies. The
leftmost column is truncated and should rise to a value of 0.58.

unusually high or low, we examine the distribution of n 13 have probabilities less than or equal to the observed
configuration. The sum of the probabilities of theseconditional on the observed marginal allele frequencies

with � � 1.0. Conditional on the marginal allele frequen- configurations is approximately 0.028, so our hypothesis
is rejected. That is, we conclude that this sample config-cies, there are only 21 possible sample configurations,

which can be specified by the value of n11. The condi- uration is quite unusual for � � 1.0 and note that it
would be much more likely if � � 10. We refer to thistional probabilities of these configurations for � � 1.0

are shown in Figure 1 and were obtained using Equation test as the “exact test conditional on the marginals”
(ETCM) and emphasize that it requires that one know14, with the summation in the denominator of the right-

hand side being over the 21 possible sample configura- or specify �.
Suppose now that our pair of polymorphic sites, withtions.

We define a statistical test by summing the conditional n � (53, 7, 17, 13), had been 100,000 bp apart, in
which case, � � 100. If we examine the conditionalprobabilities of all configurations with probabilities less

than or equal to the probability of the observed config- probabilities for this value of � (shown on the right in
Figure 1), we find that the sum of the probabilities ofuration. If this sum is 
0.05 we reject our hypothesis.

In our example, the configurations with n11 � 8, . . . , configurations with less or equal probabilities is �0.02,
and so the hypothesis would again be rejected. (In this
case the configurations with lower probabilities are n11 �
0, and n11 � 14, . . . , 20.) There is too much linkage
disequilibrium in this case. This illustrates that the

Figure 2.—The conditional-likelihood curves for three sam-
ple configurations. (�) n11 � 5. (�) n11 � 1. (�) n11 � 0. The
conditioning in this case is that there are two alleles at each
locus in the sample. The three sample configurations are n �
(20, 10, 20, 0), n � (21, 9, 19, 1), and n � (25, 5, 15, 5), which Figure 3.—A comparison of the scaled-likelihood functions

for an a-d-unspecified sample, hu(n; �), and the four corre-are labeled n11 � 0, n11 � 1, and n11 � 5, respectively. The
marginal allele frequencies are the same for each configura- sponding a-d-specified samples. The top curve, hu(n; �), is

equal to the sum of the lower four curves. (�) hu ((16, 20,tion. The values of qc(n; �) shown here were estimated with
(14), modified for a-d-specified samples, using scaled likeli- 14, 0); �). (�) h ((16, 20, 14, 0); �). (�) h((6, 30, 14, 0); �).

(�) h ((0, 30, 14, 6); �). (�) h((0, 20, 14, 16); �).hoods estimated from (4).



1812 R. R. Hudson

Figure 4.—A comparison of (�) h(n; �) and (�) hseq(n, x,
y; 2�, �t) for n � (15, 15, 9, 1) and �t � 0.6. hseq(n; x, y; 2�, �t)
was estimated with Equation 9 on the basis of simulations with
L � 10,000 sites and x � 2500 and y � 7500. With this choice
of x and y, the recombination parameter corresponding to
the recombination rate between these two sites is �.

Figure 5.—The expected log-likelihood curve, (�) E�0

(log(qc(n; z))), for �0 � 5.0 and n � 50. For this curve we
ETCM can reject the null hypothesis due to either too conditioned on the marginal allele frequencies being �0.1.

(This curve is obtained using (16) and (14) and tabulatedmuch or too little linkage disequilibrium.
values of h(n; �).) Also shown is a second degree polynomialThis test could be carried out for all possible pairs of
obtained by a least-squares fit to the points on the expectedpolymorphic sites in a contiguous region to explore the log-likelihood curve near z � 5.0. (—) Fitted quadratic.

possibility that some sites exhibit unusually high or low
levels of linkage disequilibrium. Such sites may be indic-
ative of hotspots of recombination or mutation or epi-

pair of sites. The maximum-likelihood estimate of �static selection. This is a complementary approach to
obtained with (15) is denoted �̂.the usual analysis of linkage disequilibrium in which

To characterize the statistical properties of the maxi-Fisher’s exact test of independence is applied to all
mum-likelihood estimate �̂, it is useful to consider thepairs. It should be noted that, when more than two
expectation of log(qc(n; z)), over the distribution of nlinked sites are considered, there is a statistical depen-
conditional on polymorphism at both sites. That is, wedence between the ETCMs on each pair, and any inter-
considerpretation of the results should bear this in mind.

Estimating �: Using independent linked pairs: The condi- E�0(log(qc(n; z))) � �
n

qc(n; �0)log(qc(n; z)), (16)
tional probabilities qc(n; �) when plotted as functions
of � are likelihood curves. Estimates of three such curves where E�0 indicates expectation given that the true value
are shown in Figure 2. (The estimates are obtained using of � is �0. This function can be viewed as a function of
(14) and (4) but for a-d-specified samples.) Most sample both z and �0 and can be estimated from our tabulated
configurations lead to monotonically increasing or de- values of h(n; �). An estimate of this function is plotted
creasing likelihood curves, but samples with high but as a function of log z for �0 � 5.0 and a sample of size
not complete linkage disequilibrium lead to likelihood 50 in Figure 5. (The conditioning for Figure 5 is that
functions with a maximum at a finite positive value of both sites are polymorphic with the rarer allele having
�. Thus the maximum-likelihood estimate of � for a frequency �0.1.) The second derivative of this function
single pair of sites is often zero or infinity. When the with respect to z, evaluated at the �0, is inversely propor-
estimate is finite and greater than zero, the confidence tional to the asymptotic variance of the maximum-likeli-
interval is clearly large (as indicated by the broad likeli- hood estimate of �. More precisely, if k pairs of sites
hood function). This was noted before by Hudson are utilized, we expect the variance of the maximum-
(1985) and by Hill and Weir (1994). However, if one likelihood estimator to be approximately
had k pairs of sites, where each pair is independent of
the other pairs and where each pair of sites has the

Var�0,k(�̂) ≈ 1
�k(�2/�z2)E�0(log qc(n; z))|z��0

(17)same �, then one might be able to obtain a very accurate
estimate of �. In this case the overall likelihood, for

for k sufficiently large. Here, Var�0,k denotes the variancesmall �, is approximately
of the estimator based on k pairs and with � � �0. With

L(n1, n 2, . . . , nk; �) ≈ �
k

i
qc(ni; �), (15) the tabulated estimates of h(n; �), one can estimate

the second derivative in (17) and hence the asymptotic
variance of �̂. However, it may be of most interest toin which ni is the two-locus configuration for the ith
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distributed, then with probability �0.95, log(�̂) will lie
in the interval log(�0) � 2(0.35), and hence �̂ will be
within a factor of 2 of the true value. To check this result,
I generated 32,000 two-locus samples on the computer,
using the conditional sampling probabilities qc(n; �),
conditioning on the appropriate marginal allele fre-
quencies. These random two-locus samples were formed
into 1600 groups of 20, and �̂ was calculated for each
group. From these outcomes, the estimated variance of
log(�̂) was 0.124, which is very close to the prediction
from the asymptotic analysis (2.5/20 � 0.125). The
probability of being within a factor of 2 is estimated to
be 0.96, also in very good agreement with the asymptotic
analysis prediction of 0.95.

In practice, different pairs of polymorphic sites will
Figure 6.—Estimates of the asymptotic variance of the loga- be different distances apart and will have different re-

rithm of the maximum-likelihood estimate of � based on k combination rates. In the case where the physical dis-
independent pairs of polymorphic sites. These estimates were tance between each pair of sites was known and theobtained with Equation 18, with estimates of the second deriva-

recombination rate per base pair was the same for eachtive of the expected log-likelihood function. The expected log-
pair of polymorphic sites, then the likelihood for k poly-likelihood functions were estimated from (16) and tabulated

values of h(n; �). morphic pairs is approximately

L(n1, n2, . . . , nk; �bp) ≈ �
k

i
qc(ni; �bpdi), (19)

investigate the coefficient of variation of the estimate
of �, so we consider instead

where �bp is 4Nrbp, rbp is the recombination rate per base
pair, and di is the distance in base pairs between the ith
pair of sites. This likelihood could be used to estimate
�bp. The results in the previous paragraph suggest that
the lowest variance estimator of �bp will be obtained if
sites are separated by a distance such that �bp times the
distance is �5. If rbp varied from one pair of sites to the

In Figure 5, we show, in addition to our estimate of next, but the value of rbp were known for each pair of
E�0(log(qc(n; z))) for �0 � 5.0, a quadratic function ob- sites, say from comparisons of physical and genetic
tained by a least-squares fit to several points near z � 5.0. maps, a similar likelihood could be used to estimate N,
Clearly the expected likelihood function is very close the effective population size.
to quadratic for a substantial range of z in the neighbor- Using the above method, we can estimate the asymp-
hood of 5.0. This suggests that the asymptotic properties totic variance of � in a-d-unspecified samples and in
may apply for moderate values of k. By estimating the diploid samples in which the phase of double heterozy-
second derivative of the expected likelihood functions, gotes is not determined. For the case of a-d-unspecified
we have estimated asymptotic variances (times k) for a samples of 50 gametes in which � � 5.0, the asymptotic
set of values of �0 and plotted the results as a function variance is estimated to be 2.2/k, which is essentially
of �0 in Figure 6. The plot in Figure 6 shows that pairs the same as what we found for a-d-specified samples.
separated by � in the range of 2–15 are best for estimat- Thus, there appears to be little if any gain in knowing
ing �. As � decreases below 2.0, the asymptotic variance which alleles are ancestral when the data consist of inde-
grows rapidly. For larger values of � the asymptotic vari- pendent linked pairs of sites. A similar asymptotic analy-
ance grows more slowly. sis could be used to determine the optimum sample

To give some feeling for the number of pairs needed size when one can trade off sample size for number of
to get a reasonable estimate of � we consider a numerical pairs. We do not pursue that analysis here.
example. Suppose that we have data for k � 20 indepen- Finally we note that, when investigating pairs of poly-
dent pairs of polymorphic sites, where the rare allele morphic sites, the incorporation of gene conversion is
has in every case allele frequency of at least 0.1 and straightforward. It is necessary only to establish an effective
where the recombination rate, �0, between the sites of recombination rate as a function of distance that incorpo-
each pair is the same and is in the range from 2 to 10. In rates gene conversion, such as Andolfatto and Nord-
this case, we see from Figure 6 that k is borg (1998) or Langley et al. (2000). The scaled-likeli-
�2.5, and hence the asymptotic standard deviation of hood functions do not need to be recalculated. Frisse
log(�̂), when estimated from 20 independent pairs, is et al. (2001) recently estimated gene conversion rates

in humans using this method.�0.35 (� √2.5/20). If log(�̂) is approximately normally
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Figure 7.—Estimates of the
medians (�̂50) of four estima-
tors of � (each divided by the
true value of �). These are
based on 10,000 samples of size
50 generated by coalescent-
based Monte Carlo simula-
tions. The four estimators are
described in the text.

Using many linked sites: In the previous sections, we recombination rate between the ends of the segment
observed and � being the mutation parameter associatedconsidered one or more linked pairs of sites, where

each pair is independent of the others. We now consider with the entire segment. Figures 7 and 8 show estimates
of the medians and the 10th and 90th percentiles ofthe case where more than two linked polymorphic sites

are assayed in a single sample. In this situation, full the distribution of �̂CL for a range of � values. The same
quantities were estimated for three other estimators thatlikelihood considering all polymorphisms simultane-

ously is the proper approach. Griffiths and Marjoram have been described in the literature. These estimators
are � (Hey and Wakeley 1997), Cwak (Wakeley 1997),(1996), Kuhner et al. (2000), and Nielsen (2000) have

provided Monte Carlo methods for estimating these and CHRM (Wall 2000). Each estimator was calculated
for each of 10,000 samples (each of size 50 chromo-likelihoods. However, at present the methods of Grif-

fiths and Marjoram (1996) and Kuhner et al. (2000) somes). [These results for � (Hey and Wakeley 1997),
Cwak (Wakeley 1997), and CHRM were kindly provided byare difficult to employ due to the very large computa-

tional requirements and the difficulty in determining Jeff Wall.]
The figures show that the estimator, Cwak, performswhen adequate convergence has been obtained. The

approach of Nielsen (2000) is less computationally de- poorly compared to the other estimators shown. The
estimator Cwak is an improved version of the estimatormanding and goes some way toward solving this prob-

lem. However, the properties of full-likelihood estima- of Hudson (1987), which would perform slightly more
poorly than Cwak.tors have not been explored, and the computation

requirements for this exploration are daunting. As an The estimator � has a considerably lower 90th percen-
tile than the other estimators. This is desirable as longalternative we consider a composite (or pseudo-) likeli-

hood obtained by using (19), where the summation on as the 90th percentile is larger than the true value.
Unfortunately, for large � and � � �/4, the 90th percen-the right-hand side is over all pairs of sites. This is an

approach suggested by Hudson (1993). Because of the tile of � falls below the true value. In addition, it has a
median considerably below the true value and a 10thstatistical dependence between different pairs of sites,

this expression is not the true likelihood. We can never- percentile well below the 10th percentile of �̂CL and
CHRM. Thus, for these parameter values � has a strongtheless maximize this function to obtain an estimate

of �bp, which is denoted �̂CL, where the subscript “CL” tendency to underestimate �. For other parameter val-
ues Hey and Wakeley (1997) showed that � has littleindicates an estimate based on composite likelihood.

Once the two-locus sampling-scaled likelihoods (h(n; bias or a bias in the opposite direction.
The medians of the estimators �̂CL and CHRM are close�)) are tabulated, calculating these composite likeli-

hoods is very fast, and hence the statistical properties to the true �, for � � �4.0 for the case of � � � and
for � � 10 when � � �/4. The 10th percentiles of �̂CLof this estimator can be explored.

To assess the quality of this composite-likelihood esti- and CHRM are considerably closer to the true value than
the 10th percentiles of the other estimators. Their 90thmator, �̂CL was calculated for a large number of samples

generated by coalescent methods. The samples were percentiles are much closer to the true value than the
90th percentile of Cwak but as mentioned above are notgenerated by the method of Hudson (1983), according

to an infinite-site model, with � corresponding to the as small as that of �. In terms of percentiles, the estima-
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Figure 8.—Estimates of the
90th (�̂90) and 10th (�̂10) per-
centiles of the distributions of
four estimators (divided by the
true value of �). These were es-
timated with the same samples
used in Figure 7.

tors �̂CL and CHRM appear to be quite similar. Overall, it the values reported here for � are, in fact, estimates
of 4Nr, where r is the female recombination rate. Theappears that the estimators �p and CHRM are substantially

superior to the other two estimators (at least for the estimates were 9 � 10�5, 8.8 � 10�5, and 9 � 10�5 for
all 39 sites, for the 14 sites of Xq25, and the Xq28 sites,parameter values investigated). The estimator �̂CL has

considerable flexibility that may make it of broader use. respectively. These results suggest that there is no overall
difference in recombination rates in the Xq25 regionSince it does not rely on surveying or sequencing of all

sites, it can be applied to data collected on previously compared to the Xq28 region. The effective population
size of humans has been estimated from levels of DNAidentified single nucleotide polymorphisms (SNPs) or

in surveys of regions with intervening gaps. Also, as polymorphism to be �104 and the recombination rate
per base pair, though quite variable, is for this regionindicated earlier, incorporating gene conversion is

straightforward and does not require reestimating any on average �10�8. Thus we might expect that �bp ≈ 4 �
10�4 or about five times larger than we estimate fromof the h(n; �) values.

Finally, since �̂CL is so quick to calculate (once the the X chromosome data.
The linkage disequilibrium at each of the 741 (� 39 �scaled likelihoods are in hand), one can afford to carry

out simulations to characterize the properties of an esti- 38/2) possible pairs of sites was evaluated by the ETCM,
described in Assessing observed levels of linkage disequilib-mate. For example, if the sampling procedure employed

to collect the data is well specified and simple, then rium, assuming �bp � 9 � 10�5. A total of only 7 pairs,
or �0.9% of the pairs, showed unusual two-locus con-computer-generated samples can be used to study the

distribution of the logarithm of the ratio of the compos- figurations (with P 
 0.025) using the ETCM. This is
somewhat fewer than one would expect by chance whenite likelihood of the data at �̂CL to the likelihood at the

true value of � for a range of � values and in this way carrying out this many tests. Thus, overall, our analysis
does not support the presence of a low recombinationobtain confidence intervals.

An application to human polymorphism data: We rate region in Xq25, as suggested by Taillon-Miller et
al. However, it should be noted that 6 of the 7 significantclose by estimating � from a survey of human variation

on the X chromosome (Taillon-Miller et al. 2000). pairs involve sites from the Xq25 region, and the seventh
is immediately adjacent to the Xq25 region. Of the 6In this study, 39 SNPs were surveyed in three population

samples. In the following, only the sample of 92 CEPH significant pairs in the Xq25 region, 5 show unusually
large linkage disequilibrium, but the 6th shows unusu-males is considered. The parameter �bp was estimated

by maximizing the composite likelihood for (i) all 39 ally low linkage disequilibrium. The latter pair of sites
is separated by 30 kb and D� for the pair is 0.22. The fiveSNPs, (ii) the 14 SNPs in Xq25, and (iii) the 10 SNPs

in or near Xq28. For loci on the X chromosome, using pairs showing significantly large linkage disequilibrium
from the Xq25 region were among the pairs identifiedthe h(n; �) functions described for autosomal loci will

result in an estimate of 2Nr, where r is the per-generation by Taillon-Miller et al. as showing significant linkage
disequilibrium by a Fisher’s exact test. In Figure 9, therecombination rate in females and N is the total effective

population size. In the following, the estimates returned values of r 2 are plotted for all pairs of sites within the
Xq25 region (14 sites and hence 91 pairs) and for allby the computer programs were multiplied by 2 so that
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Figure 9.—A plot of r2 vs. distance for poly-
morphic sites on the X chromosome in a CEPH
sample of Europeans. The sites in the Xq25
region are indicated by open circles and those
from the Xq28 region by solid squares. The
points with x’s over them (all from Xq25) have
significantly unusual linkage disequilibrium by
the ETCM test. The curve is the expected value
of r2 in samples of this size conditional on all
alleles having frequency �0.32. See text.
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